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Abstract

We present an explicit hybridizable discontinuous Galerkin (HDG) method
for numerically solving the system of three-dimensional (3D) time-domain
Maxwell equations. The method is fully explicit similarly to classical so-
called DGTD (Discontinuous Galerkin Time-Domain) methods that have
been extensively studied during the last 15 years for the simulation of time-
domain electromagnetic wave propagation. This HDGTD (Hybridizable
Discontinuous Galerkin Time-Domain) method is also high-order accurate
in both space and time and can be seen as a generalization of the classical
DGTD scheme based on upwind fluxes. In particular, it coincides with the
latter scheme for a particular choice of the stabilization parameter introduced
in the definition of numerical traces in the HDG framework. It posseses a
superconvergence property that allows, by means of local postprocessing, to
obtain new improved approximations of the variables at any time levels. In
particular, the new approximation converge with order k + 1 instead of k in
the Hcurl-norm for k ≥ 1 .The proposed method has been implemented for
dealing with general 3D problems. We provide numerical results aiming at
assessing its numerical convergence properties by considering first a model
problem. Then, this HDGTD method is applied to a classical scattering
problem.
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1. Motivations and objectives

1.1. Generalities about the DGTD method
During the last ten years, the DGTD method has progressively emerged

as a viable alternative to well established FDTD (Finite Difference Time-
Domain) [1] and FETD (Finite Element Time-Domain) [2] methods for the
numerical simulation of electromagnetic wave propagation problems in the
time-domain.

The DGTD method can be considered as a finite element method where
the continuity constraint at an element interface is released. While it keeps
almost all the advantages of the finite element method (large spectrum of
applications, complex geometries, etc.), the DGTD method has other nice
properties which explain the renewed interest it gains in various domains in
scientific computing:

- It is naturally adapted to a high order approximation of the unknown
field. Moreover, one may increase the degree of the approximation in
the whole mesh as easily as for spectral methods but, with a DGTD
method, this can also be done locally i.e. at the mesh cell level. In most
cases, the approximation relies on a polynomial interpolation method
but the method also offers the flexibility of applying local approximation
strategies that best fit to the intrinsic features of the modeled physical
phenomena.

- When the discretization in space is coupled to an explicit time integra-
tion method, the DG method leads to a block diagonal mass matrix
independently of the form of the local approximation (e.g the type of
polynomial interpolation). This is a striking difference with classical,
continuous FETD formulations. Moreover, the mass matrix is diagonal
if an orthogonal basis is chosen.

- It easily handles complex meshes. The grid may be a classical con-
forming finite element mesh, a non-conforming one or even a hybrid
mesh made of various elements (tetrahedra, prisms, hexahedra, etc.).
The DGTD method has been proven to work well with highly locally
refined meshes. This property makes the DGTD method particularly
well suited to the design of a hp-adaptive solution strategy (i.e. where
the characteristic mesh size h and the interpolation degree p changes
locally wherever it is needed).

- It is flexible with regards to the choice of the time stepping scheme.
One may combine the discontinuous Galerkin spatial discretization with
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any global or local explicit time integration scheme, or even implicit,
provided the resulting scheme is stable.

- It is naturally adapted to parallel computing. As long as an explicit
time integration scheme is used, the DGTD method is easily paral-
lelized. Moreover, the compact nature of method is in favor of high
computation to communication ratio especially when the interpolation
order is increased.

As in a classical finite element framework, a discontinuous Galerkin formula-
tion relies on a weak form of the continuous problem at hand. However, due
to the discontinuity of the global approximation, this variational formulation
has to be defined at the element level. Then, a degree of freedom in the
design of a discontinuous Galerkin scheme stems from the approximation of
the boundary integral term resulting from the application of an integration
by parts to the element-wise variational form. In the spirit of finite volume
methods, the approximation of this boundary integral term calls for a nu-
merical flux function which can be based on either a centered scheme or an
upwind scheme, or a blend of these two schemes.

1.2. DGTD methods for time-domain electromagnetics
In the early 2000’s, DGTD methods for time-domain electromagnetics

have been studied by a few groups of researchers, most of then from the applied
mathematics community. One of the most significant contributions is due to
Hesthaven and Warburton [3] in the form of a high order nodal DGTD method
formulated on unstructured simplicial meshes. The proposed formulation is
based on an upwind numerical flux, nodal basis expansions on a triangle (2D
case) and a tetrahedron (3D case) and a Runge-Kutta time stepping scheme.
In [4], Kakbian et al. describe a rather similar approach. More precisely, the
authors develop a parallel, unstructured, high order DGTD method based on
simple monomial polynomials for spatial discretization, an upwind numerical
flux and a fourth-order Runge-Kutta scheme for time marching. The method
has been implemented with hexahedral and tetrahedral meshes. A high
order DGTD method based on a strong stability preserving Runge-Kutta
time scheme has been studied by Chen et al. [5]. The authors also present
post-processing techniques that can double the convergence order. A locally
divergence-free DGTD method is formulated and studied by Cockburn et al.
in [6]. In the same period, a high order nodal DGTD method formulated
on unstructured simplicial meshes has also been proposed by Fezoui et al.
[7]. However, contrary to the DGTD methods discussed in [3] and [4], the
method proposed in [7] is non-dissipative thanks to a combination of a
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centered numerical flux with a second-order leap-frog time stepping scheme.
The DGTD method has then been progressively considered and extended to
increasingly more complex modeling situations by groups of researchers in the
applied electromagnetics and electrical engineering communities for a wide
variety of applications related to aeronautics, defense, semiconductor device
fabrication, etc. [8]-[9]-[10]-[11]-[12]-[13]-[14] to cite a few. More recently,
the method has also been adopted and further developed by researchers in
the nano-optics domain [15]-[16]-[17]-[18]. A full review of the nowadays
numerous applications of DGTD methods would certainly require more than
a simple paragraph. Also worth to note, the DGTD method has been
implement in commercial software such HFSS-TD (the time-domain version
of the well-known HFSS software used for antenna design) [19].

1.3. Explicit versus implicit DGTD methods
From the above discussion, it is clear that the DGTD method is nowadays

a very popular numerical method in the computational electromagnetics com-
munity. The works mentioned so far are mostly concerned with time explicit
DGTD methods relying on the use of a single global time step computed so
as to ensure stability of the simulation. It is however well known that when
combined with an explicit time integration method and in the presence of an
unstructured locally refine mesh, a high order DGTD method suffers from
a severe time step size restriction. A possible alternative to overcome this
limitation is to use smaller time steps, given by a local stability criterion,
precisely where the smallest elements are located. The local character of a DG
formulation is a very attractive feature for the development of explicit local
time stepping schemes. Such techniques have been developed for the second
order wave equation discretized in space by a DG method [20]-[21]. In [22],
a second order symplectic local time stepping DGTD method is proposed
for Maxwell’s equations in a non-conducting medium, based on the Störmer-
Verlet method. Grote and Mitkova derived local time-stepping methods of
arbitrarily high accuracy for Maxwell’s equations from the standard leap-frog
scheme [23]. In [24], Taube et al. also proposed an arbitrary high order local
time-stepping method based on ADER DG approach for Maxwell’s equation.
An alternative approach that has been considered in [25]-[26] is to use a
hybrid explicit-implicit (or locally implicit) time integration strategy. Such a
strategy relies on a component splitting deduced from a partitioning of the
mesh cells in two sets respectively gathering coarse and fine elements. In these
works, a second order explicit leap-frog scheme is combined with a second
order implicit Crank-Nicolson scheme in the framework of a non-dissipative
(centered flux based) DG discretization in space. At each time step, a large
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linear system must be solved whose structure is partly diagonal (for those
rows of the system associated to the explicit unknowns) and partly sparse
(for those rows of the system associated to the implicit unknowns). The
computational efficiency of this locally implicit DGTD method depends on
the size of the set of fine elements that directly influences the size of the
sparse part of the matrix system. Therefore, an approach for reducing the
size of the subsystem of globally coupled (i.e. implicit) unknowns is worth
considering if one wants to solver very large-scale problems.

A particularly appealing solution in this context is given by the concept
of hybridizable discontinuous Galerkin (HDG) method. The HDG method
has been first introduced by Cockbrun et al. in [27] for a model elliptic
problem and has been subsequently developed for a variety of PDE systems
in continuum mechanics [28]. The essential ingredients of a HDG method are

1. a local Galerkin projection of the underlying system of PDEs at the
element level onto spaces of polynomials to parametrize the numerical
solution in terms of the numerical trace,

2. a judicious choice of the numerical flux to provide stability and consis-
tency,

3. a global jump condition that enforces the continuity of the numerical
flux to arrive at a global weak formulation in terms of the numerical
trace.

HDG methods are fully implicit, high-order accurate and endowed with
several unique features which distinguish themselves from other discontinuous
Galerkin methods. Most importantly, they reduce the globally coupled
unknowns to the approximate trace of the solution on element boundaries,
thereby leading to a significant reduction in the degrees of freedom. HDG
methods for the system of time-harmonic Maxwell equations have been
proposed in [29]-[30]-[31].

