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Abstract

We study the performance of kernel methods on the acoustic modeling task for automatic
speech recognition, and compare their performance to deep neural networks (DNNs). To
scale the kernel methods to large data sets, we use the random Fourier feature method
of Rahimi and Recht (2007). We propose two novel techniques for improving the perfor-
mance of kernel acoustic models. First, we propose a simple but effective feature selection
method which reduces the number of random features required to attain a fixed level of
performance. Second, we present a number of metrics which correlate strongly with speech
recognition performance when computed on the heldout set; we attain improved perfor-
mance by using these metrics to decide when to stop training. Additionally, we show that
the linear bottleneck method of Sainath et al. (2013a) improves the performance of our
kernel models significantly, in addition to speeding up training and making the models
more compact. Leveraging these three methods, the kernel methods attain token error
rates between 0.5% better and 0.1% worse than fully-connected DNNs across four speech
recognition data sets, including the TIMIT and Broadcast News benchmark tasks.

Keywords: kernel methods, deep neural networks, acoustic modeling, automatic speech
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Collins, Daniel Hsu, Brian Kingsbury, Michael Picheny, Fei Sha.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/17-026.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/17-026.html


May, Bagheri Garakani, Lu, Guo, Liu, Bellet, Fan, Collins, Hsu, Kingsbury, Picheny, and Sha

1. Introduction

Large-scale non-linear classification is an important and challenging problem in machine
learning. In recent years, deep learning techniques have significantly advanced state-of-the-
art performance on classification problems in various domains, including automatic speech
recognition (ASR) (Seide et al., 2011a; Hinton et al., 2012; Mohamed et al., 2012; Xiong
et al., 2017; Saon et al., 2017), computer vision (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; He et al., 2016), and natural language processing (NLP) (Mikolov et al.,
2013; Sutskever et al., 2014; Andor et al., 2016). Deep neural networks (DNNs) are able
to gracefully scale to large data sets, and can successfully leverage this additional data to
achieve strong empirical performance. In contrast, kernel methods, which are attractive due
to their high capacity, as well as for their theoretical learning guarantees and tractability
(Schölkopf and Smola, 2002), do not scale well. In particular, with data sets of size N , the
Θ(N2) size of the kernel matrix makes training prohibitively slow, while the typical Θ(N)
size of the resulting models (Steinwart, 2003) makes their deployment impractical.

An important technique for scaling kernel methods to large data sets is to use approxi-
mation. Kernel approximation methods construct explicit feature maps whose dot-products
approximate the kernel function, and then learn linear models with these features. Notable
approximation methods include the Nyström method (Williams and Seeger, 2000), and ran-
dom Fourier features (RFFs) (Rahimi and Recht, 2007). Although these methods make it
possible to apply kernel methods to large-scale tasks, there have been very few published
attempts applying these methods to the challenging large-scale tasks on which deep learning
techniques have truly shined.1

The primary contribution of this paper is to demonstrate, in a large-scale setting where
deep learning techniques have been known to dominate, that kernel approximation methods
can effectively compete with fully-connected DNNs. More specifically:

• We benchmark the performance of kernel approximation methods (RFFs) relative to
fully-connected DNNs on the acoustic modeling problem for automatic speech recog-
nition, on four data sets with millions of training points and hundreds/thousands of
classes.2

• We propose three methods for improving the performance of the kernel acoustic mod-
els: a feature selection method, new early stopping criteria for training, and the use of
a linear bottleneck layer (Sainath et al., 2013a). We show that using these techniques,
the kernel methods attain token error rates (TER)3 between 0.5% better and 0.1%
worse than fully-connected DNNs on the four data sets.

This contribution is important for both practical and theoretical reasons. From a prac-
tical perspective, it suggests that kernel methods can be competitive with deep learning

1. See related work section for discussion.
2. We use the IARPA Babel Program Cantonese (IARPA-babel101-v0.4c) and Bengali (IARPA-babel103b-

v0.4b) limited language packs, a 50-hour subset of Broadcast News (BN-50) (Kingsbury, 2009), and
TIMIT (Garofolo et al., 1993).

3. For our Cantonese data set, ‘token error rate’ corresponds to ‘character error rate.’ For our Bengali and
Broadcast News data sets, it corresponds to ‘word error rate.’ For TIMIT, it corresponds to ‘phone error
rate.’
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methods on large-scale tasks. From a theoretical perspective, it adds to our understand-
ing of DNNs and non-linear classification. There is a large open question of why DNNs
work, which is being actively investigated from various directions, including optimization
(Dauphin et al., 2014; Choromanska et al., 2015; Anandkumar and Ge, 2016; Agarwal et al.,
2017; Xie et al., 2017; Pennington and Bahri, 2017), representational power and efficiency
(Cybenko, 1989; Hornik et al., 1989; Bengio et al., 2007; Bianchini and Scarselli, 2014;
Montúfar et al., 2014; Ba and Caruana, 2014), and generalization performance (Bartlett,
1996; Neyshabur et al., 2015; Zhang et al., 2017; Arpit et al., 2017). The fact that kernel
methods can match DNNs on a task this large and challenging gives an important new
perspective.

As discussed above, we propose three methods to improve the performance of the kernel
acoustic models. First, we propose a simple feature selection algorithm, which effectively
reduces the number of random features required to attain a fixed level of performance.
We iteratively select features from large pools of random features, using learned weights
in the selection criterion. This has two clear benefits: (1) the subsequent training on the
selected features is considerably faster than training on the entire pool of random features,
and (2) the resulting model is also much smaller. For certain kernels, this feature selection
approach—which is applied at the level of the random features—can be regarded as a
non-linear method for feature selection at the level of the input features. We use this
observation to motivate the design of a new kernel function, the “sparse Gaussian kernel,”
which performs well in conjunction with the feature selection algorithm.

Second, we present several frame-level metrics which correlate strongly with the TER.
We show that we can attain notable gains in TER for both kernels and DNNs by monitoring
these metrics on the heldout set during training to determine when to stop training.

Lastly, we demonstrate the importance of using a linear bottleneck (Sainath et al.,
2013a) in the parameter matrix of our kernel models. Not only does this method improve
the performance of our kernel models significantly, it also makes training faster, and reduces
the size of the models learned.

In this paper we unify and extend the previous works of Lu et al. (2016) and May
et al. (2016). The most significant additions are as follows: (1) we show that we can
attain improved performance by combining the methods from both papers; (2) we present
a more extensive set of experiments, including results on the TIMIT benchmark task, and
a detailed ablation study to reveal the marginal improvements from each method; (3) we
present a larger set of metrics which correlate strongly with TER, and show that we can
attain improved performance by using these metrics during training to decide when to decay
the learning rate and stop training.

The rest of the paper is organized as follows. We review related work in Section 2.
We provide some background for kernel approximation methods, as well as for acoustic
modeling, in Section 3. We present our feature selection algorithm in Section 4. In Section
5, we present several novel metrics which correlate strongly with TER, and discuss how
they can be used during training to improve TER performance. In Section 6, we report
extensive experiments comparing DNNs and kernel methods, including results using the
methods discussed above. We conclude in Section 7.
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2. Related Work

Scaling up kernel methods has been a long-standing and actively studied problem (Platt,
1998; DeCoste and Schölkopf, 2002; Tsang et al., 2005; Bottou et al., 2007; Clarkson, 2010).
Approximating kernels by constructing explicit finite-dimensional feature representations,
where dot products between these representations approximate the kernel function, has
emerged as a powerful technique (e.g., Williams and Seeger, 2000; Rahimi and Recht, 2007).
The Nyström method constructs these feature maps, for arbitrary kernels, via a low-rank
decomposition of the kernel matrix (Williams and Seeger, 2000). For shift-invariant kernels,
the RFF technique of Rahimi and Recht (2007) uses random projections to generate the
features. Random projections can also be used to approximate a wider range of kernels
(Kar and Karnick, 2012; Vedaldi and Zisserman, 2012; Hamid et al., 2014; Pennington
et al., 2015). Many recent works aim to make RFFs more computationally efficient. One
line of work attempts to reduce the time and memory needed to compute the RFFs by
imposing structure on the random projection matrix (Le et al., 2013; Yu et al., 2015). It
is also possible to use doubly-stochastic methods to speed-up stochastic gradient training
of models based on the random features (Dai et al., 2014). For kernels with sparse feature
expansions, Sonnenburg and Franc (2010) show how to scale kernel SVMs to data sets with
up to 50 million training samples by using sparse vector operations for parameter updates.

Despite much progress in kernel approximation, there have been very few applications
of these methods to challenging large-scale problems, or comparisons with DNNs on these
tasks. Notable exceptions are the following: on image recognition problems, it has been
shown that random Fourier features (Rahimi and Recht, 2007) can be used to replace
the fully connected layers in the convolutional neural network (CNN) known as AlexNet
(Krizhevsky et al., 2012), and achieve comparable performance on the ImageNet 2012 data
set (Dai et al., 2014; Yang et al., 2015). Although these results suggest that kernel methods
can replace the fully-connected layers of neural networks, the hybrid CNN-kernel model
makes it difficult to disentangle the relative importance of these two components. In ASR,
the only existing work applying kernel approximation methods has been quite limited in
scope (Huang et al., 2014), using the relatively easy and small-scale TIMIT data set.4 A
detailed evaluation of kernel methods on large-scale ASR tasks, together with a thorough
comparison with DNNs, has not been performed. Our work fills this gap, tackling chal-
lenging large-scale acoustic modeling problems, where deep neural networks achieve strong
performance. Additionally, we provide a number of important improvements to the kernel
methods, which boost their performance significantly.

