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Abstract. We study the motion of a robotic arm inside a rectangular tunnel of width 2. We prove that the configuration
space S of all possible positions of the robot is a CAT(0) cubical complex. Before this work, very few families of
robots were known to have CAT(0) configuration spaces. This property allows us to move the arm optimally from
one position to another.

Ardila, Owen, and Sullivant gave a bijection between CAT(0) cubical complexes and posets with inconsistent pairs
(PIPs), and we describe the coral PIP which corresponds to S under this bijection. We also compute the f -vector of
S and use it to verify that the Euler characteristic of S equals 1.

Résumé. Nous étudions le mouvement d’un bras robotisé à ’intérieur d’un tunnel de largeur 2. Nous dmontrons que
l’espace des configurations S consistant de toutes les positions du robot est un complexe cubique CAT(0). Très peu
de familles de robots satisfont cette propriété; cette famille, précédemment hors d’atteinte, était la prochaine à être
étudiée. Cette propriété nous permet the bouger le bras de façon optimale d’un position à l’autre.

Ardila, Owen et Sullivant ont donné une biection entre les complexes cubiques CAT(0) et les ensembles partiellement
ordonns avec pair inconsistantes (PIPs) et nous décrivons les PIP coral qui correspond à S sous cette bijection. Nous
calculons aussi le f -vecteur de S et l’utilisons pour vérifier que la caractéristique d’Euler de S est égale à 1.
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1 Introduction
We consider a robotic arm Rn of length n moving in a rectangular tunnel of width 2 without self-
intersecting. The robot consists of n links of unit length, attached sequentially, and its base is affixed
to the lower left corner. Figure 1 illustrates two possible positions of an arm of length 8.

Fig. 1: Two possible positions of the robotic arm R8.

The robot starts in the fully horizontal position, and is free to move using two kinds of local moves:
• Switching corners: Two consecutive links facing different directions interchange their directions.
• Flipping the end: The last link of the robot rotates 90◦ without intersecting itself.

Fig. 2: The two kinds of local moves of the robotic arm.

We study the following fundamental problem.

Problem 1.1 Find the fastest way of moving the robotic arm Rn from one position to another.

When we are in a city we do not know well and we are trying to get from one location to another, we
will usually consult a map of the city to plan our route. This is a simple but powerful idea. Our strategy
to approach Problem 1.1 will be to build and understand the “map” of all possible positions of the robot;
this is called the configuration space or state complex Sn. Following work of Reeves [9] and Abrams–
Ghrist [1], Ardila, Baker, and Yatchak [2] showed that, if the configuration space of the robotic arm is
CAT(0), Problem 1.1 can be solved efficiently. Thus Problem 1.1 motivates our main result.

Theorem 1.2 The configuration space Sn of the pinned-down robotic arm Rn of length n in a tunnel of
width 2 is a CAT(0) cubical complex.

In Section 3 we collect some preliminary evidence for this theorem. It follows from very general results
of Abrams and Ghrist [1] that the configuration space Sn is a cubical complex. Also, we know from work
of Gromov [7] that Sn will be CAT(0) if and only if it is contractible. Therefore, before proving Theorem
1.2, we first verify that Sn has the correct Euler characteristic. We do it as follows.

Theorem 1.3 Let Sn be the configuration space for the robotic arm Rn of length n moving in a rectan-
gular tunnel of width 2. If cn,d denotes the number of d-dimensional cubes in Sn, then

∑
n,d≥0

cn,d x
nyd =

1 + x2 + 2x3 − x4 + xy + x2y + 4x3y + x4y + x3y2 + 2x4y2 + x5y2

1− 2x+ x2 − x3 − x4 − 2x4y − 2x5y − x5y2 − x6y2 .
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Notice that the Euler characteristic of Sn is given by χ(Sn) = cn,0−cn,1+ · · · . Substituting y = −1 in
the above formula, we obtain the generating function for χ(Sn), which equals 1/(1−x) = 1+x+x2+· · · .
We conclude:

Corollary 1.4 The Euler characteristic of the configuration space Sn equals 1.

In Section 4 we sketch a proof of Theorem 1.2. Ardila, Owen, and Sullivant [4] gave a bijection
between rooted CAT(0) cubical complexesX and simpler combinatorial objects P (X) called posets with
inconsistent pairs or PIPs. This bijection allows us to prove (rooted) cubical complexes are CAT(0) by
identifying their corresponding PIP. Following this approach, we show the following result which implies
Theorem 1.2.