1.4. Objectives of this work
As mentioned previously, HDG methods are essentially fully implicit.

Our ultimate goal is to devise a high order hybrid explicit-implicit HDG
method. A preliminary step considered in this work is therefore to elaborate
on the principles of a fully explicit HDG formulation. It happens that fully
explicit HDG methods have been studied recently for acoustic wave equation
by Kronbichler al. [32] and Stanglmeier al. [33]. The work reported in
[32] is in fact a comparison of implicit and explicit HDG formulations. In
the explicit HDG scheme, the trace of the acoustic pressure on a face is
computed from the solution of the two elements adjacent to the face at the
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old time step. The adopted time integration schemes are diagonally implicit
and explicit Runge-Kutta schemes. The conclusion of this study is that
for the considered acoustic wave propagation problems, the computing time
per time step is much lower for the explicit scheme, which is two orders
of magnitude more efficient than the implicit scheme despite the stability
restriction on the time step of the explicit scheme. In [33] the authors present
a fully explicit, high order accurate in both space and time HDG method.
The method coincides with the classical upwind flux-based DG method for a
particular choice of the stabilization parameter in the HDG numerical traces.
Time integration is obtained by a strong stability preserving Runge-Kutta
scheme. This HDG method provides an optimal convergence rate for the
solution and its gradient and is amenable to local post-processing to obtain a
superconvergence property with a rate k + 2 if k, k ≥ 1, is the interpolation
order in the L2-norm, depending on the form of the numerical fluxes.

In this paper we propose a fully explicit high order accurate HDG method
for the solution of the system of time-domain Maxwell equations. We adopt
a low storage Runge-Kutta scheme [34] for the time integration of the semi-
discrete HDG equations. It also provides an optimal convergence rate for the
solution and is amenable to local post-processing to obtain a superconvergence
property with a rate k + 1 if k ≥ 1 is the interpolation order in the Hcurl-
norm instead of k. As in [33], we show that for a particular choice of the
stabilization parameter in the definition of the HDG numerical traces, we
recover the classical upwind flux-based DG method [3]. This work is a first
step towards the construction of a hybrid explicit-implicit HDG method for
time-domain electromagnetics.

2. Problem statement and notations

2.1. Initial and boundary value prolem
We consider the system of 3D time-domain Maxwell’s equations on a

bounded polyhedral domain Ω ⊂ R3{
ε∂tE− curl H = −J, in Ω× [0, T ],

µ∂tH + curl E = 0, in Ω× [0, T ],
(1)

where the symbol ∂t denotes a time derivate, J the current density, T a final
time, E(x, t) and H(x, t) are the electric and magnetic fields. The relative
dielectric permittivity ε and the relative magnetic permeability µ are varying
in space, time-invariant and both positive functions. The boundary of Ω is
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defined as ∂Ω = Γm ∪ Γa with Γm ∩ Γa = ∅. The boundary conditions are
choosen as 

n×E = 0, on Γm × [0, T ],

n×E + n× (n×H) = n×Einc + n× (n×Hinc)

= ginc, on Γa × [0, T ].

(2)

Here n denotes the unit outward normal to ∂Ω and (Einc,Hinc) a given
incident field. The first boundary condition is often referred as a metallic
boundary condition and is applied on a perfectly conducting surface. The
second relation is an absorbing boundary condition and takes here the form
of the Silver-Müller condition. It is applied on a surface corresponding to
an artificial truncature of a theoretically unbounded propagation domain.
Finally, the system is supplemented with inital conditions: E0(x) = E(x, 0)
and H0(x) = H(x, 0). For sake of simplicity, we omit the volume source term
J in what follows.

2.2. Notations and approximation spaces
We consider a partition Th of Ω ⊂ R3 into a set of tetraedra. Each

non-empty intersection of two elements K+ and K− is called an interface.
We denote by FIh the union of all interior interfaces of Th, by FBh the union of
all boundary interfaces of Th, and Fh = FIh ∪ FBh . Note that ∂Th represents
all the interfaces ∂K for all K ∈ Th. As a result, an interior interface shared
by two elements appears twice in ∂Th, unlike in Fh where this interface is
evaluated once. For an interface F ∈ FIh , F = K

+∩K−, let v± be the traces
of v on F from the interior of K±. On this interior face, we define mean
values {·} and jumps J·K as {v}F =

1

2
(v+ + v−),

JvKF = n+ × v+ + n− × v−,

where the unit outward normal vector to K is denoted by n±. For the
boundary faces these expressions are modified as{

{v}F = v+,

JvKF = n+ × v+.

since we assume v is single-valued on the boundaries. In the following, we
introduce the discontinuous finite element spaces and some basic operations
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on these spaces for later use. Let PpK (K) denotes the space of polynomial
functions of degree at most pK on the element K ∈ Th. The discontinuous
finite element space is as usual defined as

Vh =
{

v ∈
[
L2(Ω)

]3 such that v|K ∈ [PpK (K)]3 , ∀K ∈ Th
}
, (3)

where L2(Ω) is the space of square integrable functions on the domain Ω.
The functions in Vh are continuous inside each element and discontinuous
across the interfaces between elements. In addition, we introduce a traced
finite element space Mh

Mh =
{
η ∈

[
L2(Fh)

]3 such that η|F ∈ [PpF (F )]3

and (η · n) |F = 0, ∀F ∈ Fh} .
(4)

Let us define D as a domain in R3. For two vectorial functions u and v
in
[
L2(D)

]3, we denote (u,v)D =
∫
D u · v dx , and we denote < u,v >F=∫

F u · v ds if F is a two-dimensional face. Accordingly, for the mesh Th we
have

(·, ·)Th =
∑
K∈Th

(·, ·)K , 〈·, ·〉∂Th =
∑
K∈Th

〈·, ·〉∂K ,

〈·, ·〉Fh
=
∑
F∈Fh

〈·, ·〉F , 〈·, ·〉Γa
=

∑
F∈Fh∩Γa

〈·, ·〉F .

We set vt = −n× (n× v) , vn = n (n · v) where vt and vn are the tangen-
tial and normal components of v such as v = vt + vn.

3. Principles and formulation of the HDG method

3.1. Global formulation
Following the classical DG approach, approximate solutions (Eh,Hh), for

all t ∈ [0, T ], are seeked in the space Vh ×Vh satisfying for all K in Th{
(ε∂tEh,v)K − (curl Hh,v)K = 0, ∀v ∈ Vh,

(µ∂tHh,v)K + (curl Eh,v)K = 0, ∀v ∈ Vh.
(5)

Applying Green’s formula, on both equations of (5) introduces boundary
terms which are replaced by numerical traces Êh and Ĥh in order to ensure
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the connection between element-wise solutions and global consistency of the
discretization. This leads to the formulation for all t ∈ [0, T ]

(ε∂tEh,v)K − (Hh, curl v)K +
〈
Ĥh,n× v

〉
∂K

= 0, ∀v ∈ Vh,

(µ∂tHh,v)K + (Eh, curl v)K −
〈
Êh,n× v

〉
∂K

= 0, ∀v ∈ Vh.
(6)

It is straightforward to verify that n × v = n × vt and < H,n × v >=
− < n×H,v >. Therefore, using numerical traces defined in terms of the
tangential components Ĥt

h and Êt
h, we can rewrite (6) as

(ε∂tEh,v)K − (Hh, curl v)K +
〈
Ĥt
h,n× v

〉
∂K

= 0, ∀v ∈ Vh,

(µ∂tHh,v)K + (Eh, curl v)K −
〈
Êt
h,n× v

〉
∂K

= 0, ∀v ∈ Vh.
(7)

The hybrid variable Λh introduced in the setting of a HDG method [27] is
here defined for all the interfaces of Fh as

Λh := Ĥt
h, ∀F ∈ Fh. (8)

We want to determine the fields Ĥt
h and Êt

h in each element K of Th by
solving system (7) and assuming that Λh is known on all the faces of an
element K. We consider a numerical trace Êt

h for all K given by

Êt
h = Et

h + τKn× (Λh −Ht
h) on ∂K, (9)

where τK is a local stabilization parameter which is assumed to be strictly
positive. We recall that n × Ht

h = n × Hh. Note that the definitions of
the hybrid variable (8) and numerical trace (9) are exactly those adopted in
the context of the formulation of HDG methods for the 3D time-harmonic
Maxwell equations [29]-[31].

Remark 1. In a classical DG method the traces of the local fields Eh and
Hh between neighboring elements are defined as

Êh = {Eh}+ αHJHhK and Ĥh = {Hh}+ αEJEhK,

where αH and αE are positive penalty parameters.

Remark 2. Following the HDG approach, when the hybrid variable Λh is
known for all the faces of the element K, the electromagnetic field can be
determined by solving the local system (7) using (8) and (9).
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For the sake of simplicity, we denote by ginc the L2 projection of ginc on Mh.
Summing the contributions of (7) over all the elements and enforcing the
continuity of the tangential component of Êh, we can formulate a problem
which is to find (Eh,Hh,Λh) ∈ Vh ×Vh ×Mh such that for all t ∈ [0, T ]

(ε∂tEh,v)Th − (Hh, curl v)Th + 〈Λh,n× v〉∂Th = 0, ∀v ∈ Vh,

(µ∂tHh,v)Th + (Eh, curl v)Th −
〈
Êt
h,n× v

〉
∂Th

= 0, ∀v ∈ Vh,〈
JÊhK,η

〉
Fh

− 〈Λh,η〉Γa
−
〈
ginc,η

〉
Γa

= 0, ∀η ∈Mh,

(10)

where the last equation is called the conservativity condition with which
we ask the tangential component of Êh to be weakly continuous across any
interface between two neighboring elements.
The main principles of the HDG method can be summarized as

1. The DoFs (Degrees of Freedoms) of the hybrid variable are determined
by solving a global linear system (from the discretization of the conser-
vation condition) supported by the interfaces of Fh;

2. The DoFs of the electromagnetic field in each element are evaluated by
solving local linear systems, more exactly for the DoFs of (Eh,Hh) in
the considered element.

3.2. Reformulation with numerical fluxes
From the third equation of (10) we have〈

JÊt
hK,η

〉
FI

h

= 0 ∀η ∈Mh ∩ {η = 0 on (Fh ∩ Γm) ∪ (Fh ∩ Γa)}.

