
A Rule-based Framework for
Developing Context-Aware
Systems for Smart Spaces

thesis submitted to the University Of

Nottingham

for the degree of
Doctor of Philosophy

Submitted by
Ijaz uddin

School of Computer Science
University of Nottingham

Malaysia Campus

June 2019

Abstract

Context-aware computing is a mobile computing paradigm that helps design-
ing and implementing next generation smart applications, where personal-
ized devices interact with users in smart environments. Development of such
applications are inherently complex due to these applications adapt to chang-
ing contextual information and they often run on resource-bounded devices.
Most of the existing context-aware development frameworks are centralized,
adopt clientserver architecture, and do not consider resource limitations of
context-aware devices. This thesis presents a systematic framework to mod-
elling and implementation of multi-agent context-aware rule-based systems
on resource-constrained devices, which includes a lightweight efficient rule en-
gine and a wide range of user preferences to reduce the number of rules while
inferring personalized contexts. This shows rules can be reduced in order
to optimize the inference engine execution speed, and ultimately to reduce
total execution time and execution cost. The use of the proposed framework
is illustrated using five different case scenarios considering different smart
environment domains.

School of Computer Science

Acknowledgements

First of all, I thank ALLAH for his blessings upon me and giving me the
courage to undertake the PhD course in such a prestigious university. I
thank Dr Abdur Rakib for his excellent supervision and trust in me to give
me the chance to work for him. Throughout my PhD, he has never shown
any lack of interest; instead, every meeting made me more and more energetic
to overcome the PhD. It is possible only through his continuous efforts that
I can finish my PhD. I also thank Dr Thomas Maul for being the most
caring academician. It was only possible due to Dr Thomas that i travelled
to Vietnam for conference and won the best paper award. Further, I am
especially thankful to Dr Iman Yi Liao, for being my formal supervisor and
trusted in me. Moreover, I thank my parents, brother Altaf and my wife for
their prayers and patience. I also acknowledge that my daughter Zarghoona
Khattak sacrificed her childhood for me and spent time alone and far from
her cousins and friends when she needed it the most.

I thank my senior, Dr Mahfuz ul Haque for his excellent directions given
to me when I was stuck in study or was feeling down. Dr Mahfuz taught me
a lot, and I am thankful for his support during and after his PhD. It was not
possible without my lab mates especially, Moataz, Tuong and Koah for their
continuous support(laughing when there was a deadline and work to do) and
patience(when there was work to do, and they were waiting to go out for
eating kabab). I also thank Moataz to work with me on the great for-loop
problem we had.

In the end, I must say that I really enjoyed my time in UNMC only due
to the best supervisor, best environment and best friends around.

i

School of Computer Science

Publications From Thesis

• An efficient rule-based distributed reasoning framework for
resource-bounded systems. Mobile Networks and Applications.
2018 Aug 18:1-8. (Journal)(IF 3.2)

• A Resource-Aware Preference Model for Context-Aware Sys-
tems November 2017, ICCASA 2017 (Springer) ,Tam ky, Vietnam

• Modeling and Reasoning about Preference-Based Context-
Aware Agents over Heterogeneous Knowledge Sources June
2017, Mobile Networks and Applications (Journal)(IF 3.2)(Accepted)

• A Preference based application framework for resource bounded
Context aware agents June 2017, International conference on mobile
and wireless technologies, Kuala Lampur, Malaysia

• Modelling and Reasoning About Context-Aware Agents over
Heterogeneous Knowledge Sources (contributor) (Best Paper Award)
April 2017, Context aware systems and application (Springer), Vietnam

• A Framework for Implementing Formally Verified Resource-
Bounded Smart Space Systems Dec 2016, Mobile Networks and
Applications (Journal)(IF 3.2)

• Resource-Bounded Context-Aware Applications: A Survey
and Early Experiment March 2016, Nature of computation and com-
munication (Springer), Vietnam

ii

School of Computer Science

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Research Questions . 6
1.3 Problem Statement . 8
1.4 Aims and Objectives . 10
1.5 Methodology . 11
1.6 Major Contributions . 12

1.6.1 A Customized Algorithm Development For Efficient
Running On Small Devices 13

1.6.2 Preferences . 13
Context-Based Preference 14
Derived Preference . 14
Live Preferences . 15
Preferences On Rules 15

1.6.3 Rules Generation . 15
Desktop Based Rule Generator 15
Rule From Ontology 16

1.6.4 Practical Implementation Of The Framework 16
1.7 Thesis Outline . 16

2 Context And Context-Awareness 18
2.1 Introduction . 18
2.2 Context . 19
2.3 Context-Aware Systems . 21

2.3.1 Context-Aware Multi-Agent Systems 22
2.3.2 Types Of Context-Aware Computing 24

Location-Aware Computing 24
User-Aware Computing 25

iii

School of Computer Science

Energy-Aware Computing 26
Resource-Aware Computing 26
Environment-Aware Computing 27
Situation-Aware Computing 28

2.4 Application Of Context-Aware Systems 29
2.5 General Design Of Context-Aware Application 34
2.6 Architectural Style Of Context-Aware Systems 35
2.7 Context Modelling Approaches 38
2.8 Ontologies . 40

2.8.1 Representation Of Ontologies In Computer Science . . 42
2.8.2 Ontology Design Approaches 43
2.8.3 Ontology Designs And Languages 44

2.9 Rule-Based System . 48
2.9.1 Components Of RBS 50
2.9.2 Rule Execution . 52
2.9.3 Conflict Resolution . 53

2.10 Discussion . 54

3 Related Work 56
3.1 Introduction . 56
3.2 Context-Aware Development Platform 57

3.2.1 Origin Model . 57
3.2.2 ContextJ . 60
3.2.3 JCAF . 61
3.2.4 OPEN . 62

3.3 Rule-Based Systems And Existing Rule Engines 64
3.3.1 Prolog . 64
3.3.2 Jess . 65
3.3.3 Clips . 66

3.4 Rule-Based Systems For Mobile Devices 68
3.5 RETE Algorithm . 73

3.5.1 Analysis Of RETE Algorithm 75
3.5.2 The Match Problem 79

3.6 Discussion . 81

4 Proposed Platform, Context Acquisition Scheme And Algo-
rithm 83
4.1 Introduction . 83

iv

School of Computer Science

4.2 Proposed Platform . 84
4.3 Context Acquisition Model . 85

4.3.1 Context Acquisition 86
4.3.2 Context Acquisition Frequency 86
4.3.3 Context Acquisition Methods From Source 88
4.3.4 Context Reasoning . 88

4.4 Model Of Context-Aware Systems 89
4.4.1 Rule Format . 91
4.4.2 Context-Aware Systems as Resource-Bounded Agents . 92

4.5 Algorithm Design . 95
4.5.1 Match: Conflict Set Generation 96
4.5.2 Select: Conflict Resolution 100
4.5.3 Act: Execution Of The Selected Rule Instance 100
4.5.4 Working Memory Updating 103
4.5.5 Communication And Subroutine Handling 104
4.5.6 Time And Space Complexity Of Core Algorithms . . . 108

Match Algorithm Complexity 108
Conflict Resolution Algorithm Complexity 111
Execution Of Rule Complexity 112

4.6 Rule Generation And System Design 114
4.6.1 Web Based Rule Generator 114
4.6.2 Onto-HCR Protégé Plugin For Heterogeneous Ontologies117

Development Environment 118
Working Mechanism Of The Plugin 119

4.7 Discussion . 120

5 Preferences 125
5.1 Introduction . 125
5.2 Preference In Context-Aware Agents 128

5.2.1 Context Set . 129
5.2.2 Context Monitor . 130
5.2.3 Preference Set Generator 131
5.2.4 Working Mechanism 131

5.3 Type Of Preferences . 132
5.3.1 Context-Based . 132
5.3.2 Derived Context-Based Preference 133
5.3.3 Live Preference . 133
5.3.4 Preference Set Generation 135

v

School of Computer Science

5.4 Case Studies . 136
5.4.1 Case Study 1 . 136

Facts, CoI and Rules transition 141
Discussion . 141

5.4.2 Case Study 2 . 143
5.4.3 Case Study 3 . 148

Context-based Preferences 148
Rule-based Preferences 149

5.4.4 Case Study 4 . 150
System Setup . 151
Ontologies and Agents 152
Scenarios . 154
Agents Details . 154
Scenario Execution Smart Patient, Home And Office . 157
Dry Run Analysis . 158

5.4.5 Case Study 5 . 161
5.4.6 Case Studies Results 163

5.5 Discussion . 164

6 Conclusion And Future Work 173
6.1 Conclusion . 173
6.2 Future Work . 177

6.2.1 Hardware Advancement 177
6.2.2 Unified Ruling System 178
6.2.3 Reversal Of Preference Set 178
6.2.4 Working Memory Limitation And Updation 179

Distinct WM . 179
Average of the preference sets 179
User assigned . 180

A Complete List Of Rules 181

vi

School of Computer Science

List of Figures

2.1 Nurse call system architecture 32
2.2 WorldMate flight details . 33
2.3 Centralized architecture . 36
2.4 Distributed architecture . 37
2.5 Stand alone architecture . 38
2.6 Rule-base schematic view . 51

3.1 RETE Network Illustration 76

4.1 Distributed problem solving 93
4.2 Step by step rule and fact processing 99
4.3 Different matching scenarios of the proposed algorithm 99
4.4 Rule-base initialization . 115
4.5 Validation of Horn-clause rules 116
4.6 Facts interface with auto suggestion 116
4.7 Distributed semantic knowledge translation process 117
4.8 Enabling the plugin in protégé 121
4.9 Selecting ontology for translation 122
4.10 Editing the translated file . 123

5.1 Preference generation overview 129
5.2 Derived context based preference set generation 134
5.3 Live preference change detection 135
5.4 Smart office ontology . 138
5.5 Patient care ontology . 139
5.6 Ontologies with corresponding agents 152
5.7 Patient Care Ontology . 153
5.8 Preferences enabled . 162

vii

School of Computer Science

5.9 Preferences disabled . 162

viii

School of Computer Science

List of Tables

2.1 Abstract layer of context-aware system 34

3.1 Comparison Table For Rule Engines. (Y: Yes, N: NO, NA:
Not Applicable) . 72

3.2 Algorithm Left Activation Running Cost 78
3.3 Algorithm Right Activation Running Cost 78

4.1 Summary of proposed system 87
4.2 One possible run of the system 95
4.3 Agent ID table . 108
4.4 Conflict set generation Algorithm Complexity 109
4.5 Algorithm Conflict Resolution Running Cost 111
4.6 Cost for Executing a Selected Rule Instance 113

5.1 Sample rules from two ontologies with identifiers 140
5.2 Preference set transition . 141
5.3 Preference set transition with rules 142
5.4 Blood pressure, heart rate rules and example rules 147
5.5 Some example rules of Agent 1 150
5.6 Preference set transition . 151
5.7 Complete Agent Wise Rules and Reductions in Rules 160
5.8 Execution of Smart Patient (A) 166
5.9 Execution of Smart Patient (B) 167
5.10 Execution of Smart Patient (C) 168
5.11 Execution of Smart Home (A) 169
5.12 Execution of Smart Home (B) 170
5.13 Execution of Smart Home (C) 171
5.14 Execution of Smart Office . 172

ix

School of Computer Science

A.1 Set of rules for Smart Patient 181
A.1 Set of rules for Smart Patient 182
A.1 Set of rules for Smart Patient 183
A.1 Set of rules for Smart Patient 184
A.1 Set of rules for Smart Patient 185
A.1 Set of rules for Smart Patient 186
A.1 Set of rules for Smart Patient 187
A.1 Set of rules for Smart Patient 188
A.2 Set of rules for Smart Home 188
A.2 Set of rules for Smart Home 189
A.2 Set of rules for Smart Home 190
A.3 Set of rules for Smart Office 191
A.3 Set of rules for Smart Office 192
A.3 Set of rules for Smart Office 193
A.4 Set of rules for Smart Shopping Cart 193
A.5 Set of rules for Smart Shopping Cart 194

x

School of Computer Science

Chapter 1

Introduction

The last few decades have seen exponential growth and change in a variety

of computer-related technologies. Computers have evolved from big bulky

mechanical machines into lightweight lightning fast laptops and tablet com-

puters. Tasks that were once possible only on big computers can be done

easily on small desktop computers or even handheld devices such as PDA

or smartphone. While computers were successfully prospering, there was

the beginning of mobile phones. In 1973 Motorola first introduced handheld

telephone device [1]. It was not until 1980 that the mobile use was slowly

transferring to public use. Later on, mobile phones with small size and longer

battery life were introduced. Such mobile phones were easy to carry and were

available at the market at affordable prices for public purchases. The tech-

nology took it further and the late 20th century has witnessed the transfer of

mobile phone into a smartphone. Smartphones are capable of carrying out

Chapter 1 1

School of Computer Science

our daily routine tasks, which were earlier possible on computers or other

similar devices only, such as browsing the Internet, social networking, taking

photos or making videos etc [2]. With the advancements of the smartphone

combined with feature-rich software, applications and Internet connectivity

make it easier for people to share their experiences using social networking

applications, including VoIP services, free messaging and call applications,

to name some [3].

With the availability of such devices, it seems that Weiser’s vision about

the 21st-century computer was right, with providing the idea of ubiquitous

computing [4], where different computers are connected and communicate

with each other, anywhere any time. Ubiquitous computing accommodated

smartphones very well. The smartphones being small devices with adequate

computing power further gives the ubiquitous computing mobility. More-

over, a variety of communication modes available on smartphones makes

it more connected with other devices. A typical smartphone can use, call,

SMS, Wi-Fi, blue-tooth, Infrared, hotspot and more communication modes,

which makes the users able to employ different services whenever and wher-

ever needed. Along with various high-tech features, a smartphone is also

equipped with a wide range of sensors, including a global positioning sys-

tem (GPS), shake sensors, accelerometers, and proximity sensors [5]. These

sensors that accommodate a user in his/her daily life can further be used

in a large variety of applications, which can provide user related and sur-

rounding information. This information is formally called as contexts when

Chapter 1 2

School of Computer Science

used within the scope of context-aware computing paradigm. These sensors

can be integrated in a way to provide enough user information, including

the user’s location, time, movement, and surrounding environmental infor-

mation. When equipped with a suitable communication mechanism, it can

also enhance interaction between the user, application and other devices [6].

Since a smartphone is quite an independent device itself and analogous to

agent-based computing, where a device works independently, a smartphone

can easily qualify as an agent with the help of some code or application.

