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Abstract

This note contains some proofs for the paper ”Discretization of Homogeneous Systems Using Euler Method with a State-
Dependent Step” of the same authors.
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1 Proof of Theorem 9

Let us take a discretization step h > 0 and consider
the behavior of a r–homogeneous Lyapunov function V
(satisfying (7)) on the sequence generated by (2). For this
purpose define xi = Λr(‖xi‖r)yi for some yi ∈ Sr(1):

V (xi+1)− V (xi) = V (xi + ‖xi‖−νr hf(xi))− V (xi)

= ‖xi‖µr [V (yi + hf(yi))− V (yi)].

Since V is twice continuously differentiable, then by the
Taylor expansion theorem with Lagrange remainder [1]
there is θ ∈ (0, 1) such that

V (yi + hf(yi)) = V (yi) +
∂V (ξ)

∂ξ

∣∣∣∣
ξ=yi

hf(yi)

+
h2

2
f>(yi)

∂2V (ξ)

∂ξ2

∣∣∣∣
ξ=yi+θhf(yi)

f(yi),
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then

V (xi+1)− V (xi) = ‖xi‖µr
∂V (ξ)

∂ξ

∣∣∣∣
ξ=yi

hf(yi)

+‖xi‖µr
h2

2
f>(yi)

∂2V (ξ)

∂ξ2

∣∣∣∣
ξ=yi+θhf(yi)

f(yi).

Note that from (7),

∂V (ξ)

∂ξ

∣∣∣∣
ξ=yi

hf(yi) ≤ −ha,

and there is v ∈ (0,+∞) such that

sup
y∈Sr(1)

sup
θ∈(0,1)

f>(y)
∂2V (ξ)

∂ξ2

∣∣∣∣
ξ=y+θf(y)

f(y) ≤ v.

Therefore,

V (xi+1)− V (xi) ≤ h‖xi‖µr
(
h

2
v − a

)
and for all h ∈ (0, h0] with h0 = min{1, av} we obtain:

V (xi+1)− V (xi) ≤ −
a

2
h‖xi‖µr ≤ −αhV (xi),

where α = a
2c2

and the property given in (7) was used on

the last step. Assume that actually h0 = min{1, av , 2
c2
a },
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then
V (xi+1) ≤ (1− αh)V (xi)

for all i = 0, 1, . . . and the values of V (xi) are monoto-
nously decreasing, hence the sequence {xi}∞i=0 is conver-
ging (the property (b) is substantiated). Global boun-
dedness of {xi}∞i=0 (i.e. the property (a)) follows from
the properties of the function V for γ = (c−1

1 c2)1/µ.

Let us evaluate the rate of convergence for different signs
of the degree of homogeneity ν of (1) stated in the pro-
perty (c). Let ν = 0, then trivially ti+1 = ti + h and an
exponential rate of convergence is recovered. From (2)
we have:

ti+1 − ti =
h

‖xi‖νr
≤ h

V
ν
µ (xi)

{
c
ν/µ
1 ν < 0

c
ν/µ
2 ν > 0

.

As it has been proven above

V (xi) ≤ (1− αh)iV (x0)

for all i = 0, 1, . . . , then for ν < 0 and for any k ≥ 0 an
estimate can be derived:

tk+1 ≤
k∑
i=0

c
ν/µ
1 h

V
ν
µ (xi)

≤ c
ν/µ
1 h

V
ν
µ (x0)

k∑
i=0

(1− αh)−i
ν
µ .

Since |1− αh| < 1 for the selected h0, we get

t+∞ ≤
c
ν/µ
1 h

V
ν
µ (x0)

+∞∑
i=0

(1−αh)−i
ν
µ ≤ c

ν/µ
1 hV −

ν
µ (x0)

1− (1− αh)−
ν
µ
< +∞

for all x0 6= 0, which implies a finite-time convergence to
the origin of any sequence {xi}∞i=0 in (2) but for i→ +∞.
For ν > 0 we are interesting in the time of convergence
from an infinite initial condition to Br(1), then it is ne-
cessary to repeat all above arguments in the inverse time,
which leads to exactly the same estimate of such a time.

2 Proof of Proposition 11

Let xi ∈ Sr(1) be an arbitrary fixed vector, then the
equation (3) can be rewritten as

∆ = hz(xi + ∆)

for ∆ = xi+1 − xi, where z : Rn → Rn is a continuous
function defined as z(x) = 1

‖x‖νr
f(x) with z(0) = 0. In-

deed, z(Λr(λ)x) = Λr(λ)z(x) for any λ > 0 and x ∈ Rn,
i.e. z is r–homogeneous vector field of degree 0 that is
also continuous on Sr(1). Denote B(1) = {x ∈ Rn :
‖x‖ ≤ 1} as the unit ball in Rn, if

h < inf
xi∈Sr(1),∆∈B(1)

‖z(xi + ∆)‖−1

then the function hz(xi + ·) : B(1) → B(1) is continu-
ous on the convex compact set B(1). Hence, using the
Brouwer fixed-point theorem [2] we conclude that the
last equation has a solution with respect to ∆ ∈ B(1) for
any xi ∈ Sr(1). The conclusion for any xi ∈ Rn follows
from Corollary 6 or Proposition 5.

3 Proof of Theorem 12

Defining xi+1 = Λr(‖xi+1‖r)yi+1 with yi+1 ∈ Sr(1), we
obtain:

V (xi+1)− V (xi) = V (xi+1)− V (xi+1 − ‖xi+1‖−νr hf(xi+1))

= ‖xi+1‖µr [V (yi+1)− V (yi+1 − hf(yi+1))]

= ‖xi+1‖µr
∂V (ξ)

∂ξ

∣∣∣∣
ξ=yi+1

hf(yi+1)

−‖xi+1‖µr
h2

2
f>(yi+1)

∂2V (ξ)

∂ξ2

∣∣∣∣
ξ=yi+1−θhf(yi+1)

f(yi+1)

with application of the Taylor expansion theorem with
Lagrange remainder [1] on the last step. Next, similarly

∂V (ξ)

∂ξ

∣∣∣∣
ξ=yi+1

hf(yi+1) ≤ −ha

from (7), and if the matrix ∂2V (ξ)
∂ξ2 is nonnegative definite

for all ξ ∈ Rn, then

V (xi+1)− V (xi) ≤ −ah‖xi+1‖µr

for any h > 0. If this is not the case, then there is w ∈
(0,+∞) such that

sup
y∈Sr(1)

sup
θ∈(0,1)

f>(y)
∂2V (ξ)

∂ξ2

∣∣∣∣
ξ=y−θf(y)

f(y) ≤ w,

which results in

V (xi+1)− V (xi) ≤ h‖xi+1‖µr
(
h

2
w − a

)
and for all h ∈ (0, h0] with h0 = min{1, aw} we obtain:

V (xi+1)− V (xi) ≤ −
a

2
h‖xi+1‖µr ≤ −αhV (xi+1),

where again α = a
2c2

and the property given in (7) was
used on the last step. Finally,

V (xi+1) ≤ (1 + αh)−1V (xi)

for all i = 0, 1, . . . and the values of V (xi) are monoto-
nously decreasing, hence the sequence {xi}∞i=0 is conver-
ging (the property (b) is substantiated). Global boun-
dedness of {xi}∞i=0 (i.e. the property (a)) follows from
the properties of the function V for γ = (c−1

1 c2)1/µ.
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The property (c) can be proven applying the same argu-
ments as in the proof of Theorem 9.
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