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Abstract:
Endoparasitoid wasps develop at the expense of other insects, leading to their death. Eggs deposited 
inside the host body induce an immune response, which results in the formation of a melanized cellular 
capsule around the egg. To evade or counteract this response, endoparasitoids have evolved different 
strategies, the most often reported being injection into the host of immunosuppressive factors, notably 
venom proteins, along with the egg. The analysis of venom components has been performed indepen-
dently in species of different taxa, but the present picture is far from complete. Intriguingly, the question 
of the level of venom variability inside species has been neglected, although it may partly determine the 
potential for parasitoid adaptation. Here, we present a short review of our present knowledge of venom 
components in endoparasitoids, asell as of the only well-known example of intraspecific variability in a 
venom immune suppressive protein being responsible for variation in parasitoid virulence. We then pres-
ent data evidencing inter-individual variation of venom protein profiles, using a gel electrophoresis 
approach, both in laboratory strains and field populations of a figitid and a braconid species. Whether 
occurrence of such variability may permit a selection of parasitoid venom components driven by the host 
remains to be tested, notably in the context of the production and use of biological control auxiliaries.

1. Introduction

Within parasites, insect parasitoids are remarkable by the
diversity and originality of their virulence strategies. They lay eggs
on or inside the body of other insects (mainly egg, larval or pupal
stages) and achieve their development by consuming the host tis-
sues, leading to its death (Godfray, 1994; Quicke, 1997). The para-
sitoid lifestyle is predominantly found in two insect orders: more
than 60,000 species belong to Hymenoptera, others being mainly
Diptera. Parasitoids are also classified into idiobionts which gener-
ally paralyze their host immediately following parasitism, stopping
them from further development, and koinobionts which allow the
host to continue feeding and developing. Ectoparasitoids feed
externally on the host in contrast to endoparasitoids that develop
inside the host (Godfray, 1994; Quicke, 1997). There is a large body
of literature on parasitoid life-history traits such as host choice

behavior, foraging strategies, population dynamics, or resources
allocation (Jervis et al., 2008; Lohse et al., 2012; Wajnberg et al.,
2012). As parasitoids develop an obligate and intimate relationship
with their hosts, and often exert a strong selection pressure on
their populations, focus has also been made on co-evolutionary as-
pects, notably for immune traits (e.g. geographic variation in para-
sitoid virulence and host resistance) (Dupas et al., 2009;
Kraaijeveld and van Alphen, 1994). Selection of specific adapta-
tions in response to host defenses may partly explain the special-
ization of many parasitoids to one host or a narrow range of
hosts, a trait that makes them valuable tools for biological control
of vectors and pests.

Comparative studies of host-endoparasitoid interactions,
mainly performed for dipteran and lepidopteran hosts, have pro-
vided insights on insect immune processes. The insect response
to the intrusion of a foreign object too large to be phagocytized,
such as a parasitoid egg, is the encapsulation process, which re-
quires both cellular and humoral components (Carton et al.,
2008). Specialized hemocytes adhere to the egg and surround it
with organized successive layers, while activation of the pheno-
loxidase cascade leads to melanization of the capsule and the
production of cytotoxic radicals that ends in the parasitoid
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death (Fauvarque and Williams, 2011; Nappi, 2010; Nappi et al.,
2009; Strand, 2008). To evade or counteract the host immune reac-
tion, endoparasitoids have evolved different strategies (Poirié et al.,
2009), the more often described being active immunosuppression
that can be local or systemic. It generally involves alteration or
destruction of immune cells whether circulating or present in the
hematopoietic organ, and/or inhibition of the melanization process
by targeting of the phenoloxidase (PO) cascade, notably the serine
proteases involved in the pro-phenoloxidase (proPO) activation
into active PO (Poirié et al., 2009). Interestingly, ectoparasitoid fe-
males can inject factors that alter host immune components, as do
endoparasitoid females (Danneels et al., 2010).