The smartphones or other devices that are used to implement such applica-

tions may act as intelligent agents for a particular scenario of an application.

Thus smartphones and agent-based technology can provide tremendous ben-

efits for the development of more intelligent systems or in other words, a

better context-aware system. With the concept of ubiquitous computing and

context-aware capabilities, it is more suited to devise a system that can be

deployed anywhere, have context-aware skills and can infer output or new

context based on its current information. To achieve such a mechanism,

there are quite different ways to give a machine the ability to think and then

decide, on behalf of another person or device. One such approach is by using

a rule-based system, which makes use of certain rules to drive the system.

Having such an intelligent system on a small device can significantly improve

the people’s life standard (especially disabled people), with very little user

intervention or efforts required.

This research work aims to study different context-aware systems, rea-

Chapter 1 3

School of Computer Science

soning mechanism, matching algorithms and rule-based systems and their

implementation on small devices. Further to propose a qualified mechanism

for providing a variety of services on resource-limited devices. The rest of

this chapter presents the motivation for developing a context-aware system

framework which adopts the rule-based reasoning mechanism with a sig-

nificant focus on implementation on resource-bounded devices, e.g., smart-

phones. Research questions, problem statements, methodology and major

contributions are also highlighted. At the end of this chapter, the thesis

structure is outlined.

1.1 Motivation

Ubiquitous computing is a way that can be defined as “whenever, wherever”

computing. What happens behind providing such services can take different

approaches. Ubiquitous computing is a natural bind with the context-aware

system. Since in a ubiquitous system, different devices are connected and

can provide service anytime anywhere. The context-aware terminology fur-

ther automates this anytime anywhere mechanism. Imagine a user enters

his/her office, and all the devices are tuned into his/her settings automati-

cally, for example, the lights are turned on, the fan and air-con automatically

adjust the temperature according to the weather outside. The comfort level

of the seat is adjusted, and the TODO list is brought into the user’s at-

tention. Such personalization can be achieved when ubiquitous computing

Chapter 1 4

School of Computer Science

embraces context-aware computing. Since all of these settings are taking

place on behalf of the user, and attaining such mechanism, it is necessary

to make the system intelligent enough so that it can consider all the avail-

able context and based on these contexts take some decision on behalf of

the user. Such intelligence can be achieved if the knowledge of the user is

encoded into the framework, and for that reason, rule-based reasoning is

used. Rules can be used to encode an expert knowledge in the simplest

form. However, the combination seems perfect but not easy. As a rule-

based system consumes not only much memory but also needs a powerful

computer for processing. While in today’s world of mobility, a smartphone

is not a match for the high-tech desktop system. Some approaches tackled

the issue by using a cloud computing for processing, which leaves the smart-

phone merely a sending and receiving device. This motivates the research

in the direction where the work is almost negligible. Further, the literature

also suggests a lack of mature work in this direction. Therefore, with the

facility of personalization the expert-knowledge and reducing the rules re-

dundancy and developing a resource-friendly framework, will provide new

trends in this research. areaResource-bounded devices may include devices

which have limited memory, processing power, operating power, battery life,

bandwidth, communication channels, are handheld such as a smartphone or

smart chips running Android. In this thesis, such devices are also referred

to as tiny devices. In the same fashion, tiny memory relates to devices with

limited memory with no possibility of expansion. The motivational factors

Chapter 1 5

School of Computer Science

that contributed towards taking this research also provided us with research

questions, discussed in the next section.

1.2 Research Questions

This thesis intends to find out the relation of the rule-based system with

context-awareness. Specifically, how to use rule-based systems to develop

context-aware applications. Categorically, we split our perspective into dif-

ferent objectives and incrementally address them one by one. First, to study

the rule-based systems itself and then to find out what role it can play in

terms of functionally correct context-aware applications development. Pri-

marily, what challenges to expect or can be faced when the resources of

the host machine are minimal. Resources can be the memory, computation

power, battery life to name some, but not limited to them. Secondly, how to

define an algorithm which is efficient and light enough to be used on resource-

bounded devices and must have the reasoning power to process the rules of

knowledge base provided and derive accurate output. Since the smart spaces

are composed of multiple devices or agents, and each agent plays its role to

overcome some problem. For this purpose, the agents reason, derive, deduce,

and share context within the limitation of its resources. An efficient algorithm

alone is not enough to overcome the resource constraints that we expect to

encounter and improve performance. Therefore, to improve the performance,

we need some mechanism to reduce the redundancy issues, that is common

Chapter 1 6

School of Computer Science

in rule-based systems. Reducing redundancy within rules will directly affect

the overall running time of an agent. Instead of going through all the rules,

it will only focus on a small set of rules with higher chances of getting fired.

To approach these difficulties, we need to develop some understanding of

rule-based systems and compare them with the conventional approaches. As

what benefits it brings along with itself, so its usage can be favoured, es-

pecially in the resource-bounded environment. We need to study, how the

rule-based system supports the context-aware paradigm, and what are some

current literature that focuses on reasoning facilities with resource manage-

ment point of view. Further, it is essential to develop some techniques which

can directly impact the system performance. Since rules are the main driv-

ing factor of any rule-based system, and the number of rules available in the

knowledge base can take a sufficiently long time to search for a particular

rule instance to fire. We tried to work on this area also, and did some work to

reduce the redundancy while keeping the integrity and correctness of output

accurate.

After addressing such issues, we will be able to provide an efficient rule-

based algorithm for the development of context-aware systems in a resource-

constrained environment. This thesis has both theoretical and practical con-

tributions, the theory is discussed with the help of different concepts, meth-

ods and design framework, while a working prototype of various components

is also developed as part of the implementation.

Chapter 1 7

School of Computer Science

1.3 Problem Statement

In today’s era of technology and the complex nature of application devel-

opment for a broader range of domains, it is quite challenging to come up

with a concrete solution for context-aware systems. Context-aware systems

itself are quite complex, as the context cannot be predicted in advance nor

the output of the system. Further, it becomes more complicated when the

solution is sought to be on different agents or in a multi-agent system in a

distributed fashion. In a multi-agent environment, the agents work together

to accomplish a single task or multiple tasks. A certain level of difficulty is

increased when the agents are capable of moving from place to place. As each

agent is considered as a small device with minimal resources, the scenario be-

comes more complicated when these agents not only process context but also

acquire the context, process the context, reason about the context and pro-

vide some new context and share the context with other agents. In order to

reason, an agent should possess a rule engine sufficiently enough to produce

accurate results while consuming fewer resources. Although some efforts are

being made in different approaches to our knowledge, however, there is no

any viable and practical solution for the development of context-aware appli-

cations based on the rule-based systems which are specially tailored for tiny

devices with limited resources and working in distributed multi agent-based

setting. Using rule-based system brings its complexity such as matching

problem, redundancy of rules, higher run time complexity to name some.

Chapter 1 8

School of Computer Science

Therefore, it is vital to address these issues if the framework is intended for

devices which have limitations on the resources. Also, when context-aware

systems are used, they are highly favourable to give personalized services to

the user. Accommodating personalization in rules need preferences based on

user choice. Usually, the development for such frameworks takes place on a

high-end system with an abundance of resources. Therefore, the resource-

bounded area has been ignored widely. Having such a framework in hand

can cater to the needs of consumers residing in remote locations, warzones,

disaster-hit areas to name some. Depending on the nature of the area, the

framework can be loaded with the rule-base to help users with minimal re-

sources. Some work has been initiated in [7, 8] but the work seems in a

primitive stage, or there is no advancement recently in their work. The au-

thors of [7] argue that there are no pure mobile based rule-engines, and the

authors of [8] further states that there does not exist any comprehensive

design and development tool which covers all the aspects of context-aware

applications in the mobile platform including, e.g., methodology, language,

inference engine and communication protocols. They further state that such

development environment is essential and will benefit both the researchers

and developers. As recent as 2018, the study of rule engines in [9] state

that there are very few rule engines that might work on a mobile platform,

which further motivates us to take upon the research problem. Further, it

states the porting option for different rule-engines, although the literature

does not recommend the porting. Most importantly, they speak in terms

Chapter 1 9

School of Computer Science

of rule engine without resource constraints. It is pertinent to mention that,

rule-engines porting for Android is an active research work, but the resource

limitation constraints are not added whenever the literature has discussed

the portability of rule-engines.

This thesis aims to propose not only the framework but practically im-

plement and demonstrate a complex case scenario involving different agents

and rules. The framework uses rule-based reasoning agents to reason about

contextual information and to infer new contexts. The framework is mainly,

but there is also a manual rule writing mechanism. The core of the frame-

work depends on the proposed algorithm, which has very few lines of codes

and has relatively low time and space complexity. To further reduce the

load from the rule-engine, a novel approach of preferences on the rules is

proposed, which reduces the number of rules for processing without affecting

the integrity of the output. Focus is given on the design of the system being

in a distributed way and can move from place to place.

1.4 Aims and Objectives

This research work aims to provide a formally correct framework to imple-

ment resource-bounded systems for smart spaces. This aim will be achieved

by focusing on the objectives on resource-bounded devices, especially An-

droid devices. Smart spaces integrate many technologies, and as discussed,

the rule-based system will provide the reasoning capability while the context-

Chapter 1 10

School of Computer Science

aware computing will perceive the environment and bring the related context

to be processed. In order to have a formally verified framework, the core of

the framework will be driven by the custom developed algorithm, which will

use meagre resources and memory in terms of running and space complexity.

Moreover, in order to further lower the computation cost, a novel approach

for preferences will be introduced. Preferences will give two benefits; first, it

will reduce the size of the rules base so that the number of processable rules

or the inputs will be minimum. Secondly, it will personalize the services

for the user. The preferences will be available in different modes to mimic

human-like behaviour and to provide more personalized services to another

human.

1.5 Methodology

An outline of the concrete methodology is given below:

1. We use both ontology-based approach and manual approach to repre-

sent contexts and rule-based reasoning to infer implicit context from a

provided set of explicit contexts. The system is modelled as a context-

aware, multi-agent system. Agents act as reasoning agents, and they

reason over a knowledge-based using First order Horn-Clause rules.

2. We develop an algorithm, which is specifically tailored for the need

of resource-bounded devices. The algorithm has comparatively low

Chapter 1 11

School of Computer Science

running time and space complexity.

3. We enhance the rule-engine by introducing three levels of preferences,

i.e. Context-based, Derived context based and live context based. Each

has its own and different application method.

4. We enhanced the OWL API based Onto-HCR tool to accommodate

multiple ontologies and translate them into first-order Horn-clause rules

format.

5. We developed and integrated the D-Onto-HCR tool into a plugin which

can be used in the Protégé to translate any ontology/ies and edit them

before using them.

6. We developed three case scenarios which are validated both logically

and practically to check the integrity of the framework. Case studies

are different and include dry-run analysis and implementation results.

1.6 Major Contributions

The major contributions of this thesis are provided, which ultimately work

together to provide efficient context-aware rule-based solution on devices with

limited or low resources.

Chapter 1 12

School of Computer Science

1.6.1 A Customized Algorithm Development For Effi-

cient Running On Small Devices

One of the main contributions of this research work is the development of

the matching algorithm. Our algorithm is designed to save space and run

efficiently on devices with little computation power and memory. Not only

does it consume low resources, but the algorithm itself also has a quite lower

number of lines in practice. This algorithm is the main driving force behind

the whole framework, and it can run on different agents seamlessly. Theoret-

ically, any Java-enabled device can run the algorithm as a special precaution

were taken while development in order to only use the very basic Java in

order to run it on as much device as possible. Being developed for Android

Jelly Beans means that it can practically run on 98 per cent of Android de-

vices. While designing this matching algorithm for the rule, we also found

that the performance is directly proportioned to the input rules. None of the

previous work, even for big systems, has tried to minimize the rules which are

redundant for a given set of context, although some work has proposed idea

to select rules based on the contents of working memory. We have proposed

a novel approach to reduce redundancy using preferences.

1.6.2 Preferences

Preference modelling is our novel approach in order to make the size of the

rule-base as low as possible. Given a large size of rules can slow down the

Chapter 1 13

School of Computer Science

whole system. The literature, as we will discuss in a later chapter, suggests

different techniques such as rule ordering to avoid overhead. We tackle this

issue with different techniques of preferences. In either case, preference com-

pletely, remove the rule which has no chance of being fired, hence saving the

vital resources. The main idea of user preference is to select a subset of rules

based on preferences. By doing this the inference engine, instead of going

through all the rules, will only process selected rules. Some introduction to

different kind of preferences is provided below.

Context-Based Preference

In preference based on the context, a subset is selected before the system

startup which gathers the rules based on the user preferences provided. The

system excludes the rules that the user does not want for a particular set

of contexts. However, as the system moves on new context are derived, and

there is a possibility that the newly derived contexts can match a rule which

has been excluded. Therefore we enhanced the preference mechanism and

accommodated the derived preferences.

Derived Preference

These are the preferences that a user expect that it might come in the fu-

ture. , and once we found that a context has been derived, and the system

recognizes it. A new set of rules is generated, and the system can move on

without losing the integrity of results, which are based on derived context.

Chapter 1 14

School of Computer Science

Live Preferences

Live preferences are applied when some context is continuous, and the value

can change, e.g. GPS data. A GPS sensor can send us different coordinates

every time it sends a signal when a user is moving. This enables a user to

select different rules based on his/her present location.

Preferences On Rules

The uniqueness of the preference is also traced into the rule-based design.

Whenever in a conflict set, we encounter two or more rules, we execute a

rule which has a higher priority. As the user give preference to one rule over

another rule, the rule with a high preference score will be fired.

1.6.3 Rules Generation

We tried to make the system as simple as possible. The rules can be either

written by a desktop-based interface or straight from ontology.

Desktop Based Rule Generator

The desktop-based, web-enabled software enables a designer to develop a

whole rule-base faster. It is used for a manual rule-base development when

the rules are not available from an ontology, or the ontology does not exist

at all. The user must be familiar with the system in order to make the rules

accordingly. The software does detect syntax errors for designer comfort.

Chapter 1 15

School of Computer Science

Desktop-based rule generator is normally used for a small set of rules.

Rule From Ontology

Rules can be extracted from ontologies, which are supported by our frame-

work. We have developed a Protegé plugin, which allows translation of an

OWL 2 RL ontology augmented with SWRL rules into a set of plain text

Horn-clause rules. These translated rules with minor user annotation can be

used to design the agents. The toolkit supports inputting multiple ontologies

and allows heterogeneous sources of rules that can be translated into a single

output plain text Horn-clause rules.

1.6.4 Practical Implementation Of The Framework

We have practically developed the whole system and implemented it for the

validation. For that reason, different devices are attached to the framework.