Fig. 3: The coral PIPs (“remote controls”) for the robotic arms of length 1, 2, 3, 4, 5, 6, 9 in a tunnel of
width 2.

Theorem 1.5 The PIP corresponding to the configuration space Sn for the robotic arm Rn of length n
in a tunnel of width 2 is the extended coral PIP of Definition 4.4.

We use the PIP P (X) as a “remote control” to move the robot and navigate the space X . Using this
remote control, we implement an algorithm to move the robotic arm in a tunnel of width 1 (using the
results of [2]) and 2 (using Proposition 1.5) optimally, thus solving Problem 1.1.

2 Preliminaries: Configuration spaces and CAT(0) cube complexes.
We begin by considering the transition graph G(Rn) whose vertices are the possible states of the robot,
and whose edges correspond to the allowable moves between them. Figure 4 and Figure 5 illustrate the
transition graphs G(R4) and G(R6) of a robotic arm of length 4 and 6 respectively.

As these examples illustrate, each one of these graphs is the 1-skeleton of a cubical complex. For
example, consider a position u which has two legal moves a and b occuring in disjoint parts of the arm.
We call a and b physically independent or commutative because a(b(u)) = b(a(u)). In this case, there
is a square connecting the vertices u, a(u), b(a(u)) = a(b(u)), and b(u) in G(Rn). This is a general
phenomenon, which we now make precise.
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Fig. 4: The transition graph of the robotic arm of length 4.

Fig. 5: The transition graph of the robotic arm of length 6.

Definition 2.1 The configuration space or state complex S(Rn) of the robot Rn is the following cubical
complex. The vertices correspond to the states of Rn. An edge between vertices u and v corresponds
to a legal move which takes the robot between positions u and v. The k-cubes correspond to k-tuples of
commutative moves: Given k such moves which are applicable at a state u, we can obtain 2k different
states from u by performing a subset of these k moves; these are the vertices of a k-cube in S(Rn).

Definition 2.2 A metric space X is said to be CAT(0) if:
• there is a unique geodesic (shortest) path between any two points in X , and
• X has non-positive global curvature.

The second property, illustrated in Figure 6, may be described as follows. Let T be a triangle in X
of side lengths a, b, c, and let T ′ be the triangle with the same lengths in the Euclidean plane. Consider
a chord of length d in T which connects two points on the boundary of T ; there is a corresponding
comparison chord in T ′, say of length d′. If d ≤ d′ for any chord in T , we say that T is a thin triangle in
X . The metric space X has non-positive global curvature if every triangle in X is thin.

RECONFIGURATION 13

a b

c

d

a b

c

d′

X R2

FIGURE 9. Comparison triangles measure curvature bounds.

4.2. The link condition. There is a well-known combinatorial approach to deter-
mining when a cubical complex is nonpositively curved due to Gromov.

Definition 4.3. Let X denote a cell complex and let v denote a vertex of X . The link
of v, !k[v], is defined to be the abstract simplicial complex whose k-dimensional
simplices are the (k + 1)-dimensional cells incident to v with the natural boundary
relationships.

Certain global topological features of a metric cubical complex are completely de-
termined by the local structure of the vertex links: a theorem of Gromov [26] asserts
that a finite dimensional Euclidean cubical complex is NPC if and only if the link
of every vertex is a flag complex without digons. Recall: a digon is a pair of ver-
tices connected by two edges, and a flag complex is a simplicial complex which
is maximal among all simplicial complexes with the same 1-dimensional skeleton.
Gromov’s theorem permits us an elementary proof of the following general result.

Theorem 4.4. The state complex of any locally finite reconfigurable system is NPC.

PROOF: Gromov’s theorem is stated for finite dimensional Euclidean cubical com-
plexes with unit length cubes. It holds, however, for non-unit length cubes when
there are a finite number of isometry classes of cubes (the finite shapes condition) [6].
Locally finite reconfigurable systems possess locally finite and finite dimensional
state complexes, which automatically satisfy the finite shapes condition (locally).

Let u denote a vertex of S. Consider the link !k[u]. The 0-cells of the !k[u] corre-
spond to all edges in S(1) incident to u; that is, actions of generators based at u. A
k-cell of !k[u] is thus a commuting set of k + 1 of these generators based at u.

