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(Deep)	Blue	Through-Space	Conjugated	TADF	Emitters	Based	on	
[2.2]Paracyclophanes	
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The	first	examples	of	through-space	conjugated	thermally	activated	
delayed	 fluorescence	 (TADF)	 emitters	 based	 on	 a	 [2.2]para-
cyclophane	(PCP)	skeleton	with	stacked	(coplanar)	donor-acceptor	
groups	have	been	 synthesized.	The	optoelectronic	properties	are	
studied	 by	 the	 relative	 configuration,	 cis	 (pseudo-geminal)	 and	
trans	(pseudo-para),	of	the	donor	and	acceptor	groups.	

Thermally	 activated	 delayed	 fluorescence	 (TADF)	 is	 now	
regarded	 as	 the	 most	 promising	 mechanism	 for	 harvesting	
excitons1	in	electroluminescent	devices	and	has	thus	garnered	
much	attention	in	organic	light-emitting	diode	(OLED)	research	
following	 the	seminal	works	of	Adachi	et	al.2-5	A	small	energy	
gap	(ΔEST)	between	the	singlet	and	triplet	excited	states	permits	
rapid	effective	equilibration	between	 the	 two	via	 intersystem	
crossing	(ISC)	and	reverse	intersystem	crossing	(rISC),	evidenced	
by	an	observed	thermally	promoted	delayed	fluorescence	upon	
photo-	 or	 electrical	 excitation.1,	 6	 A	 small	 ΔEST	 is	 achieved	
through	a	small	exchange	integral	between	frontier	molecular	
orbitals;	 however,	 this	 has	 the	 potential	 to	 compromise	 the	
photoluminescence	 quantum	 yield	 (FPL)	 by	 reducing	 the	
oscillator	 strength	 of	 the	 transition.	 Therefore,	 strict	 design	
principles	 must	 be	 followed	 to	 produce	 bright	 and	 efficient	
TADF	 emitters.7	 Although	 the	 vast	majority	 of	 reported	 TADF	
emitters	adhere	to	the	design	paradigm	of	molecules	containing	
donors	 and	 acceptors	 possessing	 a	 highly	 twisted	 relative	
conformation	 in	 order	 to	 minimize	 the	 exchange	 integral,	

recent	findings	indicate	that	planar	structures	can	exhibit	TADF	
as	well	while	maintaining	a	strong	oscillator	strength.8,	9	These	
examples	demonstrate	that	the	mechanism	of	and	design	rules	
governing	 TADF	 are	 still	 ripe	 for	 continuing	 investigation.10	
Another	 striking	 design	 concept	 for	 TADF	 that	 has	 been	
explored	 by	 Swager,	 Baldo	 et	 al.	 is	 the	 electronic	
communication	 of	 donor	 and	 acceptor	 groups	 mediated	 by	
through-space	 conjugation	 either	 using	 a	 triptycene	 skeleton	
confining	the	donor	and	acceptor	units	in	a	120°	orientation,11	
or	 a	 xanthene-linked	 cofacial	 disposition	 of	 donor	 (D)	 and	
acceptor	(A)	with	a	distance	of	3.3–3.5	Å.12	Although	TADF	was	
observed	 with	 delayed	 lifetimes,	 tD	 between	 2.0–3.0	 µs	 and	
moderate	FPL	in	this	latter	report,	the	through-space	electronic	
communication	 mainly	 occurred	 via	 C–H...π	 interactions,	
creating	efficient	aggregation	induced	emission.	
The	[2.2]paracyclophane	(PCP)	is	a	compact	skeleton	confining	
two	benzene	rings	(“decks”)	by	ethylene	bridges	in	a	coplanar,	
though	slightly	bent	and	configurationally	stable,	conformation	
with	a	deck	distance	of	3.09	Å,13	which	is	smaller	than	the	van	
der	Waals	 distance	 between	 layers	 of	 graphite	 (3.35	 Å).	 This	
enables	 a	 stronger	 transannular	 electronic	 communication	
between	 the	 benzene	 decks.	 This	 model	 compound	 for	 π–π	
transannular	interaction	sparked	numerous	investigations	over	
the	 last	 decades.	 For	 instance,	 Bazan	 et	 al.	 investigated	 D–A	
stilbene	 derivatives	 based	 on	 PCP	 that	 exhibited	 nonlinear	
optical	 properties	 and	 significant	 through-space	 charge	
transfer,14,	15	including	strong	positive	solvatochromism	caused	
by	 a	 polarizable	 electronic	 structure	 in	 the	 excited	 state.16	
Morisaki,	Chujo	et	al.	 focused	on	PCP-based	through-space	π-
extended	conjugated	polymers,	demonstrating	that	electronic	
interactions	 can	be	effective	 through	more	 than	 ten	 layers	 in	
the	ground	state,	yet	emission	in	these	systems	occurs	from	the	
isolated	 monomer	 π	 systems,	 giving	 access	 to	 well-defined	
monomer-localized	 HOMO-LUMO	 gaps	 rather	 than	 a	 broad	
valence-conduction	band	gap	in	the	polymers.17,	18	Additionally,	
given	the	inherent	planar	chirality	in	PCPs,	this	scaffold	can	yield	
chromophores	with	intense	circular	polarized	luminescence.19-
22	 Despite	 these	 fascinating	 properties,	PCP	 chemistry	 suffers	
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from	 challenging	 or	 sometimes	 unpredictable	 reactivity.	
Although	various	successful	cross-coupling	protocols	have	been	
reported,23	 a	 direct	 C-N	 coupling	 to	 a	N-heterocycle	 such	 as	
carbazole	 (Cz)	 or	 diphenylamine	 (DPA),	 though	 claimed	 in	
numerous	patents,24,	25	has	never	been	reported	in	the	scientific	
literature	thus	far.	
In	this	communication	we	report	the	first	examples	of	thermally	
activated	 delayed	 fluorescence	 enabled	 by	 through-space	
conjugation	of	a	[2.2]paracyclophane	skeleton	(Fig.	1).	
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Figure	1	 Concept	of	 through-space	 conjugation	of	 a	 [2.2]paracyclophane	 skeleton	 for	
thermally	activated	delayed	fluorescence	(TADF).	

