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Abstract

In reverse genetic experiments we have isolated recombinant mumps viruses (rMuV) that

carry large numbers of mutations clustered in small parts of their genome, which are not

caused by biased hyper-mutation. In two separate experiments we obtained such recombi-

nant viruses: one virus had 11 mutations in the V/P region of the genome; the other, which

also contained an extra transcription unit encoding green fluorescent protein (EGFP), had

32 mutations in the N gene. These specific sets of mutations have not been observed in nat-

urally occurring MuV isolates. Unusually, the vast majority of the mutations (48/51) were

synonymous. On passage in Vero cells and human B-LCL cells, a B lymphocyte-like cell

line, these mutations appear stable as no reversion occurred to the original consensus

sequence, although mutations in other parts of the genome occurred and changed in fre-

quency during passage. Defective interfering RNAs accumulate in passage in Vero cells but

not in B-LCL cells. Interestingly, in all passaged samples the level of variation in the EGFP

gene is the same as in the viral genes, though it is unlikely that this gene is under any func-

tionality constraint. What mechanism gave rise to these viruses with clustered mutations

and their stability remains an open question, which is likely of interest to a wider field than

mumps reverse genetics.

Introduction

Mumps virus (MuV) is a human pathogenic RNA virus in the genus Rubulavirus in the family

Paramyxoviridae [1]. This family of non-segmented negative stranded RNA viruses shares

basic replication strategies with the other viruses in the order Mononegavirales. MuV has a

genome of 15,384 nucleotides (nt) in length, which contains 7 transcription units from the 3’

end of the negative stranded genome to the 5’ end respectively. These encode respectively the

nucleocapsid protein (N); the innate immune modulatory protein V, the matrix protein (M),

the fusion protein (F), a small hydrophobic protein (SH), a haemagglutinin-neuraminidase

protein (HN) and the large protein (L) which carries the RNA-dependent RNA polymerase
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activity (RdRp). The major co-factor for the RdRp required during transcription is the phos-

phoprotein (P) which is generated by co-transcriptional editing during the copying of the V

gene to generate P protein by the insertion of 2 (or 5) non-templated G residues into the

nascent transcript. A so-called I protein is also generated by insertion of 1 or 4 G residues. V

and I are probably non-structural proteins due to their low abundance in semi purified virus

preparations [1]. In the Rubulavirus genus there is no overlapping open reading frame (ORF)

for the C protein in the gene encoding the V and P proteins and unedited mRNAs transcribed

from the MuV genome encode the V protein and not the P protein as is the case in many of

the other Paramyxoviridae [2,3]. No overlapping ORFs have been identified in the N gene of

MuV.

Reverse genetics of MuV and other members of the order Mononegavirales from plasmids

that encode the entire genome of the virus has been described more than two decades ago [4]

and this system has been used to elucidate aspects of mumps virus pathogenesis and virulence

in clinical isolates [4–8]. In this, it is not different from other viruses in the order Mononegavir-
ales. Recently, we established a ‘rescue’ system based on the sequence of MuV in clinical tissue

so that we could study the properties and behaviour of viruses that had not been passaged in

cultured cells and thereby potentially exposed to selective pressures exerted by the host cell in
vitro [9]). Recombinant viruses were rescued on Vero cells (MuVG09) from the clinical mate-

rial and proved to be genotype G virus, similar to other viruses isolated in the US during recent

outbreaks [10].

MuV is stable in the field and substitution rates have been estimated to be approximately

9.1 x 10−4 sub/site/y per annum [11]. No direct experimentally determined mutation rates

have been reported for MuV. Here, we report that we obtained a number of rescued viruses

that carried unusual clusters of mutations in the N and V/P genes, which involved stable syn-

onymous nucleotide changes that have not been observed in natural isolates in any of the

genotypes of MuV hitherto described.

Materials and methods

Viruses and cells

Clinical material was obtained from Dr Paul Rota (CDC Atlanta) as a buccal swab from a

patient during the 2009/10 US outbreak of mumps in New York caused by a genotype G5

virus [9, 10]. The standardised name for the isolate is: MuV/New York.USA/2009 [G]. We iso-

lated the virus on Vero cells, passaged it four times in Vero cells and called it MuVG09. The

complete consensus sequences of the viral RNA in the clinical sample and the isolated viruses

were determined by Sanger sequencing of overlapping RT-PCR amplicons (sequences of prim-

ers available on request) and found to be identical [9].