Some devices are real sensors, while some are simulated sensors. The dry run

of the system elaborates every step involved.

1.7 Thesis Outline

In this thesis, Chapter 2 and 3 mainly provide a detailed literature review

by first introducing the important concepts and then related work. Chapter

2 covers a detailed view of the notion of context and the terminologies which

are based on the term context such as context-awareness and context-aware

Chapter 1 16

School of Computer Science

system, while the latter part of the chapter details the rule-based system.

Context-aware agents are introduced, followed by some areas where the ap-

plication of a context-aware system is implemented. Chapter 2 further discuss

different design styles for context-aware applications and context modelling

approaches, which include a brief introduction to ontologies. Later part of

the chapter familiarizes the concept of a rule-based system, its different com-

ponents and stages of execution. Based on the understanding from chapter

2, chapter 3 provides a related work. In chapter 3, different platforms related

to the context-aware system, rule-based system or combination of both on

desktop systems or Android systems are discussed. RETE algorithm is dis-

cussed in detail, along with problems associated with the usage of the RETE

algorithm. Chapter 4 describe the proposed platform, the methods by which

a context is received, followed by the proposed algorithms in order to make

our context-aware system based on the RBS concept. Since chapter 4 details

the base of thesis contribution, extended framework and contributions are

discussed in Chapter 5 illustrated with very detailed case scenarios based on

different agents and the response of the system in a different context. The

last chapter concludes the thesis and provides some future directions for the

research.

Chapter 1 17

School of Computer Science

Chapter 2

Context And

Context-Awareness

2.1 Introduction

In this chapter, the notion of context and terms which are based on the

context, e.g. context-aware are explained. Various terms related to or based

on the context along with the architectural style are elaborated. Towards the

end of the chapter, related work context modelling approaches are addressed

with emphasis on the ontological approach.

Chapter 2 18

School of Computer Science

2.2 Context

The word context is not a new word or a true computer-related word. In

general, its linguistic meaning according to the Oxford Dictionary1 is “The

circumstances that form the setting for an event, statement, or idea, and

in terms of which it can be fully understood.” While in computer science it

has a bit different meaning. The definition of context is evolving, as the

context definition itself needs a domain, scenario, background or some set-

ting upon which a context can be defined. In this thesis, the context is

considered within the premises of context-aware systems. According to the

Schilit and Theimer[10], who also first term the concept of context-aware

systems regard the context like location, identities of people nearby, objects

and changes made on these objects. Schilit further refined the definition [11]

and also added the important aspects of context such as where you are, who

you are with, and what resources are nearby. Still, there can be some missing

components when we derive the context concerning user activity. As user ac-

tivity is also an important aspect of a context. A more elaborate and simple

definition is tossed by [12] and considered the context as a subset of physical

and conceptual states of interest to a particular entity. Further definitions

of context emerged with time and maturity of the context-aware systems.

The widely accepted and a generalized definition is given by Dey et al. [13]

as “Context is any information that can be used to characterize the situa-

1https://en.oxforddictionaries.com/definition/context

Chapter 2 19

School of Computer Science

tion of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the

user and applications themselves.” However, this definition is also regarded

as very general, and it is difficult to apply in operational meaning. Wino-

grad [14] stresses that “something is context because of the way it is used

in interpretation, not due to its inherent properties.” Context is, in fact, a

bit tricky term to define, e.g., what is a context and what is not a context.

Something that may be considered as a context in one setting may not be

considered the context in different settings [15]. More definitions are pro-

vided where it is understood that the definition is depended on the domain

it is used. Some cross domain definitions are tossed by different research

work such as [16, 17] sensor networks [18, 19], retrieving information systems

[20], nomadic computing [21] and vastly in artificial intelligence [22, 18, 12].

To elaborate more, context can be further specified by its entities [23]. For

example, for a person context, its entities can be the person’s identity, loca-

tion and his/her surroundings. Similarly, his/her Environmental context can

be a day, night, noise, raining, sunshine, cloudy and weather of the area to

name some. Physical context can be area, time, date, and location. When

these different contexts are made to affect the system output, it contributes

towards the context-aware systems.

Chapter 2 20

School of Computer Science

2.3 Context-Aware Systems

The term context-aware computing was first introduced by Schilit and Theimer

[10]. They define the context-aware system as

“The ability of a mobile user’s applications to discover and

react to changes in the environment they are situated in”

The problem with their definition is being very specific according to Dey [24];

therefor Dey defined the context-aware [25] as

“A system is context-aware if it uses context to provide rel-

evant information and/or services to the user, where relevancy

depends on the user’s task”

The context-aware computing paradigm emerged in the early 1990s with

the introduction of small mobile devices. In 1992, Olivetti Lab’s active badges

used the infrared badger assigned to staff members for tracing their locations

in the office, and according to the locations calls were forwarded [26]. Further

developments lead to the development of various context-aware frameworks

such as Georgia Tech’s Context Toolkit [27]. In recent years, more research

has been carried out, and advanced context-aware systems exist [28], and the

contributions to research and development over the years promise a bright

future of such systems. Generally, context-aware systems may interact with

humans and/or other devices. Further, they often exhibit complex adaptive

behaviours; they are highly decentralized and can naturally be implemented

Chapter 2 21

School of Computer Science

as multi-agent systems. An agent is a piece of software that requires to be

reactive, pro-active, and that is capable of autonomous action in its environ-

ment to meet its design objectives [29]. Non-human agents in such a system

may be running a straightforward program. However, they are increasingly

designed to exhibit flexible, adaptable and intelligent behaviour. Agents can

accumulate both human and non-human devices. While in the context of

this thesis, an agent is considered a device which may or may not have the

inference capacity. It can refer to a simple sensor or a device which can infer

new context. The combination of such agents in a setting to accomplish a

task makes a context-aware multi-agent system.

2.3.1 Context-Aware Multi-Agent Systems

As context depends on the domain, it represents. While designing/developing

context-aware systems, there are various methods that a platform can adopt

as a middleware [30] e.g., agent-based techniques. Especially in a distributed

environment, in context-aware application development, the key role from

the development side is that of agent programming. Agents are defined in

the artificial intelligence field [31] as

“An agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment

through effectors”.

Chapter 2 22

School of Computer Science

Another definition of the agents [32] is also the same in meaning but a more

elaborate one.

“An agent is a persistent software entity dedicated to a spe-

cific purpose. ’Persistent’ distinguishes agents from subroutines;

agents have their ideas about how to accomplish tasks, their agen-

das. ’Special purpose’ distinguishes them from entire multifunc-

tion applications; agents are typically much smaller.”

An agent itself is a piece of software that processes contexts, and agents may

receive data from a sensor or from another agent which contains the infor-

mation regarding a particular context.

According to the functionalities of agents provided in [33], an agent is sup-

posed to be autonomous, i.e., it controls its execution all by itself without

the intervention of any external entity. It should be social and should inter-

act with other agents. They are reactive to the changes in the environment,

and lastly, they are supposed to be pro-active and should have goal-directed

behaviour.

Agents send/receive data from other sensors or agents, which is known as

low-level-context or raw data as it is merely understandable. This raw data

is then transformed into high-level context by combining them or generating

meaning from it [34]. For example, GPS provides raw data in a numerical

format for any geographical location. This is a low-level context, the applica-

tion that transforms it into a high-level data, knows the logic of interpreting

the value on the map and pinpoint the location in a meaningful format such

Chapter 2 23

School of Computer Science

as street name or a park name which is a high-level context to make it under-

standable for the user. In our case, agents can also communicate via message

passing considering high-level contexts.

Categorically there are many types of context-aware systems, which can be

combined for more elaborate system development. Some of the categories

are defined here while this is not a complete list of available possibilities.

Instead, it gives the reader a broader idea of how vast the possibilities can

reach.

2.3.2 Types Of Context-Aware Computing

Context-awareness has different types. Also, various types of contexts (low-

level) can be combined to gather more precise context (high-level) about a

subject. Some of the commonly used context types are discussed below.

Location-Aware Computing

As the name indicates, it is the form of context-aware computing, which

makes use of a user’s current location or the location of the sensor/agent

installed. According to EDUCASE [35] it refers to systems that can sense

the current location of a user or a device and change its behaviour based

on his/her location. For instance, in a hospital, it can change the device

volume to silent when it senses the location of the doctor as “in the patient

room”. Recent work by [36] focuses on context-aware authorization using the

location of the user in a building. The authors make use of the smartphones

Chapter 2 24

School of Computer Science

to authorize a user based on his/her location in the building. The authors

claim to provide a scenario that converts a physical space into a smart space.

User-Aware Computing

User-aware computing refers to context-aware computing, which considers

user preferences. The system should be aware of the various entities asso-

ciated with the user, e.g., mood, health, status (includes walking, driving

or running). In order to understand the user aware computing, consider an

example from [37] where authors explain it with the difference between two

instances: first when a user is walking to his/her office alone in the morn-

ing, the user aware system response should be one. In the second scenario,

when the same user is walking on the same road with his/her toddler, in the

evening, the system should respond the other way. User-aware computing

can be combined with the location-aware context to provide more precise

results.

In the earlier example of location-aware computing, which finds a doctor

location as in the patient room. Combining the user-aware system will fur-

ther define if the doctor is attending a patient, giving a prescription or have

just visited the empty room. Taking these into consideration, more precise

services can be offered.

Chapter 2 25

School of Computer Science

Energy-Aware Computing

Energy-aware computing can be explained with a straightforward example

from the daily life of turning a cell phone into energy saver mode when the

power level falls below a certain threshold value. Energy-aware computing is

a broad research topic for cloud computing and data, as observed in [38, 39]

and a survey [40]. These research works present various energy aware tech-

niques in the platforms mentioned above from sensors, communication, and

resource allocation perspective for better energy management. It should use

some decision mechanism to turn off devices in order to consume less en-

ergy but maintaining the availability of data should be a priority. It focuses

on saving energy and keeps the energy cost at a minimum for data centres.

Moreover, the energy-aware system should be aware of the power consump-

tion of a device, or a combination of devices and should be intelligent enough

to save as much energy as possible without affecting the services.

Resource-Aware Computing

In resource-aware computing, a system should be well informed of its re-

sources. The resources may be abundant, or there may not be any bound

on usage. A system can monitor, continuously and on-demand, its resources

and use them accordingly [41]. The authors explain an example of resource

aware computing with a task to scan a database of X-ray images stored on

a remote server and to get those X-rays which shows a lung cancer. It can

be achieved by downloading all the X-rays and then process them locally for

Chapter 2 26

School of Computer Science

diagnosis. This might be wasting the resources of a network by transferring

all the images. Another way to achieve the same task is to remotely isolate

the X-rays on the server by sending the selection algorithm to the server and

only download the images which are relevant for the diagnosis. This method

will reduce the network requirements. The authors further explain that a

more flexible way is to send the selection procedure to the database, which,

after detecting the relevant X-rays return only the file sizes of the X-rays

that have to be downloaded. After that, considering the bandwidth and net-

work resources, the main program may choose to download the images or the

program itself may shift to the main server for further processing in order to

save the network resources. The authors also agree that processing on the

main server might slow down the server behaviour.

Environment-Aware Computing

The environment in computing is a broad term, and it can be used in various

contexts. As proposed in research by Microsoft [42] a projector that can

sense its environment, makes a 3D model of it’s surrounding and then can

find various gestures of users, out of its created environment. These gestures

are further converted for various operations. Environment-aware computing

can sense the environment of a user to find if it is day time or sleeping time

at night and switch profiles of the user smartphone accordingly. Similarly,

the noises surrounded by the user are also accounted for in the user’s en-

vironment, which can be used to adjust the user’s cell phone volume. The

Chapter 2 27

School of Computer Science

environment can also be used as in [43] which adjust the mobile device various

properties by sensing the environment first. These properties may include

security settings, filters and status of instant messaging.

In the hospital scenario, much better service can be provided when a smart-

phone first detects its environment as a hospital and then the location-aware

computing provides a specific location within the hospital. When user con-

texts are added, it can further narrow down the output toward better context-

aware computing.

Situation-Aware Computing

It provides the context information that is related to the situation of a sub-

ject. Situation-Aware computing in health care can be a system which mon-

itors the patient’s situation in critical condition and acts accordingly [44].

The authors in [45] argue that context-aware system should be well aware

of the user situation. A system that is based on location awareness may not

identify the situation of the user. A user can be tracked by his/her location

to be in his/her living room. However, being in the living room is not enough

context unless other context types support it. The context-aware response

may differ depending on the situation in the living room as if a user is with

family or colleagues in the living room can derive different outputs, based on

his/her current situation. The situation can also be based on the machines

as the authors in [46] presents a framework for Big Data (huge data sets that

Chapter 2 28

School of Computer Science

may require computations to find patterns.) to respond timely towards the

evolving situations.

2.4 Application Of Context-Aware Systems

Almost two decades ago, the concept of context-aware application started

with the advancement in the field. Context-aware application [47] is defined

as

“Applications that change their behaviour according to the

user’s present context-their location, who they are with, what the

time of day is, and so on”

Context-aware applications receive the contexts from the sensors attached to

the device, and then according to various techniques, it may react or deduce

some output. The smartphone with a variety of embedded sensors becomes

quite a reasonable device to run context-aware applications. Initially, smart-

phones were equipped with a camera. Over time GPS sensors were installed,

which can also provide information regarding the location of an image taken

or to provide position related information (Geotagging) [48]. With time,

proximity, shake sensors, distance calculators from images and various other

sensors were added. These sensors made the smartphone an ideal platform

for context-aware applications development. From the developer’s perspec-

tive, to qualify an application as a good context-aware application, there are

some guidelines [49], such as:

Chapter 2 29

School of Computer Science

• Relevant context information for the application.

• To make the application intelligent enough to understand the obtained

information from context with respect to its environment.

• To make the application behaviour change with respect to the new

information from the context according to the environment.

There are also context-aware applications that keep track of user’s prefer-

ences and recommends applications that the user might prefer. On a typical

smartphone we can install such context-aware applications [50, 51, 52]. These

recommend or launches applications to the user according to his/her prefer-

ences. As in [53], the authors provided a technique to recommend applica-

tions to the user using the data mining and data analysis technique Bayesian.

It proposes a model which instead of the basic preferences use the situation

adaptive application category recommending system and uses variables such

as stance, location, time and date. It also keeps track of applications that

are most used, time of the day when an application is activated. These all

accumulate to a system which recommends applications to its user according

to his/her preferences. Apart from the recommendation applications, the

following examples show how context-aware applications can help humans in

different scenarios.

