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Abstract— Quartz Enhanced Photoacoustic Spectroscopy 

(QEPAS) gas sensors have been widely developed over the last 

decade. This technique takes advantage of a high quality factor 

micro tuning fork to enable high detectivity & high selectivity 

miniature gas sensors. Lock-in detection technique is classically 

used to measure the resonator amplitude proportional to gas 

concentration, but this technique is slow and does not follow the 

resonator frequency shift over temperature. This paper presents 

a new QEPAS signal processing technique that allows faster and 

more accurate measurements that will enable accurate and fast 

multi gas sensors. 
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I. INTRODUCTION 

QEPAS sensors have been widely studied since the first 
publication in 2002 [1]; models of the sensor have been 
developed [2,3] as well as optimized resonant detectors 
coupled to micro tubes acoustic resonator in different 
configurations [4] but little attention has been given to the 
signal processing scheme. Lock-in detection is mainly used 
although it shows major drawbacks: slow measurement and 
low accuracy, that prevent QEPAS to be used as rapid and 
accurate multi gas sensors. 

 

Indeed, in the frame of lock-in detection, the resonator is 
not controlled at resonance, and as the resonance shifts over 
temperature, a frequency sweep must be performed to detect 
the frequency that corresponds to the resonator maximum 
displacement. For each frequency point, the measurement time 
corresponds to : 

𝜏 =
𝑄

𝑓𝑟
                                        (1) 

Q is the resonator quality factor, fr its Eigen frequency. 

This measurement time can be long as Q must be high 
(>10 000) anf fr low (<30 kHz) to achieve a high detectivity 
[3]. This long measurement time also decrease accuracy as 
measurements integrate the signal shift over temperature. It 
also prevent from high speed measurement of toxic gas and 
multi gas detection. The proposed active detection scheme 
enables faster and more accurate measurement, its theoretical 
analysis is presented as well as experimental measurements. 

II. THEORETICAL ANALYSIS OF QEPAS ACTIVE DETECTION 

A. Principle of operation 

The principle of operation shown in figure 1 is as follows: 
the micro tuning fork is actuated at resonance by means of an 
oscillator circuit, the oscillator output signal is phase shifted 
and used to modulate the laser intensity. A phase quadrature is 
set between the resonator actuation force from the oscillator 
circuit and the photoacoustic actuation force, this induces a 
frequency shift of the oscillator that is proportional to the 
photoacoustic force and thus to the gas concentration. This 
frequency shift is instantaneous allowing fast measurements 
and the frequency variations over temperature can be cancelled 
by adding a 180° periodic phase shift. 

 

Fig. 1. QEPAS active detection scheme. The resonator oscillations are 

sustained by means of an oscillator circuit. The oscillator output signal is 

phase shifted and controls the modulation of the laser intensity. The measured 
frequency shift is proportional to the resonator vibration  amplitude. 

 

B. Theoretical model 

 The active detection scheme is presented in figure 2. 

Two feedback branches contribute to actuate the resonator: the 

oscillator circuit branch that leads to the piezoelectric actuation 



force Fpz, and the photoacoustic branch that leads to the 

photoacoustic force: Fpa. In order to obtain an oscillator 

frequency shift over the resonator displacement, these two 

forces must be in phase quadrature. This is performed by 

adjusting the phase shift Φ𝑒𝑙𝑒𝑐  through the phase shifter circuit. 

Indeed, the two modulated forces are in phase quadrature if: 
π

2
= Φ𝑝𝑎 +Φ𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 +Φ𝑒𝑙𝑒𝑐                    

 

Φ𝑝𝑎is the photoacoustic phase shift [5]: 

Φ𝑝𝑎 =
π

2
− 𝑎𝑡𝑎𝑛(2𝜋𝑓𝜏𝑉𝑇)                          

fr is the modulation frequency, τvt the V-T relaxation time. 

Φ𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛  is the acoustic propagation time from the laser 

beam to the resonator prongs: 

 

Φ𝑝𝑎 =
2πL

λ
                                             

L is the distance from the beam to the resonator branch, λ the 

modulation wavelength. 

 

If the two actuation forces are in phase quadrature, the total 

force actuating the resonator is: 

 

𝐹𝑡𝑜𝑡𝑎𝑙 = √|𝐹𝑝𝑧|² + |𝐹𝑝𝑎|²sin(2𝜋𝑓𝑟𝑡 + 𝜃)                   

𝜃 = 𝐴𝑡𝑎𝑛(
|𝐹𝑝𝑎|

|𝐹𝑥|
)                                       

This additional phase shift in the oscillator loop induces an 

oscillator frequency shift: 

∆𝑓𝑟 =
𝜃

2𝑄
𝑓𝑟                                            

Assuming that the photoacoustic force is order og magnitudes 

smaller than the piezoelectric force: 

∆𝑓𝑟 =
1

2𝑄
𝑓𝑟 

|𝐹𝑝𝑎|

|𝐹𝑥|
                                        

 

 

 
Fig. 2. Active detection scheme. The oscillator feedback circuit branch is 

presented as well as the photoacoustic feedback. The oscillator frequency 

shift, proportional to the resonator displacement, is measure by means of the 
frequency counter. 