We argue first that there are no digons in !k[u] for any u ∈ S. Assume that φ1 and φ2

are admissible generators for the state u, and that these two generators correspond
to the vertices of a digon in !k[u]. Each edge of the digon in !k[u] corresponds to
a distinct 2-cell in S having a corner at u and edges at u corresponding to φ1 and
φ2. By Definition 2.7, each such 2-cell is the equivalence class [u; (φ1, φ2)]: the two
2-cells are therefore equivalent and not distinct.

To complete the proof, we must show that the link is a flag complex. The interpre-
tation of the flag condition for a state complex is as follows: if at u ∈ S, one has
a set of k generators φαi , of which each pair of generators commutes, then the full

Fig. 6: A chord in a triangle in X , and the corresponding chord in the comparison triangle in R2. The
triangle in X is thin if d ≤ d′ for all such chords.
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The CAT(0) property is particularly favorable for configuration spaces, as the next result shows.

Theorem 2.3 [1, 2, 9] If the configuration space of a robot is a CAT(0) cubical complex, there is an
algorithm to find the fastest way of moving the robot from one position to another.

As explained in [2], Theorem 2.3 applies to three natural definitions of “fastest”, in terms of:
• the number of moves, if only one move at a time is allowed,
• the number of steps (where in each step we may perform several physically independent moves),
• time elapsed.

One could also ask for the shortest path between two points in a CAT(0) cubical complex under the
Euclidean metric. This seems to be a more difficult problem, as explained by Ardila–Owen–Sullivant in
[4]. In any case, the Euclidean metric is less relevant to robotic applications.

3 Face enumeration and the Euler characteristic of Sn
Definition 2.2 does not provide an efficient way of testing whether a space is CAT(0). Gromov proved
the groundbreaking result that for cubical complexes, this metric property has a topological–combinatorial
characterization:

Theorem 3.1 [7] A cubical complex is CAT(0) if and only if it is simply connected, and the link of every
vertex is a flag simplicial complex.

Recall that a simplicial complex ∆ is flag if it has no empty simplices; that is, if the 1-skeleton of
a simplex is in ∆, then that simplex must be in ∆. It is clear from the definition of Sn that the link
of every vertex is flag. Furthermore, notice that non-simply connected spaces cannot be contractible,
while CAT(0) spaces are contractible [5]. Therefore, Theorem 1.2 is equivalent to proving that Sn is
contractible. In this section, we prove the following partial result in that direction.

Theorem 3.2 The Euler characteristic of the configuration space Sn equals 1.

3.1 Face enumeration.
Let us compute the generating function for the f -vectors of the configuration spaces Sn.

3.1.1 States of the robot with a link facing to the left.
We first observe that the robotic arm may reach a state where the end of the arm is facing to the left as
illustrated in Figure 7. However, since the robot never self intersects, we have at most one link facing left.

Fig. 7: A state of the robotic arm with a link facing to the left.

Lemma 3.3 The robotic arm always has at most one link facing to the left. If it does have one such link,
the last three links of the arm must be in one of the two positions shown in Figure 8.
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Fig. 8: Possible ends of a robotic arm with a link facing to the left.

3.1.2 Cubes and partial states
Consider a d-cube in the configuration space Sn; it has 2d vertices. If one superimposes the corresponding
2d positions of the robotic arm, one obtains a sequence of edges, squares, and possibly a “claw” in the
last position, as illustrated in Figure 9. The number of squares (including the claw if it is present) is d,
corresponding to the d physically independent moves that are being represented by this cube. We call the
resulting diagram a partial state, and let its weight be xnyd. It is clear that the partial states of weight
xnyd are in bijection with the d-cubes of Sn.

Fig. 9: A partial state corresponding to a 6-cube in the configuration space S20.

Each partial state gives rise to a word in the alphabet {r, v, `,�, x, y}, where:
• r represents a horizontal link of the robot facing to the right. Its weight is x.
• v represents a vertical link. Its weight is x.
• ` represents a horizontal link facing to the left. Its weight is x.
• � represents a square, which comes from a move that switches corners of two consecutive links facing
different directions. Its weight is x2y.
• x represents a claw, which comes from a move that flips the end of the robot, with the horizontal link
facing to the right. Its weight is xy.
• y represents a claw, which comes from a move that flips the end of the robot, with the horizontal link
facing to the left. Its weight is xy.

For example, the partial state of Figure 9 gives rise to the word r��rv�r�rr�rrvy. The weight of
the partial state is the product of the weights of the individual symbols; in this case it is x20y6, which is
equal to the product x(x2y)(x2y)xx(x2y)x(x2y)xx(x2y)xxx(xy). It is worth remarking that this word
does not determine the partial state uniquely.

