
HAL Id: hal-02165835
https://hal.inria.fr/hal-02165835

Submitted on 26 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A workflow scheduling deadline-based heuristic for
energy optimization in Cloud

Emile Cadorel, Hélène Coullon, Jean-Marc Menaud

To cite this version:
Emile Cadorel, Hélène Coullon, Jean-Marc Menaud. A workflow scheduling deadline-based
heuristic for energy optimization in Cloud. GreenCom 2019 : 15th IEEE International Con-
ference on Green Computing and Communications, Jul 2019, Atlanta, United States. pp.1-10,
�10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00135�. �hal-02165835�

https://hal.inria.fr/hal-02165835
https://hal.archives-ouvertes.fr

A workflow scheduling deadline-based heuristic for energy optimization in Cloud

Emile Cadorel
IMT Atlantique, Inria, LS2N, UBL

F-44307 Nantes, France
emile.cadorel@imt-atlantique.fr

Hélène Coullon
IMT Atlantique, Inria, LS2N, UBL

F-44307 Nantes, France
helene.coullon@imt-atlantique.fr

Jean-Marc Menaud
IMT Atlantique, Inria, LS2N, UBL

F-44307 Nantes, France
jean-marc.menaud@imt-atlantique.fr

Abstract—This article addresses the scheduling of hetero-
geneous scientific workflows while minimizing the energy
consumption of the cloud provider, by introducing a deadline
sensitive algorithm. Scheduling in a cloud environment is
a difficult optimization problem. Usually, work around the
scheduling of scientific workflows focuses on public clouds
where infrastructure management is an unknown black box.
Thus, many works offer scheduling algorithms designed to
select the best set of virtual machines over time, so that the cost
to the end user is minimized. This article presents a new HEFT-
based algorithm that takes into account users deadlines to
minimize the number of machines used by the cloud provider.
The results show the real benefits of using our algorithm for
reducing the energy consumption of the cloud provider.

Keywords-Cloud Computing, Scientific Workflow, Schedul-
ing, Virtual Machines, Algorithm, HEFT

I. INTRODUCTION

The Cloud computing is a well-known paradigm defined
by the NIST as ”a model for enabling convenient, on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, ap-
plications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction”.

Cloud providers are no longer confined to hosting ever-
running services, such as web servers or databases for
instance. Indeed, nowadays Clouds host many types of
applications and computations such as, for instance, Big-
Data, machine learning or very short batch jobs. Moreover,
different types of computations may also be combined by
scientists into complex heterogeneous scientific workflows
or dataflows [1], [2]. Scientific workflows model scientific
applications as a set of coarse-grained tasks linked together
by data dependencies. These workflows generally involve
data of different sizes and time-consuming computation
tasks.

To be able to host scientific workflows on Clouds, the
allocation of virtual machines (VMs) and their planning over
time is a major challenge for both the provider and the user
(scientist). Indeed, with an optimized VMs allocation (i.e.,
resource sharing), a Cloud provider will be able to rent more
VMs and reduce its costs. Similarly, the rental prices of VMs
will be reduced, which will result in more attractive offers
for the user. Most of the related work done to this day for

planning scientific workflows on the Cloud considers the
Cloud Provider’s internal scheduler as an unknown black
box. As a result, much work focuses on optimizing from
the user’s point of view, trying to minimize the cost of
use or trying to stick to a user budget while taking into
account the fixed prices of Cloud providers and their infinite
resources [3]–[6].

This article presents a new scheduling algorithm for Cloud
providers that aims to reduce the energy consumption of
Cloud providers. To this end, the algorithm attempts to
minimize the number of physical machines required to plan
a set of workflows (i.e. a workload). This objective (i.e.,
minimizing the number of machines) replaces the usual
makespan minimization (i.e., completion time) of HPC and
Grid Computing scheduling algorithms [7]–[9]. Indeed, one
of the main operating cost of a Cloud computing provider is
the electrical consumption. This consumption can be reduced
by limiting unused (idle consumption) or under-used (power
and cooling costs) physical machines [10]1. Such opti-
mization objective for workflows require the combination
of consolidation and scheduling algorithms.

Our V-HEFT-deadline algorithm introduces a deadline
approach for the user. Intuitively, when trying to reduce
the makespan of a workflow, it is necessary to use a large
number of machines, which is costly for the cloud provider.
Indeed, since energy consumption cannot be represented
by a linear function [11], [12] defined by the number of
machines and the running time, the use of a large number
of machines for a very short time is more consuming than
the use of a reduced number of machines for a slightly
longer time interval. Conversely, if users can extend their
deadlines instead of looking for the best possible makespan,
a better energy optimization (i.e., number of machines used)
can be achieved, resulting in a cost reduction for the Cloud
provider. This cost reduction can then be reflected in the
rental prices by a business model. One can note that such
business model is above the scope of this paper but it seems
realistic to, at least partially, pass on the savings made by
the Cloud provider to the user in the rental price.

The workflows discussed in this document are highly
heterogeneous. In addition to the different library require-

1https://www.sallan.org/pdf-docs/McKinsey Data Center Efficiency.pdf

ments, some tasks may need to be performed on different
operating systems (OS) in the same workflow. For example,
the genomic data stream designed by the ICO in [13]–
[15] uses data produced by a vendor-specific machine2.
To convert the output formats of the machine to standards
vendor-specific software developped for Windows must be
used, while the other libraries (e.g., Openswath) must be run
under Linux. This is a common issue in scientific workflows.

In this article, we consider virtual machines (VMs) for
two reasons. On the one hand, the heterogeneity of operating
systems and libraries makes it mandatory to load different
operating systems on the same machine simultaneously. It
can be noted that the management of several operating
systems can also be performed on bare metal machines.
However, in this case, a complete server will be reserved for
each OS, which goes against the consolidation optimization
sought. The virtualization mechanism allows several operat-
ing systems to be loaded on a single server and reduces the
number of servers required. On the second hand, a multi-user
workload is considered, thus, strong isolation, for security
reasons, must be guaranteed which is made easier by the
VMs.