Viral RNA was isolated by phenol/chloroform extraction of semi purified virus preparation

prepared by pelleting the virus through a 25% sucrose cushion by ultracentrifugation using

TRIzol solution or from virus-containing supernatant using TRIzol LS solution (Thermo

Fisher Scientific). The cDNA was produced using SuperScript III (SSIII) kit followed by PCR

by Taq DNA polymerase to generate overlapping amplicons covering the entire genome.

Amplicons were purified using the QIAquick PCR Purification Kit (Qiagen), resuspended in

TE buffer before sequencing using BigDye Terminator v3.1 sequencing kit. Full-length con-

sensus sequences were generated and chromatograms were inspected manually to identify

mixed sequences.

Vero cells were used for routine passage of the viruses as well as titration of plaque forming

units (pfu). Six well trays seeded with confluent monolayers of Vero cells were infected

with various dilutions of supernatant virus stocks and stained 2 days after infection with
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methylene-blue to detect and count plaques. B-LCL cells, an EBV transformed primary B cell

line, were obtained from Erasmus University Medical Centre, Rotterdam [12].

Generation of recombinant viruses

Plasmids that expressed the N, P and L proteins with the authentic sequence of the MuVG09

virus were generated to act as helper plasmids in the rescue experiments. Plasmids were also

generated that represented the full length consensus sequence of the viral RNA which was

identical to that of the isolated virus MuVG09 as well as one in which the enhanced green fluo-

rescent protein gene (EGFP) was inserted as an additional transcription unit between the V/P

gene and the M gene of MuV (referred to as position 3). The complete antigenomic MuV

sequence was placed between a T7 promotor and hepatitis delta ribozyme by sequential clon-

ing of cDNA fragments using endogenous restriction enzyme sites. Introduction of the EGFP

transcription was carried out using endogenous restriction enzyme sites and the open reading

frame was flanked by M 5’ UTR and V/P 3’ UTR. The sequence of the full-length antigenomic

plasmids was identical to the consensus sequence of the clinical material. Vero cells (90% con-

fluency in a 6-well dish) were infected with Fowl Pox virus (FP) that expressed T7 RNA poly-

merase [13] (MOI = 0.5 TCID50) by spin-inoculation (30 mins at 300g). At 1 h.p.i. the FP T7

inoculum was removed and a four-plasmid mix was added to the cells with Lipofectamine

2000 reagent: pCGMuVG09N (1 μg), pCG-MuVG09P (0.6 μg) and pCG-MuVG09L (0.4 μg)

and pMuVG09 (5 μg). The quantities of each of the plasmids used are similar to those used by

us in other reverse genetics experiments of viruses in the Paramyxoviridae family. Opti-MEM

(2 ml) was added and cells were incubated for 18 hours at 37˚C with 5% (v/v) CO2. The growth

medium was changed to DMEM containing 5% (v/v) foetal calf serum and the appearance of

syncytia and/or EGFP-expressing cells was monitored over 1 week. Usually never more than

one syncytium was observed per well. These were aspirated and propagated further on Vero

cells for 4 low MOI passages before sequencing, passaging the virus when maximum CPE had

been observed.

Next generation sequencing (NGS)

The RNA was extracted from infected cells using Trizol and subjected to directional library

preparation using the TruSeq Stranded mRNA Library Prep Kit (Illumina) omitting polyA

selection using oligo–dT beads as per manufacturer’s instructions. The samples were

sequenced using the Mi-seq illumina platform generating paired end reads of ~ 150 nucleo-

tides in length. The reads were trimmed to remove adaptor sequences and any reads with low

quality scores were removed from the analysis. The sequencing data were subjected to direc-

tional analysis [14] which separates the reads based on directionality allowing the isolation of

the viral genome (negative sense) and viral antigenome reads (positive sense). The isolated

viral genome reads were then aligned to the MuV reference sequence using BWA alignment

software version 0.7.5a-r405. Variants were assessed visually for their positions in reads using

Tablet [15]. An in-house script was then used to enumerate the SNPs at each nucleotide of the

reference sequence (available from Dr Vattipally Sreenu, University of Glasgow). The full NGS

data set is available at study number PRJNA545057.