3.1.3 Factorization of partial states into irreducibles.
Our next goal is to use generating functions to enumerate all partial states according to their length and
dimension. The key idea is that we can “factor” a partial state uniquely as a concatenation of irreducible
factors. Each new time that the partial state hits one of the borders of the tunnel, we start a new factor.
For example, the factorization of the partial state of Figure 9 is shown in Figure 10.

Definition 3.4 Let P be the set of all partial states of robotic arms in a tunnel of width 2.
(a) A partial state of the robot is called irreducible if
• its first step is a horizontal link along the bottom border of the tunnel, and
• its final step is vertical or square, and is its first arrival to a border of the tunnel.

(b) A partial state of the robot is called irreducible final if it is empty or
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Fig. 10: The partial state of Figure 9 has a factorization of the form M1M5M1F10. (See Tables 1 and 2.)

• its first step is a horizontal link along the bottom border of the tunnel, and
• either it never arrives to a border, or it arrives in its final step, which is a claw.

Let M and F be the sets of irreducible and irreducible final partial states, respectively.

Let S =
⋃∞

n=0 Sn, and denote by B∗ the collection of all words that can be formed in an alphabet B.
For instance, a∗ = {∅, a, aa, aaa, aaaa, . . . } and {a, b}∗ = {∅, a, b, aa, ab, ba, bb, aaa, aab, . . . }.
Proposition 3.5 The partial states in S starting with a right step r are in weight-preserving bijection with
the words inM∗F ; that is, each partial state in S corresponds to a unique word of the formm1m2 . . .m`f
with mi ∈M and f ∈ F .

Proof: In view of Lemma 3.3, it is clear from the definitions that every partial state that starts with a
horizontal step r factors uniquely as a concatenation m±1 m

±
2 . . .m

±
` f
± where each mi ∈M , f ∈ F , and

p± equals p or its reflection p− across the horizontal axis. It remains to observe that whether m±i is mi

or m−i (and whether p± is either p or p−) is determined by the previous terms of the sequence. 2

Corollary 3.6 If the generating functions for partial states, irreducible partial states, and irreducible
final partial states are C(x, y),M(x, y), F (x, y) respectively, then

1 + xC(x, y) =
F (x, y)

1−M(x, y)
.

Proof: This follows from Proposition 3.5. The extra factor of x comes from the fact that Proposition 3.5
is counting partial states with an initial right step. 2

3.1.4 Enumeration of irreducible partial states.
Proposition 3.7 The generating function for the irreducible partial states M is

M(x, y) =
x3 + x4 + 2x4y + 2x5y + x5y2 + x6y2

(1− x)2
.

Proof: An irreducible partial state has exactly two symbols that contribute a vertical move, which can be
either a v or a �. Thus there are 8 different families M1, . . . ,M8, corresponding to the irreducible partial
states of the following form:

. . .� . . .� . . .� . . .�′ . . .� . . . v . . .� . . . v′

. . . v . . .� . . . v . . .�′ . . . v . . . v . . . v . . . v′

where �′ and v′ represent a move whose vertical step is in the opposite direction to the previous vertical
step. Table 1 illustrates these 8 families together with their corresponding generating functions.
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Type Illustration Generating function

M1 = (rr∗)�(r∗)�.
x5y2

(1−x)2

M2 = (rr∗)�(rr∗)�′.
x6y2

(1−x)2

M3 = (rr∗)�(r∗)v.
x4y

(1−x)2

M4 = (rr∗)�(rr∗)v′
x5y

(1−x)2

M5 = (rr∗)v(r∗)�.
x4y

(1−x)2

M6 = (rr∗)v(rr∗)�′.
x5y

(1−x)2

M7 = (rr∗)v(r∗)v.
x3

(1−x)2

M8 = (rr∗)v(rr∗)v′. x4

(1−x)2

Tab. 1: Generating functions for the eight types of irreducible partial states.

Consider for example the family M2. We must have at least one horizontal step before the first �, and
at least one horizontal step between the two �s, to make sure they do not intersect. Therefore the partial
states in M2 are given by (rr∗)�(rr∗)�′, whose generating function is

m2(x, y) =

(
x · 1

1− x

)
x2y

(
x · 1

1− x

)
x2y =

x6y2

(1− x)2
.