This article presents the following contributions: (1) a
detailed model of the scheduling problem under consider-
ation; (2) an adaptation of the HEFT algorithm, namely V-
HEFT-deadline, that takes into account both virtualization
and deadlines and that minimizes the number of physical
machines used to plan a workload; (3) a detailed evaluation
compared to a VM oriented adaptation of HEFT, namely
V-HEFT. The rest of this document is organized as follows.
Section II presents the work related to workflow planning al-
gorithms. Then, Section III details the problem modelization,
Section IV presents our new algorithm V-HEFT-deadline
and Section V offers a detailed evaluation of our algorithm
compared to the V-HEFT. Finally, the section VI concludes
this work and opens some perspectives.

II. RELATED WORK

In this section, we present some noteworthy work on
scientific dataflow and workflow scheduling, whether for
HPC, Grid and Cloud environments.

On the one hand, high-performance computing (HPC)
and Grid computing show an interest in scientific workflow
scheduling (heterogeneous, coarse-grained, interconnected
tasks). These domains do not take virtualization into account
in their scheduling algorithm. Indeed, physical machines
are directly considered (Bare Metal). The algorithms for
scheduling workflows in this area can be classified into three
different groups: batch schedulers, list schedulers and pack
schedulers.

In [9], Min-Min and Max-Min are presented. Both are
batch algorithms (i.e. independent job scheduling). The Min-
Min batch algorithm first creates a list of independent tasks

2https://sciex.com/Documents/Downloads/Literature/Tech-Note-MSMSall-SWATH-Acquisition.pdf

and schedules them, starting its decision process with the
task with the lowest execution time (or the highest execution
time for Max-Min). Then it deletes the tasks from the
dependency graph, creating a set of new independent tasks.
These two phases are repeated until all tasks are scheduled.
These algorithms have been designed to plan independent
task sets; therefore, they are not well suited for workflow
and workflow planning, as indicated in [5].

In [7], Sun et al. claim that most HPC scheduling algo-
rithms focus on CPU and core usage and that in practice,
the user of the batch scheduler must juggle alone with other
node resources, such as memory, requiring larger resources
(a complete node, for example). Sun et al. consider all
node resources more precisely by studying two algorithms
based on list and pack scheduling. First, the list scheduling
algorithm schedules the sorted task in a list and tries to
minimize the time it takes to complete the submitted tasks
(makespan). Secondly, the pack scheduling algorithm creates
task packets that do not exceed the considered capacity and
prohibits any further scheduling until all tasks in a packet
are completed.

The HEFT algorithm [8] is a well-known heuristic based
on a list scheduling. This heuristic is divided into two parts.
First, a list is created containing all the tasks of the entire
workload sorted by priority. Second, each task is scheduled,
one by one, on the available resources while trying to
minimize the overall completion time required to execute the
workflows (makespan). In the scheduling phase of HEFT,
a selection of physical resources (node) is made. For this
purpose, the task computation time is calculated for each
resource. The resource offering the most efficient execution
(best execution time) is selected and the task is scheduled
on it.

On the second hand, workflows scheduling strategies
have also been studied for Cloud computing environments.
Typically, [3] focuses on minimizing end-user costs to run
scientific workflows in a public Cloud where the scheduling
decision is an unknown black box. In [6], [16] a budget must
be respected according to a public Cloud offer. Such work
assumes that the Cloud provider is always able to meet the
customer’s needs (infinite resources).

In [4], a workflow planning algorithm is presented. A
deadline is taken into account by the scheduling algo-
rithm and a hybrid Cloud environment is considered (i.e.
a combination of private and public Clouds). The model
takes into account complex tasks, for which the number of
instructions and the amount of communication between tasks
are known, as well as the capacity of all Cloud resources.
The scheduling algorithm is an ad hoc solution where a
list scheduling is first run on the private infrastructure. If
this scheduling cannot meet the user’s deadline, the public
Cloud is used to obtain more resources. This second part
also assumes infinite resources of the public Cloud. The
objective of using deadline, in [4] is different from our

objective. Indeed, deadlines are intended to determine when
it is necessary for the user to pay for more resources in a
public Cloud.

In [5] an algorithm based on HEFT is presented. This
algorithm divides a client’s budget by the number of work-
flows to schedule in a public Cloud environment. Moreover,
this paper also extends Min-Min and shows that Min-Min
is less effective than HEFT in minimizing makespan. The
objective considered in [5] is to respect a user budget. As
for [6], [16], a public Cloud environment is considered and
the assumption of infinite resources is made.

Finally, in [6] presents a PSO (Particle Swarm Optimiza-
tion) algorithm for workflow scheduling. In this article, the
authors consider a public Cloud, and aim to minimize the
cost while respecting user deadlines, and considering a given
public Cloud offer (and associated prices).

One can note from the above related-work on dataflows
and workflows scheduling that, as far as we know, none
of the existing contributions focus on our specific schedul-
ing problem: taking deadlines into account in the inter-
nal workflow scheduling of the Cloud provider in order
to reduce its energy consumption. First of all, HPC and
Grid computing do not take into account virtualization,
which significantly modifies algorithms, especially resource
modeling. In addition, the objective of these algorithms
is to minimize the makespan. Second, in Cloud related
documents, the optimization strategy is not designed for the
Cloud provider’s internal scheduler, which is considered as
a black box, but for the end-user costs while considering
renting prices for VMs.

We could have chosen any of the above heuristics to
solve our scheduling problem. Because of its clear two-phase
approach and simplicity, we decided to base our work on the
well-known HEFT algorithm in this contribution.

III. PROBLEM MODELIZATION

In this section, we present the model that describes
our scheduling problem. The problem we aim to solve is
to schedule all tasks of submitted workflows on virtual
resources while satisfying tasks dependencies and their
resource needs, and while respecting the capacity constraints
of physical machines. Our objective is to minimize the
energy consumption of the Cloud provider by reducing the
number of physical machines used to plan workflows.