In	 order	 to	 obtain	 both	 the	 cis	 and	 trans	 isomers	 (pseudo-
geminal	 and	pseudo-para	 in	 PCP	 terminology,	 see	 Figure	S1),	
two	 different	 approaches	 were	 investigated	 (Scheme	 1).	
Compound	2	was	synthesized	by	Friedel-Craft	acylation	of	PCP	
and	subsequent	exploitation	of	the	transannular	directing	effect	
to	 selectively	 target	 the	 pseudo-geminal	 position	 of	 the	
carbonyl	 group	 towards	 electrophilic	 aromatic	 bromination.26	
The	 trans	 (pseudo-para)	 intermediate	 6	 was	 obtained	 by	
monolithiation14	of	the	highly	insoluble	pseudo-para	dibromide	
5	 followed	 by	 quenching	 with	 benzoyl	 chloride.	 The	
intermediates	2	and	6	possess	benzoyl	acceptor	groups27-29	and	
a	 bromo-functionalized	 building	 block	 suitable	 for	 cross-
coupling	of	various	donor	groups.	Targeting	deep	blue	emitters,	
relatively	weak	donors	 (4’-N,N-diphenylamino)phenyl	 and	 (4’-
N-carbazolyl)phenyl	 were	 installed	 via	 optimized	 Suzuki-
Miyaura	protocols	(ESI)	in	moderate	to	good	yields.	

	
Scheme	1	 [2.2]paracyclophane	(PCP)	based	through-space	conjugated	benzoyl	acceptor	TADF	systems.	Left:	Synthesis	of	pseudo-geminal	 (cis)	TADF	systems.	Right:	Synthesis	of	
pseudo-para	(trans)	TADF	systems.	All	molecules	were	prepared	in	a	racemic	fashion.	

Density	functional	theory	(DFT)	calculations	were	performed	in	
the	gas	phase	to	assess	the	electronic	structures	of	both	cis	and	
trans	 derivatives	 (see	 ESI	 for	 details).	 The	 S1	 and	 T1	 excited	
states	 were	 calculated	 from	 the	 optimized	 ground	 state	
structure	using	the	Tamm-Dancoff	approximations30,	31	(TDA)	to	
TD-DFT.	 Focusing	 on	 the	 DPA	 derivatives,	 Fig.	 2,	 the	 highest	
occupied	 molecular	 orbitals	 (HOMO)	 and	 lowest	 unoccupied	
molecular	orbitals	(LUMO)	for	3	and	7	are	mainly	localized	over	
the	 donor	 and	 acceptor	 moieties	 and	 the	 adjoining	 benzene	
deck,	 respectively.	 The	 strong	 transannular	 electronic	
communication	mediated	by	the	PCP	core	promotes	an	efficient	
through	 space	 intramolecular	 charge	 transfer	 (ICT)	 while	 the	
inherent	 rigidity	 of	 the	 PCP	 was	 expected	 to	 minimize	 the	
vibrational	 motion	 of	 the	 molecule	 thereby	 reducing	 non-
radiative	decay	pathways.	The	well	separated	frontier	orbitals	
resulted	in	small	calculated	ΔEST	values	of	0.04	eV	and	0.19	eV	
for	 3	 and	 7,	 respectively,	 coupled	 with	 high	 excited	 singlet	
energies	 (S1	 state),	 suggesting	 their	 strong	 potential	 as	 deep	
blue	 TADF	 emitters.	 Upon	 changing	 the	 donor	 group	 to	 the	
weaker	 carbazole,	 relatively	 large	 ΔEST	 values	 of	 0.32	 eV	 and	
0.46	eV	for	 isomers	4	and	8,	respectively,	were	observed	(Fig.	
S2).	 No	 further	 studies	 were	 carried	 out	 for	 isomer	 4	 and	 8.	