• Intelligent Patient Care Application

This example combines various types of aware-technologies in order to present

a more precise and accurate functional health care system. The example

Chapter 2 30

School of Computer Science

presented in [54] has five different steps. Step one shows when a nurse comes

to a patient bed, and there is an indication on the floor known as “active zone.

A nurse has to stand in the active zone in order to exchange the context. Step

two defines that the bed itself is also a context-aware bed where a display is

available that is used by the patient for entertainment purpose while the nurse

and doctors can use the same display for monitoring patient’s health progress.

It also knows about the patient and the person standing near the bed, e.g.,

doctor and nurse. Step three involves the context-aware pill container, which

itself is a communication and context-aware device and recognises its patient.

Step four defines the prescription mechanism, i.e., dosage for patient and also

logs the attending nurse under whose supervision the prescription is taken.

While step five shows how a nurse logs out by just moving away from the

patient bed’s active zone.

• An Ambient-Intelligent Nurse Call System

This application is the result of a research work which is used for providing

care to the patients in a hospital environment. It mainly gathers raw data

or low-level context from various sensors that are installed on the patient

side. When the system has adequate data available, it can further monitor

a patient’s situation, and in case of the patient’s discomfort, it seeks the

caregiver or nurse’s attention. It tries to find out the best caregiver available

to the patient. A smartphone application is developed for caregivers through

which they are accessible and can receive their calls for any patient call. The

caregivers respond using the application, and the patient is attended in a

Chapter 2 31

School of Computer Science

Figure 2.1: Nurse Call system architecture [55]

quicker way [55]. The graphical representation of the health care system is

provided in Figure 2.1

• World Mate

According to the website, more than ten million users rely on WorldMate2

application for their trips arrangement. All a user has to do is to send the

confirmation email received for flight to the application. WorldMate trans-

forms these emails into a neat and clean, readable format. It shows the data

in the format as provided in Figure 2.2. Also, it alerts in real time should

there be any cancellation or delay of the flight and suggest alternatives to

2World Mate www.worldmate.com

Chapter 2 32

School of Computer Science

Figure 2.2: WorldMate flight details

the user. It also keeps track of the user’s history, and according to the pre-

vious knowledge, it provides hotels information when on a trip. Further,

the application is also integrated with a professional social networking web-

site, LinkedIn 3. It automatically finds contacts from his/her social network

in nearby areas and informs the user about his/her contact details. These

applications and the frameworks, work on different setups. As commercial

applications, they have servers and well-established setup to cater to the

user. There are different ways the context-aware application can be designed

in terms of its internal structure.

3LinkedIn www.linkedin.com

Chapter 2 33

School of Computer Science

Application
Storage

Preprocessing
Raw data retrieval

Sensors

Table 2.1: Abstract layer of context-aware system

2.5 General Design Of Context-Aware Appli-

cation

The context-aware system makes use of various sensors. The low-level con-

text is acquired from sensors and then passed for further processing towards

the server or module. The received data is processed and stored according to

requirements of the application. There are various architectures defined for

the context-aware systems, but the basic structure remains almost the same.

A typical abstract layered architecture [56] is shown in Table 2.1. The appli-

cation layer provides the output to the user as a result of a change in instances

or event-driven changes. It is the interface for the user to interact with the

system. Storage provides sensors information stored to be retrieved by the

clients of the system or by third-party software. Pre-processing interprets

the information, validate the reasoning, extract data and provide relevant

information to the storage. For example, a GPS coordinates received from

sensors are converted into location name. Raw data layer exchanges data

with sensors; it has query functions and also holds the results of the queries.

Chapter 2 34

School of Computer Science

It uses specific API or protocols to request data from the sensor layer. Sen-

sors are the main nodes which retrieve the context from the surrounding

environment, e.g., temperature, pressure, noise, light, location and like.

2.6 Architectural Style Of Context-Aware Sys-

tems

In terms of context-aware systems, the approach of development depends

upon the requirement as in every software. Some application may work well

in a distributed environment while some may perform better in a centralised

environment. There are some guidelines which should be kept in mind when

choosing between centralised, distributed or standalone approach.

• Centralized approach

In this method, a central server is responsible for handling all the requests,

storage, processing, and providing outputs. The data is stored mainly on a

single context database which has adequate resources for operations. Sensors

and devices are attached directly to the context server. If two devices need to

communicate with each other, the communication is done via simple protocol

as there is no complex networking involved. In this setup, the quality of the

architecture depends on the context server [57]. The powerful server will

ensure better communication and processing. The centralised system has

the benefits of cost-effectiveness and easy management in term of software

Chapter 2 35

School of Computer Science

and hardware. However, the whole system crashes in case the server fails.

Also, congestion can cause to shut down the system in case of overloaded

server behaviour by clients [58]. A typical example of a centralised approach

is presented in Figure 2.3.

Figure 2.3: Centralized architecture

• Distributed architecture

In distributed context-aware system, context data is stored in more than

one place. Each device has its context information and is connected like a

mesh. Devices can communicate with each other by the ad-hoc method of

communication [58]. Availability of multiple context devices makes it easy

to bypass any device that has failed in communication or creating congestion

in the network. Although the distributed approach may be a little expensive

to implement as every node has its resources, which may include processor

and memory. However, unlike the centralised system, if one device fails, the

whole system runs fine [57] which increases its robustness. It is easy to isolate

Chapter 2 36

School of Computer Science

Figure 2.4: Distributed architecture

the problematic node and repair it without disturbing the overall service. A

graphical illustration is provided in Figure 2.4.

• Standalone approach

The standalone approach is ideal for a small organisation, which requires

limited context details. It is composed of a single device/ sensor and storage.

It does not share its information with any other device. It has a limited

working capacity and is designed for specific requirements or domain-specific

applications [57, 58]. The graphical presentation of the standalone system is

provided in Figure 2.5.

Chapter 2 37

School of Computer Science

Figure 2.5: Stand alone architecture

2.7 Context Modelling Approaches

System development is a process by which software engineers transform the

logic into computer understandable format. In system development, a soft-

ware development team is deployed to make software for an organisation

or some business. The software team then go through some primitive ap-

proaches toward development in which they first analyse the system they

want to develop. Get the business flows, business rules, how each step is

taken in the manual system along with other details if any. After that, the

designer designs the system, which is a blueprint for a programmer. The role

of a programmer is then to code the designed flow, and at the end, a team

of testers have to test the working prototype before deploying [59]. While

in context-aware system development, unfortunately, there is no such formal

methods or mature platform available and a programmer has to deal with

the low-level programming of sensors and actuators [60]. Sufficient knowl-

edge of artificial intelligence is expected from the programmer, which may

be based on the logical structures of a provided scenario. The context-aware

system can be developed by various programming paradigms, but the impor-

tant point in the context-aware system is the context model, that shows how

Chapter 2 38

School of Computer Science

context data can be stored and defined in a machine processable form [61].

Some of the common practices for context modelling are

• Key-value: it is simple to implement and is quite flexible and easy to

manage when the application size is small. It is not recommended for

the development of scalable applications or complex applications. The

emphasis in this model is mainly toward the application rather than

the context data. The structure is also not well organised.

• Markup Scheme: Markup scheme is flexible, structure without any

standard for structuring and the validation is possible using schema.

Context modelled using this technique can be transferred via a network.

• Object Based: Using programming techniques for objects, context

can be modelled, although the design principles govern the standards

for programming context model. Object-based programming allows the

programmer to represent the context in programming code level. The

context can be manipulated in run time and is stored in the memory.

• Logic-based: Logic-based context modelling allows a programmer to

implement logical reasoning techniques. It is also used to generate

the high-level context from the low-level context. New facts can be

added to working memory based on the current facts of the working

memory, or the new facts that arrive from external sources, e.g., sensors.

Logic-based programming can be based on a series of rules that might

execute when a data is received from sensors. These rules may trigger

Chapter 2 39

School of Computer Science

further rules for execution. In general context-aware systems do not

involve a user for basic input/output operations; instead, it senses the

environment using sensors and based on these contexts continue to

produce output.

• Ontology based: Ontology-based context modelling can expressively

represent the context. It is application independent and can be shared

with other technologies. Though the representation of context can be

a bit complex. It can be used to define domain knowledge, and the

structure is also based on the context relationships as defined in the

ontology. The data can be stored separately from the structure of the

ontology. This can also be integrated with logical rules, which helps to

design context-aware systems using rule-based programming.

Ontologies being a subject of interest in the following chapters is discussed

with detail in the next section.

2.8 Ontologies

An ontology is an explicit, formal specification of shared conceptualization

[62]. Where explicit means that every concept must be defined while formal

states that it should be machine understandable and consensus should be

developed according to context. Another definition of ontology is defined in

the research work [63] as an ontology is a model of a domain that introduces

vocabulary relevant to the domain and uses this vocabulary to specify the

Chapter 2 40

School of Computer Science

relationships among them.

For example, if two persons are talking about Jaguar in a car showroom,

it means they are discussing the car brand of Jaguar. Similarly, if two per-

sons are talking about Jaguar in a zoo or jungle, most of the chances are

that they are talking about the animal Jaguar. So in order to understand

the Jaguar in its context, the communication has to develop a shared con-

sensus about which Jaguar is the communication being held.

From the artificial intelligence perspective, according to Tom Gruber, an

AI specialist at Stanford University as of writing this article [64], defines

ontology as an explicit specification of a conceptualization. In the same ar-

ticle, the author describes that when declarative formalism is used to define

the knowledge of a domain, then the set of objects created forms a universe

of discourse which can carry classes, functions and relations among others.

The objects and their relationships among them are reflected in its repre-

sentational vocabulary, with which knowledge-based programs represent the

knowledge.

Chapter 2 41

School of Computer Science

2.8.1 Representation Of Ontologies In Computer Sci-

ence

In computer science, ontologies are defined using classes, relations and in-

stances. Classes define the concepts which can be related to other concepts.

Classes are further described using attributes and name-value pairs. The

interrelation of classes can be defined as a class Person has two different

subclasses such as Student and Professor. Professor gives Lecture and Stu-

dent has to attend the Lecture means that both are connected to the Lecture

but in totally different way. Relations are special attributes whose values are

objects of other classes. For relations and attributes, constraints define the

allowed values, while constraints itself are rules. For example a Person has

a subclass of Male and Female but a Person cannot opt both value at the

same time for a single person. So a rule like Male ∧ Female will give result

of empty set.

Instances of a class define the various individuals of an ontology. For ex-

ample a Person (class) having a profession as Professor(subclass) has to

take a Course(subclass) of a Seminar(class) so its timing are Thursday (in-

stance) at 11 AM (instance) at Room no 3 (Instance). Individuals are the

basic components of an ontology. It gives ontology concrete objects such as

animals or people and likewise.

Chapter 2 42

School of Computer Science

2.8.2 Ontology Design Approaches

In the article [65], authors provide a guideline in ontology development:

(i) Identifying classes for the ontology.

(ii) Taxonomic ordering of the classes should be followed.

(iii) Defining properties.

(iv) Lastly insertion of values.

The authors’ further state that there is no agreed-upon method for ontology

development and the process is iterative. There are various ways of defining

the ontology design. In [66], the authors created an ontology for their smart

space. The authors described two methods of ontology building that are the

bottom-top and top-bottom approaches, which are discussed further.

• Bottom-up approach

In this approach, the ontologies are first created for the smaller objects, after

that the high-level abstracts classes are used to define the desired ontol-

ogy development. In this approach, the particular classes are created first,

and then based on these classes, similar classes are grouped as more general

concepts, and gradually it develops into a whole ontology. For example, in

hospital system it will first define the Nurse class, then a Physician then

Specialist along the hierarchy, and group them as a generalized concept of

Caregiver.

Chapter 2 43

School of Computer Science

• Top-bottom approach

It is the opposite of the Bottom-Up approach, and it defines the superclasses

first and then comes toward more specific subclasses. The above example

can be implemented in reverse form as the superclass will be first defined as

a caregiver then specialist, general physician, nurse down to the bottom in

the hierarchy.

2.8.3 Ontology Designs And Languages

• OWL

OWL is the description logic-based ontology language. The authors of the

research work [67] discussed the web ontology language (OWL) from the

semantic web perspective and stated that the OWL is semantic markup lan-

guage for ontologies that provides a formal syntax and semantics for them.

The W3C provides different standards for OWL, mainly OWL 1 and OWL

2. OWL 1 has further three flavours as OWL Lite, OWL DL and OWL

Full. The OWL Lite is not much expressive when compared to its other two

flavours while OWL DL is more expressive and it is based on the descriptive

logic. OWL full is a more expressive form of the OWL. The Authors further

describe OWL 2 as a more efficient and tractable reasoning standardization.

Within the OWL 2 DL which is based on the descriptive language, there are

further three more, namely OWL 2 EL, OWL 2 QL and OWL 2 RL. The au-

thors use the OWL 2 RL and SWRL languages for defining Rules (see 5.5.1)

Chapter 2 44

School of Computer Science

and ontologies in their work. Adding to these, the book [68] also define the

three variations of OWL, i.e. Lite, DL and Full. The book defines the OWL

Full as a superset of OWL DL which removes some of the restriction that can

be found in the OWL DL but it introduces some computational traceability.

In practice, OWL Lite is quite sufficient for programming ontologies.

• RuleML

The official mission statement of the RuleML 4 states that

”To develop RuleML as the canonical language system for

Web rules through schema-defined syntax, formal semantics, and

efficient implementations.

The overarching, modular schema specification of the RuleML

system includes the Deliberation RuleML and Reaction RuleML

families. RuleML is thus used to exchange knowledge bases and

queries across rule-based systems, map between Web ontologies,

and inter-operate across dynamic network behaviours of work-

flows, services, and agents”.

In the research work [69] the design rationale of RuleML is discussed with

great details. In the International Conference on Artificial Intelligence PRI-

CAI 2000, RuleML initiative took place by the leading experts of the field.

The RuleML initiative aims to develop an open XML/RDF based rule lan-

4RuleML Wiki
http://wiki.ruleml.org/index.php/RuleML_Home#RuleML_as_a_Bridge

Chapter 2 45

School of Computer Science

guage for the exchange of rules between various platform, e.g. software com-

ponents and web databases. Rule plays a significant part in the AI, logic

programming besides other fields. The role of the rule has a great place in

the semantic web, where data is not only presented but is tried for automa-

tion and reuse. Rules markup for the semantic web has a great research

interest as rules are identified as one of its design issues. RuleML was initi-

ated on the already existing markup languages, and it has further inspired

other projects that are also based on the rule markups. The RuleML com-

munity has shown interest in the development of standardized rule language

which might have its translators along with other tools.