Now, let us prove that the function

η1 =

{
JÊt

hK on FIh
0 on (Fh ∩ Γm) ∪ (Fh ∩ Γa)

belongs to the space Mh ∩ {η = 0 on (Fh ∩ Γm) ∪ (Fh ∩ Γa)},

First it is clear that n · η1|F = 0 forall F ∈ FIh and we have

JÊt
hK = n+ × Êt,+

h + n− × Êt,−
h

= n+ ×E+
h|K+ + τK+n+ × n+ × (Λh −H+

h|K+)

+ n− ×E−
h|K− + τK−n− × n− × (Λh −H−

h|K−).
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Since K is a bounded domain and n is constant on every face we have that(
n×Eh|K

)
|F and

(
n×Hh|K

)
|F are bounded polynoms in [PpF (F )]3 ∀F ∈

∂K, which implies that η1 ∈
[
L2 (Fh)

]3 and η1|F ∈ [PpF (F )]3 ∀F ∈ ∂K.

We obtain
〈
JÊt

hK,η1

〉
FI

h

= ||JÊt
hK||2 = 0, which is equivalent to JÊt

hKFI
h

= 0.

From (9), we have

JEt
h + τn× (Λh −Ht

h)KFI
h

= 0,

by expanding we obtain

JEt
hKF − (τK+ + τK−) Λh + τK+Ht,+

h + τK−Ht,−
h = 0 ∀F ∈ FIh ,

yielding

Λh =
1

τK+ + τK−

(
JEt

hKF + τK+Ht,+
h + τK−Ht,−

h

)
∀F ∈ FIh . (11)

Proceeding similarly for an absorbing boundary face and for a metalic bound-
ary face, the conservativity condition writes

〈
n× Êt

h −Λh − ginc,η
〉

Γa

= 0

and
〈
n× Êt

h,η
〉

Γm

= 0. In particular, for an absorbing boundary face

n× Êt
h −Λh − ginc = 0 on Γa,

and by (9) we have

n×Et
h − (τK + 1)Λh + τKHt

h − ginc = 0 on Γa.

Proceeding similarly for the metalic boundary and summarizing, we obtain

Λh =



1

τK+ + τK−

(
2
{
τKHt

h

}
F

+ JEt
hKF
)
, if F ∈ FIh ,

1

τK
n×Et

h + Ht
h, if F ∈ Fh ∩ Γm,

1

τK + 1

(
τKHt

h + n×Et
h − ginc) . if F ∈ Fh ∩ Γa.

(12)

By replacing (12) in (9) we obtain Êt
h = Êt,+

h = Êt,−
h with

Êt
h =



τK+τK−

τK+ + τK−

(
2

{
1

τK
Et
h

}
F

− JHt
hKF
)
, if F ∈ FIh ,

0, if F ∈ Fh ∩ Γm,

1

τK + 1

(
Et
h − τKn×Ht

h − τKn× ginc) . if F ∈ Fh ∩ Γa.

(13)
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Thus, the numerical traces (8) and (9) have been reformulated from the
conservativity condition. This means that the conservativity condition is now
included in the new formulation of the numerical fluxes and can be omitted
in the global system of equations. Hence, the local system (6) takes the form
of a classical DG formulation, for all v ∈ Vh

(ε∂tEh,v)K − (Hh, curl v)K +
〈
Ĥt
h,n× v

〉
∂K

= 0,

(µ∂tHh,v)K + (Eh, curl v)K −
〈
Êt
h,n× v

〉
∂K

= 0.
(14)

where the numerical fluxes are defined by (12) and (13).

Remark 3. Let YK =

√
εK
µK

be the local admittance associated to cell K

and ZK = 1/YK the corresponding local impedance. If we set τK = ZK in
(12) and 1/τK = YK in (13), the obtained numerical traces coincide with
those adopted in the classical upwind flux DGTD method [3].

3.3. Stability and conservation properties
3.3.1. Formulation

After summing the two equations of the local formulation (14) we obtain
∀υ′h ∈ Vh = Vh ×Vh(

λ∂tυh,υ
′
h

)
K

=
(
υh, ζK(υ′h)

)
K
−
〈
Fτ
K,h(υh),υ′h

〉
∂K

, (15)

where υh =

(
Hh

Eh

)
, λ = diag(µ, ε) and for all K ∈ Th, for all υ ∈ Vh

ζK (υ) =

(
curl

(
υ2/K

)
− curl

(
υ1/K

)) .
Assuming τ is constant in Th and ginc = 0, the numerical flux Fτ

K,h is defined
on ∂K by

Fτ
K,h(υ)|∂K∩FI

h
=

 τ

2

(
2

τ
n× {υ2} − n× Jυ1K

)
− 1

2τ
(2τn× {υ1}+ n× Jυ2K)

 ,

and

Fτ
K,h(υ)|∂K∩Γm

=

(
0

1

τ
(n× n× υ2) + n× υ1

)
,
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Fτ
K,h(υ)|∂K∩Γa

=

− 1

τ + 1
(n× υ2) +

τ

τ + 1
(n× n× υ1)

τ

τ + 1
(n× υ1) +

1

τ + 1
(n× n× υ2)

 .

For the global weak formulation we define for all υ ∈ Vh

ζh (υ) =

(
curlh (υ2)
− curlh (υ1)

)
,

with curlh is the piecewise curl operator defined on each K and for all bh as
(curlh (bh))|K = curl

(
bh|K

)
. The bilinear formsm, a, bτ defined on Vh×Vh

such that, for all (υ,υ′) ∈ Vh × Vh

m(υ,υ′) = (υ,υ′)λ = (λυ,υ′)Th
a(υ,υ′) = (υ, ζh(υ′))Th

bτ (υ,υ′) =
〈
{υ2} , Jυ′1K

〉
FI

h
− τ

2

〈
Jυ1K, Jυ′1K

〉
FI

h
−
〈
{υ1} , Jυ′2K

〉
FI

h

− 1

2τ

〈
Jυ2K, Jυ′2K

〉
FI

h
− 1

τ

∫
Γm

(n× υ2) ·
(
n× υ′2

)
+

∫
Γm

(n× υ1) · υ′2 −
1

τ + 1

∫
Γa

(n× υ2) · υ′1

− τ

τ + 1

∫
Γa

(n× υ1) ·
(
n× υ′1

)
+

τ

τ + 1

∫
Γa

(n× υ1) · υ′2

− 1

τ + 1

∫
Γa

(n× υ2) ·
(
n× υ′2

)

(16)

The global formulation of the semi-discrete HDG scheme writes as

m(∂tυh,υ
′
h) = a(υh,υ

′
h) + bτ (υh,υ

′
h). (17)

3.3.2. Semi-discrete stability
Definition
The energy function is defined on [0, T ] by

Eh(t) =
1

2

(
ε||Eh(t)||2 + µ||Hh(t)||2

)
=

1

2
m(υh,υh) =

1

2
||υh||2λ.

Proposition
∀τ > 0 the energy function Eh(t) decreases in time and Eh(t) < Eh(0) for all
t > 0.

13



Proof

By the formula ∂t||v||2 = 2 (∂tv,v) we have ∂tEh(t) = m(∂tυh,υh) and,

using the formula
∫
K

curl u · v =

∫
K

curl v · u +

∫
∂K

(n× u) · v,

we deduce from (17) that

∂tEh(t) = a(υh,υh) + bτ (υh,υh).

We have

a(υh,υh) = (υ1, curlυ2)Th − (υ1, curlυ2)Th = 0,

and

bτ (υh,υh) =−
〈
n× υ+

1 ,υ
+
2

〉
FI

h
+
〈
n× υ−1 ,υ

−
2

〉
FI

h
−
∫
∂Ω

(n× υ1) · υ2

+
1

2

〈
υ+

2 ,n× υ
+
1

〉
FI

h
− 1

2

〈
υ+

2 ,n× υ
−
1

〉
FI

h
+

1

2

〈
υ−2 ,n× υ

+
1

〉
FI

h

− 1

2

〈
υ−2 ,n× υ

−
1

〉
FI

h
− 1

2

〈
υ+

1 ,n× υ
+
2

〉
FI

h
− 1

2

〈
υ+

1 ,n× υ
−
2

〉
FI

h

− 1

2

〈
υ−1 ,n× υ

+
2

〉
FI

h
+

1

2

〈
υ−1 ,n× υ

−
2

〉
FI

h

− τ

2
||Jυ1K||2FI

h
− 1

2τ
||Jυ2K||2FI

h
+

1

τ + 1

∫
Γa

(n× υ1) · υ2

+

∫
Γm

(n× υ1) · υ2 +
τ

τ + 1

∫
Γa

(n× υ1) · υ2

− τ

τ + 1
||n× υ1||2Γa

− 1

τ
||n× υ2||2Γm

− 1

τ + 1
||n× υ2||2Γa

=− τ

2
||Jυ1K||2FI

h
− 1

2τ
||Jυ2K||2FI

h
− τ

τ + 1
||n× υ1||2Γa

− 1

τ
||n× υ2||2Γm

− 1

τ + 1
||n× υ2||2Γa

≤0 ∀τ > 0.

This result shows the L2-stability of the semi-discrete method. In particular,
this method is dissipative for the considered numerical trace for Êt

h in (9).

3.3.3. Fully discrete stability
For the sake of simplicity, we will consider Γa = ∅ in this section.

14



Notations
Let Lh : Vh → Vh; ∀(ι,ν) ∈ Vh × Vh we have

(Lhι,ν) = a(ι,ν) + bτ (ι,ν).