One contribution of our work is to introduce a feature selection method that works
well in conjunction with random Fourier features in the context of large-scale multi-class
classification problems. Recent work on feature selection methods with random Fourier
features, for binary classification and regression problems, includes the Sparse Random
Features algorithm of Yen et al. (2014). This algorithm is a coordinate descent method
for smooth convex optimization problems in the infinite space of non-linear features; each
step involves solving a batch `1-regularized convex optimization problem over randomly
generated non-linear features. Here, the `1-regularization may cause the learned solution

4. Here, we are excluding the results presented in this paper, some of which have already been published
(May et al., 2016; Lu et al., 2016).
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to only depend on a subset of the generated features. A drawback of this approach is
the computational burden of fully solving many batch optimization problems, which is
prohibitive for large data sets. In our attempts to implement an online variant of this method
using the forward-backward splitting (FOBOS) algorithm of Duchi and Singer (2009) (using
`1/`2 mixed-norm regularization for the multi-class setting), we observed that very strong
regularization was required to obtain any intermediate sparsity, which in turn severely hurt
prediction performance. Our approach for selecting random features is more efficient, and
more directly ensures sparsity, than regularization. The basic idea behind our approach
is to iteratively train a model over a batch of random features, and to then replace the
features whose corresponding rows in the parameter matrix have small `2 norm. This
method bears some similarity to the methods of pruning neural networks which eliminate
parameters whose magnitudes are below a certain threshold (Ström, 1997; Han et al., 2015);
a difference is that in our method we eliminate entire rows of the parameter matrix instead
of individual entries.

Another improvement we propose alters the frame-level training of the acoustic model to
improve the speech recognition performance of the final model. A set of methods, typically
referred to as sequence training techniques, share our goal of tuning the acoustic model for
the purpose of improving its recognition performance. There are a number of different se-
quence training criteria which have been proposed, including maximum mutual information
(MMI) (Bahl et al., 1986; Valtchev et al., 1997), boosted MMI (BMMI) (Povey et al., 2008),
minimum phone error (MPE) (Povey and Woodland, 2002), or minimum Bayes risk (MBR)
(Kaiser et al., 2000; Gibson and Hain, 2006; Povey and Kingsbury, 2007). These methods,
though originally proposed for training Gaussian mixture model (GMM) acoustic models,
can also be used for neural network acoustic models (Kingsbury, 2009; Veselý et al., 2013).
Nonetheless, all of these methods are quite computationally expensive and are typically
initialized with an acoustic model trained via the frame-level cross-entropy criterion. Our
method, by contrast, is very simple, only making a small change to the frame-level training
process. Furthermore, it can be used in conjunction with the above-mentioned sequence
training techniques by providing a better initial model. Recently, Povey et al. (2016) showed
that it is possible to train an acoustic model using only sequence-training methods, with the
lattice-free version of the MMI criterion. In a similar vein, there has been significant work
on end-to-end training of ASR systems, which removes the need for frame-level training of
acoustic models altogether (Graves et al., 2006; Amodei et al., 2016; Chan et al., 2016; Chiu
et al., 2018). For future work, we would like to see how much kernel models can benefit
from the various sequence training methods mentioned above, relative to DNNs.

Recent years have seen huge improvements in the performance of state-of-the-art speech
recognition systems. The most important factors leading to this success have been the
following: sequence training (Povey et al., 2008, 2016), speaker adaptation through the use
of i-vectors (Dehak et al., 2011), training on large data sets (van den Berg et al., 2017;
Saon et al., 2017), and improved deep architectures for both language modeling (Mikolov
et al., 2010; Sundermeyer et al., 2012; Saon et al., 2017), and acoustic modeling. For
acoustic modeling, CNNs (Krizhevsky et al., 2012; Sainath et al., 2013c; Soltau et al., 2014;
Simonyan and Zisserman, 2015; Sercu and Goel, 2016; He et al., 2016; Saon et al., 2017)
along with Long Short Term Memory (LSTM) networks (Sak et al., 2014; Saon et al.,
2017), have been developed to leverage the time-frequency structure of the speech signal,
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and achieve better performance than fully-connected feed-forward DNNs. The most recent
state-of-the-art systems (Xiong et al., 2017; Saon et al., 2017) use an ensemble of LSTMs
and CNNs for acoustic modeling. In Saon et al. (2016) they show an improvement of 1.3%
in WER on the Switchboard data set when switching from a sigmoid DNN architecture
to an LSTM, while in Xiong et al. (2017) they see that a ResNet CNN (He et al., 2016)
improves upon a ReLU DNN by 1.6%.

In the context of these recent advances, our results showing competitive performance
with fully-connected DNNs are significant, for a number of reasons. First of all, while
no longer being state-of-the-art, fully-connected DNNs still attain strong performance on
the acoustic modeling task. Second, fully-connected DNNs remain an important class of
models, which are used widely (e.g., Andor et al., 2016). Furthermore, fully-connected
layers are an important building block within more complex deep learning architectures
(Simonyan and Zisserman, 2015; He et al., 2016). Additionally, we believe it should be
important to the research community to discover when and why deep architectures are
necessary, while simultaneously working to explore which other families of models might be
able to compete; we think kernel methods are an important family of models to consider,
as they lend themselves to simpler interpretation, and cleaner theoretical analysis, relative
to DNNs. For future work, we would like to develop specialized kernel methods to better
leverage the structure in the speech signal, in a manner similar to CNNs and LSTMs.

This work also contributes to the debate on the relative strengths of deep and shallow
models. Kernel models can generally be seen as shallow models, given that they involve
learning a linear model on top of a fixed transformation of the data. Furthermore, as
explained in Section 3.3, many types of kernels (including popular kernels like the Gaussian
kernel and the Laplacian kernel) can actually be seen as a special case of a shallow neural
network. Conversely, any neural network can be understood as a kernel model, in which
the kernel function itself is learned. Classic results show that both deep and shallow neural
networks, as well as kernel methods, are “universal approximators,” meaning that they
can approximate any real-valued continuous function with bounded support to an arbitrary
degree of precision (Cybenko, 1989; Hornik et al., 1989; Micchelli et al., 2006). However,
a number of papers have argued that there exist functions which deep neural networks
can express with exponentially fewer parameters than shallow neural networks (Montúfar
et al., 2014; Bianchini and Scarselli, 2014). Other papers have argued that kernel methods
may require a number of training samples which is exponential in the intrinsic dimension
of the data manifold to generalize well, a problem known as the curse of dimensionality
(Härdle et al., 2004; Bengio et al., 2007). In Ba and Caruana (2014), the authors show
that the performance of shallow neural networks can be improved considerably by training
them to match the outputs of deep neural networks. In showing that kernel methods can
compete with DNNs on large-scale speech recognition tasks, this paper adds credence to
the argument that shallow models can compete with deep networks.

3. Background

In this section, we provide background on kernels and how to approximate them with
random Fourier features (Rahimi and Recht, 2007), on acoustic modeling (using neural
networks and kernels), and on the linear bottleneck method of Sainath et al. (2013a).
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3.1. Kernel Methods and Random Fourier Features

Kernel methods, broadly speaking, are a set of machine learning techniques which either
explicitly or implicitly map data from the input space X to some feature space H, in
which a linear model is learned. A kernel function K : X × X → R is then defined5 as the
function which takes as input x,x′ ∈ X , and returns the dot-product of the corresponding
points in H. If we let φ : X → H denote the map into the feature space, then K(x,x′) =
〈φ(x),φ(x′)〉. Standard kernel methods avoid inference in H, because it is generally a very
high-dimensional, or even infinite-dimensional, space. Instead, they solve the dual problem
by using the N -by-N kernel matrix containing the values of the kernel function applied to
all pairs of N training points. This method of working in the dual space is known as the
“kernel trick,” and it provides a nice computational advantage when dim(H) is far greater
than N . However, when N is very large, the Θ(N2) size of the kernel matrix makes training
impractical.

Rahimi and Recht (2007) address this problem by leveraging Bochner’s Theorem, a
classical result in harmonic analysis, to provide a way to approximate any positive-definite
shift-invariant kernel K with finite-dimensional features, known as random Fourier features.
A kernel function K is shift-invariant if and only if K(x,x′) = K̂(x − x′) ∀x,x′ ∈ X for
some function K̂ : Rd → R. We now present Bochner’s Theorem:

Theorem 1 (Bochner’s theorem, adapted from Rahimi and Recht (2007)): A continuous
shift-invariant kernel K(x,x′) = K̂(x − x′) on Rd is positive-definite if and only if K̂ is
the Fourier transform of a non-negative measure µ(ω).

Thus, for any positive-definite shift-invariant kernel K̂(δ), we have that

K̂(δ) =

∫

Rd
µ(ω)e−jω

Tδ dω, (1)

where

µ(ω) = (2π)−d
∫

Rd
K̂(δ)ejω

Tδ dδ (2)

is the inverse Fourier transform6 of K̂(δ), and where j =
√
−1. By Bochner’s theorem,

µ(ω) is a non-negative measure. As a result, if we let Z =
∫
Rd µ(ω)dω, then p(ω) = 1

Zµ(ω)
is a proper probability distribution, and we get that

1

Z
K̂(δ) =

∫

Rd
p(ω)e−jω

Tδ dω.