Results

Generation of recombinant MuV with clusters of mutations

Our attempts to obtain rMuV virus failed in all cases to generate a virus with the same

sequence to that in the plasmid after aspirating the material of a primary syncytium from a
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single well and passaging the inoculum 4 times on Vero cells at low MOI. The reverse genetics

system used ‘helper’ expression plasmids representing the authentic N, P and L genes of

MuVG09 and a plasmid containing the consensus sequence of MuVG09 so that fowl pox virus

mediated recombination between helper plasmids and the full length genome plasmid could

not lead to potential sequence alterations. Out of the 5 plaque picks that were made in the pri-

mary rescue wells transfected with a plasmid representing the full length genome of MuVG09

none were identical to the input cDNA clone sequence and a combined total of 18 mutations

were observed. Four retrieved viruses had one or two mutations but one virus rMuVG09PP1

(abbreviated as PP1) had 11 mutations in the V/P gene (Table 1) between nucleotides 2551

and 2867 spacing mutations on the average 32 nt from each other. This area encodes the C ter-

minal end of the V protein and part of the more conserved C-terminal domain of the P protein

in MuV. Nine mutations were synonymous and two of the PP1 mutations led to amino acid

changes at position 192 (P>L) and 212 (Q>P) in the P protein. Both mutations were synony-

mous in the overlapping V protein reading frame.

Rescue was also attempted from a plasmid into which the EGFP gene had been inserted

between the V/P and M genes of mumps virus MuVG09. Similarly, out of the 7 plaque picked

viruses none had a nucleotide sequence identical to the original plasmid. Six out of the 7

viruses carried in toto 9 mutations (8 non-synonymous replacements and one A insertion in

the poly-adenylation signal in the F gene). However, one plaque picked virus rMuVG09EGFP

(3)PP2 virus (abbreviated here as PP2) had 32 mutations in two clusters in the N gene

(Table 2). One cluster contained 13 mutations between nt 607 and 860 distancing mutations

by on average 21 nucleotides. This area encodes a relatively conserved part of the N protein of

MuV. The second cluster contained 19 mutations between nucleotides 1225 and 1558 with an

average spacing of 18 nucleotides. This encodes part of the relatively variable C terminal tail of

the N protein of MuV. In PP2 almost all the mutations (31/32) were synonymous with the

exception of a single conservative V>A mutation at position 460 of the N protein. None of the

mutations observed in PP1 and PP2 were observable as minor peaks in sequencing chromato-

grams of the sequencing reactions carried out on the clinical material. The sets of mostly syn-

onymous mutations observed in these viruses in the N and V/P genes were also not present as

linked variations in sequence of the mumps virus genotypes in the databanks. No clusters of

Table 1. Stability of the unique mutations in RNA extracted from semi-purified MuV–PP1 virus after 6 passages on Vero cells.

Position nr in the

genome

Change from G09

to PP1

Effect in PP1 on protein,

position and change

Number of reads in PP1

passage 6

Variant

reads

Number of reads in MuVG09

passage 6

Variant

reads

2551 C>U P192 P>L; V191 P syn 276 U none 1606 C 1 A

2611 A>C P212 Q>P V211 P syn 207 C 1 A; 2 U 1171 A 1 A; 1 C

2654 A>G P226 R syn 206 G 3 A 986 A none

2763 C>U P263 L syn 222 U none 1544 C 1 U

2768 U>A P264 A syn 232 A none 1312 U 3 C; 1 G

2780 A>G P268 G syn 206 G none 1417 A none

2789 G>A P271 A syn 265 A 1 G 1635 G 1 U

2810 G>U P278 P syn 261 U none 2149 G 2 U

2816 C>U P280 N syn 266 U 1 A; 2 G 1645 C 2 A

2864 U>C P296 H syn 280 C none 1714 U none

2867 A>G P297 V syn 294 G none 1609 A none

Total 2715 10 16788 frequency

0.8 x 10−3

Syn = synonymous; in bold variants that would restore the original nucleotide in MuVG09

https://doi.org/10.1371/journal.pone.0219168.t001
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mutations were observed in the other genes of MuV by Sanger sequencing of the primary

isolates.

The original mutations in the V/P gene of PP1 and the N gene of PP2 first determined by

Sanger sequencing of the semi purified virus stocks were confirmed in the Next Generation

Table 2. Stability of the unique mutations in RNA extracted from semi-purified PP2 virus after 6 passages on B-LCL cells.