Execution environment. We denote J , the set of tasks to be
scheduled and executed. These tasks make up the different
workflows. Each workflow can be represented as a DAG -
Directed Acyclical Graph G = (T,D), where T ⊂ J and D
is the set of data dependencies between tasks. Each edge of
the graph d ∈ D is weighted, and its weight represents the
size of the data to be transferred from one task to another.
In this article, we assume that the number of instructions
to execute a task is given. We are aware that it is difficult

to obtain this information accurately in practice. However,
this problem is beyond the scope of this contribution and
is left to future work. Each task has constraints that can be
divided into two categories: the hardware constraints that
can be quantified, such as the number of cores, the amount
of memory; and the software constraints (OS, library, etc.).
The environment in which we want to schedule workflows
is a set of clusters of physical machines, with the ability
to deploy different types of virtual machines. V denotes the
set of VMs under usage within the infrastructure. Virtual
machines are deployed from images, which have different
hardware and software capacities. Let N be the set of
compute nodes (physical machines). A node is associated
with a given cluster. Bandwidth between nodes is considered
heterogeneous, depending on the different clusters they
belong. We denote bwNn,m the bandwith between n and m,
for n and m ∈ N . We denote speedNn the speed of the node
n ∈ N , in a number of instructions per core, and per instant
(e.g., seconds). In this paper, we do not consider any over-
provisioning of the nodes; consequently one core is reserved
for one VCPU.

Software and Hardware constraints. For each node n ∈
N , we denote for each instant t ∈ N, the vector Htn =<
htnv, . . . , htn|V| >, where htnv = 1 if and only if the VM
v ∈ V is hosted by n at instant t, htnv = 0 otherwise. We
also denote for each v ∈ V , at each instant t ∈ N, the vector
Etv =< etvj , . . . , etv|J | >, where etvj = 1 if and only if
j ∈ J is executed by v at instant t, etvj = 0 otherwise. C
is the set of different hardware capacities (e.g., RAM, CPU,
HDD, etc.). For each capacity k ∈ C, we define three vectors
:
• CNk , of size |N |, which represents the capacity k

provided by each nodes n ∈ N , such that CNk (n) is
the capacity k that n ∈ N can supply.

• CVk , of size |V| represents the required amount of
resource k needed by each v ∈ V , such that CVk (v)
is both the amount of resource k needed by v ∈ V , and
the amount of resource this VM v can provide.

• CJk , of size |J |, defines the amount of resource k
required by each j ∈ J .

For each capacity k ∈ C, we define the two following
constraints in such a way that over-provisioning is not
considered both for physical and virtual machines:

CVk ·Htn ≤ CNk (n) ∀n ∈ N , ∀t ∈ N (1)

CJk · Etv ≤ CVk (v) ∀v ∈ V, ∀t ∈ N (2)

We also consider the software requirements of the tasks.
Thus, we define S as the set of software requirements (e.g.,
OS, library, language, etc.). For each software requirement
s ∈ S, we define that a task that requires the software s
must be run on a virtual machine that has the software s.

Temporal dependency constraints. Let speedVtv be the
speed of v ∈ V at instant t - let us remind that the speed is
in number of instructions per core (here per VCPU). We do
not consider over-provisioning, so the deterioration of the
VM speed is assumed to be low [17], and considered to be
5% of the host node speed. Thus, speedVtv = speedNn · 0.95
if and only if htnv = 1. The problem that we tackle is
to improve the scheduling of a new set of workflows in
terms of energy consumption. Thus, we do not consider the
dynamic migration of virtual machines to different resources
in this work. We plan to integrate and study this migration
in our future work. Therefore, for simplicity in the rest of
the paper, the speed of the VM v is time-independent and
denoted as follows speedVv . In our model, virtual machines
are dynamically provisioned on demand to manage the
specific constraints of each task. A VM needs a certain
amount of time to start and be ready to perform tasks.
Let startVv the instant when v ∈ V initiates its powering
on. We define bootVv as the number of instructions to run
before v ∈ V is ready for usage. Let readyVv be the
instant when v ∈ V is ready to compute tasks, such that

readyVv = startVv +
bootVv

speedV
v

. We define the instant when a

task can start as follows:

∀i ∈ J starti = max
j∈predi

(endj +max(
dji

bwNlocj ,loci
, readyVv)),

(3)
where v is the VM hosting the task i, loci refers to the

node hosting the VM of the task i ∈ J , and bwNn,m is the
bandwidth between two physical nodes.

To explain more precisely why the Equation 3 uses the
bandwidth between physical nodes, we must specify that in
our model, VMs are only considered as computing resources.
As a result, communications between different tasks are
directly performed between nodes without a virtualization
layer. This assumption made possible an overlap of com-
munications and computations, which improves the quality
(e.g., execution time) of workflows executions. Figure 1
illustrates this claim with an example where a given virtual
machine of a first user consumes almost all the CPU and
RAM resources of a given node, which makes impossible
to start another virtual machine of a second user simultane-
ously without making over-provisionning. We assume that
communications require a very low CPU load, so this load
is not taken into account when calculating the resource usage
(CNcore) of the node. In the first scenario (at the top of the
figure), communications are performed within the VMs. In
this case, the execution is fully sequential. Indeed, the first
VM must be stopped before the second VM can be started. In
the second scenario, on the contrary, since communications
are made outside the VMs, it is possible to start the second
VM while communications are performed for both users. As
a result, the total execution time is reduced. Consequently,

bandwidth between physical nodes are used in Equation 3

User1 1 2 3

1 3 2 3User2

(1)

User1 1 2 3

3 1 2 3User2

(2)

1 boot 2 computation 3 communication VM lifetime

Figure 1: Representation of the gain between communication
done on the VMs (1) and on the node (2)

In addition, the execution time of a task i depends on its
weight Wi (number of instructions) divided by the speed of
the resource that will execute the task.

∀i ∈ J execi =
Wi

speedVloci · 0.95
(4)

Finally, each workflow G = (T,D) has a deadline such
that all tasks forming the workflow must be performed
before the deadline.