• SWRL

To achieve more reasoning capacity from OWL, SWRL is used. SWRL is

a Semantic Web Rule Language combining OWL and RuleML. SWRL is

an expressive rules language, and it enables writing rules using OWL-DL

concepts. It is semantically based on description logic. Moreover, to improve

its expressive power, SWRL can also be used to extend OWL2RL with first

order user-defined rules. SWRL structure can be written, as shown below:

Rule Body (Antecedent) → Rule Head (Consequence)

SWRL accommodates number of positive conjunctions in antecedent and

consequence part, however disjunctions are not allowed. There exist the

problem of undecidability in SWRL as the rules are made on the first-order

horn clauses rules. To resolve the undecidability issue, the concept of safe

Chapter 2 46

School of Computer Science

rules is used, which only allow the rules which are known concepts.

A simple code snippet of SWRL is provided below.

<ru leml : imp>

<ru leml : r l a b ru leml : h r e f=”#example”/>

<ru leml : body>

<swr lx : individualPropertyAtom swrlx : property=”hasFather”>

<ru leml : var>x</ru leml : var>

<ru leml : var>y</ru leml : var>

</swr lx : individualPropertyAtom>

<swr lx : individualPropertyAtom swrlx : property=”hasBrother”>

<ru leml : var>y</ru leml : var>

<ru leml : var>z</ru leml : var>

</swr lx : individualPropertyAtom>

</ru leml : body>

<ru leml : head>

<swr lx : individualPropertyAtom swrlx : property=”hasUncle”>

<ru leml : var>x</ru leml : var>

<ru leml : var>z</ru leml : var>

</swr lx : individualPropertyAtom>

</ru leml : head>

</ru leml : imp>

The example provides a scenario of relationships. If we translate it into plain

English it will become as follow;

Chapter 2 47

School of Computer Science

x has father y

y has brother z

x has uncle z

So far, the notion of context has been discussed with necessary details. In

order to use the context, in a way to help the system carry out reasoning, a

reasoning mechanism is required. In the next section, some of the reasoning

approaches are discussed.

The next section provides an insight view of the rule-based system. It

defines how a rule-based system works and what are the different components

of a rule-based system. The proceeding section details the working of a

knowledge base, which serves as the rules repository. Further, the working

mechanism of rule execution cycle and match-resolve-act is discussed.

2.9 Rule-Based System

There are quite a few methods to design a system as an expert system which

have reasoning capacity [70], including rule-based approach. Rule-based sys-

tem (RBS) is a computational method which is widely used in various ap-

plications of artificial intelligence. Mainly it is used for problems having

similarities with human reasoning or expert systems.

Rule-based reasoning and traditional rule engines have found critical ap-

plications in practice, though mostly for desktop environment where the re-

sources, e.g., computation or memory, are abundantly available compared to

Chapter 2 48

School of Computer Science

smartphone devices. Rules can be traced back to early production systems

as a well known and popular way for encoding expert knowledge into rules.

As mentioned before, the RBS has a significant role in the field of artificial

intelligence for modelling human reasoning and problem-solving processes in

a specific domain. Human reasoning can be closely defined in terms of the

if-else statement; therefore, RBS becomes a natural selection when it comes

to encoding a human expert knowledge [71]. Each rule can carry a minute

amount of knowledge and backed with the facts from the environment; it

acts closely as the human brain. Different studies have backed the RBS as a

close solution to human reasoning and problem-solving. The rules act as long

term memory while the facts are considered to work as short term memory

[72, 73]. RBS is used widely in various software of different domains [74].

Within these domains, an RBS can deliver as a consultant, problem solver,

an expert or a decision maker [73]. The best usage of RBS is applied to the

systems where the solution of a particular problem cannot be achieved using

a conventional programming, or an algorithmic approach may not provide

a better solution. Every day we encounter rules in our daily lives. While

driving a car, we stop at a red light, and when the light is green, we move

along. Similarly, a professor takes a class at a given time as directed in the

schedule. The students also attend the class at the same time. So basically

these are rules that we are following, and rules are what governs our daily

routine [75]. For every domain, we acknowledge rules according to the con-

text of the domain. For example, just like ontologies example for Jaguar

Chapter 2 49

School of Computer Science

discussed earlier. Rules defined for car sales may refer to Jaguar as a car

while the rules defined for a zoo or wild animals may refer to Jaguar as an

animal. Therefore there are a set of rules for a specified domain so that the

context in which the rules are received and executed are known. The rules

in the RBS can be regarded as IF-THEN-ELSE statements, where the IF

holds the condition for checking. The rules comprise of two main parts; one

is the Left Hand Side(LHS) or condition while the other part is Right Hand

Side(RHS) or consequent. If the rule conditions are satisfied by the facts,

then a rule is fired, which can result in a new fact derived or a result being

given out. This whole process is composed of different components that work

together to make an RBS.

2.9.1 Components Of RBS

RBS components can be defined in line with definition by [76] as

• Rule-base contains a set of rules. Every rule has a conjunction of

conditions called the left-hand side of a rule, and the right-hand side

contains the action or set of actions. These rules carry an abundance

of knowledge encoded in the form of rules from an expert or business

rules.

• The working memory contains the facts, which are used by the rules.

When the process starts, the initial facts are applied, which are vital

for the system startup. Over time, more facts are added/deleted from

Chapter 2 50

School of Computer Science

Figure 2.6: Rule Engine Components Logical Connection

the working memory causing certain rules to newly matching with the

new facts and infer different results.

• The system execution is controlled by the inference engine or rule en-

gine. The rule engine is mainly a procedure to match facts from the

working memory to the rules in the rule-base. The efficiency of the

whole system depends mostly on the design of the inference engine.

The schematic view in Figure 2.6 gives a logical linkage between the com-

ponents defined, which shows the main idea of the RBS working mechanism.

The advantage of RBS is that the rules are stored separately from the code.

The rule-base can be altered without the changes in the program code. The

rules syntax can be specified differently based on the different RBS platform.

Despite the difference in syntax of a rule, execution is always carried in the

same way.

Chapter 2 51

School of Computer Science

2.9.2 Rule Execution

The LHS of a rule is composed of one or more conditions. In order to make

the rule eligible to be fired, a rule is matched with the available facts. All

the conditions of a rule must be satisfied. If more rules are eligible to be

fired, then it is put into a conflict set. In the conflict resolution, a rule is

chosen based on the criteria provided to fire a single rule from a conflict set.

Conflict resolution can be determined by the rule priority, time stamp, latest

rule to execute or combination of these or any defined criteria. This cycle is

repeated unless all the rules are exhausted or a goal is reached. This cycle

can be divided into three main steps, which are:

• Match The condition of a rule is matched with the facts in the working

memory. Once a rule is satisfied, it is considered as activation of rule

and provide an instance of the rule. A rule may have multiple instances.

All rules which are activated are put forward for conflict resolution.

• Select or Conflict Resolution The conflict resolution strategy job

is to select a single rule instance from a bunch of rules instances to be

fired.

• Act Act takes consideration of the right-hand side of the rule. It can

be a trigger to add/delete contents from working memory or to launch

a subroutine. Once the rule is fired, the process is started again from

the match phase.

Chapter 2 52

School of Computer Science

The rules for a system has to follow a syntax; there are no specific guide-

lines for this and depends on the application being developed. For example,

in some frameworks, a rule can have multiple RHS or actions, while some

support only one action on RHS. The condition of the rule carries the knowl-

edge part. The combination of rules into a rule-base makes a knowledge base.

The knowledge base is iterated for pattern matching with facts, and that is

the most expensive part of execution in terms of computation and time [74].

2.9.3 Conflict Resolution

The conflict resolution part comes after the rules are matched with the work-

ing memory. Initial facts decide which rules to be fired, but when more then

one rule is fireable, then the inference engine has to decide which rule to be

fired. There are quite a few strategies to handle the conflict, which depend

on different scenarios and a different design on the conflict resolution mech-

anism. It can be merely a first rule to fire, random select, last rule to fire

or may be based on some complicated method. Some RBS deploy different

mechanism and let the end user select whichever method is required. Mostly,

the recency is given priority where most recent facts are considered more, and

rule matching the recent facts has to be fired [73]. Some other strategies in-

clude refraction and specificity. The refraction forbade any rule to fire again

once it is already fired so that the other rules are given a chance to fire for

the same set of facts. Specificity gives priority to rules which relatively have

more conditions in a rule than others one.

Chapter 2 53

School of Computer Science

2.10 Discussion

In this section, we have mainly focused on the basic terminology of the con-

text and its related terms. The context being a building block of the whole

framework is defined thoroughly and from a different point of views. Under-

standing of the context, context-aware and the systems based on these terms

are vital for further understanding of this thesis. Therefore, different context

based categories are discussed to broaden the idea and to understand how

wide the concept of context-aware computing can reach. We also provided a

flow of context from a sensor towards the application module and how it has

to pass through a certain level in order to make context a meaningful piece

of information. It is essential to understand the architectural style in which

different context-aware systems are designed, as it gives the reader an under-

standing on why a system is designed in a certain way, where requirement

plays an essential role in system design. Since context itself can be modelled

in various methods, we defined the context modelling from the ontological

point of view. Since the latter part of the thesis uses ontologies; therefore,

it was deemed necessary to make the reader aware of the basic terms. Fur-

ther, the context has to be used in a way so that the system can process it

and take a decision on behalf of the user. Therefore the following sections

of this chapter detail the rule-based systems. A rule-based system is not a

new concept. It has provided a vast research area for scientist from decades.

The ongoing research in AI and the expert systems further strengthen this

Chapter 2 54

School of Computer Science

research area. Rule-base used on one system can be transferred into other

rules format. Further, it is also a well-known strategy to use ontologies to

obtain rules for some domain. Rules are easy to understand and write. It

is quite easy to encode expert knowledge into rules. However, this calls for

a thorough examination of a domain in which the RBS has to work. All

the information has to be encoded in order to get an accurate output. Each

rule contains a tiny amount of knowledge. Which makes it easy to add or

remove some knowledge and also makes the rules independent from each

other. While it also makes it hard to maintain the rule-base, especially when

the size of rule-base is large. An RBS has a significant advantage of sepa-

rate knowledge from the programming code. The knowledge as a whole can

be reused, removed or replaced without the need to change the code. This

yields to access an external part of the software, which can cause a delay.

However, this delay can be reduced or eliminated with smart strategies so

that the external part may be brought into a temporary memory, which is a

part of the inference engine. Knowing the terms and terminologies explained

in this chapter, it will be quite easy for a reader to understand the frame-

works and applications which are based on current chapter reading. The

next chapter details the available frameworks, rule-based engines and their

combinations in frameworks and implemented applications. A well known

RETE algorithm is also discussed in the next chapter which gives the user

an understanding of pattern matching and the problem that can arise during

the pattern matching phase.

Chapter 2 55

School of Computer Science

Chapter 3

Related Work

3.1 Introduction

In the previous chapters, the notion of context-aware systems and a general

structure of rule-based systems have been introduced. These two systems

are two different areas in computer science with their independent research.

In some of the research works, they have been combined to give a system

intelligence by using the RBS and also make it context-aware, and we have

also opted the same path. However, our focus remains on small devices

instead of using servers, clouds computing or high-end systems. As discussed

in Chapter 1, the authors in [7, 8, 9] argue that there is a lack of research

for rule-based engine on mobile based devices. Our aim is not limited to

mobile devices rather devices which has minimal resources. Such devices

can be smart-phone or any such resource-bounded chip with support for

Chapter 3 56

School of Computer Science

Android OS. We aim to provide a formal resource-bounded context-aware

system development framework using rule-based reasoning techniques. The

related work discussed here focusing on context-aware systems, RBS, or a

combination of both. Different examples, platform, framework are discussed

here for an elaborate study.

3.2 Context-Aware Development Platform

The frameworks discussed in this section describe the different approaches

which use the different context modelling techniques along with the logic and

rule-based context modelling techniques. These frameworks provide a gen-

eral idea of their working mechanism, while in the later sections frameworks

for resource-bounded devices focusing on the Android platform have been

discussed.

3.2.1 Origin Model

The origin based framework based on the work of [77] is used for the devel-

opment of context-aware systems in large scale pervasive systems. Examples

include health care systems, management of the road traffic throughout a

city, environmental monitoring and smart grids. Origins provide sufficient

information to represent any context data, for example, sensors, web services

databases, files or the combination of other origins. Origins provide the basic

and backbone in the development of context-aware systems. The method to

Chapter 3 57

School of Computer Science

retrieve the context from the origins uses the select and retrieve methods.

It is already understood that it may not work as expected if the criteria for

selecting a context is very strict. Generally, the four processing operations

required by an origin are:

- Filtering

- Inference

- Aggregation

- Composition

Based on the origin model, the authors provide an origin toolkit with a

proof of concept implementation which has been developed using SCALA

programming language and the AKKA toolkit. The origin model defines ori-

gin as it can be any context source, and defines elementary parts in context-

aware applications development. Origins type defines the nature of data an

origin is associated with, for example, one origin may contain temperature,

another origin may contain a city name, the composition of both provide

relevant information by using the meta information of the origin. According

to the authors, the origin should possess the following properties to qualify

as an origin.

-Universal: An origin should provide a universal interface to the

context-aware application to access the information contained in its

context source.

Chapter 3 58

School of Computer Science

-Discoverable: Origins have to be discoverable which can be based

on the metadata and the information their respective context sources

carry.

-Composable: Different origins can be composed with each other to

provide new context information.

-Migratable: Origins can move from one place to another or from

one machine to another in order to improve scalability and flexibility.

-Replicable: More than one origin can carry information from a sin-

gle source of context information, which can ultimately increase the

reliability of the information received.

Summary of Origin Model

- Intended for the large, pervasive system.

- Origins are considered as context source, and are associated with

the data source.

- Origins data can be combined.

- Implemented in SCALA1 and AKKA2 toolkit.

1The Scala programming language
http://www.scala-lang.org/

2akka toolkit
http://akka.io/

Chapter 3 59

School of Computer Science

3.2.2 ContextJ

In [78], the authors have provided a new approach to Context-Oriented Pro-

gramming paradigm features by supporting an explicit representation of de-

pendent context functionality that can be dynamically turned on or off. Ac-

cording to the authors, the context can be a variable, control flow property or

an external event. ContexJ implements the layer in class style while classes

contain their context-specific variation [79]. Previously the concept was pro-

vided by using LISP to improve the accessibility using ContextJ language.