Important modifications of the stinging apparatus and the
secretions it delivers have occurred in the evolution of Hymenop-
tera, as strong adaptations to their lifestyle (e.g. prey capture, de-
fense against enemies). In addition to the egg and ovarian fluids,
parasitoid females inject secretions produced in specialized glands
derived from the reproductive tissue (notably venom glands) that
will ensure host immune suppression. Female-injected compo-
nents are thus a complex mixture of ovarian and venom proteins,
that can also include peptides, vesicular or virus-like components
(equally described as Virus-Like Particles, VLPs) produced in the
ovarian calyx or the venom gland, and viruses (such as polydnavi-
ruses, PDVs) (Asgari and Rivers, 2010; Beckage, 2012; Gatti et al.,
2012; Poirié et al., 2009; Strand, 2012). Polydnaviruses, being con-
sidered as a unique example of a symbiotic association between a
virus and an eukaryotic organism, have been paid a lot of attention
(for recent reviews see Beckage, 2012; Burke and Strand, 2012;
Strand, 2012) and will not be further discussed here.

Venom peptides and small proteins have been scarcely studied
in parasitoids although analyses of venom gland transcriptomes
suggest they are indeed present in the venom (Hauser et al.,
2010). For instance, a venom defensin-like peptide of 56 aa has
been characterized in Nasonia vitripennis that may interfere with
the host phenoloxidase cascade (Tian et al., 2010). Interestingly,
a venom peptide from Cotesia rubecula (Vn1.5) was also found to
be required for expression of its PDV-associated genes in Pieris ra-
pae host cells (Zhang et al., 2004a).

The VLPs observed in the venom of a large range of phylogenet-
ically distant parasitoid wasps (Dupas et al., 1996; Morales et al.,
2005; review in Gatti et al., 2012) are diverse in form and size
among species but also heterogeneous within species. The ob-
served particles more or less resemble viruses, but they are appar-
ently devoid of DNA or RNA, and the few VLPs-associated proteins
characterized to date have no similarity with viral proteins (Gatti
et al., 2012). VLPs were first purified following separation on den-
sity gradients of the venom reservoir content of the figitid Leptop-
ilina heterotoma (Rizki and Rizki, 1990), and shown to be involved
in suppression of the Drosophila melanogaster host immunity.
Although they were demonstrated to enter lamellocytes (the main
capsule-forming hemocytes) and to induce changes in their mor-
phology (Rizki and Rizki, 1984, 1990, 1994), their mechanism of
entry and mode of action have not been described, and none of
the reported VLP proteins have yet been clearly identified nor their
function described (Chiu et al., 2006; Gatti et al., 2012). A role of
venom VLPs of the phylogenetically distant braconid Meteorus pul-
chricornis in modifying hemocyte properties was also demon-
strated in the host Pseudaletia separata (Suzuki et al., 2008).

The analysis of components injected by parasitoid females is far
from being complete. Besides, the factors present in different fluids
(ovarian fluid, venom) can have antagonistic or agonistic effects on
the host physiology (Mabiala-Moundoungou et al., 2010; Zhang
et al., 2004a). In this paper, we will mainly focus on venom compo-
nents in endoparasitoids, and the different levels at which variabil-
ity may be observed.

2. Analysis of venom components: from venom markers to
virulence factors?

A main problem in studying venom composition is to obtain ve-
nom free of cellular proteins. Parasitoid venom apparatus are di-
verse (Edson and Vinson, 1979; Vardal, 2006): for instance,
venom glands can appear as a long filament with only a small canal
filled with venom (e.g. in Leptopilina figitid species), or as large
multi-lobed glands containing a substantial quantity of secreted
fluid (e.g. in Psyttalia braconid wasps). The shape and histological
structure of reservoirs also varies from a thick muscular layer
enclosing a small amount of venom (Edson et al., 1982), which
likely serve as a pump (in most braconid wasps), to a large cylinder
with a thin cellular wall, containing up to several nanoliters of ve-
nom (for example in Leptopilina wasps). As collection of venom
without damaging tissues can be difficult depending on species,
typical cellular proteins may be found among venom proteins (Vin-
cent et al., 2010), and whether they are indeed secreted or corre-
spond to contaminants can prove hard to determine.