Position nr in the

genome

Change from G09 to

PP2

antigenome reads in PP2

passage 6

Variant reads genome reads in PP2

passage 6

Variant reads

607 G > A syn 846 A 1 C 850 A 2 C

622 A > G syn 1031 G none 1001 G none

628 A > G syn 1067 G 4 U 1059 G none

679 C > A syn 680 A none 1506 A 1 G; 1 U; 1 C

697 U > G syn 692 G none 2502 G 3 U

736 G > U syn 887 U 5 C; 2 G 2733 U 6 A; 1 C; 7 G

760 G > U syn 1093 U 4 C; 3 G 1594 U 1 G

784 A > G syn 975 G 3 A 1348 G 6 U; 2 A

841 U > C syn 1338 C 2 U; 2 A; 2 G 659 C 2 A

844 U > C syn 1400 C 3 A; 3 U 650 C 2 A; 1 G

850 U > C syn 1447 C 1 U; 1 G 632 C 1 G; 1 U

859 A > G syn 1444 G 2 U 523 G none

860 C > U syn 1434 U 3 C; 3 G 489 U none

Total

frequency

cluster 1 14334 43 15546 37

1.04 x 10−3

1225 C > U syn 1325 U 2 C 620 U 1 C; 1 G

1240 G > A syn 1461 A 6 C; 1 U 514 A 1 C

1312 A > G syn 2819 G 2 U; 1 A 369 G 2 U

1327 C > U syn 2613 U 6 C; 2 G; 1 A 339 U 1 C

1330 U > C syn 2645 C 10 A; 8 U; 1 G 343 C 1 U

1354 A > G syn 2759 G 12 A; 2 C; 4 U 488 G none

1366 G > A syn 2811 A 5 G; 2 C; 1 U 764 A 3 G; 1U

1369 A > G syn 2836 G 9 U; 3 A; 2 C 784 G 1 C; 1 U

1384 G > C syn 2596 C 6 A; 3 U 1195 C 3 A; 1 U

1387 G > A syn 2610 A 8 C; 2 U; 1 G 1322 A 1 U1]

1390 C > U syn 2584 U 4 A; 2 G 1429 U 3 A; 3 G

1413 G > A syn 3626 A 3 C; 2 U; 1 G 1612 A 3 U; 1 C

1438 G > A syn 3749 A 6 C; 5 G; 3 U 1553 A 8 C; 3 U; 1 G

1451 U > C syn 3508 C 5 A; 3 U; 2 G 1510 C 3 A; 1 U

1468 C > U syn 4457 U 5 C; 3 G; 2 A 982 U 4 C; 2 G; 1 A

1471 U > C syn 4496 C 3 A; 2 U 1167 C 2A; 1 U

1489 U > C syn 4259 C 7 U; 5 A 1352 C 2 U

1524 U > C

N460 V>A

4359 C 5 A; 3 U 1265 C 4 A; 1 G; 1 U

1558 G > A syn 2910 A 3 U; 2 C; 1 G 729 A 1 G; 1 U; 1 C

Total

frequency

cluster 2 58423 176 18337 65

1.05 x 10−3

Total both clusters 72757 To original: 81 To other: 138

Other/original

= 1.70

33883 To original: 31

To other: 71

other/original

> 2.29

In bold variants that would restore the original nucleotide in MuVG09

https://doi.org/10.1371/journal.pone.0219168.t002
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Sequencing (NGS) studies described below, with the exception of a deletion mutation in the L

gene in the recombinant PP1 virus. In PP1, Sanger sequencing of the original plaque picked

virus identified one extra deletion mutation in the L gene (15127–138), which would have led

to a premature termination of the L protein. However, in NGS, the non-deleted sequence

appeared to be present as a minor species (<5%) and not detectable in the original chromato-

grams obtained for the Sanger sequencing. Thus, it is likely that a deletion in defective interfer-

ing (DI) particles masked the standard virus sequence in Sanger sequencing because of their

preponderance. The absence of a type I interferon production in African Green Monkey kid-

ney Vero cells allows the accumulation of defective interfering (DI) particles in MuV passages

[16], which give rise to highly fluctuating titres in the passages (S1 Table). In contrast, viruses

populations passaged on B-LCL cells did not appear to contain DI particles, as the high cover-

age at the 3’ end of the antigenomic sequence (which represents the L gene and the region cov-

ered by DI particles) present in Vero cell passaged virus is absent in virus passaged on B-LCL

cells (Fig 1). The accumulation of DI particles in virus passaged on Vero cells is also indicated

by the substantial number of variant reads observed at the 3’end of the antigenome in virus

populations passaged on Vero cells (S2 and S3 Tables) and furthermore by the observation

that in plaque assays the lowest dilution with the highest number of pfu did not show any pla-

ques (S1 Table) as at high concentrations DI particles prevent plaque formation.