Cost modelization. Our contribution aims at minimizing
the operational costs of the Cloud computing provider. We
assume that this cost is directly correlated to the data
center’s power consumption. It has already been shown [11],
[12] that the CPU’s energy consumption is not a linear
function defined by the load and the running time. Therefore,
reducing the number of nodes for a longer period of time
is not equivalent to using more nodes for a shorter period.
To properly model the cost and therefore the gain of our
solution, the consumption of a node is defined accordingly
to [11] and as follows:

∑
t ∈ N

Pmaxn + (
Pidlen − Pmaxn

ln 0.01
) · ln cpu loadtn, (5)

cpu loadtn =

∑
v ∈ V

(CJcore(v) · Etv)× htnv

CNcore(n)
, (6)

where Pidlen is the idle consumption of the node, Pmaxn

is the power consumption of the node when fully used.
The cpu load calculated by Equation 6 is the percentage
of cores used on a CPU at a given time. The value 0.01 is
an arbitrarily small value to keep the logarithm calculable,
and represents the minimal cpu load.

One can note that we have conducted experiments on the
Ecotype cluster (Seduce3 platform) that perfectly match this
model.

Objective. Our model aims at minimizing the number of
nodes required to schedule a set of workflows in order to
reduce the cost of the Cloud provider.

3https://seduce.fr/

IV. V-HEFT-deadline ALGORITHM

In this section, we present our deadline aware scheduling
heuristic V-HEFT-deadline based on V-HEFT, which is
similar to HEFT [8] algorithm, but with VM oriented
ressource selection phase.

As part of our algorithm, a set of workflows - each
associated with a deadline - is submitted at a given time to
the Cloud provider. The algorithm is launched following a
regular clock and takes into account the VMs already hosted
on the Cloud infrastructure.

Priorities and deadlines. In HEFT and V-HEFT, a priority
is calculated for each task i of each workflow such that
tasks with higher priorities are scheduled first. This priority
is established according to the average completion time (on
all possible nodes) of a task, denoted timeJi , as well as its
average communication time (between all possible nodes),

denoted comJij . The rank of a task is shown in Equation (7).

ranki = timeJi + max
j∈succJi

(
comJij + rankj

)
(7)

As illustrated in the main algorithm of V-HEFT in
Algorithm 1, once all the tasks are sorted by rank
(COMPUTERANKLIST function), the scheduling algorithm is
launched. This algorithm will be detailed later in this section.

Algorithm 1 V-HEFT algorithm
function HEFT (tasks, nodes)

task list← COMPUTERANKLIST (tasks, nodes) . Eq. (7)
for all t ∈ task list do

SCHEDULEEARLIEST(t, nodes)

The first operation performed by V-HEFT-deadline, as
indicated in Algorithm 2, is to order the workflows by
difficulty (function SORTWORKFLOWS). This difficulty is
defined by the difference between the deadline and the aver-
age execution time (on all possible nodes) of the critical path
of the workflow as follows deadline−max

j∈J

(
rankj

)
. Then,

V-HEFT-deadline processes each workflow by decreasing
difficulty unlike V-HEFT that directly rank all tasks of all
submitted workflows.

Algorithm 2 V-HEFT-deadline algorithm
function V-HEFT-deadline (workflows, deadlines)

workflow list← SORTWORKFLOWS (workflows, deadlines)
for all d ∈ workflow list do

V-HEFT-deadline-WORKFLOW(d.tasks, d.nodes, deadlines[d])

For each workflow to schedule, the function V-HEFT-
deadline-WORKFLOW shown in Algorithm 3 is called. The
first step of this function is to calculate the priority of each
task (COMPUTERANKLIST function) of the input workflow
The second step is to calculate the deadlines for each task
of the current workflow. As already explained, in V-HEFT-
deadline, the user submits a workflow with a global deadline,

Algorithm 3 V-HEFT-deadline single workflow scheduling
function V-HEFT-deadline-WORKFLOW (tasks, nodes, deadline)

task list← COMPUTERANKLIST (tasks, nodes) . Eq. (7)
dead list← COMPUTEDEADLINES (tasks, nodes, deadline) . Eq. (8)
ons← FILTERUSEDNODES(nodes)
offs← FILTERUNUSEDNODES(nodes)
return SCHEDULEBACKTRACK(0, 0, task list, dead list, ons, offs)

including all the tasks that make up this workflow. We also
consider (as already explained in Section III) that the number
of instructions necessary to perform each task is given when
the workflow is submitted to the scheduler. It is therefore
possible to calculate a time limit per task that must not be
exceeded in order to meet the overall initial deadline of the
workflow. Each task deadline will be used to avoid a full
exploration of a scheduling that will necessarily lead to an
overdue global deadline.

Each task deadline is calculated in the COMPUTEDEAD-
LINES function of Algorithm 3. To calculate this time, it is
necessary to start with the final tasks of the workflow that do
not have successor. Indeed, for the final tasks, the time not
to be exceeded is the overall deadline of the workflow. Then
for any other task i ∈ J that has successors, the deadline
is represented by Equation 8, where succJi ⊂ T ⊂ J is the
set of successor of i, and such that ∀ j ∈ succJi , ∃ dij ∈ D.

∀i ∈ J where |succJi | > 0,

deadJi = min
j∈succJi

(
deadJj − min

n,m∈N

(Wj

speedN
n ·0.95

+
dij

bwN
n,m

))
(8)

Finally, the V-HEFT-deadline algorithm maintains two
lists of physical machines (ons and offs lists) so that
the scheduling algorithm knows which physical machines
are under usage for tasks or not. The rest of this section
details the scheduling algorithm of V-HEFT-deadline (and
V-HEFT).