For simplicity, we will assume that K̂ is properly-scaled, meaning that Z = 1. Now, the
above equation allows us to rewrite this integral as an expectation:

K̂(δ) = K̂(x− x′) =

∫

Rd
p(ω)ejω

T(x−x′) dω = Eω
[
ejω

Txe−jω
Tx′
]
. (3)

5. It is also possible to define the kernel function prior to defining the feature map; then, for positive-
definite kernel functions, Mercer’s theorem guarantees that a corresponding feature map φ exists such
that K(x,x′) = 〈φ(x),φ(x′)〉.

6. There are various ways of defining the Fourier transform and its inverse. We use the convention specified
in Equations (1) and (2), which is consistent with Rahimi and Recht (2007).
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Kernel name K(x, y) p(ω) Density name

Gaussian e−‖x−x
′‖22/2σ2

(2π(1/σ2))−d/2e
− ‖ω‖22

2(1/σ)2 Normal(0d,
1
σ21d)

Laplacian e−λ‖x−x
′‖1 ∏d

i=1
1

λπ(1+(ωi/λ)2)
Cauchy(0d, λ)

Table 1: Gaussian and Laplacian Kernels, together with their sampling distributions p(ω).

This can be further simplified as

K̂(x− x′) = Eω,b
[√

2 cos(ωTx+ b) ·
√

2 cos(ωTx′ + b)
]
,

where ω is drawn from p(ω), and b is drawn uniformly from [0, 2π]. See Appendix B for
details on why this specific functional form is correct.

This motivates a sampling-based approach for approximating the kernel function. Con-
cretely, we draw {ω1, . . . ,ωD} independently from the distribution p(ω), and {b1, . . . , bD}
independently from the uniform distribution on [0, 2π]. We then use these parameters to
approximate the kernel as follows:

K(x,x′) ≈ 1

D

D∑

i=1

√
2 cos(ωT

i x+ bi) ·
√

2 cos(ωT
i x
′ + bi) = z(x)Tz(x′),

where zi(x) =
√

2
D cos(ωT

i x + bi) is the ith element of the D-dimensional random vector

z(x). In Table 1, we list two popular (properly-scaled) positive-definite kernels with their
respective inverse Fourier transforms.

Using these random feature maps in conjunction with linear learning algorithms can yield
huge gains in efficiency relative to standard kernel methods on large data sets. Learning
with a representation z(·) ∈ RD is relatively efficient provided that D is far less than the
number of training samples N . For example, in our experiments (Section 6), we have 2
million to 16 million training samples, while D ≈ 25,000 often leads to good performance.

3.2. Neural Networks Acoustic Models

Neural network acoustic models provide a conditional probability distribution p(y|x) over
C possible acoustic states, conditioned on an acoustic frame x encoded in some feature
representation. The acoustic states correspond to context-dependent phoneme states (Dahl
et al., 2012), and in modern speech recognition systems, the number of such states is
on the order of 103 to 104. The acoustic model is used within probabilistic systems for
decoding speech signals into word sequences. Typically, the probability model used is a
hidden Markov model (HMM), where the model’s emission and transition probabilities are
provided by an acoustic model together with a language model. We use Bayes’ rule to
compute the probability p(x|y) of emitting a certain acoustic feature vector x from state y,
given the output p(y|x) of the neural network:

p(x|y) =
p(y|x)p(x)

p(y)
.
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bias unitacoustic features

︸ ︷︷ ︸

state labels

random numbers cosine

transfer

Figure 1: Kernel acoustic model seen as a shallow neural network.

Note that p(x) can be ignored at inference time because it doesn’t affect the relative scores
assigned to different word sequences, and p(y) is simply the prior probability of HMM state
y. The Viterbi algorithm can then be used to determine the most likely word sequence (see
Gales and Young (2007) for an overview of using HMMs for speech recognition).

3.3. Kernel Acoustic Models

To train kernel acoustic models, we use random Fourier features and simply plug the random
feature vector z(x) (for an acoustic frame x) into a multinomial logistic regression model:

p(y|x) =
exp

(
〈θy, z(x)〉

)
∑

y′ exp
( 〈
θy′ , z(x)

〉 ) . (4)

The label y can take any value in {1, 2, . . . , C}, each corresponding to a context-dependent
phonetic state label, and the parameter matrix Θ = [θ1| . . . |θC ] is learned. Note that we
also include a bias term in our model by appending a 1 to z(x) in the equation above.

The model in Equation (4) can be seen as a shallow neural network, with the following
properties: (1) the parameters from the inputs (i.e., acoustic feature vectors) to the hidden
units are set randomly, and are not learned; (2) the hidden units use cos(·) as their acti-
vation function; (3) the parameters from the hidden units to the output units are learned
(can be optimized with convex optimization); and (4) the softmax function is used to nor-
malize the outputs of the network. See Figure 1 for a visual representation of this model
architecture. Note that although using sinusoidal activation functions has been proposed
previously (Goodfellow et al., 2016), their use has remained quite rare in the deep learning
context.

3.4. Linear Bottleneck

When the number of random features D and the number of phonetic state labels C are large,
the D × C size of the kernel acoustic model parameter matrix Θ can lead to memory and
computation issues during training. We can significantly reduce the number of parameters
in Θ by using a low-rank factorization Θ = UV ; this is called a “linear bottleneck” (Sainath
et al., 2013a). This strictly decreases the capacity of the resulting model, while unfortu-
nately rendering the optimization problem non-convex. This method can be understood
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as a regularization technique, which typically improves the generalization performance of a
trained model, as we will show in Section 6.

It is important to note that one can also replace a parameter matrix with a low-rank
decomposition after training has completed, for example, using singular value decomposition
(Xue et al., 2013). However, in the context of our work it is necessary to impose the low-rank
decomposition during training, given GPU memory constraints.

4. Random Feature Selection

In this section, we first motivate and describe our proposed feature selection algorithm. We
then introduce a new “sparse Gaussian kernel,” which performs well in conjunction with
the feature selection algorithm.

4.1. Proposed Feature Selection Algorithm

Our proposed random feature selection method, shown in Algorithm 1, is iterative. In each
iteration, a model is trained on a set of features using a single pass of stochastic gradient
descent (SGD) on a subset of the training data. Then, the features whose corresponding
rows in the parameter matrix have the smallest `2 norms are discarded and replaced with
a new set of random features.

This feature selection method has the following advantages: The overall computational
cost is mild, as it requires just T passes of SGD through subsets of the data of size R
(equivalent to TR/N full SGD epochs). In fact, in our experiments, we find it sufficient
to use R = O(D). Moreover, the method is able to explore a large number of non-linear
features, while maintaining a compact model. If the number of features st selected in
iteration t grows linearly each iteration (st = Dt/T ), then the learning algorithm is exposed
to D(T + 1)/2 random features throughout the feature selection process; this st sequence is
the selection schedule we use in all our experiments. We show in Section 6 that the acoustic
models trained on the selected features generally outperform models trained on random
features.

It is important to note the similarities between this method, and the FOBOS method
with `1/`2-regularization (Duchi and Singer, 2009). In the FOBOS method, one solves
the `1/`2-regularized problem in a stochastic fashion by alternating between taking un-
regularized stochastic gradient descent (SGD) steps, and then “shrinking” the rows of the
parameter matrix; each time the parameters are shrunk, the rows whose `2-norms are below
a threshold are set to 0. After training completes, the solution will likely have some rows
which are all zero, at which point the features corresponding to those rows can be discarded.
In our method, on the other hand, we take many consecutive unregularized SGD steps, and
only thereafter do we choose to discard the rows whose `2-norm is below a threshold. As
mentioned in the related work section, our attempts at using FOBOS for feature selection
failed, because the magnitude of the regularization parameter needed to produce a sparse
model was so large that it dominated the learning process; as a result, the learned models
performed badly, and the selected features were essentially random.
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Algorithm 1 Random feature selection

input Target number of random features D, data subset size R,
Integers (s1, . . . , sT−1) such that 0 < s1 < · · · < sT−1 < D, specifying selection schedule.

1: initialize set of selected indices S := ∅.
2: for t = 1, 2, . . . , T do
3: for i ∈ {1, . . . , D}\S do
4: ωi ∼ p(ω).
5: bi ∼ U(0, 2π).
6: end for
7: if t 6= T then
8: Initialize parameter matrix Θ.7

9: Learn weights Θ ∈ RD×C using a single pass of SGD over R randomly selected train-
ing examples, using the projection vectors (ω1, . . . ,ωD), and the biases (b1, . . . , bD),
to generate the random Fourier features.

10: S := {i | Θi is amongst the st rows of Θ with highest `2 norm}.8
11: end if
12: end for
13: return The selected projection vectors (ω1, . . . ,ωD), and the selected biases

(b1, . . . , bD).

One disadvantage of this method is that the selection criterion may misrepresent the
features’ actual predictive utilities. For instance, the presence of some random feature may
increase or decrease the weights for other random features relative to what they would be
if that feature were not present. An alternative would be to consider features in isolation,
and add features one at a time (as in stagewise regression methods and boosting), but
this would be significantly more computationally expensive. For example, it would require
O(D) passes through the data, relative to O(T ) passes, which would be prohibitive for
large D values. We find empirically that the influence of the additional random features in
the selection criterion is tolerable, and it is still possible to select useful features with this
method.