Different levels of analysis can be performed on collected
‘‘pure’’ venom, from a simple observation and comparison of pro-
tein profiles to a proteomic approach aimed at identifying proteins
and assign them putative functions. The use of targeted ap-
proaches, such as extensive characterization of a given protein
band, has proved successful in the past (Asgari, 2012; Asgari and
Rivers, 2010; Poirié et al., 2009). However, it requires an accurate
choice of the protein to focus on, and, until now, the number of
proteins characterized from parasitoid venom fluids with this ap-
proach is rather limited. Enzymatic functions can often be easily
identified by gel zymography (e.g. for superoxide dismutase activ-
ity; Colinet et al., 2011), or by enzymatic assays with crude venom
(e.g. for hyaluronidase; Nakamatsu and Tanaka, 2004 or acid phos-
phatase activity; Zhu et al., 2008). Further identification of the
involvement of a given protein in suppressing host immunity for
instance (e.g. inhibition of the phenoloxidase cascade, alteration
of hemocyte adhesion or morphology) requires further in vivo
and in vitro analyses using the purified or a recombinant protein.
At the moment, final demonstration of the major role of a protein
as a virulence factor has been performed by microinjecting the pro-
tein in vivo in presence of a specific antibody (Colinet et al., 2010),
other methods such as RNAi being unfortunately not available yet
for endoparasitoids.

Parasitoid studies have also focused on the question of the ve-
nom protein diversity in more or less related species. Global ap-
proaches based on comparisons of protein electrophoretic profiles
do not easily allow concluding on the common origin or function
of a given protein in absence of accurate molecular identification,
such identification being difficult when the protein does not match
any sequence in databases. Meanwhile, gel electrophoresis is a rou-
tinely used method, and we thus questioned whether more infor-
mation could be obtained from protein profiles. With the interest
in discovering markers from protein samples in human pathologies
as cancer, new digital imaging technologies have been developed
that allows analyzing such profiles both qualitatively and quantita-
tively from dozens of samples (Hanash and Taguchi, 2010; Wulf-
kuhle et al., 2003). Using this approach, venom variability can be
estimated not only between closely-related species or populations
(i.e. pooled samples), but also between individuals of a given popu-
lation, a parameter that has not been investigated in depth until
now. This question is of high interest since the occurrence of such
variability is a pre-requisite for selection on parasitoid venom,
which may drive parasitoid adaptation in response to parameters
such as host species or host resistance. Moreover, the capacity of ve-
nom to rapidly evolve may explain the diversity of venom contents
between species, the presence or abundance of specific proteins



resulting from short-term adaptive processes rather than a common
evolutionary origin. The differences between protein profiles may
also focus our attention to proteins of interest possibly involved in
adaptive processes, and acting as virulence factors.

3. Venom components function and diversity: available data

3.1. Virulence factors in different species

Global comparisons of venom electrophoretic profiles of para-
sitoid and non-parasitoid (bees, aculeate wasps, ants) hymenop-
teran species have been performed. The largest study included 25
hymenopteran species from 21 genera, with 4 braconid and 2 un-
known ichneumonid parasitic wasps (Leluk et al., 1989). It showed
that parasitoid wasp venom contain proteins ranging from 20 kDa
to several hundred kDa, some of them being glycosylated, but with
no major protein bands in the ‘‘peptide’’ range (<15 kDa). The pro-
tein patterns strongly differed from one species to another, even
between the closely related braconids, Chelonus insularis and C.
near curvimaculatus. Interestingly, a large number of C. insularis,
but also of ants venom proteins, were recognized by an antiserum
raised against C. near curvimaculatus venom, while fewer proteins
were detected in aculeate wasp and bee venoms. This confirms
that accurate comparison of venom between species cannot simply
rely on visual comparisons of protein profiles.