Backtrack scheduling algorithm. V-HEFT-deadline tries
to minimize the number of nodes used to schedule the
workflows of a workload. To this end, our solution extends
the V-HEFT algorithm with a partial backtracking heuristic.
This heuristic consists in trying to perform scheduling on
nodes that are under usage by other tasks. As soon as this
attempt fails, because the tasks deadlines are no longer met,
a backtrack is performed and a new node is considered.
This new algorithm is defined in the recursive function
SCHEDULEBACKTRACK of Algorithm 4 (initially called in
Algorithm 3). This function takes as input the id of the first
task (backTo), the id of the current task, the task list of the
current workflow, the list of tasks deadlines, the list of nodes
under usage and the list of unused nodes.

Algorithm 4 is the main part of the V-HEFT-deadline
algorithm. If the deadline constraint cannot be met by con-
sidering nodes under usage only, the algorithm backtracks
to the first task that was not scheduled on an unused node

Algorithm 4 V-HEFT-deadline backtrack scheduling
function SCHEDULEBACKTRACK (backTo, id, tasks, deads, ons, offs)

task ← tasks [id]
deadline← deads [id]
if SCHEDULEEARLIEST(task, ons, deadline) then

if SCHEDULEBACKTRACK(backTo, id+1, tasks,
deads, ons, offs) then

return True
if id = backTo then

if SCHEDULEEARLIEST(task, ons + offs, deadline) then
new ons← FILTERUSEDNODES(ons + offs)
new offs← FILTERUNUSEDNODES(offs)
if SCHEDULEBACKTRACK(backTo+1, id+1, tasks, deads,

new ons, new offs) then
return True

return False

given as input, backTo. It can be noted that in our scheduling
algorithm, the maximum number of backtracks is equal to
the number of unused nodes at entry point. As already
explained, V-HEFT-deadline manages each workflow one
after the other by decreasing difficulty, unlike V-HEFT
which handles all the tasks of all workflows in a single sorted
list. In V-HEFT-deadline this cannot be done, because the
backtrack part would go back to tasks that have little impact
on the task that has not been scheduled. For this reason, if
all tasks are processed together, all nodes will be used and
a result close to V-HEFT will be observed but with worse
complexity. For this reason, V-HEFT-deadline schedules the
workflows one by one, sorted by decreasing difficulty.

Resource selection. Another essential part of the V-HEFT
and V-HEFT-deadline algorithms is the resource selection
function SCHEDULEEARLIEST. This function is called each
time a task is to be scheduled, and is detailed in Algo-
rithm 5. Obviously, the V-HEFT-deadline SCHEDULEEAR-
LIEST function takes deadlines into account, which is not
the case for V-HEFT.

Algorithm 5 V-HEFT-deadline resource selection
function SCHEDULEEARLIEST (task, nodes, deadline)

start← 0
bestP lace← (None, 0, 0, deadline + 1)

. A place is a tuple (node, start, duration, end) for a task
. deadline + 1 means that the deadline is not respected

start← GETMAXIMUMEND(predJ
task)

for all n ∈ nodes do
exec← COMPUTEEXECTIME(task, n) . Eq. (4)

place← GETPLACEONNODE(n, task, start, exec, deadline)
. Eq. (1, 2)

if place.end < bestP lace.end then bestP lace← place

if bestP lace.node 6= None then
RESOURCEPROVISIONING(bestP lace.node, task,

bestP lace.start, bestP lace.duration)

This resource selection phase is specific to the problem
modeled in Section III. Due to virtualization and software
constraints, virtual machines must be powered up. A VM
is powered up for only two reasons: (1) the VMs already
used by the owner of the current workflow cannot meet the
requirements of the current task to be scheduled (or he does
not have one), and for isolation and safety reasons, VMs of

other users cannot be used; (2) by starting a new VM the
quality of the schedule (makespan) is enhanced.

The function GETPLACEONNODE called in Algorithm 5
is used to find a suitable place to perform a task inside
an existing or a new VM onto a specific node (physical
machine). First, this function looks for a placement on the
existing VMs of the user that minimizes the ending time of
the task. Then, the function selects a new VM (that takes
into account the constraints of the task) and calculates the
ending time of the task on this new VM (taking into account
its boot time). The place inside a VM that offers the earliest
ending time is selected. The placement found inside a VM
may extend the lifetime of that VM, thus the function must
also know the capacities of the node hosting the VM.

Finally, in Algorithm 5, the function RESOURCEPROVI-
SIONNING reserves the place on the node, updates all capaci-
ties information, and eventually stores the new selected VM.
One can note that this reservation may be released when
the V-HEFT-deadline algorithm backtrack on previous task
scheduling.

Complexity. The complexity of the function GET-
PLACEONNODE is common to both V-HEFT and V-HEFT-
deadline algorithms, thus this function is not taken into
account for the complexity. The complexity of V-HEFT
is a function of the number of tasks in the workflow and
the number of nodes on which the scheduling solution will
be done. Therefore, its worst-case complexity V-HEFT is
O(|J | × |N |), and is exactly equals to its average-case
complexity.

The complexity of our new algorithm V-HEFT-deadline,
is different due to the partial backtracking. The worst case,
is when all the nodes are needed to schedule the workflow
and when the backtrack is performed when reaching the
last task of the workflow. The worst-case complexity is then

O(
|J |∑
i=1

(|N |+
i∑

k=1

k)). However, this complexity is on average

far lower than the worst case, as only under usage nodes will
be explored for most of the tasks. Section V validates this
claim.

V. EVALUATION

In this section, we present a detailed evaluation of our
V-HEFT-deadline algorithm. All evaluations are performed
on realistic workflows generated by the pegasus workflow
generator4 [6].

A. Initial workload scheduling

This section presents the experimental results when con-
sidering an homogeneous group of physical machines (i.e.,
a cluster), and when no existing tasks are already running
on the cluster (i.e., initial workload). This simplified use
case offers the possibility to precisely analyze the behavior

4https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 Data aggregation

4 Data partitionning

5
5

5
5

5

6 Data aggregation

7

8

9

Pipeline

1 mProjectPP 2 mDiffFit 3 mConcatFit 4 mBgModel

5 mBackground 6 mImgTbl 7 mAdd 8 mShrink 9 mJPEG

Figure 2: Montage workflow

of V-HEFT-deadline without too many parameters to take
into account. This section shows that introducing a deadline
within V-HEFT is a way to optimize the number of ma-
chines used to schedule a set of workflows, thereby reducing
the energy consumption of the Cloud provider. This section
also shows that the execution time of V-HEFT-deadline is
very competitive and scalable compared to V-HEFT.