C. Differential Measurements enabled 

The active detection scheme described above also makes it 
possible to overcome the frequency variations of the resonator 
over temperature by periodically adding a π phase shift to the 
phase shifter circuit. Indeed a π additional phase shift inverts 
the sign of the acoustic force Fpa applied to the resonator, and 
thus inverts the sign of the phase shift θ induced in the 

oscillating loop (see eq. 6 ), which inverts the sign of the 
oscillator frequency variation (see eq. 7). 

The frequency of the oscillator without supplementary 
phase shift is: 

𝑓𝑟|0 = 𝑓𝑟0 + ∆𝑓𝑟 + ∆𝑓𝑟(𝑇)                  

The frequency of the oscillator with the π supplementary 
phase shift is: 

𝑓𝑟|𝜋 = 𝑓𝑟0 − ∆𝑓𝑟 + ∆𝑓𝑟(𝑇)                 

∆𝑓𝑟(𝑇) is the temperature induced frequency variation    

The frequency variation over temperature is then cancelled 
by varying the additional phase shift between 0 and πand
subtracting the two measured frequencies: 

𝑓𝑟|0 − 𝑓𝑟|𝜋 = 2∆𝑓𝑟



The addition of a photoacoustic actuation force in phase 
quadrature with the piezoelectric force causes a phase shift in 
the oscillator loop. This phase shift must remain low enough 
for the oscillation conditions to remain valid. For this, the 
induced frequency variation must remain in the resonator 
bandwidth: 

∆𝑓𝑟 ≪
𝑓𝑟

𝑄




D. Noise calculation 

𝜎𝑂𝐿 = √4𝑘𝑇
𝑀𝜔𝑟

𝑄

1

𝜏
(𝑁) 

 

𝜎𝐶𝐿 =
2𝑄𝐹𝑃𝑍

𝑓𝑟
(√

3𝑓𝐻𝐹𝑘𝑇𝑅𝑚

4𝜋2𝑉𝑥2
1

𝜏
+√

ln(2) 𝑏−1
2

𝑓𝑟

𝑄
) (𝑁) 

 
 

III. EXPERIMENTAL RESULTS 

A. Experimental set-up 

The experimental scheme is shown in figure 3. The 
resonator is placed in a hermetic chamber filled with 1% C2H2. 



The laser source is an EM4 diode, its wavenumber is set at the 
C2H2 absorption peak: 6490.05 cm

-1
. The oscillator circuit is an 

analog self-sustained oscillator, its output signal controls a 
waveform generator that enables to control the phase shift of 
the photoacoustic branch, as well as the waveform and the 
amplitude of the Mach Zender input. The oscillator frequency 
shift, proportional to the C2H2 concentration is measured with a 
frequency counter. 

 

Fig. 3. Active detection experimental scheme 

B. Experimental results  

1) Setting the phase shift 

 

2) Frequency shift measurement 

Figure 5 shows the oscillator frequency variations with and 

without a π additional phase shift. When the laser is on, the 

frequency increases when the additional phase shift is null, 

and decreases when the additional phase shift is π, as 

described in eq. 9 and 10. An additional frequency decrease 

over time is common to the two oscillator frequencies; it 

corresponds to the frequency variation over temperature. This 

temperature sensitivity can be cancelled by computing the 

difference of the two frequencies, as shown in figure 6 and 

described in eq. 11. 

The measurement time used in figure 4 and 5 is 1s, 

measurements have also been performed down to 50 ms in 

order to validate the fast measurements ability of the active 

detection.  

 

 
Fig. 4. Frequencies shifts vs. Laser on/off. Te frequency shift is positive when 
the additional phase dhift is null (red line), whereas it is negative when the 

additional phase shift is 180° (blue line). In addition to the photoacoustic 

signal frequency sensitivity, the frequency also shift over time due to 

temperature variations. 

 

 
Fig. 5. Differential shift vs. Laser on/off. The common mode frequency 

variation over temperature has been cancelled by the differential 
measurement. 

IV. CONCLUSION 

A new active detection scheme has been described; a 
theoretical model has been shown and validated by 
experimental measurements. This new detection scheme 
enables fast and accurate measurements. Fast measurements 
down to 50ms integration time have been performed and 
confirm the accurate and thermal drift free measurements. 
Further work should focus on the signal to noise ratio 
improvements by optimizing the resonator and its electrodes 
scheme, and by implementing the detection scheme in 
synchronous digital electronics on FPGA. 
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