The other formulas follow similarly. Thus M(x, y) = m1(x, y) + · · ·+m8(x, y) is obtained by adding
the generating functions in Table 1. 2

3.1.5 Enumeration of irreducible final partial states.
Now let us compute the generating function F (x, y) for irreducible final partial states.

Proposition 3.8 The generating function for the final irreducible partial states is

F (x, y) =
1 + x2 + x4 + x2y + 2x3y + 2x4y + x4y2 + x5y2

(1− x)2
.

Proof: Each irreducible final partial state has at most one symbol among {v,�}, and can possibly end
with a symbol in {x, `, y}. Again, we let x′ and y′ represent a move whose vertical step is in the opposite
direction to the previous vertical step. Table 2 shows the 10 different families of possibilities together
with their corresponding generating functions.

The generating function of F is f(x, y) = f1(x, y) + · · · + f10(x, y). The result is then obtained by
adding the generating functions in Table 2. 2
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Irreducible move Illustration Generating function

F1 = r∗
1

1−x

F2 = (rr∗)�(r∗)
x3y

(1−x)2

F3 = (rr∗)�(r∗)x
x4y2

(1−x)2

F4 = (rr∗)�(rr∗)x′
x5y2

(1−x)2

F5 = (rr∗)v(r∗)
x2

(1−x)2

F6 = (rr∗)v(r∗)x
x3y

(1−x)2

F7 = (rr∗)v(rr∗)x′
x4y

(1−x)2

F8 = (rr∗)x
x2y
1−x

F9 = (r2r∗)v`
x4

1−x

F10 = (r2r∗)vy
x4y
1−x

Tab. 2: Generating functions for the ten types of irreducible final partial states..

Theorem 3.9 Let Sn be the configuration space for the robot of length n moving in a rectangular tunnel
of width 2. If cn,d denotes the number of d-dimensional cubes in Sn, then

C(x, y) =
∑

n,d≥0

cn,d x
nyd =

1 + x2 + 2x3 − x4 + xy + x2y + 4x3y + x4y + x3y2 + 2x4y2 + x5y2

1− 2x+ x2 − x3 − x4 − 2x4y − 2x5y − x5y2 − x6y2 .

Proof: This follows from Corollary 3.6 and Propositions 3.7 and 3.8. 2

Theorem 3.10 The Euler characteristic of the configuration space Sn equals 1.

Proof: Since the Euler characteristic of Sn is χ(Sn) =
∑

d≥0(−1)dcn,d, the generating function for
χ(Sn) is given by substituting y = −1 into Theorem 3.9:

∑
n≥0

χ(Sn)xn =
∑
n≥0

∑
d≥0

(−1)dcn,d

xn = C(x,−1)

=
1− x− x3 + x5

1− 2x+ x2 − x3 + x4 + x5 − x6

=
1

1− x = 1 + x+ x2 + x3 + . . . ,

in an expected but still beautiful miracle of cancellation. All the coefficients of this series are equal to 1,
as desired. 2
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4 Posets with inconsistent pairs (PIPs)
Determining whether a metric space X is CAT(0) is a rather subtle question in general; it should be clear
that Definition 2.2 is not a very tractable method, as it would require checking the length of every chord
in every triangle in X . Fortunately, Gromov [7] showed that when X is a cubical complex, this metric
property has the combinatorial and topological characterization stated in Theorem 3.1. In fact, for finite
CAT(0) cubical complexes, there are several combinatorial characterizations [4, 10, 11, 12]. We will use
the one given by Ardila, Owen, and Sullivant in [4], which we now describe.

2

4

6

13

5

v

1 12

123

1235 12345

1234

1246

246

242

23

124

234

Fig. 11: A PIP and the corresponding rooted CAT(0) cubical complex.

Definition 4.1 A poset with inconsistent pairs (PIP) is a locally finite poset P of finite width, together
with a collection of inconsistent pairs, which we denote p= q (where p 6= q), such that

if p= q and q < q′ then p= q′.

The Hasse diagram of a poset with inconsistent pairs (PIP) is obtained by drawing the poset, and
connecting each <-minimal inconsistent pair with a dotted line. The left panel of Figure 11 shows an
example.

Recall that an order ideal of P is a subset I such that if x < y and y ∈ I then x ∈ I . We say that I is
consistent if it contains no inconsistent pair.