Then, from (17) we have

λ
d

dt
υh = Lh(υh)

Inverse estimations [35]

∀i ∈ {1, · · · , |Th|} ∃c1,i, c2,i > 0; || curl(u)||L2(Ki) ≤ c1,i h
−1||u||L2(Ki)

||u||L2(∂Ki) ≤ c2,i h
− 1

2 ||u||L2(Ki)

(18)
Lemma

∀ι ∈ Vh, ∃c > 0 , which depends on τ ; sup
ν∈Vh

| (Lhι,ν) |
||ν||Th

≤ c(τ)h−1||ι||Th
(19)

Proof

The proof is classical. Inverse estimations are used to upper bound the
operator Lh. First an upper bound for the bilinear form a is found, and then
we show how to upper bound the first term of bτ . The other terms of bτ can
be treated in the same way.

∀ι ∈ Vh,

sup
ν∈Vh

| (Lhι,ν) |
||ν||Th

= sup
ν∈Vh

|a(ι,ν) + bτ (ι,ν)|
||ν||Th

≤ sup
ν∈Vh

|a(ι,ν)|
||ν||Th

+ sup
ν∈Vh

|bτ (ι,ν)|
||ν||Th

.

First we have : ∀ι ∈ Vh,

|a(ι,ν)| =

∣∣∣∣∣∣
|Th|∑
i=1

(ι, ζKi(ν))Ki

∣∣∣∣∣∣
≤
|Th|∑
i=1

∣∣∣(ι, ζKi(ν))Ki

∣∣∣
≤
|Th|∑
i=1

||ι||Ki ||ζK(ν)||Ki

15



≤
|Th|∑
i=1

||ι||Ki

(
||curl(ν2/Ki

)||2Ki
+ ||curl(ν1/Ki

)||2Ki

) 1
2

≤
|Th|∑
i=1

||ι||Ki

([
c1,ih

−1||ν2/Ki
||Ki

]2
+
[
c1,ih

−1||ν1/Ki
||Ki

]2) 1
2

≤ c1h
−1

|Th|∑
i=1

||ι||Ki ||ν||Ki (c1 = max
i∈{1,··· ,|Th|}

c1,i)

≤ c1h
−1

 |Th|∑
i=1

||ι||2Ki

 1
2
 |Th|∑
i=1

||ν||2Ki

 1
2

≤ c1h
−1||ι||Th ||ν||Th .

Therefore
sup
ν∈Vh

|a(ι,ν)|
||ν||Th

≤ c1h
−1||ι||Th .

Second we have ∀ι ∈ Vh,

|bτ (ι,ν)| =| 〈{ι2} , Jν1K〉FI
h
− τ

2
〈Jι1K, Jν1K〉FI

h
− 〈{ι1} , Jν2K〉FI

h

− 1

2τ
〈Jι2K, Jν2K〉FI

h
− 1

τ

∫
Γm

(n× ι2) · (n× ν2)

+

∫
Γm

(n× ι1) · ν2|

≤
∣∣∣〈{ι2} , Jν1K〉FI

h

∣∣∣+
τ

2

∣∣∣〈Jι1K, Jν1K〉FI
h

∣∣∣+
∣∣∣〈{ι1} , Jν2K〉FI

h

∣∣∣
+

1

2τ

∣∣∣〈Jι2K, Jν2K〉FI
h

∣∣∣+
1

τ

∫
Γm

|(n× ι2) · (n× ν2)|

+

∫
Γm

| (n× ι1) · ν2|.
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We want to expand the first term and all others terms are treated similarly:

∣∣∣〈{ι2} , Jν1K〉FI
h

∣∣∣ =

∣∣∣∣∣∣
∑
F∈FI

h

1

2

〈
ι+2 + ι−2 ,n× (ν+

1 − ν
−
1 )
〉
F

∣∣∣∣∣∣
≤
∑
F∈FI

h

1

2
(||ι+2 ||F + ||ι−2 ||F )(||ν+

1 ||F + ||ν−1 ||F )

≤
|Th|∑
i=1

∑
F∈∂Ki

1

2
(||ι+2 ||F + ||ι−2 ||F )(||ν+

1 ||F + ||ν−1 ||F )

≤ 1

2

|Th|∑
i=1

∑
F∈∂Ki

[
||ι+2 ||F ||ν

+
1 ||F + ||ι+2 ||F ||ν

−
1 ||F +

||ι−2 ||F ||ν
+
1 ||F + ||ι−2 ||F ||ν

−
1 ||F

]

≤ 1

2

|Th|∑
i=1

[
4||ι2||∂Ki

||ν1||∂Ki
+
∑
j∈νi

(
||ι2||∂Kj

||ν1||∂Kj
+

||ι2||∂Kj
||ν1||∂Ki

+ ||ι2||∂Ki
||ν1||∂Kj

)]

≤ 1

2

|Th|∑
i=1

[
4||ι2||∂Ki

||ν1||∂Ki
+
∑
j∈νi

||ι2||∂Kj
||ν1||∂Kj

+

||ν1||∂Ki

∑
j∈νi

||ι2||∂Kj
+ ||ι2||∂Ki

∑
j∈νi

||ν1||∂Kj

]

≤ 2

|Th|∑
i=1

||ι2||∂Ki
||ν1||∂Ki

+
1

2

|Th|∑
i=1

∑
j∈νi

||ι2||∂Kj
||ν1||∂Kj

+
1

2

|Th|∑
i=1

||ν1||∂Ki

∑
j∈νi

||ι2||∂Kj

+
1

2

|Th|∑
i=1

||ι2||∂Ki

∑
j∈νi

||ν1||∂Kj

 .

Since we are in R3 every Ki has 4 neighbours except the cells on the boundary
(i.e |νi| ≤ 4)

1

2

|Th|∑
i=1

∑
j∈νi

||ι2||∂Kj
||ν1||∂Kj

≤ 2

|Th|∑
i=1

||ι2||∂Ki
||ν1||∂Ki

,
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and we also have that

1

2

|Th|∑
i=1

||ν1||∂Ki

∑
j∈νi

||ι2||∂Kj

 ≤ 1

2

 |Th|∑
i=1

||ν1||2∂Ki

 1
2
 |Th|∑
i=1

∑
j∈νi

||ι2||∂Kj

2
1
2

.

By using the well known formula (a1 + a2)2 ≤ 2(a2
1 + a2

2) so by induction we
have (

4∑
i=1

ai

)2

≤ 8a2
1 + 8a2

2 + 4a2
3 + 2a2

4 ≤ 8

4∑
i=1

a2
i

⇒

 |Th|∑
i=1

∑
j∈νi

||ι2||∂Kj

2
1
2

≤

 |Th|∑
i=1

8
∑
j∈νi

||ι2||2∂Kj

 1
2

≤ 4
√

2

 |Th|∑
i=1

||ι2||2∂Ki

 1
2

,

which implies

1

2

|Th|∑
i=1

||ν1||∂Ki

∑
j∈νi

||ι2||∂Kj

 ≤ 2
√

2

 |Th|∑
i=1

||ν1||2∂Ki

 1
2
 |Th|∑
i=1

||ι2||2∂Ki

 1
2

.

So for now we have

∣∣∣〈{ι2} , Jν1K〉FI
h

∣∣∣ ≤ 4

|Th|∑
i=1

||ι2||∂Ki
||ν1||∂Ki

+ 4
√

2

 |Th|∑
i=1

||ν1||2∂Ki

 1
2
 |Th|∑
i=1

||ι2||2∂Ki

 1
2

≤ 4(1 +
√

2)

 |Th|∑
i=1

||ν1||2∂Ki

 1
2
 |Th|∑
i=1

||ι2||2∂Ki

 1
2

.

From the inverse estimations (18) we deduce

≤ 4c2
2(1 +

√
2)h−1

 |Th|∑
i=1

||ν1||2Ki

 1
2
 |Th|∑
i=1

||ι2||2Ki

 1
2

≤ c3h
−1||ι2||Th ||ν1||Th .
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Since ||ι||Th =
(
||ι1||2Th + ||ι2||2Th

) 1
2 and the same for ||ν||Th finally we have∣∣∣〈{ι2} , Jν1K〉FI

h

∣∣∣ ≤ c3h
−1||ι||Th ||ν||Th .

Back to bτ we deduce that

|bτ (ι,ν)| ≤ c3 max

(
1,

1

τ
,
τ

2

)
h−1||ι||Th ||ν||Th

⇒ sup
ν∈Vh

|bτ (ι,ν)|
||ν||Th

≤ c3 max

(
1,

1

τ
,
τ

2

)
h−1||ι||Th .

Finally

sup
ν∈Vh

| (Lhι,ν) |
||ν||Th

≤
[
c1 + c3 max

(
1,
τ

2
,

1

τ

)]
h−1||ι||Th .

Remark: this proof is valid in the case of a uniform mesh. For the case
of a quasi uniform mesh, i.e. ∃η > 0 (independent of h); ∀Ki ∈ Th, ∀j ∈

νi,
hi
hj
≤ η, the constant c(τ) of the lemma (19) will be replaced by c(τ)η.

Proposition
Let τ ≥ 0. Under a 4

3 − CFL condition, i.e ∆t ≤ c(τ)h
4
3 , the explicit

HDGTD scheme is stable in finite time for a Runge-Kutta discretisation.

Proof
Let us study the variation of the energy defined by Enh = 1

2 ||υ
n
h||2λ.

We have
λ
d

dt
υh = Lh(υh).