Over the last few years, the development of DNA sequencing
and mass spectrometry technologies has allowed a booming in-
crease of venom protein characterization (Asgari and Rivers,
2010; Formesyn et al., 2012). The first large-scale analyses combin-
ing transcriptome and partial proteome analyses to identify puta-
tive venom proteins were performed in the ichneumonid Pimpla
hypochondriaca (Parkinson et al., 2003, 2004) and two braconid
Microctonus species (Crawford et al., 2008). More recently, a num-
ber of venom proteins were identified from the chalcidoids Pterom-
alus puparum (Zhu et al., 2010b) and N. vitripennis (de Graaf et al.,
2010), using a proteomic approach. For N. vitripennis, whose gen-
ome sequence is available, the proteomic analysis was combined
with bioinformatics, leading to identification of as much as 79
putative venom constituents (de Graaf et al., 2010). Finally, a total
of 29 venom proteins were recently identified from the endopar-
asitoid Chelonus inanitus using a combined transcriptomic and pro-
teomic approach aimed at discriminating between cellular and
true venom proteins (Vincent et al., 2010). However, many of the
identified proteins in these and other studies did not show any
similarity with known proteins, a recurrent problem in parasitoid
venom analyses. This is certainly due to the absence of complete
annotated genomes of parasitoids species (except those of Nasonia
spp.), a severe drawback for a complete identification and compar-
ison of proteins.

With more than 50 venom proteins identified in different spe-
cies, a better picture of the complex nature and diversity of venom
components has recently been acquired. However, only <20% of
them have been demonstrated to alter host physiology (Table 1).
Three venom proteins that inhibit the host cellular immune re-
sponse have been described so far (Table 1). In L. boulardi, a Rho-
GAP domain-containing protein, LbGAP, targets Drosophila
lamellocytes, and induces changes in their morphology rendering
them unable to perform encapsulation (Labrosse et al., 2005).
LbGAP has been demonstrated to inactivate two Drosophila Rho
GTPases, Rac1 and Rac2 (Colinet et al., 2007), both involved in cyto-
skeletal rearrangements and adhesions necessary for cell-shape
change and migration and proved to be necessary for parasitism
success. A calreticulin from C. rubecula has been shown to prevent
encapsulation in vitro by inhibiting hemocyte spreading behavior,
although the mechanism is still unclear (Zhang et al., 2006). This

protein is also present in the venom of N. vitripennis (de Graaf
et al., 2010) and P. puparum (Zhu et al., 2010b). Finally, a P. hypo-
chondriaca venom protein, without any similarity to known pro-
teins, also shows insect hemocyte anti-aggregation properties
thus inhibiting encapsulation (Richards and Dani, 2008). Some ve-
nom proteins were demonstrated to inhibit the humoral compo-
nent of the anti-parasitoid response, by interfering with the PO
cascade (Table 1). Vn50, a serine protease homolog devoid of activ-
ity is secreted in C. rubecula venom. It acts as an inhibitor of P. ra-
pae host hemolymphmelanization, presumably by competing with
host serine protease homologs for binding to proPO, while remain-
ing non cleaved and stable in the hemolymph (Asgari et al., 2003a;
Zhang et al., 2004b). Interestingly, members of the serine protease
family have also been found in the venom of four other parasitoids
(Table 1). C. rubecula venom also contains a small protein (Vn4.6),
with similarities to atracotoxins but also to cystein-rich protease
inhibitors, that inhibits melanization through an unknown mecha-
nism (Asgari et al., 2003b). In L. boulardi, a venom protein from the
serine protease inhibitor (serpin) family, LbSPNy, was demon-
strated to prevent melanization in Drosophila through inhibition
of PO activation (Colinet et al., 2009). Interestingly, L. boulardi ve-
nom also contains an extracellular SOD that in vitro inhibits the
host phenoloxidase activity and might interfere locally with the
melanization process (Colinet et al., 2011). In addition to venom
proteins regulating host immunity, a gamma glutamyl transpepti-
dase from Aphidius ervi was shown to target host reproduction by
inducing apoptosis in aphid ovaries (Falabella et al., 2007), a repr-
olysin-type metalloprotease from Eulophus pennicornis manipu-
lates host development and display toxicity towards the host
(Price et al., 2009), and pimplin, a small polypeptide from P. hypo-
chondriaca, with no similarities with any known protein, induces
paralysis of the host (Parkinson et al., 2002c) (Table 1).