Experimental setup. The Montage workflow depicted in
Figure 2 is a typical synthetic case-study used to evaluate
scheduling algorithms [4], [16]. It is a complex workflow
that integrates most of the workflow classes characterized by
Bharati et al. in [18]. The simulated workload is composed
of a variable number of Montage workflows and the simu-
lated infrastructure is composed of 20 homogeneous nodes
with the hardware configuration of the Grid’5000 Econome
cluster (see the first row of Table I). To correctly select a
set of deadlines for our V-HEFT-deadline algorithm, we ran
V-HEFT to get its approximate minimum makespan.

Using the Pegasus workflow generator, only one informa-
tion is provided about a task: its execution time (in seconds).
We assume in our experiments that this time was produced
by a single CPU core with a computing capacity of 2GFlops
(floating operations per second). This assumption is used to
transform information on the execution time into a number
of instructions (as required by our model). We also assume
that each Montage task has been calculated with a sufficient
amount of memory, and we consider in our experiments that
the memory requirements are always fulfilled. Furthermore,
we consider a single VM template that uses 4 cores. Finally,
the boot time of the VM template has been configured to 10
seconds on a 2 GFlops CPU core.

Quality evaluation. Figure 3 represents the number of
nodes used, respectively by V-HEFT and V-HEFT-deadline,
to schedule workloads with variable amounts of Montage
workflows. V-HEFT-deadline has been run with four dif-

20 40 60 80 100

0

5

10

15

20

Number of workflows

N
um

be
r

of
m

ac
hi

ne
us

ed

V-HEFT
D = 1.3
D = 1.5
D = 2
D = 3

Figure 3: Comparison of the number of nodes used between V-
HEFT and V-HEFT-deadline (with four different deadlines D).

ferent deadlines proportional to the makespan computed by
V-HEFT: (1) D=1.3, (2) D=1.5, (3) D=2, and (4) D=3.
This result illustrates that relaxing the deadline offers more
possibilities for V-HEFT-deadline to reduce the number of
nodes needed by the schedule. As a result, when users
can extend their deadlines, The Cloud provider can benefits
from an energy consumption reduction. Obviously this cost
reduction may be passed on the rental price for the user who
then has interest in relaxing her/his deadline. One can note
that even by extending the deadline from 1 (V-HEFT) to 1.5
the number of nodes can be divided by 2. When the deadline
is extended from 1 to 3, only five of the twenty available
nodes are used to schedule the workloads while V-HEFT
would use 20 machines.

Energy consumption evaluation. Figure 4 shows estimated
immediate power consumption (in Watt) of the nodes for the
execution of 100 Montage workflows, scheduled by both
V-HEFT and V-HEFT-deadline algorithm with different
deadlines. This consumption has been estimated according to
real power consumptions measured on a cluster of Grid’5000
(Ecotype). One can note that, as expected, power consump-
tion is reduced when the deadlines are delayed.

The cost for the Cloud provider is mainly correlated to
the energy consumption (Joules). The energy consumption
is the sum of power consumptions (per second) during the
execution of the workload. As already explained, it has
been shown that energy consumption cannot be modeled
by a linear function [11], [12] defined by the number of
machines and the running time (see Equation 5). As a result,
reducing the number of nodes may induce a reduction of
the global energy consumption (i.e., the cost) even if the
time required to finish the workload is longer. Table II
illustrates this claim by showing the results obtained for the
four different deadlines in terms of the number of nodes
used to schedule the workload, the total makespan needed
to run the workload, as well as the energy consumption. In
this experiment, unused machines are considered powered

Table I: Description of the simulated nodes

Location Name Number of nodes CPU Network
Nantes econome 22 Intel Xeon E5-2660 (Sandy Bridge, 2.20GHz, 2 CPUs/node, 8 cores/CPU) 10 Gbps
Rennes parapide 21 Intel Xeon X5570 (Nehalem, 2.93GHz, 2 CPUs/node, 4 cores/CPU) 20 Gbps
Grenoble yeti 4 Intel Xeon Gold 6130 (Skylake, 2.10GHz, 4 CPUs/node, 16 cores/CPU) 10 Gbps

Table II: - Results of the scheduling of complete workload composed of Montage workflows.

V-HEFT V-HEFT-deadline
Deadline - ×1.3 ×1.5 ×2 ×3
Nb nodes 20 14 (70%) 11 (55%) 8 (40%) 5 (25%)
Makespan 157 200 (×1.27) 233 (×1.48) 311 (×1.98) 462 (×2.94)

Energy (Joules) 333,777 298,352 (89.4%) 282,602 (84.7%) 282,887 (84.8%) 278,266 (83.4%)

off, and nodes are turned off when they have finish their
computations. As expected, the makespan increases with the
deadline by using V-HEFT-deadline, thus the overall time
spent to execute the complete workload is longer than V-
HEFT. However, the total energy consumption is almost
reduced of 17% when using V-HEFT-deadline compared
to V-HEFT. Therefore, the number of nodes has a direct
impact on the energy consumption of the Cloud provider.
One can note, though, that the execution with D=2, has a
cost a bit higher than the execution with the D=1.5, meaning
that the diminution of the number of nodes does not always
counterbalance the makespan extension.