4.2. A Sparse Gaussian Kernel

In Section 6 we will show that our proposed feature selection algorithm improves the perfor-
mance of the Laplacian kernel models significantly more than the Gaussian kernel models.
In this section, we leverage this insight in order to design a new kernel, the “sparse Gaussian
kernel,” which we will show also benefits significantly from the feature selection process.

Recall from Table 1 that for the Laplacian kernel, the sampling distribution used for
the random Fourier features is the multivariate Cauchy density. Because the Cauchy dis-
tribution is fat-tailed, a d-dimensional Cauchy vector will typically contain some entries

7. See Section 6.3 for details on how Θ is initialized.
8. In the case where we are using a linear bottleneck to decompose the parameter matrix Θ into UV , we

perform the SGD training using this decomposition. After we complete the training in a given iteration,
we compute Θ = UV , and then select features based on the `2 norms of the rows of Θ.
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much larger than the rest. This property of the sampling distribution implies that many of
the random features generated via projections with random Cauchy vectors will effectively
concentrate on only a few of the input features. We can thus regard such random features
as being non-linear combinations of a small number of the original input features. Thus,
the proposed feature selection method effectively picks out useful non-linear interactions
between small sets of input features.

We can also directly construct sparse non-linear combinations of the input features.
Instead of relying on the properties of the Cauchy distribution, we can actually choose a
small number k of coordinates F ⊆ {1, 2, . . . , d}, say, uniformly at random, and then choose
the random vector so that it is always zero in positions outside of F . Compared to the
random Fourier feature approximation to the Laplacian kernel, the random vectors chosen
in this way are truly sparse. From a systems perspective, this sparsity can reduce the
memory required for the random projection matrix, and make the random features more
efficient to compute (if efficient sparse matrix operations are used).

Note that random Fourier features with such sparse sampling distributions in fact cor-
respond to shift-invariant kernels that are rather different from the Laplacian kernel. For
instance, if the non-zero entries of ω are drawn i.i.d. fromN (0, σ−2), then the corresponding
kernel is

K(x,x′) =

(
d

k

)−1 ∑

F⊆{1,...,d},
|F |=k

exp

(
−
‖xF − x′F ‖22

2σ2

)
, (5)

where xF is a vector composed of the elements xi for i ∈ F . We call this kernel the “sparse
Gaussian kernel.” Note that this kernel puts equal emphasis on all input feature subsets F
of size k. However, the feature selection process may effectively bias the distribution of the
feature subsets to concentrate on some small family F of input feature subsets.

5. New Early Stopping Criteria

A challenge for training acoustic models is that the training criterion (e.g., cross-entropy)
does not perfectly correlate with the true objective (TER). To partially address this prob-
lem, in this section we present several new metrics which we observe correlate with TER
significantly better than cross-entropy does. In Section 6 we then show that we can attain
improved TER performance by monitoring these metrics on the heldout set during training
to decide when to decay the learning rate and stop training. Note that the reason we use
these metrics as proxies for the TER, instead of directly using the TER, is that it is very
expensive to compute the TER on the development set.

The common thread which unites all the metrics we will present is that they do not
penalize very incorrect examples (meaning, examples for which a model assigns a probability
very close to 0 to the correct label) as strongly as cross-entropy does. Notice, for instance,
that the cross-entropy loss can approach infinity on a single incorrect example. Our metrics
are more lenient. We present them now:
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1. Entropy Regularized Log Loss (ERLL):9 This loss rewards models for being
confident (low entropy), by considering a weighted sum of the cross entropy loss (CE)
and the average entropy (ENT) of the model on the heldout data. Specifically, for
any β ∈ R, we define the loss as

CE + β · ENT = − 1

N

N∑

i=1

C∑

y=1

[I(y = yi) + β · p(y|xi)] log p(y|xi).

This metric encourages models to be more confident, even if it means having a worse
cross-entropy loss as a result.

2. Capped Log Loss: For any value of λ ≥ 0, we define the “capped log loss” as

− 1

N

N∑

i=1

log(p(yi|xi) + λ).

Effectively, this loss ensures that no single example contributes more than − 1
N log(λ)

to the loss. If λ is a small positive number, this loss is very similar to the normal log
loss for values of p(yi|xi) close to 1, while affecting the loss dramatically for values
close to 0 (for example, when p(yi|xi) < λ).

3. Top-k Log Loss: For this loss, assume that the heldout examples (xi, yi) are sorted
in descending order of their p(yi|xi) values. Then, for any positive integer k ≤ N , we
can define the “Top-k Log Loss” as

−1

k

k∑

i=1

log p(yi|xi).

This metric judges a model based on how well it does on the k heldout examples to
which it assigns highest probabilities.

Notice that for β = 0, λ = 0, and k = N , these metrics all simplify to the standard
cross-entropy loss. In Figure 2, we show plots of the empirical correlations of these metrics
with TER values, as a function of each metric’s “hyperparameters,” based on models we
have trained. More specifically, we fully train a large number of kernel and DNN models;
we then evaluate the TER performance of these models on the development set, as well as
compute the heldout performance of these models in terms of the three metrics described
above (for various settings of β, λ, and k). The precise set of models we used are those in
Tables 4 and 5. We train models on four data sets: the Cantonese and Bengali data sets
for the IARPA Babel program, a 50-hour subset of the broadcast news data set (BN-50),
and the TIMIT benchmark task (see Section 6.1 for data set details). We then compute the
empirical correlations between the TER values and the different metrics, and plot them as
a function of each metric’s hyperparameter. Note that for the top-k log loss, we plot the
correlation with TER as a function of the fraction 1 − k

N of the heldout data set which is
ignored.

9. In Lu et al. (2016) this metric was called “entropy regularized perplexity” (ERP) for β = 1.
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Figure 2: Empirical correlations of (left to right) heldout entropy regularized log loss,
capped log loss, and top-k log loss with TER on the development set, as a function
of β, λ, and 1− k

N , respectively.

As can be seen from these plots, for certain ranges of values of the metric hyperparam-
eters, the correlation of these metrics with TER is quite high. For example, for β = 1, the
correlations between entropy regularized log loss and TER are 0.91, 0.93, 0.90, and 0.95 for
Bengali, BN-50, Cantonese, and TIMIT respectively. This is compared to correlations of
0.31, −0.02, −0.23, and −0.21 for the cross-entropy objective.

One conjecture for why these metrics attain higher correlation with ASR performance
than heldout cross-entropy is because there is inherent noise in the labels on which the
acoustic models are trained. The labels are noisy because they are generated via a forced
alignment between the correct transcription and the audio using a GMM/HMM acoustic
model, as discussed in Section 6.1. Thus, by not penalizing a model’s mistakes on the
incorrect labels as harshly, and instead focusing on the model’s performance on the clean
labels, these metrics better capture the quality of the model for the downstream ASR task.
Better understanding this phenomenon is an interesting area for future work.

Because of the high correlation between these metrics and ASR performance, we propose
to monitor these metrics on the heldout set during training to decide when to decay the
learning rate and stop training (details in Section 6.3). In Section 6.4 we present results
using this learning rate decay method with the ERLL metric with β = 1, and show that it
leads to improvements in TER for both kernel and DNN models. We note that we could
have also used the other metrics for this purpose, but chose to use ERLL with β = 1 since
we observed that it attained high correlation values with TER across all four data sets.

6. Experiments

We now present our empirical results comparing the performance of fully-connected DNNs
with kernel approximation methods for acoustic modeling, across four data sets. We leverage
the three methods we have discussed—feature selection, the new early stopping criterion,
and linear bottlenecks—and show that using these three methods the kernel models perform
very similarly to the DNNs across the four test sets, attaining token error rates between
0.5% better and 0.1% worse than the DNNs.

In this section, we first provide a description of the data sets we use, and our evaluation
criteria. We then give an overview of our training procedure, and provide details regarding
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hyperparameter choices. We then present our experimental results comparing the perfor-
mance of kernel approximation methods to DNNs. Lastly, we discuss the impact of the
number of random features on performance, and take a deeper look at the dynamics of the
feature selection process.

6.1. Data Sets

We train DNN and kernel acoustic models, as described in Section 3, on four data sets: the
IARPA Babel Program Cantonese (IARPA-babel101-v0.4c) and Bengali (IARPA-babel103b-
v0.4b) limited language packs, a 50 hour subset of the Broadcast News data set (BN-50)
(Kingsbury, 2009; Sainath et al., 2011), and the TIMIT benchmark data set (Garofolo et al.,
1993). Each data set is partitioned in four: a training set, a heldout set, a development
set, and a test set. We use the heldout set to tune the hyperparameters of our training
procedure (e.g., the learning rate). We then run decoding on the development set using
IBM’s Attila speech recognition toolkit (Soltau et al., 2010), to select a small subset of
models which perform best in terms of TER (the best kernel and DNN model per data
set). We tune the acoustic model weight on the development set to optimize the relative
contributions of the language model and the acoustic model to the final score assigned to
a given word sequence. Finally, we evaluate the TER performance on the test set using
the selected group of models (using, for each model, the best acoustic model weight on the
development set), to get a fair comparison between the methods we are using. Having a
separate development set helps us avoid the risk of over-fitting to the test set.