Comparisons of identified proteins between Hymenoptera sug-
gest that some venom components are largely shared (e.g. acid
phosphatases, venom-allergen proteins related to cystein-rich
secretory proteins, metalloproteases, serine proteases) and may
have an ancestral origin, while others are specific to one or a few
parasitoid species (Table 1). Interestingly, the shared proteins, or
family-related proteins, are also retrieved in the venom of a large
number of organisms such as snakes, scorpions or centripedes, as
well as in secretions from salivary glands and different exocrine or-
gans, in species ranging from insects to mammals (Pilch and Mann,
2006; Zhou et al., 2007; Chapman, 2008; Fry et al., 2009; Belle-
année et al., 2010). This set of proteins, which has likely been se-
lected for its role in predation or defense, might also be
important for protection/maturation of secreted proteins or in-
volved in the process of secretion.

Venom proteins have rarely been globally analyzed in closely
related parasitoid species. The only work carried out on two
Microctonus parasitoid species only focused on variation of the
expression level of a small number of genes in the venom appara-
tus (Crawford et al., 2008). An interesting model would be Leptop-
ilina species whose interactions with Drosophila hosts have long-
been studied (Jenni, 1951; Nappi, 1977; Rizki et al., 1990), L. bou-
lardi being also the species whose venom virulence factors are
among the best characterized. To our knowledge, the main im-
mune suppressive factor, LbGAP, is also the only factor demon-
strated to be required for parasitoid virulence (Colinet et al.,
2010). Studies on other Leptopilina species are still far from this
point but venom analyses are currently performed. L. boulardi
and L. heterotoma differ by the host range (Fleury et al., 2009), ve-
nom effects on the Drosophila host (Lee et al., 2009), and changes
in expression profiles of host genes following parasitism (Lee et al.,
2011; Schlenke et al., 2007). Interestingly, we observed major dif-
ferences in venom protein profiles of the two species (Fig. 1).
Accordingly, we also evidenced a quantitative difference in expres-



Table 1
Venom proteins identified from parasitic wasps, having known or putative biochemical functions. Ae, Aphidius ervi; At, Asobara tabida; Cc, Chelonus sp. near curvimaculatus; Ci,
Chelonus inanitus; Cr, Cotesia rubecula; Ep, Eulophus pennicornis; Ma, Microctonus aethiopoides; Mh, Microctonus hyperodae; Nv, Nasonia vitripennis; Ph, Pimpla hypochondriaca; Pp,
Pteromalus puparum; Pt, Pimpla turionellae. Only proteins with a demonstrated effect on the host physiology are discussed in the manuscript.