Context-oriented programming can be implemented using JAVA without any

extensions to syntax/semantics. In ContextJ, a layer contains a layer iden-

tifier to refer a layer. Layers can extend classes except the final classes.

Layer definitions contain partial method definitions. Method definitions can

be distinguished as plain methods whose execution is not affected by layers.

Method definitions consist of base method definitions which are executed

when no active layer provides a corresponding partial method. ContextJ

also provides a dynamic layer composition for a scoped layers activation.

Scoped layers are controlled by a with block statement, which provides an

argument list composed of layer identifiers that have to be activated. The

with statements can be nested like any Java block statements. Opposed to

the with block statement there is also a without statement that deactivates

a scoped layer. It is mainly intended to stop the interference of layers that

may be initiated by partial definitions of various methods.

Chapter 3 60

School of Computer Science

Summary of ContextJ

-Explicitly represent dependent context functionality.

-Context can be a variable, property or any external event.

-Implement layers in class, layer identifier identify its layer.

-Use Java programming libraries without any extensions.

-Introduction of with and without properties to activate and deacti-

vate certain layers.

3.2.3 JCAF

JCAF [49] is a framework and programming architecture for context-aware

applications. JCAF is service oriented, distributed, and event-based secure

infrastructure suitable for the development and deployment of a wide range

of context-aware applications. It also suggests a compact Java API, which

can be implemented and extended in special purpose context-aware systems.

The main goal of JCAF is to devise a lightweight framework based on JAVA

with a small set of interfaces. It is intended for researchers and innovative

development. Although distributed but JCAF can be used in centralized

systems. JCAF is composed of a programming framework via API and run-

time infrastructure; the core design principles of runtime infrastructure are

to provide a distributed and cooperative service system. In the JCAF the

main modelling concept is the entity, an entity has a context, and the context

further carries the context items and these all are available in its respective

Java interfaces which a programmer has to implement in order to use them.

Chapter 3 61

School of Computer Science

In JCAF, a context-aware system should be event-based infrastructure with

the ability to react to changes in its environment. Context-aware systems

developed in JCAF’s security and privacy should be protected, and it should

have access control on different levels. The key to the context information

in JCAF is its origin credibility. It is recommended in JCAF that extensi-

bility may be provided without restarting the services and any deployable

module may be added without interrupting the context services. It should

support the evolvement of supported types of context by dynamically loading

context definitions. The main design principles of its API are semantic free

modelling, context quality and support for activities.

Summary of JCAF:

-Developed in JAVA.

-It is service oriented, distributed and event-based infrastructure.

-Can use compact Java API for special purpose systems.

-Can also be used in a centralized system.

-Main design objective are semantic free modelling, context quality

and support for activities.

3.2.4 OPEN

The authors of [80] present an ontology-based programming framework for

rapid prototyping of context-aware application development. The design goal

is to support a wide user’s category, cooperation and collaboration in the

Chapter 3 62

School of Computer Science

application development process. The framework further emphasizes that

being a collaborative environment, users have to agree on a shared conceptu-

alization of the domain. The authors also targeted three categories of users

based on their technical abilities into High-level, Middle-level and Low-level

users who can use the framework in a different environment. The frame-

work, while supporting collaboration and sharing of context, also focuses on

the cooperation between users. This cooperation can be synchronous, asyn-

chronous, individual and group based. The cooperation pattern based on the

technical abilities can be between developers, developers and end users, and

between end users. The main components of the OPEN framework are con-

text providers, the context manager, programming toolkits and the resource

sharing server. The framework although has various options to cater users

from diverse technical skills, however, the use of resource sharing server sug-

gests a limitation on distributed approach, and also the Android limitations

demands a more compact and Android compatible framework.

Chapter 3 63

School of Computer Science

3.3 Rule-Based Systems And Existing Rule

Engines

3.3.1 Prolog

Prolog 3 stands for programming logic, developed as horn-clause based declar-

ative programming language. Rules and logical structures are used for pro-

gramming in Prolog to provide the relation between objects, represented as

facts and rules. A query then initiates a computation on these rules to get

the results. In Prolog, a programmer has to specify a goal to be achieved,

and the Prolog system works it out on how to achieve it. Prolog can be

used in distributed environments. The authors of [81] have proposed an idea

of extending Prolog by using DAHL extension. The approach uses Prolog

DAHL extension and a C written networking backend. The message passing

is carried out by the nodes sending messages to connected nodes or directly

to the root. The messages received are used as a local query and can be

processed locally.

Prolog is a widely used tool for rule-based system development, and some

areas where Prolog is used are for expert systems, machine learning and

intelligent computing.

Summary of Prolog.

-Based on horn clause rules.

3SWI Prolog
www.swi-prolog.org

Chapter 3 64

School of Computer Science

-Widely used and a mature declarative language.

-Supports backward chaining.

-Programmer specify the goals.

-Can use DAHL extension for networking in special requirement.

3.3.2 Jess

Jess4, is a Java-based declarative programming tool. It follows horn-clause

based declarative language, and popularly known as the rule engine for the

Java platform. It takes the rules as an XML or the Jess rule language. Its

native language of Java enhances the power of Jess. Java provides a wide

collection of libraries that can be used in Jess. Jess programming can be done

in Eclipse5 or any similar Java Integrated Development Environment(IDE).

Using the Jess engine, a developer can develop applications that can reason

using the knowledge supplied in the form of declarative rules. As the language

uses the Java Virtual Machine, it can be used on multiple platforms. Jess

can also be used in a distributed environment. In [82], one of the distributed

approaches to use Jess has been discussed; however, the internal mechanism

used in the development is not very clear. Also, it does not elaborate on the

connection strategies. The mechanism used for invoking transmission is also

not defined.

Summary of Jess:

4The Rule Engine for the JavaTM Platform http://herzberg.ca.sandia.gov/
5Eclipse https://eclipse.org/

Chapter 3 65

School of Computer Science

-Based on Horn Clause rules.

-Java-based declarative programming tool.

-Use XML based rule as input or in JESS format.

-Used Java Virtual Machine which provides portability on desktop

platforms.

-Can be used in a distributed environment.

3.3.3 Clips

CLIPS6 is an expert system development tool, and one of the most widely

used tools for the said purpose. It was developed at NASA as its expert

system replacement. CLIPS is written in C language, and CLIPS stands for

C Language Integrated Production System. CLIPS incorporates the various

programming strategies such as OOP, procedural, rule-based and logical.

The CLIPS interpreter for rule-based languages has four steps. In the first

step, it matches rules with the antecedents. When the combination of facts

satisfies the rule, it is known as instantiation, and each matching rule is

added to the agenda. The next step resolves the conflict. It selects a rule for

execution from the agenda; if there are no rules to execute it, then goes to

the halt state. In the third step, the rule is executed, which has a specified

action to perform. The fourth step does not do anything; it simply repeats

the process and goes back to step one. CLIPS consists of a database which

is a list of facts. Each fact contains one or more than one fields enclosed in

6A tool for building expert systems http://clipsrules.sourceforge.net/

Chapter 3 66

School of Computer Science

brackets. They represent information and are used to define the problem’s

current state. This database is also known as declarative knowledge. For

example the rule (< XY) shows that the values of X is less then Y. The

first field represents the relation between the two remaining fields. Some

examples of facts are

(relation patient “patient of Dr John”)

represent the relation of a patient with the Doctor named John

(Patient Diabetes)

represents that Patient has Diabetes

(Patient Diabetes Hypertension)

represents that Patient have Diabetes and Hypertention

(“Patient has Diabetes and Hypertension and needs treatment”)

represents a long string usage as a single fact.

The working mechanism of CLIPS is simple, and it loads information from

a file into memory storage where memory is composed of storage and rules.

Summary of Clips.

-CLIPS is an expert system development tool.

-Developed in C language.

-Used by NASA for their expert system.

-Process rules by matching, conflict resolution, execution and restart.

-Easy to understand rule format.

The frameworks discussed in this section are purely context-aware or

rule-based systems that are designed mostly for high-end systems. Next, we

Chapter 3 67

School of Computer Science

discuss some frameworks and applications that are designed for the mobile

platform.

3.4 Rule-Based Systems For Mobile Devices

In our study, it was discovered that a considerable amount of work is based

on social networks. In a social network, a user puts his/her lot of details,

preferences, likes and dislikes related to him/her. These give a consider-

able amount of context related to a user, as discussed in a different research

project such as SociaCircuit platform[83] which monitor different social fac-

tors between the users. Based on these factors, it measures the shift in user

preferences, e.g. habits and behaviours. The work discussed in [84] focused

on finding social relationships between the users; this provides results based

on some data mining tools. Sociometric badge [85] monitor employees dif-

ferent activity patterns in the office. It records different data related to the

user and based on that data, within the organization, user’s job satisfaction

and interactions quality can be predicted. Similarly, [86] also monitors a user

activity based on his/her different mobile sensors, his/her locations visited

and call logs as an example. This monitoring then further try to infer the

important location based on his/her social activities, different relationships

and related information. Recent work based on inferring results or mobile

based expert systems still lacks different aspects. For example, in [87], a

small expert system is developed, which acts as an academic advisor. It has

Chapter 3 68

School of Computer Science

some set of rules which takes six inputs from the user and based on this input

advise accordingly. The system is monotonic, as it will give the same answer

for the same inputs every time, there is no any capacity to run a different

set of rules as the interface is also linked with its own current set of rules. In

some of the research work, a workaround is done by making a system in a

client-server architecture such as [88] where a server is working as a knowl-

edge base, and Android phone is working as an agent with an application

installed to connect to the server and send some context, e.g., location. Sim-

ilarly, another research work [89] although not for Android instead developed

for iPhone platform uses the same client-server architecture combined with

the rule-based system on the server to provide a safe evacuation in case of

emergency cases at a university (case scenario). However, the set of rules

used as expert knowledge is not defined in their work. Some attempts have

been made in order to bring the already mature expert systems into the An-

droid platform if not all, e.g., iOS, Microsoft mobile, which are well known

mobile platforms. Android uses Java, but it lacks some classes that can only

be used in the desktop environment and not on Android. Some examples

of portability are defined along with the issues faced while in the porting

stages. In a recently published book for smart applications [90], detailed in-

sight is given to rule engines that can be used on Android. However, they are

not resource friendly, or context-aware, nor they use preferences for dynamic

adoption of context. The Jruleengine and Zilonis has issues with the use of

some operators, e.g. OR operator. In the DTRules, the facts are provided

Chapter 3 69

School of Computer Science

as an XML file, which makes it less suitable in systems where the facts are

provided in runtime. In the Termware, the rules are written in the code,

hence making it tedious to update the rules. Roolie, suffers from redundant

files for rules, as each rule needs to be saved in different JAVA file. Aside

from these, there are also technical issues involved [91] such as in Drools, it

consumes much memory and eventually runs out of memory while convert-

ing to Dalvik format. JLisa throws a stack overflow error while running on

Android. Take requires JAVA compiler at runtime, not Android compiler.

Jess porting is not advisable as the developer license cost around USD 15000;

also, it does not have any compatible version for Android. OpenRules uses

some of the JAVA classes that are not available in the Android environment;

besides these classes, it also consumes a lot of memory.

To the best of our knowledge and the study of the literature review, it

is a known fact that majority of the rule engines run the RETE algorithm

on their back-end as compared in Table 3.4, such as JESS. The Android

itself, as stated earlier, is not limited to the smartphone only. Android can

be installed on embedded chips and TV beside other small devices, which

makes it a very suitable platform capable of running a variety of applications,

and that makes it a suitable operating system for our research. To provide

a context-aware rule engine on a resource-limited device, an alternative to

the existing technology is required which must be lightweight, efficient and

resource friendly. The system discussed in this Chapter and compared in

Table 3.4 are lacking at least one of the following major issues such as

Chapter 3 70

School of Computer Science

• Context re-usability

• Generic modelling

• Not For resource-bounded device

• Not native to platform

• Context-awareness

• Porting issues

• RETE based

Regarding the issue of re-usability of a context, some frameworks provide

ontology-based approach such as in [92, 93]; however, they do not address the

issue of context-aware mobile application development. Some recent work has

effectively used the ontologies for modelling with better resource handling.

They have modelled their system from the ontology, with the bound on

resources such as memory and communication [67, 94]. The typical problems

of RBS combined with context-aware systems, re-usability of contexts, low

resource usage and others, as discussed in this section, has provided us with

an opportunity to explore further the problem on small devices. Moreover,

to devise an algorithm and context-awareness model that can perform in

comparable computation and with better memory usage along with using

the contexts that a smartphone can provide. In order to achieve this, first,

the introduction of the current state of the art RETE algorithm is necessary

and to analyse how it works.

Chapter 3 71

School of Computer Science

Name Context-
Reusability

Generic For Re-
source
Bounded
Devices

Native Context-
Aware

Porting Is-
sues

RETE
based

socialCircuit Y N N N NA NA NA
FMES [87] N N N Y N NA N
KBAM
[88]

N N N Y Y NA N

ASE [89] N N N Y N NA N
Clips NA Y N N N Y Y
JRuleEngine NA Y N N N Y Y
Zilionis NA Y N N N Y Y
JEOPS NA Y N N N Y Y
JxBRE NA Y N N N Y N
Drools NA Y N N N Y Y
JLisa NA Y N N N Y N
Take NA Y N N N Y N
OpenRules NA Y N N N Y N
Proposed Y Y Y Y Y NA N

Table 3.1: Comparison Table For Rule Engines. (Y: Yes, N: NO, NA: Not
Applicable)

Chapter 3 72

School of Computer Science

3.5 RETE Algorithm

RETE [95] algorithm is widely used in systems, where pattern matching is

required, such as a rule-based system. Charles Forgy introduced RETE as

part of his doctorate studies. Based on the RETE algorithm, several other

algorithms were developed for high-end computers. It may be noted that the

RETE algorithm is used widely on centralised systems. Although, computa-

tionally improved but still consume a huge amount of memory [72] especially

when it comes to the execution on single device or small devices [71]. There

have been some attempts to port the current RBS systems [96, 88] into An-

droid platform with little to no success, which has been discussed in survey

work [97], including JESS which is based on RETE algorithm 7. RETE is no

doubt one of the algorithms which are commercially used in large corporates

and where the business rules are in large numbers. Before going into details,

we introduce the basic terminologies of the RETE algorithm. It considers

the production memory (PM) and working memory (WM). PM contains dif-

ferent productions or rules. Each rule is represented as a set of conditions on

the LHS and its respective actions on the RHS. WM contains items which

represent facts. The structure of a particular rule is provided below

(

name o f the r u l e

7https://stackoverflow.com/questions/44924473/how-to-use-jess-in-android

Chapter 3 73

School of Computer Science

Left−hand−s ide , i . e . with one or more cond i t i on

−−>

Right−hand−s ide , i . e . with one or more a c t i o n s

)

Generally, the matching algorithm ignores the action part. Rather it only

handles the conditions. The rule conditions may contain constants and vari-

ables. So the matching part’s job is to match the LHS with the facts and if

there is a variable, then bind it with its corresponding value from the facts.