Figure	3a	shows	the	UV-Vis	absorption	and	photoluminescence	
(PL)	spectra	of	3	and	7	in	toluene	and	the	data	are	summarized	
in	 Table	 1.	 Both	 isomers	 possess	 a	 high	 intensity	 absorption	
band	at	311	nm,	which	was	assigned	to	the	ICT	transition	from	
D	to	A	through	the	PCP	based	on	TD-DFT	calculations	(Fig.		S4).	

	
Figure	2.	HOMO-LUMO	profiles	and	excited	state	dynamics	of	cis	and	trans	isomers	3	and	
7,	respectively	(pbe0/6-31G(d,p)).	
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In	the	PL	spectra	in	PhMe,	both	isomers	exhibited	two	distinct	
bands.	The	high	energy	band	centred	at	410	nm	and	404	nm	for	
3	and	7,	respectively,	was	assigned	to	the	“phane	state”	formed	
between	 two	 benzene	 decks	 of	 PCP	 scaffold.32,	 33	 The	 low	
energy	band	at	492	nm	for	3	and	455	nm	for	7	was	attributed	to	
the	 ICT	 transition	 between	 donor	 and	 acceptor	 moieties.	
Photoluminescence	quantum	yields,	FPL,	 in	PhMe	 for	3	 and	7	
were	 45%	 and	 60%,	 which	 decreased	 to	 30%	 and	 42%,	
respectively,	 upon	 exposure	 to	 air.	 Time-resolved	 PL	 spectra	
(Fig.	 S1),	 however,	 do	 not	 show	 a	 delayed	 emission	 lifetime	
component,	which	would	suggest	that	the	TADF	mechanism	in	
solution	is	either	not	present	or	very	weak.	
We	 next	 investigated	 the	 solid-state	 PL	 behaviour	 of	 both	
derivatives	 in	doped	 thin	 films	 (Fig.	3b).	 In	 the	 thin	 film,	both	
derivatives	 exhibited	 an	 unstructured	 emission	 profile,	
characteristic	of	an	excited	state	with	significant	ICT	character.	

	
Figure	3.	a.)	UV-Vis	and	PL	spectra	in	degassed	PhMe	and	b.)	PL	spectra	in	10	wt.%	doped	
films	in	PMMA	and	15	wt.%	doped	films	in	mCP	of	3	(black)	and	7	(red).	λexc	=	360	nm.	

In	10	wt.%	doped	solution-processed	films	in	PMMA,	3	showed	
sky-blue	emission	with	lPL	of	485	nm	while	 the	emission	of	7	
was	slightly	blue-shifted	at	470	nm	in	strong	agreement	with	the	
calculated	 S1	 energies.	 Both	 isomers	 exhibited	 a	 prompt	
lifetime,	tP,	of	19	ns	(for	3)	and	10	ns	(for	7),	followed	by	a	very	
short	delayed	component,	tD	of	0.7	µs	and	1.6	µs	for	3	and	7,	
respectively.	However,	the	FPL	of	the	PMMA	films	of	both	the	
isomers	remained	low,	close	to	5%	for	3	and	7.5%	for	7.	With	a	
view	to	employing	these	compounds	as	emitters	in	OLEDs,	we	
next	 studied	 the	emitters	 in	 the	high	 triplet	energy	host,	 1,3-
bis(N-carbazolyl)benzene,	 mCP,	 with	 a	 vacuum-deposited	
doping	 concentration	of	 15	wt.%.	 The	emission	maxima	were	
slightly	blue-shifted	at	480	and	465	nm	for	3	and	7,	respectively,	
with	 strongly	 reduced	 FPL	 of	 12	 and	 15%,	 respectively,	
compared	 to	 solution-state	 measurements.	 Reducing	 the	
doping	concentration	to	1	wt.%	resulted	in	reduced	FPL	of	7%	
for	both	isomers	(Table	S1).	The	optoelectronic	properties	of	3	
and	7	are	influenced	by	the	relative	configuration	of	D	and	A.		A	
red-shift	in	the	emission	spectra	was	observed	for	the	cis	isomer	
3	across	all	media	compared	to	7.	This	behaviour	 implies	that	
the	electronic	coupling	between	D	and	A	is	stronger	 in	the	cis	
configuration	 than	 that	 in	 the	 trans	 configuration,	 likely	 a	
function	of	secondary	p-p	interactions	in	the	former.	
The	ΔEST	of	3	and	7	were	determined	from	the	singlet	and	triplet	
energies	estimated	from	the	onset	of	the	prompt	and	delayed	
emission	spectra,	respectively,	measured	in	15	wt.%	mCP	doped	
films	at	77	K	(Fig	4).	Both	isomers	exhibited	high	singlet	energies	
coupled	with	small	ΔEST	values	of	0.13	eV	and	0.17	eV	for	3	and	
7,	respectively,	confirming	their	TADF	character.		