Demonstrated effect on host physiology Species References

Enzymes
Alpha-N-acetyl glucosaminidase Ci Vincent et al. (2010)
Alkaline phosphatase Pp Zhu et al. (2010a)
Aminotransferase-like venom protein Nv, Pp de Graaf et al. (2010) and Zhu et al. (2010b)
Angiotensin-converting enzyme Ci Vincent et al. (2010)
Apyrase Nv de Graaf et al. (2010)
Arginine kinase Pp Zhu et al. (2010b)
Arylsulfatase Nv de Graaf et al. (2010)
Aspartylglucosaminidase At Moreau et al. (2004)
ATP synthase Pp Zhu et al. (2010b)
C1A protease Ci Vincent et al. (2010)
Chitinase Cc, Ci Krishnan et al. (1994) and Vincent et al. (2010)
Dipeptidylpeptidase IV Nv de Graaf et al. (2010)
Endonuclease-like venom protein Nv de Graaf et al. (2010)
Esterase/lipase Ci Vincent et al. (2010)
Gamma glutamyl transpeptidase Induction of apoptosis in host ovaries (Ae) Ae, Nv Falabella et al. (2007) and de Graaf et al. (2010)
Glucose-Methanol-Choline (GMC)

oxidoreductase
Nv de Graaf et al. (2010)

Inosine-uridine preferring nucleoside
hydrolase

Nv, Pp de Graaf et al. (2010) and Zhu et al. (2010b)

Laccase Ph Parkinson et al. (2003)
Metalloprotease Toxicity towards the host, manipulation of

host development (Ep)
Ci, Ep, Ph Vincent et al. (2010), Price et al. (2009) and Parkinson et al.

(2002a)
Multiple inositol polyphosphate

phosphatase-like venom protein
Nv de Graaf et al. (2010)

Neprilysin Mh Crawford et al. (2008)
Phenoloxidase Ph Parkinson et al. (2001)
Phospholipase B Pt Uçkan et al. (2006)
Serine proteases and serine protease

homologs
Inhibition of melanization (Cr) Ci, Cr, Nv,

Ph, Pp
Vincent et al. (2010), Asgari et al. (2003a), de Graaf et al. (2010),
Parkinson et al. (2002b) and Zhu et al. (2010b)

Superoxide dismutase In vitro inhibition of Drosophila
phenoloxidase activity

Lb Colinet et al. (2011)

Trehalase Ph Parkinson et al. (2003)
Venom acid phosphatase Nv, Ph,

Pp
de Graaf et al. (2010), Dani et al. (2005) and Zhu et al. (2008)

Recognition/binding proteins
Beta-1,3-glucan recognition protein Nv de Graaf et al. (2010)
Chitin binding protein Ci, Nv Vincent et al. (2010), de Graaf et al. (2010)
Lectin Ci Vincent et al. (2010)
Low-density lipoprotein receptor Nv de Graaf et al. (2010)

Protease inhibitors
Cysteine-rich protease inhibitor Nv, Ph de Graaf et al. (2010) and Parkinson et al. (2004)
Kazal-type serine protease inhibitor Nv de Graaf et al. (2010)
Serpin Inhibition of melanization Lb Colinet et al. (2009)

Chaperone
Calreticulin Inhibition of hemocyte spreading behavior,

suppression of encapsulation (Cr)
Cr, Nv, Pp Zhang et al. (2006), de Graaf et al. (2010) and Zhu et al. (2010b)

Heat shock protein Pp Zhu et al. (2010b)

Cytoskeleton components
Actin Pp Zhu et al. (2010b)
Tropomyosin Pp

Neurotoxin-like/Paralytic factors
Fire Ant venom allergen III Ma, Mh Crawford et al. (2008)
Pimplin Paralysis of the host Ph Parkinson et al. (2002c)
Vn4.6 (similar to atracotoxins) Inhibition of melanization Cr Asgari et al. (2003b)

Others
Antigen 5-like protein Nv de Graaf et al. (2010)
Chemosensory protein-like protein Ci Vincent et al. (2010)
General odorant binding protein Ci, Nv Vincent et al. (2010) and de Graaf et al. (2010)
Hexamerin Pp Zhu et al. (2010b)
Imaginal disc Growth Factors-like Ci Vincent et al. (2010)
Immunoglobulin-like venom protein Nv de Graaf et al. (2010)
Insect hemocyte anti-aggregation

protein
Inhibition of hemocyte spreading and
aggregation, suppression of encapsulation

Ph Richards and Dani (2008)

RhoGAP Deformation of host hemocytes, suppression
of encapsulation

Lb Labrosse et al. (2005)

Similar to lethal (1) G0193 isoforms Ci Vincent et al. (2010)
Yellow-e3-like protein Ci Vincent et al. (2010)



sion of the gene encoding extracellular SOD in the venom appara-
tus of the two species, the SOD protein being secreted in L. boulardi
venom only (Colinet et al., 2011). This raises the question whether
the venom of closely related species might essentially differ in the
quantity of given proteins, leading to variation in virulence and/or
host specificity.