Performance evaluation. Figure 5 shows the execution time
taken by both V-HEFT and V-HEFT-deadline to compute
the scheduling solution of the previous experiment. First,
one can note that adding a backtrack system in V-HEFT-
deadline does not deteriorate the efficiency of the algorithm
because V-HEFT-deadline iterates on already used nodes
instead of all nodes for V-HEFT. We can compute the
number of scheduling operations performed by each algo-
rithm by using the complexity we introduce in Part IV. In
the case of the scheduling of 100 workflows, for V-HEFT
algorithm, the number of operations is j × n, with j = 100
and n = 20, that is to say 2000 operations - by a factor
of 25 which is the number of tasks forming the Montage
workflow. For V-HEFT-deadline algorithm, the number of
operations depends on the number of nodes under usage
when a workflow is scheduled. The number of operations can
be estimated by using the values returned by our experiments
when scheduling a variable number of workflows (Figure 3).
As a result, the number of scheduling operations needed with
a deadline D = 1.3 is approximatly 930, which is 46.5%,
of the number of operations of V-HEFT algorithm. This
number is validated by experiments where the time taken
by V-HEFT-deadline algorithm (1.211 seconds) is half the
time taken by V-HEFT algorithm (2.423 seconds).

B. Realistic case study

In this section, we evaluate V-HEFT-deadline on a set of
more realistic scenarios from both workload and infrastruc-
ture perspectives.

0 100 200 300 400 500

0

1,000

2,000

3,000

Time (t)

Po
w

er
co

ns
um

pt
io

n
(i

n
W

at
t)

V-HEFT
D = 1.3
D = 1.5
D = 2
D = 3

Figure 4: Comparison of immediate power consumption between
V-HEFT and V-HEFT-deadline (with four different deadlines D).

20 40 60 80 100

0

0.5

1

1.5

2

2.5

Number of workflows

E
xe

cu
tio

n
tim

e
(s

)

V-HEFT
D = 1.3
D = 1.5
D = 2
D = 3

Figure 5: Comparison of execution time between V-HEFT and
V-HEFT-deadline (with four different deadlines D).

Experimental setup. First, we consider a multi-site in-
frastructure composed of three different clusters. This in-
frastructure is a subset of the Grid’5000 testbed that uses
the Renater5 network for communications, which allows
inter-cluster communications with a bandwidth of 10 Gbps.
Table I gives a description of the three clusters and their

5https://pasillo.renater.fr/weathermap/weathermap metropole.html

associated nodes.
Second, the considered type of workload is more hetero-

geneous and realistic in this experiment. Table III details
the considered workloads composed of five different kind of
workflows (all available within Pegasus). We assume that,
in a real-case, the percentage of complex workflows is less
important than simple ones. Finally, benchmarks also use
different deadlines for each kind of workflow. In the scenario
A the deadlines are approximately the makespan returned by
V-HEFT execution.

In the following experiments, each set of workflows are
owned by a specific user, i.e., all the pipeline workflows
belongs to the first user, Montage workflows belongs to
the second one, etc. The four workloads presented in the
Table III are submitted twice, meaning that the scheduling
algorithm is called two times. Thus, tasks under execution
are taken into account in this experiments. The first submis-
sion is done at t = 500, and the second one at t = 1500.
Finally, at t = 0 half of the nodes are powered on and are
half used. This simulated workload ends at t = 1000.

Evaluation. Figure 6 shows the estimated immediate power
consumption (in Watt) of the nodes for the execution of
the different scenarios (A to D). As for the first experi-
ment V-A, the unused nodes are considered powered off
and nodes are powered off as soon as they have finished
there tasks. Table IV shows the results obtained for the four
different scenarios in terms of the number of nodes, the
total makespan and the energy consumption needed to run
each workload twice. Moreover, the execution time of the
scheduling algorithm is given.

As expected, the global makespan of the solution returned
by our algorithm is less good than the makespan of the V-
HEFT solution. However, the makespan minimization is not
the optimization objectives of V-HEFT-deadline. One can
observe that even in the scenario A, where the deadlines are
almost the makespan returned by V-HEFT, the number of
nodes used to schedule the workload is reduced. Actually,
as V-HEFT minimizes the makespan for each task it favours
empty nodes that offers the best makespan even when
already used nodes offers almost the same makespan. As
a result, the nodes are not used at their full capacity (under
used). In contrast, our algorithm will favour nodes that are
already used, and will smooth the power consumption of the
nodes over the time as we can observe in Figure 6.

In the scenarios B and C, one can note that the number
of nodes used to schedule the workload is greater than in
the scenario A, despite the deadline relaxing of Inspiral
workflows. This effect is due to the scheduling at two
different times. Indeed, as the first schedule is not aware
of the second one, the resources usage of the Inspiral
workflows will be smoothed and the local makespan of their
execution will exceed the arrival of the second scheduling.
This involves a lower number of available resources for the

0 1,000 2,000 3,000 4,000 5,000

0

2,000

4,000

6,000

Time

C
on

su
m

pt
io

n
(i

n
W

at
t)

v-HEFT
V-HEFT-deadline A
V-HEFT-deadline B
V-HEFT-deadline C
V-HEFT-deadline D

Figure 6: Comparison of the power consumption through
time between the different scenari of Table III.

scheduling of the second set of workflows at t = 1500,
and causes an increase on the number of needed nodes. The
last scenario D validates this observation. In this scenario
the deadlines of the Pipeline workflows are relaxed to give
them more time to be executed even if the resources are
used by Inspiral workflows. As expected, the number of used
resources is reduced, and the global makespan delayed.

As in the simple evaluation, the total energy consumption
observed is directly correlated to the number of nodes
used to schedule the workload. In the scenarios B and
C, the energy consumption is a bit higher than in A, for
the same reasons than explained earlier. In all cases, the
energy consumption is reduced compared to the V-HEFT
(Table IV).

VI. CONCLUSION

This paper tackles the scheduling of heterogeneous scien-
tific workflows while minimizing the energy consumption of
Cloud providers. The V-HEFT-deadline algorithm has been
presented as a solution to this scheduling problem. V-HEFT-
deadline adds deadlines to workflows so that the number of
servers needed to run the workload is reduced, as well as the
energy consumption. This algorithm is based on V-HEFT,
a variant of HEFT that takes virtualization into account.
The V-HEFT-deadline algorithm has been compared to V-
HEFT to assess the impact of the deadlines on the energy
consumption of the Cloud provider. Experiments have been
conducted on different case studies. Experiments on realistic
workloads have shown a reduction in the number of nodes
by up to 28% for an estimated 10% energy consumption
reduction for the Cloud provider. In future work, we plan
to improve our model to take into account the dynamic
migrations of virtual machines as well as a more complex
and realistic network model with limited bandwidth. We also
plan to study the benefits of our algorithm in the context of
power cap contracts between the Cloud computing provider
and the energy provider.