Diagrams that show the total numbers of reads obtained in NGS for each nucleotide over

the entire mumps genome of 15372 nucleotides (x-axis) displayed by the Tablet programme

[15]. In Fig 1A, the y-axis scale is 1–3000 in Fig 1B it is 1–1,500,000 indicating the accumula-

tion of reads associated with the appearance of DI particles at the 3’ end of the antigenome.

Both PP1 and PP2 grew to similar titres and generated the same type and level of cytopathic

effect in Vero cells (formation of syncytia) at similar times post infection as the original

MuVG09 non-recombinant progenitor virus isolated from the clinical material on Vero cells.

In the case of PP2 these syncytia showed green fluorescence (Fig 2). The cytopathic effects of

Fig 1. Coverage of reads and preponderance of defective interfering RNAs in passages of viruses on Vero and B-LCL cells. Coverage of

reads and preponderance of Defective Interfering RNAs after 6 passages of viruses on Vero and B-LCL cells.

https://doi.org/10.1371/journal.pone.0219168.g001
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PP2 and MuVG09 on B-LCL cells were the same (cell death and occasional fusion in clumps of

cells) and green fluorescence was observable in the clumps of the PP2 infected B-LCL cells

floating in the medium. The growth characteristics of both PP1 and PP2 viruses were similar

to those of their progenitor virus and hence we did not carry out experiments to assess their

competitive advantage or disadvantage in mixed infection experiments.

Assessment of the stability of the sets of mutations by NGS

Six additional passages of both viruses were carried out with an undiluted inoculum provide

maximum opportunity for the fixation of mutant genomes. PP1 was passaged on Vero cells

and PP2 on B-LCL cells. As a control we also passaged the non-recombinant MuVG09 virus on

Vero and B-LCL cells under the same conditions as PP1 and PP2. We chose these two cell sub-

strates because of their different biological properties. Vero cells are adherent and give rise to

syncytia. Vero cell passages of MuV were carried out by infection of fresh Vero cell monolayers

with undiluted supernatant virus from the previous passage. In the B-LCL cells, which are an

IFN competent human B lymphocyte cell line that grow in suspension and leads to large cell

clumps, we choose to allow maximum chances for the accumulation of mutations by carrying

out the passages in such way that each passage represents an addition of fresh uninfected cells

to the culture medium in which the cell clumps are dispersed by gentle shaking. The superna-

tant virus of each passage in B-LCL cells was titrated on Vero cells (S1 Table).

Fig 2. Rescue of the viruses as replicators; cpe and fluorescent plaques. A: Generation of rMuVG09 by reverse genetics.

Panel 1 shows mock infected Vero cells; panel 2 shows the presence of primary foci of rescue at 5 days post transfection;

panel 3 shows primary syncytia which were plaque picked and subsequently Vero cells were infected with the aspirated

virus stocks. CPE was detected 1–2 dpi. Panel 4 shows plaque picked rMuVG09 grown for 4 low MOI passages on Vero

cells. All show characteristic syncytium-formation (scale bar is 50μ). B: Generation of rMuVG09 expressing EGFP—

rMuVG09EGFP(3)—by reverse genetics. Panel 1 shows the presence of primary foci of rescue at 5 days post transfection in

both phase contrast and UV microscopy; panel 2 shows primary syncytia which were plaque picked and subsequently Vero

cells were infected with the aspirated virus stocks. EGFP expression was evident 1 dpi and cpe was detected 1–2 dpi. Panel 3

shows plaque picked rMuVG09EGFP(3) grown for 4 low MOI passages on Vero cells. Passaged virus images show

characteristic syncytium formation (scale bar is 50μ).

https://doi.org/10.1371/journal.pone.0219168.g002
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The supernatant viruses from the Vero and B-LCL cell passages were pelleted by ultracen-

trifugation through a 25% (w/v) sucrose cushion and directionally analysed by NGS using a

library preparation method that retains directionality of the purified RNA so that the polarity

of each read (positive-antigenomic or negative-genomic strand) could be determined on an

Illumina platform.