3.2. Venom differences between strains and populations

Occurrence of intraspecific polymorphism in parasitoid viru-
lence has rarely been documented. In L. boulardi, two well-defined
strains were characterized, ISm, highly virulent only against D.
melanogaster, and ISy, able to suppress immune defenses of both
D. melanogaster and D. yakuba hosts, but depending on the host
resistance genotype (Dubuffet et al., 2009). Physiological and bio-
chemical approaches have demonstrated that these strains use dif-
ferent virulence strategies against Drosophila hosts, ISm inducing a
permanent immunosuppression in D. melanogaster while suppres-
sion of D. yakuba encapsulation by ISy is transitory. Besides, ISm is
known to target immune cellular components, resulting in changes
in the morphology of D. melanogaster lamellocytes, whereas ISy
targets the humoral component of encapsulation through inhibi-
tion of melanization. Remarkably, the venom composition of the
strains differs extensively, as shown by protein electrophoretic
profiles (Fig. 1).

Among the main venom factors identified in L. boulardi, some
show no variation between strains (e.g. the extracellular SOD, qual-
itatively and quantitatively similar), while others display signifi-
cant differences. The major virulence factor LbGAP for instance is
secreted in a high amount in the venom of the ISm strain only
(Fig. 1) (Colinet et al., 2010). Thanks to genetic analyses, it was

shown that the quantitative variation between strains is likely
due to differences in cis-regulation of transcription (Colinet et al.,
2010). We have now indications that quantitative variation occurs
for a number of venom proteins, suggesting that this mechanism
may be largely involved in intraspecific variation of virulence (Col-
inet et al., preparation). Some preliminary data suggest that quali-
tative differences might also occur for some venom proteins: an
antibody raised against a peptide from LbSPNy, identified from
the ISy strain venom (Colinet et al., 2009), specifically recognizes
an abundant protein in ISm venom that migrates at a lower posi-
tion in the electrophoresis gel (Fig. 1). An open area of research
is now to determine the respective contribution of quantitative
and qualitative variation in the diversity of venom components
and to decipher the molecular mechanisms responsible for this
variation between strains and species.

3.3. Venom differences between individuals

It is intriguing and somehow frustrating that so little is known
of the occurrence of venom components variability among individ-
uals. We thus used a silver staining method with enough sensitiv-
ity to allow global analysis of venom electrophoretic patterns at
the individual level, and tested this method on two species: the
figitid L. boulardi, and the braconid Psyttalia lounsburyi. This last
species, also raised in the laboratory, is used as a biological control
agent against the devastating pest olive fly, Bactrocera oleae (Daane
et al., 2011; Malausa et al., 2010). Since antibodies against L. bou-
lardi virulence factors LbGAP and LbSPNy were available, we im-
proved the method by using half of L. boulardi venom reservoir
for individual electrophoretic analysis, and the other half to specif-
ically detect and quantify proteins of interest on immunoblots
(Fig. 2).