Table III: - Percentages and deadlines of the workflows composing the workloads

Name % deadlines (A) deadlines (B) deadlines (C) deadlines (D)
Montage 30% 150 150 150 150

CyberShake 10% 1000 1000 1000 1000
Inspiral 6% 1500 2000 (×1.3) 2200 (×1.45) 2200 (×1.45)
Sipht 4% 4000 4000 4000 4000

Pipeline 50% 250 250 250 400 (×1.6)

Table IV: - Results of the scheduling of the different scenari

V-HEFT deadlines (A) deadlines (B) deadlines (C) deadlines (D)
Makespan 5202 5422 5422 5422 5431
Nb nodes 47 35 (74%) 35 (74%) 36 (77%) 34 (72%)
Time (s) 27.258 9.601 (35.2%) 9.705 (35.6%) 10.185 (37.4%) 9.338 (34.3%)

Energy (Joules) 9,183,968 8,395,508 (91.4%) 8,487,680 (92.4%) 8,555,411 (93.2%) 8,276,282 (90.1%)

REFERENCES

[1] L. Bertram, A. Ilkay, B. Chad, H. Dan, J. Efrat, J. Matthew,
L. E. A., T. Jing, and Z. Yang, “Scientific workflow manage-
ment and the kepler system,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 10, pp. 1039–1065,
2006.

[2] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Work-
flows and e-science: An overview of workflow system fea-
tures and capabilities,” Future Generation Computer Systems,
vol. 25, no. 5, pp. 528 – 540, 2009.

[3] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost
optimization approaches for scientific workflow scheduling in
cloud and grid computing: A review, classifications, and open
issues,” Journal of Systems and Software, vol. 113, pp. 1 –
26, 2016.

[4] L. F. Bittencourt and E. R. M. Madeira, “Hcoc: a cost
optimization algorithm for workflow scheduling in hybrid
clouds,” Journal of Internet Services and Applications, vol. 2,
no. 3, pp. 207–227, Dec 2011.

[5] Y. Caniou, E. Caron, A. K. W. Chang, and Y. Robert,
“Budget-aware scheduling algorithms for scientific workflows
with stochastic task weights on heterogeneous iaas cloud plat-
forms,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), May 2018, pp.
15–26.

[6] M. A. Rodriguez and R. Buyya, “Deadline based resource
provisioning and scheduling algorithm for scientific work-
flows on clouds,” IEEE Transactions on Cloud Computing,
vol. 2, no. 2, pp. 222–235, April 2014.

[7] H. Sun, R. Elghazi, A. Gainaru, G. Aupy, and P. Raghavan,
“Scheduling Parallel Tasks under Multiple Resources: List
Scheduling vs. Pack Scheduling,” Inria Bordeaux Sud-Ouest,
Research Report RR-9140, Jan. 2018.

[8] H. Topcuouglu, S. Hariri, and M.-y. Wu, “Performance-
effective and low-complexity task scheduling for heteroge-
neous computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13,
no. 3, pp. 260–274, Mar. 2002.

[9] J. Yu, R. Buyya, and K. Ramamohanarao, Workflow Schedul-
ing Algorithms for Grid Computing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 173–214.

[10] R. Buyya, A. Beloglazov, and J. H. Abawajy, “Energy-
efficient management of data center resources for cloud
computing: A vision, architectural elements, and open chal-
lenges,” CoRR, vol. abs/1006.0308, 2010.

[11] W. Wu, W. Lin, and Z. Peng, “An intelligent power consump-
tion model for virtual machines under cpu-intensive workload
in cloud environment,” Soft Computing, vol. 21, no. 19, pp.
5755–5764, Oct 2017.

[12] C. Hsu and S. W. Poole, “Power signature analysis of the
specpower ssj2008 benchmark,” in (IEEE ISPASS) IEEE In-
ternational Symposium on Performance Analysis of Systems
and Software, April 2011, pp. 227–236.

[13] H. L. Röst, G. Rosenberger, P. Navarro, L. Gillet, S. M.
Miladinović, O. T. Schubert, W. Wolski, B. C. Collins,
J. Malmström, L. Malmström, and R. Aebersold, “Openswath
enables automated, targeted analysis of data-independent ac-
quisition ms data,” Nature Biotechnology, vol. 32, pp. 219 EP
–, 03 2014.

[14] H. L. Röst, Y. Liu, G. D’Agostino, M. Zanella, P. Navarro,
G. Rosenberger, B. C. Collins, L. Gillet, G. Testa, L. Malm-
ström, and R. Aebersold, “Tric: an automated alignment
strategy for reproducible protein quantification in targeted
proteomics,” Nature Methods, vol. 13, pp. 777 EP –, 08 2016.

[15] L. Reiter, O. Rinner, P. Picotti, R. Hüttenhain, M. Beck, M.-Y.
Brusniak, M. O. Hengartner, and R. Aebersold, “mprophet:
automated data processing and statistical validation for large-
scale srm experiments,” Nature Methods, vol. 8, pp. 430 EP
–, 03 2011.

[16] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure
as a service clouds,” Future Generation Computer Systems,
vol. 29, no. 1, pp. 158 – 169, 2013, including Special
section: AIRCC-NetCoM 2009 and Special section: Clouds
and Service-Oriented Architectures.

[17] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin,
“Performance evaluation of virtualization technologies for
server consolidation,” 2007.

[18] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. H.
Su, and K. Vahi, “Characterization of scientific workflows,”
in 2008 Third Workshop on Workflows in Support of Large-
Scale Science, Nov 2008, pp. 1–10.