The Bengali and Cantonese Babel data sets both include training and development sets
of approximately 20 hours, and an approximately 5 hour test set. We designate about 10%
of the training data as a heldout set. The training, heldout, development, and test sets all
contain different speakers. Babel data is challenging because it is two-person conversations
between people who know each other well (family and friends) recorded over telephone
channels (in most cases with mobile telephones) from speakers in a wide variety of acoustic
environments, including moving vehicles and public places. As a result, it contains many
natural phenomena such as mispronunciations, disfluencies, laughter, rapid speech, back-
ground noise, and channel variability. An additional challenge in Babel is that the only data
available for training language models is the acoustic transcripts, which are comparatively
small.

For the Broadcast News data set, we use 45 hours of audio for training, and 5 hours as
a heldout set. For the development set, we use the EARS Dev-04f data set (as described
by Kingsbury, 2009), which consists of approximately three hours of broadcast news from
various news shows. We use the DARPA EARS RT-03 English Broadcast News Evaluation
Set (Fiscus et al., 2003) as our test set, consisting of 72 five minute conversations.

The TIMIT data set contains recordings of 630 speakers, of various English dialects,
each reciting ten sentences, for a total of 5.4 hours of speech. The training set (from
which the heldout set is then taken) consists of data from 462 speakers each reciting 8
sentences (SI and SX sentences). The development set consists of speech from 50 speakers.
For evaluation, we use the “core test set,” which consists of 192 utterances total from 24
speakers (SA sentences are excluded). For reference, we use the exact same features, labels,
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Data set Train Heldout Dev Test # features # classes

Beng. 21 hr (7.7M) 2.8 hr (1.0M) 20 hr (7.1M) 5 hr (1.7M) 360 1000

BN-50 45 hr (16M) 5 hr (1.8M) 2 hr (0.7M) 2.5 hr (0.9M) 360 5000

Cant. 21 hr (7.5M) 2.5 hr (0.9M) 20 hr (7.2M) 5 hr (1.8M) 360 1000

TIMIT 3.2 hr (2.3M) 0.3 hr (0.2M) 0.15 hr (0.1M) 0.15 hr (0.1M) 440 147

Table 2: Data set details. We report the size of each data set partition in terms of the
number of hours of speech, and in terms of the number of acoustic frames (in
parentheses).

and divisions of the data set as Huang et al. (2014) and Chen et al. (2016), which allows
direct comparison of our results with theirs (Table 8).

The acoustic features, representing 25 ms acoustic frames with context, are real-valued
dense vectors. A 10 ms shift is used between adjacent frames (except on TIMIT, where
a 5 ms shift is used). For the Cantonese, Bengali, and Broadcast News data sets we
use a standard 360-dimensional speaker-adapted representation used by IBM (Kingsbury
et al., 2013); these feature vectors correspond to the concatenation of nine 40-dimensional
vectors corresponding to the four frames before and after the current frame. For the TIMIT
experiments, we use 40-dimensional feature space maximum likelihood linear regression
(fMLLR) features (Gales, 1998), and concatenate the five neighboring frames in either
direction, for a total of eleven frames and 440 features.

The state labels are obtained via forced alignment using a GMM/HMM system. This
forced alignment is necessary because there is a mismatch between the ground truth avail-
able for training (a word sequence transcribing each utterance) and the actual labels needed
for training (precise assignment of HMM states to frames). The Cantonese and Bengali data
sets each have 1000 labels, corresponding to quinphone context-dependent HMM states clus-
tered using decision trees. For Broadcast News, there are 5000 such states. The TIMIT
data set has 147 context-independent labels, corresponding to the beginning, middle, and
end of 49 phonemes.

The language models we use are all n-gram language models estimated using modi-
fied Kneser-Ney smoothing, with n values of 2, 4, 3, and 3 for Bengali, Broadcast News,
Cantonese, and TIMIT, respectively. The TIMIT language model is a phone-level model.
The Bengali and Cantonese language models are particularly small (approximately 60,000
bigrams and 136,000 trigrams, respectively), trained using only the provided audio tran-
scripts. The Broadcast News model is small as well, containing only 3.3 million 4-grams.

In Table 2 we provide details on all the data sets, as well as on their number of features
and classes. All our data sets have millions of training points, significantly exceeding the
size of typical machine learning tasks tackled by kernel methods. Additionally, the large
number of output classes for our data sets presents a scalability challenge, given that the
size of the kernel models scales linearly with the number of output classes (if no bottleneck
is used).

6.2. Evaluation Metrics

We use five metrics to evaluate the DNN and kernel acoustic models:
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1. Cross-entropy (CE): Given examples, {(xi, yi), i = 1 . . . N}, the cross-entropy is
defined as

− 1

N

N∑

i=1

log p(yi|xi). (6)

2. Average Entropy (ENT): The average entropy of a model is defined as

− 1

N

N∑

i=1

C∑

y=1

p(y|xi) log p(y|xi).

If a model has low average entropy, it is generally confident in its predictions.

3. Entropy Regularized Log Loss (ERLL): Defined in Section 5. We use β = 1
unless specified otherwise.

4. Classification Error (ERR): The classification error is defined as

1

N

N∑

i=1

1

[
yi 6= arg max

y∈1,2,...,C
p(y|xi)

]
.

5. Token Error Rate (TER): We feed the predictions of the acoustic models, which
correspond to probability distributions over the phonetic states, to the rest of the
ASR pipeline and calculate the misalignment between the decoder’s outputs and the
ground-truth transcriptions. For Bengali and BN-50, we measure the error in terms
of the word error rate (WER), for Cantonese we use the character error rate (CER),
and for TIMIT we use the phone error rate (PER). We use the term “token error
rate” (TER) to refer, for each data set, to its corresponding metric.

6.3. Details of Acoustic Model Training

We train all our kernel models with either the Laplacian, the Gaussian, or the sparse
Gaussian (Section 4.2) kernels. These kernel models typically have three hyperparameters:
the kernel bandwidth (σ for the Gaussian kernels, λ for the Laplacian kernel; see Table 1),
the number of random projections, and the initial learning rate. We try various numbers
of random features, ranging from 5000 to 400,000. Using more random features leads to a
better approximation of the kernel function, as well as to more powerful models, though
there are diminishing returns as the number of features increases. The sparse Gaussian
kernel additionally has the hyperparameter k which specifies the sparsity of each random
projection vector ωi. For all experiments, we use k = 5.

For all DNNs, we tune hyperparameters related to both the architecture and the op-
timization. This includes the number of layers, the number of hidden units in each layer,
and the learning rate. We perform 1 epoch of layer-wise discriminative pre-training (Seide
et al., 2011b; Kingsbury et al., 2013), and then train the entire network jointly using SGD.
We find that four hidden layers is generally the best setting for our DNNs, so all the DNN
results we present in this paper use this setting; in Table 3 we show how depth affects
recognition performance on the Broadcast News data set. Additionally, all our DNNs use
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1000 2000 4000

3 17.5 16.8 16.7

4 17.1 16.4 16.5

5 16.9 16.5 16.7

6 17.0 16.5 16.6

Table 3: Effect of depth and width on DNN TER (development set): This table shows TER
results for DNNs with 1000, 2000, or 4000 hidden units per layer, and 3-6 layers,
on the Broadcast News development set. All of these models were trained using a
linear bottleneck for the output parameter matrix, and using ERLL for learning
rate decay. The best result is in bold.

the tanh activation function. We vary the number of hidden units per layer (1000, 2000, or
4000). We use this same set of DNN architectures for all our data sets.

For both DNN and kernel models, we use stochastic gradient descent (SGD) as our
optimization algorithm for minimizing the training cross-entropy objective. We use mini-
batches of size of 250 or 256 samples during training, and we use the heldout set to tune
the other hyperparameters. We use the learning rate decay scheme described in (Morgan
and Bourlard, 1990; Sainath et al., 2013a,b), which monitors performance on the heldout
set to decide when to decay the learning rate. This method divides the learning rate in
half at the end of an SGD epoch if the heldout cross-entropy doesn’t improve by at least
1%; additionally, if the heldout cross-entropy gets worse, it reverts the model back to its
state at the beginning of the epoch. Instead of using the heldout cross-entropy, in some of
our experiments we use the heldout ERLL to decide when to decay the learning rate. We
terminate training once we have divided the learning rate 10 times.

As mentioned in Section 3.4, one effective way of reducing the number of parameters
in our models is use a linear bottleneck, which is a low-rank factorization of the output
parameter matrix (Sainath et al., 2013a). We use bottlenecks of size 1000, 250, 250, and
100 for BN-50, Bengali, Cantonese, and TIMIT, respectively. We train models both with
and without this technique; the only exception is that we are unable to train BN-50 kernel
models without the bottleneck of size 1000, due to memory constraints on our GPUs.

We initialize our DNN parameters uniformly at random within [−
√

6√
din+dout

,
√

6√
din+dout

],

as suggested by Glorot and Bengio (2010); here, din and dout refer to the dimensionality of
the input and output of a DNN layer, respectively. For our kernel models, we initialize the
random projection matrix as discussed in Section 3, and we initialize the parameter matrix
Θ as the zero matrix. When using a linear bottleneck to decompose the parameter matrix,
we initialize the resulting two matrices randomly, like we do for our DNNs.