Electrophoretic profiles have been obtained for L. boulardi indi-
viduals from laboratory strains and from 8 natural populations
sampled at different locations in the Rhône valley (France)
(Fig. 2). Interestingly, all individuals from the Rhône valley had a
L. boulardi ISm typical profile, with specific detection of LbGAP
and LbSPNm (Fig. 2). To further investigate the inter-individual
variability in venom proteins, reservoirs from 12 L. boulardi fe-
males of a population sampled in St. Laurent d’Agny (Rhône valley,
France) were individually separated by SDS–PAGE. Although the
electrophoretic profiles were again roughly similar to the ISm pro-
file for all individuals, clear differences were observed such as the
presence or absence of specific bands (Fig. 3). Moreover, prelimin-
ary analyses on dot blots suggest occurrence of a quantitative var-
iation of both LbGAP and LbSPNm between individuals, although
this remains to be confirmed with more individuals, and precisely
quantified. For P. lounsburyi, whose venom proteins have not yet
been identified, the full content of the reservoir was analyzed on
a gel. Venom protein profiles were obtained from 6 females re-
cently collected in Sirimon Forest (Kenya) and 6 females from a
strain also sampled in Kenya but maintained under laboratory
conditions for more than 8 years (>100 generations). They were
roughly similar for all females, either recently collected or
long-time reared in artificial conditions (Fig. 4). Interestingly, how-
ever, inter-individual variation was observed both qualitatively
(presence/absence) and quantitatively (intensity of specific
bands).

Interpretation of differences between individual electrophoretic
profiles may encounter some difficulties. First, only one-dimen-
sional electrophoresis can be performed with the quantity of mate-
rial available in a single venom apparatus, and one band may
contain different proteins. Besides, the presence/absence of a band
may be due to strong quantitative differences, or to variation in the
migration of a protein indicating the presence of different alleles or
of post-translational modifications. However, all these modifica-

Fig. 1. Electrophoretic and immunoblot analyses of venom proteins in Leptopilina
species. Venom reservoirs were dissected in insect Ringer solution supplemented
with a protease inhibitors cocktail (PI; Roche) and residual tissues were removed by
centrifugation. The total protein content of 10 L. boulardi ISm (lbm), 10 L. boulardi
ISy (lby) and 10 L. heteretoma (lh) venom reservoirs was split in two, each part being
run on a 10% SDS–PAGE under reducing conditions. One gel (a) was silver stained,
the other (b) blotted onto nitrocellulose and used for immunodetection of LbGAP
(rabbit polyclonal antibody; Labrosse et al., 2005) and LbSPN (rabbit polyclonal
antibody raised against a synthetic peptide). Chemiluminescence signal detection
was performed after incubation with a goat anti-rabbit IgG horseradish peroxidase
conjugate. Positions of LbSPNy, LbSPNm and LbGAP venom proteins are indicated.
Molecular weight standards in kDa.



tions might be correlated with changes in parasitoid virulence and
are worth to be taken into consideration.

Altogether, these preliminary data demonstrate the occurrence
of parasitoid venom variability at the individual level, both in field
populations and laboratory strains, in different phylogenetic
groups. The consistent variability observed in parasitoid venom,
even with a low number of tested individuals, suggest a large po-
tential for rapid adaptation of parasitoids to changes in host phys-
iology or host species.

4. Conclusion

Thanks to new impressive technological steps, our knowledge
of parasitoid venom proteins will rapidly increase. cDNA can now
be extracted and sequenced from nanogram amounts by next gen-
eration sequencing (Head et al., 2011), and less than picograms
amount of peptides can be identified by mass spectrometry (Bant-
scheff et al., 2008). The sequencing of endoparasitoid genomes will
allow wide population analyses of venom transcripts and proteins,
thus leading to accurate estimations of individual variation. Para-
sitoid wasps however represent a large and diverse group and sim-
plest approaches, such as individual electrophoretic comparisons,
may remain of interest for species without genome sequence sup-
port. Regarding genetic approaches, RNA interference techniques
have proved efficient in an ectoparasitoid wasp (Lynch and Des-
plan, 2006; Werren et al., 2009), and their development for endo-
parasitoids will be crucial. By helping determining if a given
protein plays a role in parasitoid virulence, it will both allow to

focus studies on essential proteins, and to obtain venom protein
markers under selection for population approaches.
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