We propose to study a Runge-Kutta discretization, namely RK2. It can be
expressed in its two steps version as follows

ωn = υnh + ∆tλ−1Lh(υnh), ∀n ∈ N (20)

υn+1
h =

1

2
(υnh + ωn) +

1

2
∆tλ−1Lh(ωn), ∀n ∈ N (21)

After some manipulations we can deduce that

||υn+1
h ||2λ− ||υnh||2λ = ||υn+1

h −ωn||2λ + ∆t(Lh(υnh),υnh)Th + ∆t(Lh(ωn),ωn)Th
(22)
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Proof

We have

||υn+1
h − ωn||2λ = (υn+1

h − ωn,υn+1
h − ωn)λ

= ||υn+1
h ||2λ − 2(υn+1

h ,ωn)λ + (ωn,ωn)λ

= ||υn+1
h ||2λ − (υnh + ωn + ∆tλ−1Lh(ωn),υnh + ∆tλ−1Lh(υnh))λ

+ (ωn,ωn)λ

= ||υn+1
h ||2λ − ||υnh||2λ − (υnh,∆tλ

−1Lh(υnh))λ︸ ︷︷ ︸
a

− (ωn,υnh)λ︸ ︷︷ ︸
b

− (ωn,∆tλ−1Lh(υnh))λ︸ ︷︷ ︸
c

− (υnh,∆tλ
−1Lh(ωn))λ︸ ︷︷ ︸
d

− (∆tλ−1Lh(ωn),∆tλ−1Lh(υnh))λ︸ ︷︷ ︸
e

+ (ωn,ωn)λ︸ ︷︷ ︸
f

.

Recall that

• a = ∆t(Lh(υnh),υnh)Th

• d+ e = (∆tλ−1Lh(ωn),υnh + ∆tλ−1Lh(υnh)︸ ︷︷ ︸
ωn

)λ

= ∆t(Lh(ωn),ωn)Th

• −b− c+ f = (ωn,−υnh −∆tλ−1Lh(υnh)︸ ︷︷ ︸
−ωn

+ωn)λ = 0

So finally we have

||υn+1
h ||2λ−||υnh||2λ = ||υn+1

h −ωn||2λ+∆t(Lh(υnh),υnh)Th + ∆t(Lh(ωn),ωn)Th︸ ︷︷ ︸
≤ 0 (semi− discrete)

.

Furthermore from (21)

υn+1
h − ωn =

1

2
υnh −

1

2
ωn +

1

2
∆tλ−1Lh(ωn)

= −1

2
∆tλ−1Lh(υnh) +

1

2
∆tλ−1Lh(ωn)

= −1

2
∆tλ−1Lh(υnh − ωn).
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So we can deduce that

||υn+1
h − ωn||2λ = ||1

2
∆tλ−1Lh(υnh − ωn)||2λ

=
1

4
∆t2(λ−1Lh(υnh − ωn), λ−1Lh(υnh − ωn))λ

=
1

4
∆t2||Lh(υnh − ωn)||2λ−1

≤ 1

4
∆t2||Lh(υnh − ωn)||2λ.

From the lemma (19)

≤ 1

4
(∆tc1h

−1η)2||υnh − ωn||2λ,

(20) yields

≤ 1

4
(∆t2c1h

−1η)2(λ−1Lh(υnh), λ−1Lh(υnh))λ

≤ 1

4
(∆t2c1h

−1η)2||Lh(υnh)||2λ−1

≤ 1

4
(∆t2c1h

−1η)2||Lh(υnh)||2λ

≤ 1

4
(∆t2c1h

−1η)2(c2h
−1η)2||υnh||2λ

≤ 1

4
∆t4c3h

−4||υnh||2λ.

We can deduce from (22) that

1

2
||υn+1

h ||2λ −
1

2
||υnh||2λ ≤

1

8
∆t4c3h

−4||υnh||2λ

⇒En+1
h − Enh ≤

1

4
∆t4c3h

−4Enh .

so for ∆t ≤ c4h
4
3 we obtain by Gronwall’s lemma

∀n, En+1
h − Enh ≤ c5∆tEnh ⇒ Enh ≤ ec5TE0

h.
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From now on, we assume that the underlying mesh is conforming (i.e. without
hanging nodes) and that the interpolation degree is the same for each element
Ki, i.e. di = dj = d. In Annex , we show that for every Ki ∈ Th the local
system of semi-discrete equations can be written as

εi
(
Mi∂tEi

)
+
(
Ki ×Hi

)
+

∑
F∈∂Ki∩FI

h

1

τKi + τKj

SF,iV1,i +

∑
F∈∂Ki∩Γm

1

τKi

(
SF,iV2,i

)
+∑

F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V2,i + n× ginc

)
= 0,

µi
(
Mi∂tHi

)
−
(
Ki ×Ei

)
−

∑
F∈∂Ki∩FI

h

τKiτKj

τKi + τKj

SF,iV3,i −

∑
F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V4,i + τKiV

inc
F

)
= 0.

(23)

3.4. Time integration: Low-Storage Runge-Kutta (LSRK) method
For an equation of the form

∂tu = f(t, u),

the standard s-stage Runge-Kutta scheme writes

K1 = f(tn, u
n),

Ki = f

tn + ci∆t, u
n + ∆t

i−1∑
j=1

ai,jKj

 for i = 2, · · · , s,

un+1 = un + ∆t
s∑
j=1

bjKj .

We can easily see that this scheme is a sN -storage scheme where N is the
number of equations. In this situation the memory consumption can quickly
become a constraining factor for large problems. A possible solution is given
by Williamson [36], who shows that the RK scheme can be cast in 2N -storage
format that we will refer to a LSRK scheme

u1 = un

u2 = Aku2 + ∆tf(tn + ck∆t, u1)
u1 = u1 +Bku2

}
for k = 1, · · · , s

un+1 = u1
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Since Williamson [36] has demonstrated that the four-stage fourth-order (4,4)
RK scheme could not, in general, be implemented in the 2N -storage format,
we will use in this paper the LSRK(s = 5 , p = 4) proposed by Carpenter
and Kennedy [34] . Table 1 shows the coefficients of the method.
In our case

u =

(
E

H

)
and f(t, u) =

(M ε
)−1

[
−K×H−V1 −V2

1 −V2
2

]
(
Mµ

)−1
[
K×E + V3 + V4

]  .

Since we work with an explicit time discretization we choose the time step as

∆t = cp min
Ki∈τh

VKi

AKi

,

where VKi and AKi are respectively the volume and the area of cell Ki and
cp is an interpolation order-dependent constant.

4. Numerical results

The time explicit HDG method presented in the previous section has
been implemented in the 3D case considering conforming tetrahedral meshes.

4.1. Propagation of a standing wave in a cubic PEC cavity
In order to validate and study the numerical convergence of the proposed

HDG method, we consider the propagation of an eigenmode in a source-free
i.e J = 0 closed cavity (Ω is the unit square) with perfectly metallic walls.

Table 1: The values of the coefficients of the LSRK(5,4) scheme.

Coeff Value Coeff Value Coeff Value

A1 0 B1
1432997174477

9575080441755
c1 0

A2 − 567301805773

1357537059087
B2

5161836677717

1361206829357
c2

1432997174477

9575080441755

A3 −2404267990393

2016746695238
B3

1720146321549

2090206949498
c3

2526269341429

6820363962896

A4 −3550918686646

2091501179385
B4

3134564353537

4481467310338
c4

2006345519317

3224310063776

A5 −1275806237668

842570457699
B5

2277821191437

14882151754819
c5

2802321613138

2924317926251
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The frequency of the wave is f =
√

3
2 c0 where c0 is the speed of light in

vacuum. The electric permittivity and the magnetic permeability are set to
the constant vacuum values. The exact time-domain solution is given by

Ex(x, y, z, t) = − cos(πx) sin(πy) sin(πz) cos(ωt),
Ey(x, y, z, t) = 0,
Ez(x, y, z, t) = sin(πx) sin(πy) cos(πz) cos(ωt),

Hx(x, y, z, t) = −π
ω

sin(πx) cos(πy) cos(πz) sin(ωt),

Hy(x, y, z, t) =
2π

ω
cos(πx) sin(πy) cos(πz) sin(ωt),

Hz(x, y, z, t) = −π
ω

cos(πx) cos(πy) sin(πz) sin(ωt),

(24)

where the angular frequency is given by ω = 2πf (rad · s−1). The electromag-
netic field is initialized at t = 0 as Ey = Hx = Hy = Hz = 0 and{

Ex(x, y, z, t = 0) = − cos(πx) sin(πy) sin(πz),
Ez(x, y, z, t = 0) = sin(πx) sin(πy) cos(πz).

(25)

4.1.1. Uniform τ = 1

In order to insure the stability of the method, numerical CFL conditions
are determined for each value of the interpolation order pK . In our particular
case the relative εK and µk are constant = 1 forall K ∈ Th, so we have
verified that, as we said in Remark 3, for τ = 1, the values of the CFL
number correspond to those obained for the classical upwind flux-based DG
method. In Table 2 we summarize the maximum value of ∆t to insure the
stability of the HDG scheme

Interpolation order P1 P2 P3 P4

∆t max (s.) 0.32× 10−9 0.19× 10−9 0.13× 10−9 0.94× 10−10

Table 2: Numerically obtained values of ∆t max.

Given these values of ∆t, the L2-norm of the error is calculated for a uniform
tetrahedral mesh with 3072 elements which is constructed from a finite
difference grid with nx = ny = nz = 9 points, each cell of this grid yielding 6
tetrahedra. The wave is propagated in the cavity during a physical time tmax
corresponding to 8 periods. Figure 1 shows the time evolution of the exact
and the numerical solution of Ex at a fixed point in the mesh. Figure 2, shows
||E|| for 2 uniform meshes, the first is constituted by 384 elements and the
second by 3072 elements, for pK = 4. Figures 3 and 4 depicts a comparison of
the time evolution of the L2-norm of the error between the solution obtained
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with an HDG method and a classical upwind flux-based DG method for
different values of the interpolation order. An optimal convergence with order
pK + 1 is obtained as shown in Figure 5.