Table 1 demonstrates that the set of the 11 mutations in the V/P gene of PP1 was main-

tained and stable over the 6 passages. The stability of PP1 in the passage series was not signifi-

cantly different to that of the non-recombinant MuVG09 virus also passaged 6 times in parallel

experiments on Vero cells. Similarly, the 32 mutations in PP2 (Table 2) were also stable on pas-

sage in B-LCL cells and as stable as the original MuVG09 nucleotides at these positions in paral-

lel passages of the MuVG09 virus. The frequencies with which the alternative readings occur in

each cluster were in the order of 0.001 or 0.1% This in our experience is the normal frequency

of alternative reads (0.04 to 0.10%) in NGS sequencing projects which may be generated dur-

ing the amplifications involved in the library preparation and the sequence reading process

itself. No significant predilection for changes that would restore the original MuVG09 nucleo-

tide at any given position in the cluster of mutations was observed. The two other possible

nucleotides at the mutated position were observed approximately twice as frequent (1.7–2.3)

as those that would restore the original MuVG09 nucleotide at that position. This is what would

be expected if the direction of variation was random rather than directed.

Evolution of cluster-independent mutations during passage of rMuV

In order to ascertain that the passaging conditions did not impose some unexpected artefactual

sequence stability we assessed whether mutations occurred during the passage series outside

the clusters present in PP1 and PP2. Many specific mutations accumulated to high frequencies

during the six passages outside the clusters of originally mutated residues in PP1 and PP2. This

indicates that though the virus could mutate in response to the changed cellular environment,

the original sets of mutations were stably maintained. Examples of changes occurring during

passage are given in Table 3 and their distribution is depicted in Fig 3. The more comprehen-

sive representation of all the changes observed at a frequency of>1% in the deep sequencing

reads are compiled and shown in S2 and S3 Tables for PP1 and MuVG09 respectively.

Interestingly the NGS revealed that a number of mutations were present at a low frequency

(~3.9%) in the fusion related external domain (FRED) of the F protein in both passage 1 and

passage 6 of PP1 and of MuVG09. These were already present in passage 1, which represents

the 5th passage in Vero cells after the original rescue and they were maintained at low fre-

quency during the series. They affect the FRED domain by introduction of a number of

charged residues that may well impact its functionality (Table 4). A similar observation was

made in the NGS of the passage series of MuVG09 and thus this phenomenon is not specific to

PP1 (see S3 Table for similar mutations in MuVG09).

In PP2 passage on B-LCL cells two variants seem to predominate with either a mutation at

position 238 in the HN protein G> S or one at position 239 L > R. These are almost never

present in the same RNA molecule and only a small number of original non-mutated reads

remain. The significance of the two mutations observed in the HN gene of PP2 during the pas-

sage series in B-LCL cells cannot easily be assessed because this is a region of unknown

significance.

Noticeable is also that in PP2 between positions 2227 and 2260 in the sixth passage about

6% of the reads showed a linked set of U to C mutations (Table 3) consistent with an interpre-

tation that a number of biased hyper-mutated RNA molecules are carried along in passaged

virus.
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The EGFP gene does not vary to a greater extent than the virus genes

A priori the expectation was that the EGFP gene in PP2 is not under selective constraint and

that henceforth the ORF would have accumulated more mutations than the true virus genes.

This appeared not to be the case when the number of variant readings at all positions in the

Table 3. Examples of novel mutations observed after 6 passages of PP1, PP2 and the parent MuVG09 virus.

Virus/cell type position nr Passage 1 Passage 6 Effect on protein and position Frequency

PP1/Vero 849 U U>G N235 F>C 11.5%

1178 G G>A N345 V>I 24.6%

3355 A A>G M31 E>G 52%

9014 U U>C L193 I>T 9.9%

12748 C C>U L1437 syn 20%

PP2/B-LCL 559 U U>C N138 syn 3%

1896 U U>C N3’UTR 7%

1897 U U>A N3’UTR 6.6%

2710 A A>G P245 Q>R 33%

2859 A A>G P295 D>N 7.6%

8171 G G>A HN238 G>S 38%

8175 U U>G HN239 L>R 46%

2227 U U>C P/V83 syn 6%

2251 U U>C P/V91 syn 6%

2256 U U>C P/V93 I>T 6%

2260 U U>C P/V94 syn 6%

G09/Vero 1366 G G>U N406 syn 20.3%

1481 G G>U N446 D>Y 18.5%

2710 A A>G P245 Q>R 20.8%

5638 U U>A F365 Y>N 38.7%

6704 A A>U HN32 T>P 17.4%

9896 G G>U L487 D>Y 45.4%

https://doi.org/10.1371/journal.pone.0219168.t003

Fig 3. Genome distribution of mutations occurring during passage. The position of new mutants observed after six passages of MuVG09 and PP1 on Vero cells and