	

	
Figure	4.	Prompt	and	delayed	(by	50	µs,	200	µs	window)	spectra	of	3	and	7	in	15	

wt.%	mCP	doped	films,	measured	at	77	K.	(lexc	=	378	nm)	

	

Transient	 PL	 measurements	 in	 15	 wt.%	 mCP	 doped	 films	
revealed	biexponential	decay	kinetics.	Both	isomers	exhibited	a	
prompt	lifetime,	tP,	of	17	ns	(for	3)	and	7.4	ns	(for	7)	and	a	very	
short	delayed	 lifetime,	tD,	of	1.8	µs	 (for	3)	and	3.6	µs	 (for	7).	
Furthermore,	 rates	 of	 reverse	 intersystem	 crossing,	 krISC	were	
found	to	7.0	×	105	s-1	and	3.1	×	105	s-1	for	3	and	7,	respectively	
(Table	 S2,	 ESI).	 Such	 short	 tD	 and	 large	 krISC	 values	 are	
characteristics	 of	 an	 efficient	 rISC	 mechanism.	 Despite	 the	
desirable	blue	emission	and	short	delayed	lifetimes,	the	FPL	of	
these	emitters	remained	poor.	We	investigated	a	range	of	high-
energy	 host	 materials,	 such	 as	 DPEPO	 and	 CzSi,	 and	 doping	
concentrations	(from	1-25	wt.%)		in	an	effort	to	enhance	the	FPL	

in	the	solid	state;	however,	the	highest	FPL	values	were	found	
in	mCP	at	15	wt.%	(Table	S1).	
	

Figure	5.	 Temperature	dependence	of	delayed	 lifetime	of	a.)	3	 and	b.)	7.	lexc	=	

378	nm.	

	

To	further	corroborate	the	TADF	nature	of	these	emitters,	we	
investigated	 the	 temperature	 dependence	 of	 the	 delayed	
lifetimes	(Fig.	5).	For	both	compounds,	the	intensity	of	delayed	
emission	 gradually	 increases	 with	 increasing	 temperature,	
providing	direct	evidence	of	TADF.	
	
Table	1.	Photophysical	properties	of	3	and	7.	
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3	(cis)	 311	 480	 45	
(30)	

12	 17	(0.88)	 1.8	
(0.12)	

7	(trans)	 312	 465	 60	
(42)	

15	 7.4	(0.44)	 3.6	
(0.56)	

a	In	degassed	PhMe	at	298	K.	b	0.5	M	quinine	sulfate	in	H2SO4	(aq)	was	used	as	the	
reference	 (FPL:	 54.6%,	lexc	 :	 360	 nm).34	 Values	 quoted	 are	 in	 degassed	 solutions,	
which	were	prepared	by	three	freeze-pump-thaw	cycles.	Values	in	parentheses	are	
for	aerated	solutions,	which	were	prepared	by	bubbling	air	for	10	min.	

c
	Thin	films	

were	prepared	by	 vacuum	depositing	15	wt.%	doped	 samples	 in	mCP	and	 values	
were	determined	using	an	integrating	sphere	(lexc	:	360	nm);		degassing	was	done	by	
N2	 purge.	

d
	 Values	 in	 parentheses	 are	 the	 pre-exponential	 weighting	 factors,	

determined	in	15	wt.%	mCP	doped	films	of	3	and	7	( lexc	:	378	nm).	

	
	
In	 conclusion,	we	have	developed	 the	 first	 examples	 of	 TADF	
emitters	 incorporating	 a	 PCP	 core,	 which	 we	 exploited	 to	
mediate	 electronic	 communication	 between	 donor	 and	
acceptor	groups	on	adjoining	benzene	decks.	Both	the	cis	and	
trans	isomers	exhibited	blue	TADF	emission	and	short	delayed	
lifetimes	 in	 the	 range	 of	 1–3	 µs.	 These	 compounds	
unfortunately	possess	low	photoluminescence	quantum	yields	
in	 the	 solid	 state.	 We	 are	 presently	 investigating	 modified	
designs	to	mitigate	this	 issue	such	that	paracyclophane-based	
TADF	emitters	can	be	incorporated	into	OLED	devices.	
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