If all the conditions are satisfied, then add it to the conflict set. The Ac-

tions are taken care of by another part of the system once a conflict set is

created. RETE algorithm makes use of dataflow algorithm for the rule con-

ditions presentation. The network can be further broken down into two main

parts, namely the Alpha part and the Beta part. The Alpha part carries out

the constant tests on the working memory elements and stores the results

in the Alpha memory/memories. This Alpha memory contains the elements

of the working memory, which successfully passes the constant test for a

given condition of a rule. The Beta part handles the joins and beta mem-

ory/memories. It does the necessary variable binding between conditions,

and store the results in the join node. Beta memories then store along with

the semi-matched production rules, as more and more steps it takes. The

process is repeated for the rest of the conditions, and finally, a fully matched

production is acquired. Changes in the working memory are conveyed to the

Chapter 3 74

School of Computer Science

Alpha network, and related Alpha nodes adopt the changes. Ultimately these

changes are passed to the Beta network nodes and joins. Any new matches

if found in the Beta network is updated accordingly till it reaches the end.

At the end of the network, we have the production node, when a production

node is produced, it indicates that a newly matched rule is found. In the

mid of the process, we have activations of two types left activation and right

activation. Left activation corresponds to the activation of any node by any

other nodes in the Beta network. While the Right activation refers to the

activation of any node by the Alpha memory. The joins in the Beta network

can have these two types of activations. Both activations are handled by dif-

ferent procedures and are discussed in the analysis of the algorithm section.

One important feature of the RETE algorithm is its state saving. It saves the

states of the matching process in the Alpha, Beta memories. With a change

in the WM, many nodes are not affected. However, the RETE algorithm

is not recommended for systems where major changes occur in the working

memory [98]. Another feature of the RETE algorithm is its node sharing

with productions with similar conditions. Single Alpha memory is used for a

rule which has the same common conditions. The Figure 3.1 gives a logical

network illustration and the left and right activations.

3.5.1 Analysis Of RETE Algorithm

In [98], an algorithm, based on RETE, was published and points out that

RETE slows down with an increased number of production rules. Further-

Chapter 3 75

School of Computer Science

Figure 3.1: RETE Network Illustration

Chapter 3 76

School of Computer Science

more, the RETE algorithm is not designed for a system where the working

memory (WM) is frequently updated. Moreover, The RETE algorithm worst

case can reach to O(WMRC
e) where WMe refers to the working memory ele-

ments while the RC means the number of conditions in rule [71, 99]. In the

context of multi-agent systems, the memory consumption of the RETE algo-

rithm is problematic [71]. Since the working memory is also not fixed, and

RETE algorithm is well known for its large use of memory it is not a suitable

candidate for small devices especially with a tiny memory. It uses a lot of

memory when creating a Beta network and Alpha network and the space

complexity is exponential [100] for both RETE and its similar algorithm

TREAT. Other issue is when there are many WM elements and a complex

rule with varying conditions. This can lead to the cross product problem

and potentially can take the system into worst case. Further, an issue with

the RETE algorithm as pointed in [101] is the creation of lot of child nodes

when we have attribute with multiple values e.g., colour and its values . In

that case the attribute colour node will spread into the number of values

(blue,green,black and so on) available. Beside these problems pointed out

by different research, if we consider the pseudo code of the RETE algorithm

and analyse the complexity we found that the Left and Right node activation

(Table 3.2 and 3.3) has an asymptotic complexity of O(n2). Considering the

(Join Node Left activation and Join Node Right Activation) Pseudo code

from [98] for RETE algorithm.

Chapter 3 77

School of Computer Science

Algorithm cost frequency
START
IF node.parent just became non empty then c1 n

relink.to.alpha.memory(node) c2 n
If node.amem.items =nil then c3 n

remove node from the list node.parent.children c4 n
For each item in node.amem.items do c5 n

If perform-join-tests(node.tests,t,item.wme) then c6 n
For each child in node.children c7 n2

do left-activation(child,t, item.wme) c8 n2

END

Table 3.2: Algorithm Left Activation Running Cost

Algorithm cost frequency
START
IF node.parent just became non empty then c1 n

relink.to.beta.memory(node) c2 n
If node.parent.items =nil then c3 n

remove node from the list node.amem.successors c4 n
For each t in node.parent.items do c5 n

If perform-join-tests(node.tests,t,w) then c6 n
For each child in node.children c7 n2

do left-activation(child,t, w) c8 n2

END

Table 3.3: Algorithm Right Activation Running Cost

Chapter 3 78

School of Computer Science

These two sections particularly have the complexity of O(n2). While the

rest of the pseudo code, itself is out of the scope of this thesis to be discussed

here.

3.5.2 The Match Problem

According to Charles Forgy, the matching phase can take up to the ninety per

cent of the whole execution time [102]. The matching phase is repeated nu-

merous times and repeated when new working memory elements are added

or removed. It certainly has a significant impact on the overall execution

time. The matching time is effected with the number of conditions in the

rule and the number of working elements. As in each rule, we have to match

the condition with the facts in order to satisfy any condition, so the time

for execution gets longer when there are many conditions in a rule. Other

factors that affect it further can be attributed to the number of variables

on the LHS of the rule. If there are many variables, and some variables are

repeated in other rules. It should be binding to the same fact every time.

Semi matching rules also create a problem as they are not added to the con-

flict set. However, they are tested for qualifying the facts. Rules that are

never fired are also checked for eligibility. Long rules with many conditions

also create problems and are called the long chain effect. These are some of

the frequently occurring problems. There are instead precautions than solu-

tions to avoid the matching problem. The precautions may include saving

the state of the rule conditions, keeping track of facts in view of the rule by

Chapter 3 79

School of Computer Science

keeping track of the rules that are most probably affected with the change

in WM and sharing conditions of rules with similar rules. However, these

precautions/solutions have their drawbacks. As we already mentioned that

most of the expert system research is mainly on the high-end computer with

a lot of resources, and the solutions to match problem take advantage of us-

ing the abundant resources. As the state saving, condition saving and similar

strategies take a lot of memory. While our concern is to avoid such issues

and deliver comparable or better results on small devices which naturally

have small memory size. Different methods can improve the match, the rule

being the main components can drastically improve the overall performance.

Simple ordering conditions in a rule has an effect. If a rule has ten condi-

tions and the first nine conditions match while the last one does not match,

then the rule is not eligible for firing, and this check wastes the resources

for matching the nine conditions. Instead, if the tenth condition is at first

place, it will save much computation resources. Researchers have identified

several rule conditions for improvement and can be found in [72, 103], which

include strategies such as sharing condition, rule ordering, facts ordering be-

sides other strategies. These can be carried out while in the design phase of

the rule-base.

These issues accumulate to demand a concrete solution. Our proposed frame-

work, discussed in the next chapter, covers all such issues and make it possi-

ble to run such an expert system which is native to the mobile platform and

provides satisfying results.

Chapter 3 80

School of Computer Science

3.6 Discussion

In this chapter, we have sequentially defined technologies based on the un-

derstandings from the previous chapter. We independently and generally

discussed different models from context-aware systems, rule-based systems

and then their usage on a mobile platform. The reason for such a discussion

is to understand the applications of such concepts. Generally, context-aware

systems can be with or without a rule-based system and vice versa. However,

the recent advancements in mobile technologies have made it quite favourable

to employ the sensors on the mobile device to perceive its environment, while

the rule-based technology uses the same sensor information and convert it

into processable context. The reason to explain them separately is to give a

reader a clear understanding of such frameworks/technologies. The merger

of these technologies can provide a framework with two main properties.

First, to perceive the environments using the context-aware terminology and

secondly, rule-based systems come handy to process these context and rea-

son about them and give some output. As these technologies work mainly on

high-end computing devices, especially the reasoning part. There is a gap for

development of such systems on low-end devices such as mobile phones with

certain limitation on resources as discussed. Therefore, our main target for

development is Android-based devices, in the Section 3.4 we further discussed

the applied technologies on mobile devices and briefed along with issues that

have to be avoided in order to make a resource-friendly framework. The prob-

Chapter 3 81

School of Computer Science

lem is not using the currently available frameworks is the portability issues

that arise when these frameworks are ported, as discussed in Section 3.4. In

order to avoid such issues, it is necessary to make the framework from scratch

and as a native application framework to ensure the compatibility with the

proposed platform. As the Android itself is evolving very fast, it is easy to

update the native code then the ported code, as the Android SDK is getting

mature, it is deprecating many classes, methods to be replaced with newer

ones. Which can be problematic for the ported code. Another main problem

associated with implementing, especially the rule execution part on mobile

devices is the pattern matching algorithm, i.e. RETE, which is known as a

resource-greedy algorithm. While the resources are limited in our case, we

detailed the RETE algorithm in Section 3.5, defined its working mechanism,

complexity and some problems associated with the RETE algorithm. The

reason to discuss these all technologies separately gives a reader better un-

derstanding of different parts of the framework which we have proposed in

the next chapter, where all these parts are integrated, and our custom-built

algorithm is used with better memory and space complexity.

Chapter 3 82

School of Computer Science

Chapter 4

Proposed Platform, Context

Acquisition Scheme And

Algorithm

4.1 Introduction

In this Chapter, the proposed platform is described based on which the whole

framework works. The context acquisition model is also defined, followed by

the core components of the system, along with the proposed algorithm.

Chapter 4 83

School of Computer Science

4.2 Proposed Platform

For the test cases, we chose the Android platform. The selection was based

on various facts. Android is the largest mobile operating system with huge

market dominance. The languages used for the context-aware systems devel-

opment, to name some, are JADE 1 , JARE 2 , JESS[82] and many more [104]

use JAVA for their frameworks. JAVA being platform independent can be

easily ported to any platform, which has the supported Java Virtual Machine

(JVM). The only downside of using JAVA is that it has some compatibility

issues with mobile devices platforms such as Android. The main language for

Android development is Google’s JAVA using the official Android Software

Development Kit (SDK) [105]. There are differences between Oracle JAVA

programming language which is used for desktop systems and Google’s JAVA

programming for the Android systems. As for the JAVA, the syntax of the

language remains the same. The basic difference lies between their low-level

machine code generations. The desktop systems use JVM to translate JAVA

code into machine-readable code or bytecode while in Android system the

application is executed using the Dalvik Virtual Machine [106]. Dalvik VM is

a compact VM and is used in resource-bounded devices. The JAVA language

which can be used for Android does not support all the classes of JAVA. The

reason behind it is that it has been optimized for the use with the resource-

1Java Agent Development Framework http://Jade.tilab.com
2JARE- Java Automated Reasoning Engine http://faculty.cs.tamu.edu/ioerger/Jare/Jare-

old-page.html

Chapter 4 84

School of Computer Science

bounded devices. It is a good practice to develop the whole framework from

scratch using Google Android SDK, so that no compatibility issues arise.

There are also other platforms exist, including iOS by Apple Inc and Mi-

crosoft Windows Mobile, but in order to reach the maximum devices, it is

clear from an online article published in StatCounter.com 3 that the Android

has the maximum user base, compared to iOS and others. However, it does

not limit the research objective to Android only, and there will be a tendency

to make a context-aware framework that can run on all platforms seamlessly

in the future.

4.3 Context Acquisition Model

Context categorization schemes allow the context to be understood in its

operational or conceptual limitations and factors. The conceptual catego-

rization defines the conceptual relationships between contexts. It provides a

wide guide for the identification of the related context, while the operational

categorization scheme deals with the problems and issues related to context

acquisition techniques, which may include information about context source,

frequency, and methods for data acquisition. The proposed solution is op-

erational as the context will be acquired from the physical sensors in static

form, and according to the context, data will be processed further. Table 4.3

3http://gs.statcounter.com/os-market-share/mobile/worldwide

Chapter 4 85

School of Computer Science

summarizes the different aspects, followed by explained commentary on each

terminology.

4.3.1 Context Acquisition

The context acquisition refers to the methods by which a context can be

acquired from the source. The source can be agents or sensors. The two

methods generally used are the pull and push methods. Pull tends to ac-

quire the data from the software of the sensor. The software decides the

acquisition of context and communication. It consumes bandwidth as the

software has to send the request to the sensor to acquire the context. While

in the push method, the sensors independently sense the data and send it.

The communication decision is taken by the sensor itself, which can be pre-

programmed. The push method is recommended for the proposed system, as

the sensors continuously sense its environment and send any changes in the

context.

4.3.2 Context Acquisition Frequency

The frequency of acquiring the context from the sensor can be instant or

interval based. Instant sends the data whenever certain conditions are met,

e.g. rise in temperature is sensed. While the interval sends the data after

a determined amount of time is passed. Instant saves energy as it may not

send data unless it needs to, while the interval has to send data regardless of

Chapter 4 86

School of Computer Science
O

p
er

at
io

n
a
l

C
o
n

ce
p

tu
al

P
u

sh
P

u
ll

In
st

an
t

In
te

rv
al

D
ir

ec
t

M
id

d
le

w
ar

e
P

h
y
si

ca
l

v
ir

tu
al

lo
gi

ca
l

K
ey

-v
al

u
e

M
ar

k
u

p
S

ch
em

a
G

ra
p

h
ic

al
O

b
je

ct
b

as
ed

L
og

ic
B

as
ed

O
n
to

lo
gy

B
as

ed

S
u

p
er

v
is

ed
L

ea
rn

in
g

U
n

su
p

er
v
is

ed
R

u
le

s
F

u
zz

y
-l

og
ic

O
n
t-

b
as

ed

C
o
n
te

x
t

C
a
te

go
-

ri
za

ti
o
n

S
ch

em
e

O
p

er
at

io
n

a
l

C
o
n
te

x
t

A
cq

u
is

it
io

n
P

u
sh

F
re

q
u

en
cy

In
st

an
t

S
en

so
r

A
c-

ce
ss

B
ot

h

S
en

so
r

T
y
p

e
P

h
y
si

ca
l

C
o
n
te

x
t

m
o
d

el
li

n
g

a
n

d
re

p
re

-
se

n
ta

ti
on

te
ch

n
iq

u
es

M
ar

k
u

p
sc

h
em

e,
O

n
to

lo
gy

b
as

ed
an

d
L

og
ic

b
as

ed

C
o
n
te

x
t

re
a
so

n
in

g
R

u
le

s

Table 4.1: Summary of proposed system

Chapter 4 87

School of Computer Science

any change in context. The proposed system will use the instant approach,

but the intervals can also be set in order to consume less energy.