For each iteration of random feature selection, we draw a random subsample of the
training data of size R = 106 (except when D ≥ 105, in which case we use R = 2×106, to
ensure a safe R to D ratio), but ultimately we use all N training examples once the random
features are selected. Thus, each iteration of feature selection has equivalent computational
cost to a R/N fraction of an SGD epoch (roughly 1/7 or 2/7 for D < 105 and D ≥ 105

respectively, on the Babel speech data sets). We use T = 50 iterations of feature selection,
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and in iteration t, we select st = t · (D/T ) = 0.02Dt random features. Thus, the total
computational cost we incur for feature selection is equivalent to approximately seven (or
fourteen) epochs of training on the Babel data sets. For the Broadcast News data set, it
corresponds to the cost of approximately six full epochs of training (for D ≥ 105).

All our training code is written in MATLAB, leveraging its GPU features, and executed
on Amazon EC2 machines.

6.4. Results

In this section, we report the results from our experiments comparing kernel methods to
DNNs on ASR tasks. We first discuss the ablation study showing the marginal improvements
to the kernel model performance attained by feature selection, the new early stopping
criterion, and the linear bottlenecks; we show analogous results for DNNs for the early
stopping and linear bottleneck methods. We then compare for each data set the performance
of the best kernel and DNN models from these detailed experiments; the most important
result from these comparisons, shown in Table 7, is that the kernel models are competitive
with the DNNs, attaining TER values between 0.5% better and 0.1% worse than the DNNs
across our four test sets.

For our detailed experiments, for both DNN and kernel methods we train models with
and without linear bottlenecks, and with and without using ERLL to determine the learning
rate decay. For our kernel methods, we additionally train models with and without using
feature selection. We run experiments with all three kernels (Laplacian, Gaussian, sparse
Gaussian) and we use 100,000 random features on all data sets except for TIMIT, where
we are able to use 200,000 random features (because the output dimensionality is lower).
As mentioned in the previous section, for our DNN experiments, we train models with four
hidden layers,10 using the tanh activation function, and using either 1000, 2000, or 4000
hidden units per layer. We focus on comparing the performance of these methods in terms
of TER, but we also report results for other metrics. Unless specified otherwise, all TER
results are on the development set, and all cross-entropy, entropy, classification error, and
ERLL results are on the heldout set.

In Tables 4 and 5, we show the TER results for our DNN and kernel models, respectively,
across all data sets. There are many things to notice about these results. For our DNN
models, linear bottlenecks almost always lower TER values, though in a few cases they have
no effect on TER. Using ERLL to determine when to decay the learning rate generally helps
lower TER values for our DNNs, but in a few cases it actually hurts (Cantonese with 4000
hidden units, and TIMIT with 2000 and 4000). The DNNs with 4000 hidden units typically
attain the best results, though on a couple of data sets they are matched or narrowly beaten
by the 2000 models.

For our kernel models, we see that incorporating a linear bottleneck brings large drops
in TER across the board.11 Performing feature selection generally improves TER as well;
we see that it improves TER considerably for the Laplacian kernel, and modestly for the
sparse Gaussian kernel. For the Gaussian kernel, it typically helps, though there are several

10. As mentioned in Section 6.3, we find that this is generally the best setting.
11. Recall that we are unable to train BN-50 kernel models without using a bottleneck because the resulting

models would not fit on our GPUs.
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instances in which feature selection hurts TER (see Section 6.6 for discussion). Second, we
see that using heldout ERLL to determine when to decay the learning rate helps all our
kernel models attain lower TER values. Next, we see that without using feature selection,
the sparse Gaussian kernel has the best performance across the board. After we include
feature selection, it performs very comparably to the Laplacian kernel with feature selection.
It is interesting to note that without using feature selection, the Gaussian kernel is generally
better than the Laplacian kernel; however, with feature selection, the Laplacian kernel
surpasses the Gaussian kernel (see Section 6.6). In general, the kernel function which
performed best, across the majority of settings, was the sparse Gaussian kernel.

To further improve the performance of the kernel models, we train models with up
to 400k features on Broadcast News, our most challenging data set. Due to the large
computational expense of training these models, we only trained a few, and only used the
Laplacian and sparse Gaussian kernels, as these attained the best performance after feature
selection, in terms of TER. We report results in Table 6. All of these models were trained
with a linear bottleneck of size 1000, and using ERLL for learning rate decay. We include
results using 100k random features in this table for comparison. As we can observe, our
best kernel model on BN-50 now attains a TER of 16.4%, which is equal to the performance
of our best DNN model. Furthermore, we continue to see improvements in the performance
of our kernel models, even as we increase the number of features beyond 100k; for the
Laplacian kernel we get a gain of 0.3% in TER when increasing from 100k to 400k (both
with and without feature selection), while for the sparse Gaussian kernel we get gains of
0.2% and 0.4%, with and without feature selection (respectively). To date, these are the
largest models we have trained, though it seems likely we could continue getting performance
improvements with even larger models.

In Table 7, we compare for each data set the performance of the best DNN model with
the best kernel model, across six metrics. Importantly, for each metric (except for test set
TER), we find the kernel and DNN model which performs best for that specific metric;
this is in contrast to picking the kernel and DNN models which are best in terms of TER,
and reporting all metrics on these models. For Broadcast News, we consider the kernel
models from Table 6 with 200k and 400k random features, along with those in Table 5, in
the process of finding the best performing models. In terms of heldout cross-entropy, the
kernels outperformed the DNNs on Cantonese and TIMIT, while the DNNs beat the kernels
on Bengali and BN-50. With regard to classification error, the kernels beat the DNNs on
all data sets except for Bengali. In terms of the average heldout entropy of the models, the
DNNs were consistently more confident in their predictions (lower entropy) than the kernels.
Significantly, we observe that the best development set TER results for our DNN and kernel
models are quite comparable; on Cantonese and TIMIT, the kernel models outperform the
DNNs by 0.4% absolute, on Broadcast News the kernels exactly match the DNNs, while on
Bengali the DNNs do better by 0.1%.

We now discuss the results on the test sets. First of all, to avoid overfitting to the test
sets, for each data set we only performed test set evaluations for the DNN and kernel models
which performed best in terms of the development set TER. The final row of Table 7 thus
contains all the test results we collected.12 As one can see, the relative test performance

12. The only exception is on the Broadcast News data set. Prior to training the best performing 400k model,
we had already evaluated the best 100k model, which attained a TER of 11.9% on the test set.
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1000 2000 4000
NT B R BR NT B R BR NT B R BR

Beng. 72.3 71.6 71.7 70.9 71.5 71.1 70.7 70.3 71.1 70.6 70.5 70.2

BN-50 18.0 17.3 17.8 17.1 17.4 16.7 17.1 16.4 16.8 16.7 16.7 16.5

Cant. 68.4 68.1 67.9 67.5 67.7 67.7 67.2 67.1 67.7 67.1 67.2 67.2

TIMIT 19.5 19.3 19.4 19.2 19.0 18.9 19.2 19.2 18.6 18.6 18.7 18.9

Table 4: DNN TER Results (development set): This table shows TER results for 4-hidden
layer DNNs with 1000, 2000, or 4000 hidden units per layer. ‘NT’ specifies that no
“tricks” were used during training (no bottleneck, did not use ERLL for learning
rate decay). A ‘B’ specifies that a linear bottleneck was used; an ‘R’ specifies that
ERLL was used for learning rate decay (so ‘BR’ means both were used). The best
result for each data set is in bold.

Laplacian Gaussian Sparse Gaussian
NT B R BR NT B R BR NT B R BR

Beng. 74.5 72.1 74.5 71.4 72.6 72.0 72.6 71.8 73.0 71.5 73.0 70.9

+FS 72.9 71.1 72.8 70.4 74.1 71.4 74.2 70.3 72.9 71.2 72.8 70.7

BN-50 N/A 17.9 N/A 17.7 N/A 17.3 N/A 17.1 N/A 17.3 N/A 17.0

+FS N/A 17.1 N/A 16.7 N/A 17.5 N/A 17.0 N/A 17.1 N/A 16.7

Cant. 69.9 68.2 69.2 67.4 70.2 67.6 70.0 67.1 68.6 67.5 68.1 67.1

+FS 68.4 67.5 68.5 66.7 69.9 67.7 69.8 66.9 68.6 67.4 68.5 66.8

TIMIT 20.6 19.2 20.4 18.9 19.8 18.9 19.6 18.6 19.9 18.8 19.6 18.4

+FS 19.5 18.6 19.3 18.4 19.5 18.6 19.4 18.4 19.3 18.4 19.1 18.2

Table 5: Kernel TER Results (development set): This table shows TER results for our ker-
nel experiments using either the Laplacian, Gaussian, or Sparse Gaussian kernels,
with 100k random features (except for TIMIT, which uses 200k features). ‘NT’
specifies that no “tricks” were used during training (no bottleneck, did not use
ERLL for learning rate decay). A ‘B’ specifies that a linear bottleneck was used;
an ‘R’ specifies that ERLL was used for the learning rate decay (so ‘BR’ means
both were used). ‘+FS’ specifies that feature selection was used. The best result
for each row is in bold.