0 1 2 3

·10−8

−0.4

−0.2

0

0.2

0.4

Time(s.)

E
x

exact

numerical

Figure 1: Time evolution of the exact and the numerical solution of Ex at point
A(0.25, 0.25, 0.25) with a P3 interpolation.

Figure 2: The magnitude of E at a fixed time for two uniform meshes constituted by 384
and 3072 elements with a P4 interpolation.
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Figure 3: Time evolution of the L2-norm of the error for P1 and P2.
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Figure 4: Time evolution of the L2-norm of the error for P3 and P4.
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Figure 5: Numerical convergence order of the time explicit HDG method for τ = 1.
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4.1.2. Influence of τ
We keep the same case than previously and we assess the behavior of the

HDG method for various values of the penalization parameter τ . We have
seen in the fully discrete stability analysis that the CFL number depends
on τ , and numerically when we fixed ∆t to the value shown in Table 2
(corresponding to τ = 1) but changed the value of τ we observed that the
time evolution of the electromagnetic energy increases in time for any order of
interpolation . In fact, it is necessary to reevaluate the ∆t max for each value
of τ (see Figure 6). On Figure 7, we show the time evolution of the L2-error
for several values of τ with respect to the maximal ∆t for the considered
parameters. In addition, Table 4 summarizes the numerical results in term
of maximum L2-errors and convergence rates. It appears that the order of
convergence is not affected when we change the stabilization parameter (with
their associated CFL conditions).

Tau 0.1 1.0 2.0 5.0 10.0
∆t max (sec) 0.31×10−10 0.32×10−9 0.17×10−9 0.66×10−10 0.32×10−10

Table 3: Numerically obtained values of the CFL number as a function of the stabilization
parameter τ for a P1 interpolation.
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Figure 6: Variation of the ∆t max as a function of τ .
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Figure 7: Time evolution of the L2-error as a function of τ with a P3 interpolation.

τ = 1.0
1/h P1, ∆t = 0.16× 10−09 P2, ∆t = 0.99× 10−10 P3, ∆t = 0.66× 10−10

1/4 8.29e-02 - 9.87e-03 - 9.34e-04 -
1/8 1.90e-02 2.13 1.34e-03 2.88 5.68e-05 4.04
1/16 4.74e-03 2.00 1.72e-04 2.97 3.46e-06 4.04

τ = 0.1
1/h P1, ∆t = 0.16× 10−10 P2, ∆t = 0.96× 10−11 P3, ∆t = 0.66× 10−11

1/4 2.14e-01 - 1.78e-02 - 2.19e-03 -
1/8 5.46e-02 1.97 2.85e-03 2.65 1.68e-04 3.70
1/16 1.18e-02 2.21 4.06e-04 2.81 1.14e-05 3.88

τ = 10.0
1/h P1, ∆t = 0.16× 10−10 P2, ∆t = 0.96× 10−11 P3, ∆t = 0.68× 10−11

1/6 1.74e-01 - 1.53e-02 - 1.68e-03 -
1/12 4.24e-02 2.04 2.23e-03 2.76 1.17e-04 3.84
1/24 9.4e-03 2.16 3.10e-04 2.87 7.81e-06 3.91

Table 4: Maximum L2-errors and convergence orders.

4.2. Propagation of a plane wave in a homogeneous domain
We now consider the propagation of a plane wave in a homogeneous

domain. E0 and k are the polarisation and the wave vector. The electric
permittivity and the magnetic permeability are set to the constant vacuum
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values. The exact time-domain solution is given by
E(x, t) = E0

(
t−√µrεr

k · x
|k|

)
,

H(x, t) =

√
εr
µr

k

|k|
×E(x, t).

Figure 8 shows the time evolution of the exact and the numerical solution of
Ex at a fixed point in the domain. An optimal convergence with order pK + 1
is obtained as shown in Figure 9. Figure 10 shows the time evolution of the
L2-norm of the error with different polynomial orders.
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Figure 8: Time evolution of the exact and the numerical solution of Ex at point
A(0.25, 0.25, 0.25) with a P3 interpolation.
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Figure 9: Numerical convergence order of the time explicit HDG method for τ = 1.
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Figure 10: Time evolution of the L2-norm of the error for P1, P2 and P3.

4.3. Scattering of a plane wave by a dielectric sphere
We now consider a problem involving a dielectric sphere of radius 0.15

meter, with εr = 2 and µr = 1. The computational domain is bounded by
a cube of side 1 meter on which the Silver-Muller absorbing condition is
applied. A plane wave traveling in the z direction is considered, impinging in
normal incidence from the bottom. The numerical simulation is computed
for polynomial order P1 on a coarse mesh and P4 on a fine mesh (as seen
in Figure 11) with the particular stabilization parameter τK =

√
µK/
√
εK .

The solution obtained for P4 on a fine mesh will be considered as a reference
solution since we do not have access to the analytical solution in this case.
The first tetrahedral mesh consists of 9227 elements, 96 elements for the
sphere, and the rest for the vacuum for P1 (Figure 11 left) and another
tetrahedral mesh which consists of 32602 elements, 565 elements for the
sphere, the rest for the vacuum for P4 (Figure 11 right). The simulation is
computed on 22 cores, it takes 1 minute and 42 seconds for 136 time-steps in
the case of P1 interpolation with the first mesh, and takes 3 hours and 23
minutes for 699 time-steps in the case of P4 interpolation with the second
mesh.

Figure 11: Snapshot of the 3D simulation of the norm of the the electric field at a fixed time for
P1 interpolation (left) and P4 interpolation (right).
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5. Local postprocessing

5.1. Definition
The L2(Th) and Hcurl(Th) norms of a vector field are defined by

||.||L2(Th) =
∑
K∈Th

||.||L2(K),

||.||Hcurl(Th) =
∑
K∈Th

||.||L2(K) + ||∇ × .||L2(K).

5.2. Motivation
The local postprocessing method consists of finding new approximations

for the electric and magnetic field En∗
h and Hn∗

h that both converge with
order k + 1 in the L2(Th) norm and in the Hcurl(Th) norm, whereas En

h

and Hn
h converge with order k + 1 in the L2(Th) norm but with order k in

the Hcurl(Th) norm. It is worth to note out that we can deduce the new
approximations En∗

h and Hn∗
h directly from En

h and Hn
h at any time step

between [0, T ] without knowing the value of E
(n−1)∗
h and H

(n−1)∗
h . Hence, the

local postprocessing can be performed whenever higher accuracy is needed
at particular time steps. Following the ideas of the local postprocessing
developped in [37] for Maxwell equations in frequency-domain and the one
that has been developed in [33] for acoustic wave equation in time-domain,
we end up with the formulation shown below.

5.3. Formulation
We first compute an approximation (pn1,h,p

n
2,h) ∈ V(K)×V(K) to the

curl of E, p1(tn) = ∇ × E(tn) and the curl of H, p2(tn) = ∇ ×H(tn) by
locally solving the below system

(pn1,h,v)K = (En
h,∇× v)K − 〈Êt,n

h ,n× v〉∂K ∀v ∈ V(K),

and

(pn2,h,v)K = (Hn
h,∇× v)K − 〈Ĥt,n

h ,n× v〉∂K ∀v ∈ V(K).

We then find (En∗
h ,H

n∗
h ) ∈ [Pk+1(K)]3 × [Pk+1(K)]3 such that{

(∇×En∗
h ,∇×W)K = (pnh,1,∇×W)K , ∀W ∈ [Pk+1(K)]3,

(En∗
h ,∇Y )K = (En

h,∇Y )K ∀Y ∈ Pk+2(K).

and {
(∇×Hn∗

h ,∇×W)K = (pnh,2,∇×W)K , ∀W ∈ [Pk+1(K)]3,

(Hn∗
h ,∇Y )K = (Hn

h,∇Y )K ∀Y ∈ Pk+2(K).
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Figure 12: Time evolution of the Hcurl-error before and after postprocessing for P2

interpolation and a fixed mesh constituted by 3072 elements.

5.4. Numerical results
5.4.1. Propagation of a standing wave in a cubic PEC cavity

The numerical results given here are for the electric field only in the
cubic cavity case. The postprocessing works for the magnetic field similarly.
Figure 13 shows that the Hcurl error for the new solution is smaller than
before. Table 5 shows that a k + 1 order convergence rate is obtained for the
post processed solution instead of k as expected.

τ = 1.0
||E − Eh||L2 ||E − E∗h||L2 ||E − Eh||Hcurl

||E − E∗h||Hcurl

Pk 1/h Error order Error order Error order Error order
1/4 7.50e-02 - 1.19e-01 - 9.30e-01 - 6.83e-01 -

P1 1/6 3.20e-02 2.10 5.37e-02 1.97 5.84e-01 1.14 3.10e-01 1.95
1/8 1.70e-02 2.19 2.86e-02 2.19 4.34e-01 1.03 1.67e-01 2.15
1/4 8.60e-03 - 5.80e-03 - 1.67e-01 - 4.28e-02 -

P2 1/6 2.80e-03 2.77 1.50e-03 3.33 7.46e-02 1.98 1.19e-02 3.16
1/8 1.20e-03 2.95 6.06e-04 3.18 4.29e-02 1.92 4.90e-03 3.06
1/4 7.98e-04 - 5.22e-04 - 2.30e-02 - 5.00e-03 -

P3 1/6 1.57e-04 4.00 1.12e-04 3.78 7.10e-03 2.90 1.10e-03 3.79
1/8 5.04e-05 3.95 3.66e-05 3.90 3.00e-03 2.99 3.58e-04 3.84

Table 5: Maximum L2 &Hcurl-errors and convergence orders.