PP2 virus on B-LCL cells. Red boxes indicate the position of the clusters of mutations in the genomes of PP1 and PP2 virus; blue triangles show the genome positions

of the mutants identified in Table 3.

https://doi.org/10.1371/journal.pone.0219168.g003
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ORFs encoding virus genes and that of EGFP were compared. The overall frequency of variant

nucleotides at 0.20% was no greater in the EGFP ORF than in the other viral genes. The lack of

selective constraint on this gene in contrast to those of the viral genes make this in our opinion

(S4 Table) an unexpected result.

Discussion

How and when during the rescue of PP1 and PP2 viruses the clusters of synonymous muta-

tions arose is unclear. These replicating MuV were isolated as plaques from the wells in which

the rescue experiment was performed. This is feasible because the rescue efficiency is relatively

low and most wells in a six well plate do not contain more than one syncytium at 5–7 days post

transfection. We have demonstrated here that once these clusters of mutations were generated

the resulting virus populations were genetically stable when passaged 6 times with undiluted

inoculum to allow for the maximum chance of the fixation of mutations. Deep sequencing

of the virus RNAs did not show a bias towards reversion to the original nucleotide in the

MuVG09 sequence. The direction of mutation appeared random and the variant readings at the

original mutated positions in PP1 and PP2 were observed at such low frequencies that they are

probably due to errors during the NGS sequencing procedure rather than representing true

variants in the virus population. It is also clear that the stability of the PP1 and PP2 replicating

viruses did not reflect an inability of the viruses to fix mutations during these passage series as

variations did occur during the passages in other genes and nucleotide positions in both the

PP1 and PP2 viruses as well as in the parent virus upon passage. These were often found at

very high frequencies (3–45%) even though many were non-synonymous and probably reflect

adaptation to the environment of a different host cell. The stability of the clustered mutations

thus indicates that they contribute to a stable genotype that does not readily revert to the origi-

nal MuVG09 set. Potential compensatory mutations in the V/P gene of PP1 and the N gene of

PP2 were not observed as consistent features of the variations observed in NGS.

The stability of these mutant sets is remarkable. As they consist primarily of synonymous

mutations or a small number of conservative amino acid replacements, it would be difficult to

Table 4. A cluster of mutations in the fusion related external domain at the N terminus of the F1 part of the fusion protein of PP1. N terminus of F1 103

FAGIAIGIAAALGVATAAQVT� 123.

Position Mut Effect P1 geno P1 anti P6c geno P6c anti

4869 U>G F108 I>M 3/385 4/58 1/176 3/28

4873 A>U F110 I>F 6/380 3/59 3/170 0/32

4881 A>C F113 A syn 3/365 4/59 3/170 3/35

4884 C>G F114 L syn 10/367 4/64 9/169 0/35

4888 G>U F116 V>F 5/360 2/66 4/169 1/36

4892 C>A F117 A>E 12/335 2/67 6/161 0/38

4894 A>C F118 T>P 19/328 9/65 13/159 4/38

4898 C>A F119 A>E 8/326 0/66 1/161 0/39

4901 C>A F120 A>E 12/330 1/66 5/161 1/39

4903 C>A F121 Q>K 22/329 7/66 11/159 1/38

4907 U>A F122 V>E 20/327 1/69 11/156 2/42

total 120/3832 37/705 67/1811 14/400

frequency 3.1% 5.2% 3.7% 3.5%

� In large capitals the residues of the fusion related external domain that are affected by the mutations and in bold those that are changed as a result of a non-

synonymous mutation.

https://doi.org/10.1371/journal.pone.0219168.t004
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see a constraint at the protein coding level that would affect their reversion frequency. The

maintenance of the set in repeat passaging may point to a higher order RNA structural con-

straint but these would be predicted to be operative only at the mRNA level as the RNA in

the + and–strand RNPs appears devoid of secondary structure in the paramyxoviruses [17].

The positions of the mutant sets are interesting. They are located at the 3’ end of the genome.