100k 200k 400k

Laplacian 17.7 17.7 17.4

+FS 16.7 16.4 16.4

Sparse Gaussian 17.0 16.8 16.6

+FS 16.7 16.6 16.5

Table 6: Kernel TER Results on Broadcast News development set for models with a very
large number of random feature (up to 400k). All models use a bottleneck of size
1000, and use ERLL for learning rate decay.
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Beng. (D/K) BN-50 (D/K) Cant. (D/K) TIMIT (D/K)

CE 1.243 / 1.256 2.001 / 2.004 1.916 / 1.883 1.056 / 0.9182

ENT 0.9079 / 1.082 1.274 / 1.434 1.375 / 1.516 0.447 / 0.5756

ERLL 2.302 / 2.406 3.548 / 3.552 3.459 / 3.493 1.671 / 1.607

ERR 0.2887 / 0.2936 0.4887 / 0.4881 0.4353 / 0.4287 0.324 / 0.3085

TER (dev) 70.2 / 70.3 16.4 / 16.4 67.1 / 66.7 18.6 / 18.2

TER (test) 69.1 / 69.2 11.7 / 11.6 63.7 / 63.2 20.5 / 20.4

Table 7: Table comparing the Best DNN (‘D’) and kernel (‘K’) results, across four data sets
and six metrics. The first four metrics are on the heldout set, the fifth is on the
development set, and the last metric is reported on the test set. For BN50, the
large models from Table 6 are included in the set of models from which the best
performing model is picked (for each metric). See Section 6.2 for metric definitions.

Test TER (DNN) Test TER (Kernel)

Huang et al. (2014) 20.5 21.3

Chen et al. (2016) N/A 20.9

This work 20.5 20.4

Table 8: Table comparing the Best DNN and kernel results from this work to those from
Huang et al. (2014) and Chen et al. (2016), on the TIMIT test set.

of the DNN and kernel models is quite similar to the development set results; the DNNs
perform better by 0.5% on Cantonese, 0.1% on TIMIT and Broadcast News, and perform
worse by 0.1% on Bengali. For direct comparison on the TIMIT data set, we include in
Table 8 the test results for the best DNN and kernel models from Huang et al. (2014) and
Chen et al. (2016). As mentioned in Section 6.1, we use the same features, labels, data
set partitions (train/heldout/dev/test), and decoding script as these papers, and thus our
results are directly comparable. We achieve a 0.9% absolute improvement in TER with
our kernel model relative to Huang et al. (2014), and 0.5% improvement relative to Chen
et al. (2016); furthermore, our best DNN matches the performance of the best performing
DNN from Huang et al. (2014). We believe the most significant of all these results is that
the kernels (narrowly) beat the DNNs on Broadcast News, our largest and most challenging
data set, and one which has been used extensively in large scale speech recognition research.
In Appendix A, we include more detailed tables comparing the various models we trained
across all the metrics from Section 6.2.

6.5. Importance of the Number of Random Features

We will now illustrate the importance of the number of random features D on model
performance. For this purpose, we trained kernel models on the BN-50 data set using
D ∈ {5000, 10000, 25000, 50000, 100000} for the three kernel functions, with and without
feature selection, with a linear bottleneck of size 1000, and using heldout cross-entropy for
learning rate decay. In Figure 3, we show how increasing the number of features dramat-
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Figure 3: Heldout cross-entropy and development set TER performance of kernel acoustic
models on BN-50, as a function of the number of random features D. Dashed
lines mean feature selection was performed, while solid lines mean it was not.

ically improves the performance of the learned model, both in terms of cross-entropy and
TER; there are diminishing returns, however, with small improvements in TER when in-
creasing D from 50,000 to 100,000. Interestingly, we can also observe in these plots that the
benefits from feature selection (gap between the dashed and solid lines) are large for the
Laplacian kernel, modest for the sparse Gaussian kernel, and insignificant for the Gaussian
kernel. We provide insight into why these trends occur in the following section.

6.6. Dynamics of Random Feature Selection

We now explore the feature selection dynamics. We first show that features selected in
early iterations are likely to be selected in all subsequent iterations, demonstrating that the
selection criterion is consistent. Second, we show that the feature selection process can be
seen as way of learning to upweight important input features. This effect is pronounced
for the Laplacian and sparse Gaussian kernels, but not for the Gaussian kernel, helping to
explain why the former methods benefit from feature selection more than the latter.

In Figure 4, we plot the fraction of the st features selected in iteration t that remain in
the model after all T iterations (“survival rate”). We show results for kernel models trained
on the Cantonese data set, without using linear bottlenecks, and using heldout cross-entropy
for learning rate decay. In nearly all iterations and for all kernels, over half of the selected
features survive to the final model. For instance, over 90% of the Laplacian kernel features
selected at iteration 10 survive the remaining 40 rounds of selection. For comparison, we
plot the expected survival rate if at each iteration the features were chosen uniformly at
random; for st = Dt/T , the expected survival rate for features selected at iteration t is
T !/(t! · T T−t), which is exponentially small in T when t ≤ βT for any fixed β < 1.13 For
example, at t = 10 the expected survival rate is approximately 9 × 10−11 with T = 50.
Thus, our selection criterion is orders of magnitude more consistent than random selection.

13. This can be shown using Stirling’s formula. See Jameson (2015) for a useful review.
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Figure 4: Fraction of the st features selected in iteration t that are in the final model
(survival rate) for kernel models trained on the Cantonese data set.
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Figure 5: The relative weight of each input feature in the projection matrix Ω after feature
selection completes, for kernel models trained on the Cantonese data set.

Finally, we consider how the feature selection process can be seen as a way of learning
to assign more weight to the more important input features. Consider the final matrix of
random vectors Ω := [ω1, . . . ,ωD] ∈ Rd×D after feature selection, for the Cantonese models
from Figure 4. A coarse measure of how much influence an input feature i ∈ {1, 2, . . . , d}
has in the final feature map is the relative “weight” of the i-th row of Ω. In Figure 5,
we plot

∑D
j=1 |Ωi,j |/Z for each input feature i ∈ {1, 2, . . . , d}, where Z = 1

d

∑
i,j |Ωi,j | is a

normalization term.14 There is a strong periodic effect as a function of the input feature
number. An examination of the feature pipeline from Kingsbury et al. (2013) reveals that
this is because these features vectors are the concatenation of nine 40-dimensional acoustic
feature vectors, where each set of 40 features is ordered by a measure of discriminative
quality (via linear discriminant analysis). Thus, it is expected that the features with low
(i− 1) mod 40 value may be more useful than the others; indeed, this is evident in the plot.
Note that this effect exists, but is extremely weak, for the Gaussian kernel. We believe this
is because Gaussian random vectors in Rd are likely to have all their entries be bounded in
magnitude byO(

√
log(d)). This observation helps explain why feature selection significantly

improves the Laplacian and sparse Gaussian models, but not the Gaussian models.

14. For the Laplacian kernel, we discard the largest element in each of the d rows of Ω, because there are
sometimes outliers which dominate the entire sum for their row.
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7. Conclusion

In this paper, we explore the performance of kernel methods on large-scale ASR tasks, lever-
aging the kernel approximation technique of Rahimi and Recht (2007). We propose two new
methods (feature selection, new early stopping criteria) which lead to large improvements in
the performance of kernel acoustic models. We further show that using a linear bottleneck
(Sainath et al., 2013a) to decompose the parameter matrices of these kernel models leads
to significant improvements in performance as well. We validate these findings on four data
sets, including the Broadcast News and TIMIT benchmark tasks. Using all these methods
together, the kernel methods attain comparable speech recognition performance to DNNs
across the four test sets; on Cantonese, TIMIT, and Broadcast News, the kernel models
outperform the DNNs by 0.5%, 0.1%, and 0.1% TER absolute, respectively, whereas on
Bengali, the DNN does better by 0.1% TER.

For future work, we are interested in continuing to test the limits of kernel methods on
challenging empirical tasks. For example, can kernel methods be adapted to compete with
convolutional and recurrent neural networks?
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Appendix A. Detailed Empirical Results

In this appendix, we include tables comparing the models we trained in terms of four
different metrics (CE, ENT, ERR, and ERLL). The notation is the same as in Tables 4
and 5. For both DNN and kernel models, ‘NT’ specifies that no “tricks” were used during
training (no bottleneck, did not use ERLL for learning rate decay). A ‘B’ specifies that
a linear bottleneck was used for the output parameter matrix, while an ‘R’ specifies that
ERLL was used for learning rate decay (so ‘BR’ means both were used). For kernel models,
‘+FS’ specifies that feature selection was performed for the corresponding row. The best
result for each metric and data set is in bold.

Some important things to take note of in these tables:

• The linear bottleneck typically causes large drops in the average entropy of kernel mod-
els, while not having as strong or consistent an effect on cross-entropy. For DNNs, the
bottleneck typically causes increases in cross-entropy, and relatively modest decreases
in entropy.

• Using ERLL to determine learning rate decay typically causes increases in cross-
entropy, and decreases in entropy, with the decrease in entropy typically being larger
than the increase in cross-entropy. As a result, the ERLL is typically lower for models
that use this method (with the exception of TIMIT DNN models).

• Feature selection typically results in large drops in cross-entropy, especially for Lapla-
cian and sparse Gaussian kernels, while its effect on entropy is quite small. It thus
helps lower heldout ERLL across the board, as well as TER in the vast majority of
cases.