5.4.2. Scattering of a plane wave by a dielectric sphere
To validate the superconvergence we will compute the L2 error in time

of [∇ × E]x, [∇ × E]y, [∇ × E]z between the solution calculated by the
approximation P2 before and after postprocessing and the reference solution
P4 mentioned in 4.3.
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In other terms we will compute, for ν ∈ {x, y, z}

err =
N∆t∑
i=∆t

∣∣[∇× E]ν,P4(i, xA, yA, zA)− [∇× E]ν,P2(i, xA, yA, zA)
∣∣2,

and

errPP =

N∆t∑
i=∆t

∣∣[∇× E]ν,P4(i, xA, yA, zA)− [∇× E]ν,P2PP
(i, xA, yA, zA)

∣∣2,
while [∇ × E]ν,P2 and [∇ × E]ν,P2PP

are the solutions with approximation
P2 before and after postprocessing respectively. A is a probe point in the
domain.
We will consider 7 points in all directions, see Figure 13, to validate the
postprocessing technique on the curl of the approximation. Table 6 shows
that errPP ≤ err in almost all cases. The characteristics of the mesh are the
same as in figure 11 (right).

Figure 13: The positions of the probe points.
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Points components err errPP

[∇× E]x 0.2124 0.1846
A1(0, 0, 0.4) [∇× E]y 3.2110 2.5513

[∇× E]z 0.3597 0.3092
[∇× E]x 0.0356 0.0356

A2(0, 0, 0.2) [∇× E]y 0.8186 0.6761
[∇× E]z 0.0378 0.0388
[∇× E]x 0.0826 0.0598

A3(0, 0, 0.8) [∇× E]y 0.8028 0.7280
[∇× E]z 0.2153 0.1558
[∇× E]x 0.1633 0.1195

A4(0.3, 0, 0.4) [∇× E]y 1.2381 0.4381
[∇× E]z 0.1224 0.1179
[∇× E]x 0.0430 0.0396

A5(−0.3, 0, 0.4) [∇× E]y 0.5975 0.3552
[∇× E]z 0.0552 0.0412
[∇× E]x 0.0579 0.0373

A6(0, 0.3, 0.4) [∇× E]y 0.5968 0.3581
[∇× E]z 1.0404 1.0649
[∇× E]x 0.0412 0.0374

A7(0,−0.3, 0.4) [∇× E]y 0.5900 0.3513
[∇× E]z 1.0312 1.1060

Table 6: L2 error between the reference solution and the solution P2 before and after
postprocessing of all the components

6. Conclusion

We have formulated a fully explicit HDG method for the 3D time-domain
Maxwell equations and proved the semi and fully-discrete stability of the
scheme. The method can be seen as a generalization of the classical DGTD
scheme based on upwind fluxes. It coincides with the latter scheme for a
particular choice of the stabilization parameter τ introduced in the definition
of numerical traces in the HDG framework . We have assessed numerically
the influence of this parameter on the scheme and we presented the numerical
solution of Maxwell equations in the case of propagation of a standing wave
in a cubic PEC cavity, propagation of a plane wave in a homogeneous domain
and scattering of a plane wave by a dielectric sphere.
The method posseses a superconvergence property, which allows us, by
means of local postprocessing, to obtain new improved approximations of the
variables at any time levels. In particular, the new approximations converge
with order k + 1 instead of k in the Hcurl-norm for k ≥ 1. We have shown
the results of the post processing in a case which has an analytical solution
(cubic cavity) and in another case which has not (dielectric sphere). The next
step is to couple explicit and implicit HDG methods to treat the case of a
locally refined meshes.
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Annex

In this section we will present all the details to elaborate the explicit
HDGTD method.

Local HDG weak form
We assume that for an internal interface F = K

+ ∩K−, the normal vector
n = n+ = −n− is directed from K+ to K−. For a boundary interface, we
implicitly have that n = n+ and we simply denote by K in place of K+ the
element attached to the interface. Replacing the numerical traces (12) and
(13) in (14) we obtain

(ε∂tEh,v)K − (Hh, curl v)K

+
∑

F∈∂K∩FI
h

〈
1

τK+ + τK−

(
τK+Ht,+

h + τK−Ht,−
h

)
n× v

〉
F

+
∑

F∈∂K∩FI
h

〈
1

τK+ + τK−

(
n+ ×Et,+

h + n− ×Et,−
h

)
,n× v

〉
F

+
∑

F∈∂K∩Γm

〈
1

τK
n×Et

h + Ht
h,n× v

〉
F

+
∑

F∈∂K∩Γa

〈
1

τK + 1

(
τKHt

h + n×Et
h − ginc

)
,n× v

〉
F

= 0,

(µ∂tHh,v)K + (Eh, curl v)K −∑
F∈∂K∩FI

h

〈
τK+τK−

τK+ + τK−

(
Et,+
h

τK+

+
Et,−
h

τK−
− n+ ×Ht,+

h − n− ×Ht,−
h

)
,n× v

〉
F

−
∑

F∈∂K∩Γa

〈
1

τK + 1

(
Et
h − τKn×Ht

h − τKn× ginc
)
,n× v

〉
F

= 0.

(26)
where Ht,+

h and Et,+
h

(
respectively Ht,−

h and Et,−
h

)
are the tagential traces

of Hh and Eh from element K+ (respectively K−).

Local HDG matrices
Let Th be the set of all Ki with i ∈ {1, · · · , |Th|}, and let di be the number of
degrees of freedom in element Ki. From now on, for a given element Ki ∈ Th,
we consider that K+ ≡ Ki and K− ≡ Kj . We define the restricted fields
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Ei = Eh|Ki
=

ExiEyi
Ezi

 and Hi = Hh|Ki
=

Hx
i

Hy
i

Hz
i

. We will now develop the

equation for Exi in (26) in order to exhibit the local matrices characterizing
the semi-discrete HDG scheme. Let (Φik)1≤k≤di be the set of scalar basis

functions defined in Ki. By setting v = Φx
ik =

Φik

0
0

 for 1 ≤ k ≤ di the

equation for Exi in (26) becomes∫
Ki

ε∂tE
x
i Φik −

∫
Ki

(Hy
i ∂zΦik −Hz

i ∂yΦik) +

∑
F∈∂Ki∩FI

h

∫
F

1

τKi + τKj

[
τKiH

t,y
i + τKjH

t,y
j +

(
n+ ×Et

i

)y
+
(
n− ×Et

j

)y]
nzΦik −

1

τKi + τKj

[
τKiH

t,z
i + τKjH

t,z
j +

(
n+ ×Et

i

)z
+
(
n− ×Et

j

)z]
nyΦik +

∑
F∈∂Ki∩Γm

∫
F

(
1

τ

(
n×Et

i

)y
+Ht,y

i

)
nzΦik−

(
1

τ

(
n×Et

i

)z
+Ht,z

i

)
nyΦik +∑

F∈∂Ki∩Γa

∫
F

1

τKi + 1

(
τKiH

t,y
i +

(
n×Et

i

)y − ginc,y)nzΦik−

1

τKi + 1

(
τKiH

t,z
i +

(
n×Et

i

)z − ginc,z)nyΦik = 0.

(27)

Note that we obtain di equations of the form (27), one for each value of k.
The different terms appearing in (27) can be developed as follows.
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• Mass matrix. Assuming that ε is constant on every Ki, we obtain∫
Ki

εi∂tE
x
i Φik = εi

∫
Ki

di∑
l=1

∂tE
x
ilΦilΦik

= εi

di∑
l=1

∂tE
x
il

∫
Ki

ΦilΦik

= εi
(
Mi∂tE

x
i

)
k
, 1 ≤ k ≤ di,

(28)

where Mi is the mass matrix, of dimension di × di

Mi =

∫
Ki

ΦilΦik


1≤l,k≤di

,

and assuming that the vector of all the degrees of freedom of E in Ki

has been ordered as

Ei =

E
x
i

E
y
i

E
z
i

 =

(Exil)1≤l≤di(
Eyil
)

1≤l≤di
(Ezil)1≤l≤di

 .

• Stiffness matrix.∫
Ki

Hy
i ∂zΦik −Hz

i ∂yΦik =

∫
Ki

di∑
l=1

(
Hy
ilΦil ∂zΦik −Hz

ilΦil ∂yΦik

)

=

di∑
l=1

Hy
il

∫
Ki

Φil ∂zΦik −
di∑
l=1

Hz
il

∫
Ki

Φil ∂yΦik

=
(
Kz
iH

y
i −Ky

iH
z
i

)
k

= −
(
Ki ×Hi

)x
k
, 1 ≤ k ≤ di.

(29)
Here, the three stiffness matrices were introduced

(Kν
i ) =

∫
Ki

Φil ∂ν Φik


1≤l,k≤di

for ν ∈ {x, y, z},
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and where we have introduced the 3di × di stiffness matrix that will be
used in the final system

Ki =

 Kx
i

Ky
i

Kz
i

 ,
and

Hi =

H
x
i

H
y
i

H
z
i

 =

(Hx
il)1≤l≤di(

Hy
il

)
1≤l≤di

(Hz
il)1≤l≤di

 .