These areas have been shown to be preferentially sensitive to biased hyper-mutation caused by

ADAR1 in measles virus [18]. Biased hyper-mutation (U to C) is also prevalent in these MuV

samples in the N gene and the start of the V/P gene. The limited size of the sets does also not

affect the overall codon usage in these replicating MuV, which is known to be a specific feature

of each paramyxovirus [19] and the lack of synonymous mutations during viral evolution in

the paramyxoviruses is observed but not explained.

How these mutant sets were generated in the first place is an open question and the most

important one raised by the data. The phenomenon described here may be specific for rescue

of MuVG09. In our experience with rescue of other paramyxo- and pneumoviruses such as

measles, canine distemper, rinderpest virus and respiratory syncytial virus [20–23] as well as

with some laboratory adapted strains of MuV- we have not encountered this phenomenon

apart from occasional clusters of mutation that were generated by biased hypermutation

involving primarily U to C and at a lesser frequency A to G changes. Since we have done this

work with only a single clinical strain of MuV we are not able to link the phenomenon to the

clinical or laboratory adapted nature of the virus. Furthermore, the rescue of infectious virus

from plasmids in the system was not especially lees efficient than with the other viruses, which

we have worked with. The clusters of mutations in the PP1 and PP2 viruses do not show this

bias. The value for κ i.e. the ratio of transitions over transversions in all clusters summed

together was 4.9 (bias towards transitions) which is similar to that found in between genotype

comparisons for MuV. It is not due to the presence of the extra EGFP gene as it occurred both

in PP1 and PP2.

It seems unlikely that the limited number of replications required to generate a syncytium

during the primary isolation of these viruses would allow sequential selection of the large num-

ber of mutations that would provide these stable sets. Any explanation based on quasi-species

theories would not only require a very large number of replications to generate the numbers of

mutations but also a very strong positive selection for the second, third etc. synonymous muta-

tion once the first had occurred. The observation that these mutations are clustered indicates a

different mechanism for their generation. We suggest that the most likely processes that gener-

ated the clusters are either (i) the transcription of the DNA plasmid by T7 RNA polymerase or

(ii) the early rounds of MuV replication by the RdRP operating in an environment different

from normal virus infection into a host cell, followed by removal of unfit viruses by selection

against viruses with lethal mutations in the N and V/P ORFs. Suggestions that they are gener-

ated by artefacts in the propagation of plasmids in Escherichia coli simply move the question as

to how the clusters were generated one step back. The selection of a precise set of 11 in PP1 or

32 mutations in PP2 in E.coli that are synonymous and clustered in the virus genome and

allow for the generation of replicating viruses is inexplicable and extremely unlikely. Further-

more, it should also be noted that most of the other plaque picked viruses did not contain

these sets of clustered mutations but had the original MuVG09 sequence in the regions hyper-

mutated in PP1 and PP2. Also recombination of the plasmid DNA with copies of the endogen-

ized mumps virus sequences similar to the endogenous Borna virus like elements present in

the genomes of several eukaryotes genomes [24] is unlikely as BLAST searches did not identify

such sequences in the genome of the African Green monkey from which Vero cells are derived;

similarly, no significant mumps virus N and V/P-like sequences were identified in the fowl

pox genome.
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Why the synonymous and conservative amino acid mutations occurred in clusters remains

also an open question, but one possible explanation for the occurrence of the clusters of muta-

tion has been suggested based on quantum biology. The genetic code is essentially a proton

code in the plasmid DNA formed by the patterns of two (A-U) or three (G-C) hydrogen bonds

mediated by protons that can tunnel between their alternative positions. Entanglement and

tunnelling have been invoked in a number of studies dealing with mutations in biological sys-

tems [25, 26] and in chemistry are known as tautomerization. MacFadden and Al-Khahili [27]

have speculated that a continuous process of quantum superposition and decoherence may

allow a fast search for possible replicators from a dynamic combinatorial library. We suggest

that in this case this may occur during the generation of primary transcripts from the full-

length antigenomic DNA plasmid by T7 polymerase. On the basis of modelling quantum bio-

logical effects Rieper et al. [26] suggested that nucleotides in DNA might be read in the context

of their neighbouring nucleotides, which may explain constraints on synonymous mutation in

RNA viruses [19]. However, whilst quantum biological effects merit more attention in virol-

ogy, their experimental verification as well as their counter-intuitive and speculative nature

remain a challenge for biologists [27].
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