Laplacian Gaussian Sparse Gaussian
NT B R BR NT B R BR NT B R BR

Beng. 1.34 1.32 1.35 1.39 1.35 1.33 1.36 1.34 1.31 1.29 1.34 1.33

+FS 1.28 1.26 1.29 1.27 1.35 1.31 1.36 1.35 1.28 1.26 1.31 1.27

BN-50 N/A 2.15 N/A 2.43 N/A 2.05 N/A 2.16 N/A 2.05 N/A 2.19

+FS N/A 2.01 N/A 2.07 N/A 2.04 N/A 2.13 N/A 2.00 N/A 2.06

Cant. 1.93 1.95 1.95 2.04 1.99 1.98 2.00 2.04 1.93 1.94 1.95 2.00

+FS 1.88 1.90 1.89 1.95 1.97 1.97 1.98 2.03 1.90 1.91 1.91 1.96

TIMIT 0.97 0.99 0.97 1.07 0.94 0.96 0.94 1.02 0.94 0.95 0.94 1.03

+FS 0.92 0.95 0.92 1.03 0.93 0.96 0.93 1.02 0.92 0.96 0.92 1.03

Table 9: Kernel: Metric CE
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1000 2000 4000
NT B R BR NT B R BR NT B R BR

Beng. 1.25 1.26 1.24 1.27 1.24 1.26 1.26 1.32 1.24 1.25 1.30 1.39

BN-50 2.05 2.05 2.04 2.08 2.01 2.04 2.05 2.22 2.00 2.03 2.09 2.27

Cant. 1.92 1.96 1.92 1.98 1.93 1.94 1.97 2.06 1.92 1.97 2.03 2.10

TIMIT 1.06 1.08 1.20 1.28 1.08 1.09 1.25 1.31 1.10 1.11 1.25 1.33

Table 10: DNN: Metric CE

Laplacian Gaussian Sparse Gaussian
NT B R BR NT B R BR NT B R BR

Beng. 1.43 1.23 1.41 1.08 1.36 1.31 1.35 1.28 1.35 1.23 1.30 1.10

+FS 1.32 1.21 1.28 1.14 1.44 1.27 1.45 1.13 1.32 1.22 1.26 1.14

BN-50 N/A 1.89 N/A 1.46 N/A 1.83 N/A 1.53 N/A 1.81 N/A 1.48

+FS N/A 1.81 N/A 1.56 N/A 1.84 N/A 1.55 N/A 1.80 N/A 1.57

Cant. 1.84 1.67 1.76 1.52 1.94 1.73 1.91 1.58 1.77 1.69 1.70 1.55

+FS 1.75 1.66 1.73 1.54 1.91 1.72 1.87 1.57 1.75 1.68 1.72 1.54

TIMIT 0.95 0.72 0.91 0.61 0.88 0.73 0.86 0.62 0.89 0.76 0.85 0.61

+FS 0.86 0.70 0.82 0.58 0.86 0.70 0.83 0.61 0.84 0.69 0.82 0.58

Table 11: Kernel: Metric ENT

1000 2000 4000
NT B R BR NT B R BR NT B R BR

Beng. 1.23 1.17 1.18 1.09 1.18 1.13 1.09 0.99 1.14 1.11 1.02 0.91

BN-50 1.95 1.77 1.90 1.68 1.76 1.68 1.65 1.40 1.65 1.60 1.48 1.27

Cant. 1.71 1.67 1.67 1.57 1.66 1.64 1.55 1.42 1.63 1.55 1.43 1.38

TIMIT 0.72 0.70 0.58 0.53 0.63 0.63 0.50 0.48 0.57 0.57 0.48 0.45

Table 12: DNN: Metric ENT

Laplacian Gaussian Sparse Gaussian
NT B R BR NT B R BR NT B R BR

Beng. 2.77 2.55 2.76 2.47 2.71 2.65 2.71 2.62 2.67 2.52 2.64 2.44

+FS 2.60 2.47 2.57 2.41 2.79 2.58 2.80 2.48 2.60 2.48 2.57 2.41

BN-50 N/A 4.04 N/A 3.88 N/A 3.88 N/A 3.69 N/A 3.86 N/A 3.67

+FS N/A 3.82 N/A 3.63 N/A 3.88 N/A 3.67 N/A 3.80 N/A 3.62

Cant. 3.77 3.62 3.71 3.56 3.94 3.71 3.91 3.62 3.71 3.63 3.65 3.54

+FS 3.63 3.56 3.63 3.49 3.88 3.69 3.86 3.60 3.64 3.58 3.63 3.50

TIMIT 1.92 1.71 1.87 1.68 1.82 1.70 1.80 1.65 1.83 1.71 1.79 1.64

+FS 1.78 1.65 1.74 1.61 1.79 1.67 1.76 1.64 1.76 1.64 1.74 1.61

Table 13: Kernel: Metric ERLL
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1000 2000 4000
NT B R BR NT B R BR NT B R BR

Beng. 2.48 2.43 2.43 2.37 2.42 2.39 2.35 2.31 2.39 2.37 2.32 2.30

BN-50 3.99 3.82 3.94 3.76 3.77 3.72 3.70 3.63 3.65 3.63 3.58 3.55

Cant. 3.63 3.63 3.58 3.56 3.59 3.58 3.51 3.48 3.55 3.52 3.46 3.47

TIMIT 1.77 1.77 1.77 1.81 1.71 1.72 1.76 1.79 1.67 1.68 1.73 1.78

Table 14: DNN: Metric ERLL

Laplacian Gaussian Sparse Gaussian
NT B R BR NT B R BR NT B R BR

Beng. 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.30 0.30 0.30 0.30

+FS 0.29 0.29 0.30 0.29 0.31 0.31 0.31 0.31 0.30 0.29 0.30 0.30

BN-50 N/A 0.52 N/A 0.54 N/A 0.50 N/A 0.51 N/A 0.50 N/A 0.51

+FS N/A 0.49 N/A 0.50 N/A 0.50 N/A 0.50 N/A 0.49 N/A 0.49

Cant. 0.43 0.44 0.44 0.44 0.45 0.45 0.45 0.45 0.43 0.44 0.44 0.44

+FS 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.45 0.43 0.44 0.43 0.44

TIMIT 0.32 0.32 0.32 0.33 0.31 0.32 0.31 0.32 0.31 0.31 0.31 0.32

+FS 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.31 0.31 0.31

Table 15: Kernel: Metric ERR

1000 2000 4000
NT B R BR NT B R BR NT B R BR

Beng. 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.30

BN-50 0.50 0.50 0.50 0.50 0.49 0.50 0.50 0.51 0.49 0.49 0.50 0.51

Cant. 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

TIMIT 0.33 0.33 0.34 0.34 0.33 0.33 0.34 0.34 0.33 0.32 0.33 0.33

Table 16: DNN: Metric ERR
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Appendix B. Derivation of Functional Form for Random Fourier Features

In this appendix, we will prove that for a properly-scaled (i.e., Z = 1) positive-definite
shift-invariant kernel k,

k(x,x′) = Eω,b
[√

2 cos(ωTx+ b) ·
√

2 cos(ωTx′ + b)
]
, (7)

where ω is drawn from p(ω), the inverse Fourier transform of k, and b is drawn uniformly
from [0, 2π]. We begin this proof using Equation (3) from Section 3.1:

k(x,x′) =

∫

Rd
p(ω)ejω

T(x−x′) dω

= Eω
[
ejω

Txe−jω
Tx′
]

= Eω
[(

cos(ωTx) + j sin(ωTx)
)(

cos(ωTx′)− j sin(ωTx′)
)]

= Eω
[
cos(ωTx) cos(ωTx′) + sin(ωTx) sin(ωTx′)

]

+ j · Eω
[
sin(ωTx) cos(ωTx′)− sin(ωTx′) cos(ωTx)

]

= Eω
[
cos(ωTx) cos(ωTx′) + sin(ωTx) sin(ωTx′)

]
(8)

Note the Equation (8) is true because we know that k(x,x′) is a real-valued function,
and thus the imaginary part of the expectation must disappear. We now show that the
right-hand side of Equation (7) is equal to this same expression:

Eω,b
[√

2 cos(ωTx+ b) ·
√

2 cos(ωTx′ + b)
]

= 2 · Eω,b
[(

cos(ωTx) cos(b)− sin(ωTx) sin(b)

)
·

(
cos(ωTx′) cos(b)− sin(ωTx′) sin(b)

)]
(9)

= 2 · Eω,b
[

cos(ωTx) cos(ωTx′) cos2(b)

− cos(ωTx) sin(ωTx′) cos(b) sin(b)

− sin(ωTx) cos(ωTx′) cos(b) sin(b)

+ sin(ωTx) sin(ωTx′) sin2(b)

]

= 2 · Eω
[

1

2
cos(ωTx) cos(ωTx′) +

1

2
sin(ωTx) sin(ωTx′)

]
(10)

= Eω
[
cos(ωTx) cos(ωTx′) + sin(ωTx) sin(ωTx′)

]

= k(x,x′)

Equation (9) is true by the cosine sum of angles formula, and Equation (10) is true
because Eb

[
cos2(b)

]
= Eb

[
sin2(b)

]
=
∫ 2π

0
1

2π sin2(b) = 1
2 , and because Eb [sin(b) cos(b)] = 0.

This concludes the proof. �
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