• Flux matrix. For simplicity of the presentation, we assume that the
mesh is a conforming mesh (i.e. without hanging nodes). We know
that n = n+ = −n−, therefore, for an interior face we have

FEx,1
ik ≡

∫
F

1

τKi + τKj

[
τKiH

t,y
i + τKjH

t,y
j +

(
n+ ×Et

i

)y
+
(
n− ×Et

j

)y]
nzΦik −

1

τKi + τKj

[
τKiH

t,z
i + τKjH

t,z
j +(

n+ ×Et
i

)z
+
(
n− ×Et

j

)z]
nyΦik

=

∫
F

1

τKi + τKj

 di∑
l=1

τKiH
t,y
il Φil +

dj∑
m=1

τKjH
t,y
jmΦjm

 +(
n+
z

di∑
l=1

Et,xil Φil − n+
x

di∑
l=1

Et,zil Φil

)
+n−z dj∑

m=1

Et,xjmΦjm − n−x
dj∑
m=1

Et,zjmΦjm

nzΦik −

1

τKi + τKj

 di∑
l=1

τKiH
t,z
il Φil +

dj∑
m=1

τKjH
t,z
jmΦjm

 +(
n+
x

di∑
l=1

Et,yil Φil − n+
y

di∑
l=1

Et,xil Φil

)
+n−x dj∑

m=1

Et,yjmΦjm − n−y
dj∑
m=1

Et,xjmΦjm

nyΦik
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=
1

τKi + τKj

nz di∑
l=1

(
τKiH

t,y
il + n+

z E
t,x
il − n

+
xE

t,z
il

)∫
F

ΦilΦik +

nz

dj∑
m=1

(
τKjH

t,y
jm + n−z E

t,x
jm − n

−
xE

t,z
jm

)∫
F

ΦjmΦik +

ny

di∑
l=1

(
−τKiH

t,z
il − n

+
xE

t,y
il + n+

y E
t,x
il

)∫
F

ΦilΦik +

ny

dj∑
m=1

(
−τKjH

t,z
jm − n

−
xE

t,y
jm + n−y E

t,x
jm

)∫
F

ΦjmΦik


FEx,1
ik =

1

τKi + τKj

 di∑
l=1

τKi

(
nzH

t,y
il − nyH

t,z
il

)∫
F

ΦilΦik +

dj∑
m=1

τKj

(
nzH

t,y
jm − nyH

t,z
jm

)∫
F

ΦjmΦik +

(
n+
z

2
+ n+

y
2
)

︸ ︷︷ ︸(
1−n+

x
2
)

 di∑
l=1

Et,xil

∫
F

ΦilΦik −
dj∑
m=1

Et,xjm

∫
F

ΦjmΦik

 +

n+
x n

+
z

 dj∑
m=1

Et,zjm

∫
F

ΦjmΦik −
di∑
l=1

Et,zil

∫
F

ΦilΦik

 +

n+
x n

+
y

 dj∑
m=1

Et,yjm

∫
F

ΦjmΦik −
di∑
l=1

Et,yil

∫
F

ΦilΦik

 .
that is

FEx,1
ik =

1

τKi + τKj

 di∑
l=1

τKi

(
Ht
il × n

)x ∫
F

ΦilΦik +

dj∑
m=1

τKj

(
Ht
jm × n

)x ∫
F

ΦjmΦik +

dj∑
m=1

Vx
F ·Et

jm

∫
F

ΦjmΦik −
di∑
l=1

Vx
F ·Et

il

∫
F

ΦilΦik

 .
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if we further assume that the interpolation degree is the same for each

element Ki, i.e. di = dj = d, then
∫
F

ΦilΦik =

∫
F

ΦjmΦik and we get

FEx,1
ik =

1

τKi + τKj

(
SF,iV1,i,x

)
k
, 1 ≤ k ≤ d,

where

Vx
F =

n2
x − 1
nxny
nxnz

 , SF,i =

∫
F

ΦilΦik


1≤l,k≤d

and

V1,i,x =
(
τKi

(
Ht
il × n

)x
+ τKj

(
Ht
jl × n

)x
+ Vx

F ·
(
Et
jl −Et

il

))
1≤l≤d ,

where we have introduced the vectors

Eil =

ExilEyil
Ezil

 and Hil =

Hx
il

Hy
il

Hz
il

 .

Proceeding similarly for the last two terms of (27), we obatin

FEx,2
ik =

1

τKi

(
SF,iV2,i,x

)
k
, FEx,3

ik =
1

τKi + 1
SF,i

(
V2,i,x +

(
n× ginci

)x)
k
, 1 ≤ k ≤ d,

where
V2,i,x =

(
τKi

(
Ht
il × n

)x −Vx
F ·Et

il

)
1≤l≤d ,

and (
n× ginci

)x
=
((

n× gincil
)x)

1≤l≤d
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Now, by setting v = Φx
ik =

Φik

0
0

 for 1 ≤ k ≤ d the equation for Hx
i in (26)

becomes∫
Ki

µi∂tH
x
i Φik +

∫
Ki

(Eyi ∂zΦik − Ezi ∂yΦik) −

∑
F∈∂Ki∩FI

h

∫
F

τKiτKj

τKi + τKj

[
Et,yi
τKi

+
Et,yj
τKj

−

(
n+ ×Ht

i

)y − (n− ×Ht
j

)y]
nzΦik −

τKiτKj

τKi + τKj

[
Et,zi
τKi

+
Et,zj
τKj

−

(
n+ ×Ht

i

)z
+
(
n− ×Ht

j

)z]
nyΦik −

∑
F∈∂Ki∩Γa

∫
F

1

τKi + 1

[(
Et,yi − τKi

(
n×Ht

i

)y − τKi

(
n× ginc

)y)
nzΦik−

1

τKi + 1

(
Et,zi − τKi

(
n×Ht

i

)z − τKi

(
n× ginc

)z)
nyΦik

]
= 0.

(30)
Developing the different terms in (30) with obtain similar expressions. In
particular for the boundary terms, we have

FHx,1
ik =

τKiτKj

τKi + τKj

(
SF,i V3,i,x

)
k
, 1 ≤ k ≤ nd,

where

V3,i,x =

(
1

τKi

(
Et
il × n

)x
+

1

τKj

(
Et
jl × n

)x
+ Vx

F ·
(
Ht
il −Ht

jl

))
1≤l≤d

,

and
FHx,2
ik =

τKi

τKi + 1
SF,i

(
V4,i,x + Vx

F · ginci
)
k
, 1 ≤ k ≤ d,

where
V4,i,x =

(
1

τKi

(
Et
il × n

)x
+ Vx

F ·Ht
il

)
1≤l≤d

.
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and
Vx
F · ginci =

(
Vx
F · gincil

)
1≤l≤d

We can easily see that if Et
il = Ht

il = 0 , Ejl = Einc
jl and Hjl = Hinc

jl we have(
n× ginci

)x
= V1,i,x and Vx

F · ginci = V2,i,x

So for a given Ki and for v = Φx
ik, 1 ≤ k ≤ d we have

εi
(
Mi∂tE

x
i

)
+

(
Ki ×Hi

)x
+

∑
F∈∂Ki∩FI

h

1

τKi + τKj

SF,iV1,i,x

+
∑

F∈∂Ki∩Γm

1

τKi

(
SF,iV2,i,x

)
+

∑
F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V2,i,x +

(
n× ginci

)x)
= 0,

µi
(
Mi∂tH

x
i

)
−

(
Ki ×Ei

)x − ∑
F∈∂Ki∩FI

h

τKiτKj

τKi + τKj

SF,iV3,i,x

−
∑

F∈∂Ki∩Γa

τKi

τKi + 1
SF,i

(
V4,i,x + Vx

F · ginci
)

= 0.

(31)

By doing the same calculations with v = Φy
ik =

 0
Φik

0


and v = Φz

ik =

 0
0

Φik

 for a fixed Ki we obtain for the first system of
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equations of (31)

εi

 Mi 0d×d 0d×d
0d×d Mi 0d×d
0d×d 0d×d Mi

∂tEx
i

∂tE
y
i

∂tE
z
i

+


(
Ki ×Hi

)x(
Ki ×Hi

)y(
Ki ×Hi

)z


+
∑

F∈∂Ki∩FI
h

1

τKi + τKj

 SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i

V1,i,x

V1,i,y

V1,i,z


+

∑
F∈∂Ki∩Γm

1

τKi

 SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i

V2,i,x

V2,i,y

V2,i,z


+

∑
F∈∂Ki∩Γa

1

τKi + 1

 SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i

V2,i,x

V2,i,y

V2,i,z


+

1

τKi + 1

 SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i

(n× ginci
)x(

n× ginci
)y(

n× ginci
)z
 = 0,

(32)

and

µi

 Mi 0d×d 0d×d
0d×d Mi 0d×d
0d×d 0d×d Mi

∂tHx
i

∂tH
y
i

∂tH
z
i

−

(
Ki ×Ei

)x(
Ki ×Ei

)y(
Ki ×Ei

)z


−
∑

F∈∂Ki∩FI
h

τKiτKj

τKi + τKj

 SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i

V3,i,x

V3,i,y

V3,i,z


−

∑
F∈∂Ki∩Γa

1

τKi + 1

 SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i

V4,i,x

V4,i,y

V4,i,z


+

τKi

τKi + 1

 SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i

Vx
F · ginci

Vy
F · ginci

Vz
F · ginci

 = 0.

(33)

Where :

Vy
F =

 nynx
n2
y − 1

nynz

 ,Vz
F =

 nznx
nzny
n2
z − 1


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So for every Ki we have:

εi
(
Mi∂tEi

)
+
(
Ki ×Hi

)
+

∑
F∈∂Ki∩FI

h

1

τKi + τKj

SF,iV1,i +

∑
F∈∂Ki∩Γm

1

τKi

(
SF,iV2,i

)
+∑

F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V2,i + n× ginc

)
= 0,

µi
(
Mi∂tHi

)
−
(
Ki ×Ei

)
−

∑
F∈∂Ki∩FI

h

τKiτKj

τKi + τKj

SF,iV3,i −

∑
F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V4,i + τKiV

inc
F

)
= 0,

(34)

where

Vinc
F =

Vx
F · ginc

Vy
F · ginc

Vz
F · ginc

 .
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