Each PIP P gives rise to a rooted cube complex, which we denote X(P ). The vertices of X(P ) are
identified with the consistent order ideals of P . There will be a cube C(I,M) for each pair (I,M)
of a consistent order ideal I and a subset M ⊆ Imax, where Imax is the set of maximal elements of
I . This cube has dimension |M |, and its vertices are obtained by removing from I the 2|M | possible
subsets of M . The cubes are naturally glued along their faces according to their labels. The root is the
vertex corresponding to the empty order ideal. Figure 11 shows a PIP P and the corresponding complex
X(P ), which is rooted at v. For example, the compatible order ideal I = {1, 2, 3, 4} and the subset
M = {1, 4} ⊆ Imax gives rise to the square with vertices labelled 1234, 123, 234, 23.

Theorem 4.2 [4] The map P 7→ X(P ) is a bijection between posets with inconsistent pairs and rooted
CAT(0) cube complexes.

Theorem 4.2 offers a useful technique to prove that a configuration space is a CAT(0) cubical complex;
we “simply” have to choose a root for it, and find the corresponding PIP. Of course, carrying this task out
is a non-trivial matter, as will soon become apparent. We propose the following solution for the robotic
arm in a tunnel of width 2.
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Definition 4.3 Define the coral PIP Cn as follows.
• The elements are non-decreasing k-tuples (a1, . . . , ak−1; ak) such that ak ≤ n and

ai+1 − ai ≡


1 mod 4 for i = 1

3 mod 4 for 2 ≤ i ≤ k − 2

0 or 2 mod 4 for i = k − 1

• The element (a1, . . . , ak−1; ak) is covered by at most 3 elements:

(a1 − 1, . . . , ak−1 − 1; ak − 1) if a1 ≥ 2

(a1, . . . , ak−1; ak + 2) if ak ≤ n− 2

(a1, . . . , ak−1, ak + 1; ak + 1) if ak − ak−1 ≡ 2 mod 4

• The minimal inconsistent pairs are
(a1, . . . , ak−1;n) = (a1 + 1, . . . , ak−1 + 1, n;n)

The colored figure above illustrates the coral PIPs for n = 1, 2, . . . , 9; every time we add a new link to
the arm, we add a new layer (indicated by a new color) to the PIP.

The element (a1, . . . , ak−1; ak) of the PIP corresponds to the position of the arm which has vertical
steps a1, a1 + 2, a1 + 4, . . . , a2 − 1 (in row 1), a2, a2 + 2, a2 + 4, . . . , a3 − 1 (in row 2), a3, a3 + 2, a3 +
4, . . . , a4 − 1 (in row 1), . . . , ak−1, ak−1 + 2, ak−1 + 4, . . . , ak (in row (k − 1 mod 2)).

Definition 4.4 The extended coral PIP Cn is obtained from the coral PIP Cn by adding two states L1 =
(n− 1;n) and L2 = (n− 5, n− 4;n), where
• L1 covers (n− 1, n;n) and is inconsistent with (n− 2;n), and
• L2 covers (n− 4, n− 3, n;n) and (n− 5, n− 4;n− 4) and is inconsistent with (n− 5, n− 4;n).

The vertices L1 and L2 correspond to the two simplest positions of the arm having a left step, namely,
r . . . rul and r . . . ruurrdl respectively.

Theorem 4.5 The configuration space Sn of the robotic arm of length n in a tunnel of width 2 is a
CAT(0) cubical complex. Its corresponding PIP is the extended coral PIP Cn of Definition 4.4.

One can verify directly that the bijection P 7→ X(P ) of Theorem 4.2 sends the coral PIP Cn to the
configuration space Sn. However, the proof becomes simpler when it is framed in a more general setting.

In an upcoming paper [3] we study the robotic arm of length n with no left steps in a tunnel of any
width, and prove that its configuration space is a CAT(0) cubical complex. The more general coral
PIP, which generalizes Definition 4.3, is described in terms of combinatorial objects called coral snake
tableaux. For details and proofs, see [3].

5 Implementation of the shortest path algorithm
Theorem 5.1 [1, 2, 9] If the configuration space of a robot is a CAT(0) cubical complex, there is an
algorithm to move the robot optimally from one position to another, in terms of:
• the number of moves, if only one move at a time is allowed,
• the number of steps (where in each step we may perform several physically independent moves),
• time elapsed.
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These algorithms are described in detail in [2]; we have implemented them for the robotic arms dis-
cussed in this paper. More details may be found at:

http://math.sfsu.edu/federico/Articles/movingrobots.html
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