4.3.3 Context Acquisition Methods From Source

Context acquisition methods can be of various types; it can be direct, through

middleware or a context server. As the system has to be distributed, and

the servers are not used, the context server cannot be used. The remaining

two methods can be used in a distributed approach. As discussed in context

acquisition that push is the recommended context acquisition technique, the

direct sensor access will provide excellent support for the push method. The

middleware can also be used where the direct sensor approach is not possible,

e.g. acquiring context from another agent. As our proposed system has to

acquire context from the sensor itself, which can be directly accessed from

the sensor, while it can also get the context from other agents which are

software-based, so both approaches have to be addressed.

4.3.4 Context Reasoning

Context reasoning is the main part of the system, which will infer the context

and provide output. There are a variety of reasoning techniques, which

vary from each other on certain factors. Context reasoning may be under

supervised learning, unsupervised learning, rules, fuzzy logic, ontology-based

and probabilistic approach as dominant approaches as discussed in [24]. Each

Chapter 4 88

School of Computer Science

has been discussed with advantages and disadvantages in the same reference.

The proposed system is based on the rule-based system.

4.4 Model Of Context-Aware Systems

We model context-aware systems as a multi-agent defeasible reasoning system

[107]. In this model, the incomplete or inconsistent context information is

dealt with the non-monotonic reasoning, while non-monotonic reasoning is

when the conclusion of logic can be invalidated by adding more knowledge.

The proposed model is designed for the resource-bounded environment. The

resources mainly considered here are memory, time and computation.

More formally, according to [107] a defeasible theory D is a triple (<,F ,�

) where < is a finite set of rules, F is a finite set of facts, and � is a su-

periority relation on <. The superiority relation � is often defined on rules

with complementary heads and its transitive closure is irreflexive, i.e., the

relation � is acyclic. Rules are defined over literals, where a literal is either a

first-order atomic formula P or its negation ∼P. For example, given a literal

l, the complement ∼ l of l is defined to be P if l is of the form ∼P, and

∼P if l is of the form P. In the rules, we assume variables are preceded by

a question mark and constants are plainly defined. In D, there are different

kinds of rules those are often represented using various arrows. However, the

proposed framework mainly use two types which are discussed below.

Strict rules are of the form : P1, .P2,, Pn → P where the conclusion P is

Chapter 4 89

School of Computer Science

valid whenever its antecedents P1, .P2,, Pn are true. An example of a strict

rule can be “A person who has a patient identification number is a patient”,

which can be written as r1:Person(?p), PatientID(?pid), hasPatientID(?p, ?pid)

→ Patient(?p).

Defeasible rules are of the form: P1, P2,Pn =⇒ P and they can be de-

feated by contrary evidence. An example rule can be r2: Patient(?p),

hasFever(?p,High) =⇒ hasSituation(?p, Emergency). This rule states

that if the patient has a high fever then there are provable reasons to de-

clare an emergency situation for patient, unless there is other evidence that

provides reasons to believe the contrary. For example, a defeasible rule r3:

Patient(?p), hasFever(?p,High), hasConsciousness(?p, Y es) =⇒

∼ hasSituation(?p, Emergency). We can observe that the defeasible rule

r3 is more specific (we assume that r3 is superior to r2 i.e., r3 � r2) and

it could override the rule r2. That is a defeasible rule is used to represent

tentative information that may be used if nothing could be placed against it.

To model communication between agents, we assume that agents have

two special communication primitives Ask(i, j, P) and Tell(i, j, P) in their

language, where i and j are agents and P is an atomic context not containing

an Ask or a Tell. Ask(i, j, P) means i asks j whether the context P is the

case and Tell(i, j, P) means i tells j that context P (i 6= j). The positions in

which the Ask and Tell primitives may appear in a rule depends on which

agent’s program the rule belongs to. Agent i may have an Ask or a Tell

with arguments (i, j, P) in the consequent of a rule; e.g., P1, P2.....Pn →

Chapter 4 90

School of Computer Science

Ask(i, j, P). Whereas agent j may have an Ask or a Tell with arguments

(i, j, P) in the antecedent of the rule; e.g., Tell(i, j, P)→ P is a well-formed

rule (we call it trust rule) for agent j that causes it to believe i when i

informs it that context P is the case. No other occurrences of Ask or Tell are

allowed. When a rule has either an Ask or a Tell as its consequent; we call

it a communication rule. All other rules are known as deduction rules. For

the rule execution, there is a well-defined procedure for rule execution, which

includes the rule priority, rule selection strategy, available actions and effects

of the action. However, the rule must have a format for a given framework

for seamless execution.

4.4.1 Rule Format

There is no standard format for writing rules. Which gives designer flexibility

of usage. In our proposed model, we have embedded some extra information

with the rules so that it can be efficiently used. A standard rule format for

our framework is written as m : P1, P2, Pn → P0 : F. while m represent

the priority of the rule followed by the LHS and RHS. The F is a flag which

indicates the nature of the rule either communication, deduction or goal.

Similarly, as we will further study preferences in the next Chapter, we also

embed an extra field of CS. CS stands for context set, which works as an

indicator for a particular rule. The indicator indicates if a rule belongs to

any particular subgroup of rules which is used for the preferences purposes.

A rule format of our framework with preferences incorporation looks like: m

Chapter 4 91

School of Computer Science

: P1, P2, Pn → P0 : F : CS where n ≥ 0. The same rule format is used

on different agents to solve problems in a distributed fashion.

4.4.2 Context-Aware Systems as Resource-Bounded Agents

The main role of multi-agent systems research is distributed problem-solving

(DPS). Such an approach allow the agents to solve a particular problem col-

laboratively. According to Smith and Davis “distributed problem solvers offer

advantages of speed, reliability, extensibility, the ability to handle applications

with a natural spatial distribution, and the ability to tolerate uncertain data

and knowledge. Because such systems are highly modular, they also offer

conceptual clarity and simplicity of design” [108]. However, even in DPS

approach, the resources consumed by an agent are the focus of interest. Our

framework has a constraint on various resources because most of the time,

context-aware systems are deployed on small devices, e.g., phone or remotely

deployed sensors, with minimal resources available for their operations.

To clarify the DPS mechanism, let us present a basic example of a DPS

using two agents. Agents reason using (Horn clause) rules and communicate

via messages with each other. The knowledge bases and initial working

memories of agent 1 and agent 2 are shown in Fig. 4.1. The goal is to derive

context C5(a). Note that in the rule Rik m : body → head, Rik represents

kth rule of agent i and the number m represents annotated priority of the

rule.

Every transition corresponds to an execution step and transforms an agent

Chapter 4 92

School of Computer Science

R21 1 : C4(?x)→ Ask(2, 1, C3(?x))
R22 2 : Tell(1, 2, C3(?x))→ C3(?x)
R23 3 : C3(?x), C4(?x)→ C5(?x)

Ask(2, 1, C3(a))

Tell(1, 2, C3(a))

Agent 1 Agent 2

WM1 = {C1(a), C2(a)} WM2 = {C4(a)}

R11 2 : C1(?x), C2(?x)→ C3(?x)
R12 1 : C2(?x))→∼ C6(?x)
R13 3 : Ask(2, 1, C3(?x)), C3(?x)→ Tell(1, 2, C3(?x))

KB1 = {

}

KB2 = {

}

Figure 4.1: Distributed problem solving

Chapter 4 93

School of Computer Science

from one state to another. States consist of the rules, facts, contexts. A step

of the whole system is composed of the actions of each agent, in parallel. If

any agent at any state solves a problem, it makes the system to reach its

goal. An example run of the system is shown in Table 4.2. In the table, a

newly inferred context at any given time is shown in blue text. For example,

antecedents of rule R11 of agent 1 match the contents of the memory config-

uration and infers new context C3(a) at step 1. An overwritten context is

shown in red text, and a context which is inferred in the current state and

which will be overwritten soon is shown in the cyan text. As far as memory

is concerned, static and dynamic memories are separated using | where the

left side represents the static part, and the right side represents its dynamic

part. The size of the dynamic part of agent 1 is 2 units, and that is of

agent 2 is 1 unit. As per the framework mechanism, once rule conditions

fully qualify for activation, only then it can be fired. There can be instances

when multiple rule instances are eligible to be fired, and such case will be

handled using the priority of the rule. It is evident that in Fig. 4.1 neither

agent can derive (infer) C5(a) alone. We can observe in Table 4.2 that the

resource requirements for the system to derive the goal context C5(a) are 2

messages that need to be exchanged by each agent and 6 time steps. We can

also observe that, if we reduce the dynamic memory size for agent 1 (and for

agent 2) by 1, then the system will not be able to achieve the desired goal.

The example here is a very simple case; however, detailed execution along

with preferences are provided in the next Chapter.

Chapter 4 94

School of Computer Science

Agent 1 Agent 2
#Step Config 1 Action 1 #Msg 1 Config 2 Action 2 #Msg 2
0 {C1(a), C2(a)|−,−} - 0 {C4(a)|−} - 0
1 {C1(a), C2(a)|C3(a),−} Infer 0 {C4(a)|Ask(2, 1, C3(a))} Infer 1
2 {C1(a), C2(a)|C3(a), Comm 1 {C4(a)|Ask(2, 1, C3(a))} Idle 1

Ask(2, 1, C3(a))}
3 {C1(a), C2(a)|C3(a), Infer 2 {C4(a)|Ask(2, 1, C3(a))} Idle 1

Tell(1, 2, C3(a))}
4 {C1(a), C2(a)|C3(a), Idle 2 {C4(a)|Tell(1, 2, C3(a))} Comm 2

Tell(1, 2, C3(a))}
5 {C1(a), C2(a)|C3(a), Idle 2 {C4(a)|C3(a))} Infer 2

Tell(1, 2, C3(a))}
6 {C1(a), C2(a)|C3(a), Idle 2 {C4(a)|C5(a))} Infer 2

Tell(1, 2, C3(a))}

Table 4.2: One possible run of the system

4.5 Algorithm Design

In order to have an efficient RBS on small devices, we need to take into

account particularly the memory consumption, communication mechanism,

rule-base size along with the rest of the components. Contrary to the other

algorithms, we do not store any states of conditions. Only variables and

their values are stored in a key-value pair whenever a variable and its value

is found. Thus occupying space only when a variable needs binding. Once

a variable is bound to a value, it can be re-used in the future for the same

variable. In order to run a system on a small device, the rule-base has

to be small in size. Reducing rules can affect the accuracy of a system.

Our novel approach towards reducing the rules in a rule-base is based on

the preferences provided by the end user. This method only processes a

Chapter 4 95

School of Computer Science

subset of rules that are required for a particular scenario. As an example,

a user who is in the office does not need a rule which has to deal with

his/her home. Processing the home-based rules burden the whole system.

Instead, we do not consider them unless required. The proposed preference

model and its complete working mechanism with case studies are provided

in the next Chapter. The structure of rules ordering/priority can be opt-in

as an added optimization feature. Our rule matching mechanism to create

a conflict set checks the predicate first, if a predicate match is found in the

working memory then it further checks the rule condition, otherwise discards

the rule without further proceedings. A flag is set to monitor each match,

and if flag value is 1 for a given condition in a rule, then it proceeds to

the next condition. Whenever 0 is encountered, it represents that the rule

can not fully match with the facts and the process is terminated, and the

next rule is selected for a check. The working memory is fixed so a user can

provide a convenient amount of memory that can be spared. The devices

can trigger communication when rules specifically require to communicate.

Furthermore, the preferences, as discussed in the next Chapter, reduce the

number of processable rules to the least possible number without affecting

the outcome of the system.

4.5.1 Match: Conflict Set Generation

The rule matching or conflict set generation algorithm generates a set of

applicable rule instances according to current contexts or working memory

Chapter 4 96

School of Computer Science

facts. That is, for each rule, the algorithm matches all its antecedents to the

facts from the working memory, if all antecedents of a rule are matched then

it will check if the consequent is already in the working memory or not, if

not then the corresponding rule instance will be added to the conflict set.

This process will be repeated until no more rule matches. The conflict set

may contain more than one rule instance with different priorities, as well

as the same rule, may have multiple instances. In order to understand the

algorithm, we discuss here some of the key terms involved.

• The Rule-base is represented by R which contains the set of rules of

an agent.

• The working memory of an agent is represented by WM, which con-

tains the set of facts or current contexts.

• Rs: a single complete rule that has its LHS and RHS or condition and

consequent part.

• Rb: rule body which only holds the LHS side of a rule.

• RHS or consequent part of the rule is represented by Rc

• Rap: rule atom predicate holds the value of the predicate only e.g.,

Person in Person(Alan)

• Rat: holds the rest part e.g Alan in Person(Alan)

• Fc: current fact being in process or selected for matching.

Chapter 4 97

School of Computer Science

• Fcp and Fct are used in same analogy as discussed above for Rap and

Rat with the only difference that they reside in the working memory.

• Pra: patterns in rule body.

• VAR: arraylist to hold KEY and VALUE.

The graphical representation of the matching algorithm with different

components is depicted in Figure 4.2. In this Figure, we have a rule-base,

from which a single rule is chosen for the matching purpose. The body of the

rule is taken and further divided into its atomic parts. The predicate of the

atom is separated from its term, and the same procedure is carried out for

the facts in the working memory. Figure 4.2 and Figure 4.3 is deliberately

made simple for understanding purpose, as there are certain checks which are

performed during execution. These checks decide if the following condition

should be matched or not.

In the Figure 4.3, we have two different scenarios. On the left-hand side,

we have a condition within a rule which has a variable in it. The algorithm

first matches the predicate part. Once the predicate part matches with any

of the fact’s predicate, then it will proceed to the next step and perform

different checks. In this case, we have a variable ?x which can hold any value

and here its value is Alan. The identifier for the variable, e.g. ?x is stored in

the KEY. The KEY then stores the VALUE as Alan. On the Right Hand Side

(RHS), we have a comparison of constants. Within the condition, instead

of variable this time, we have a constant. Since the predicate matches, it

Chapter 4 98

School of Computer Science

Person(?x),hasPid(00)……… Patient(?x)

…….. hasPid(00) Person(?x)

Person ?x

hasPid 00

Rule Base
R

Rs

Rule body(Rb) Rule consequent(Rc)

P[ra1] P[ra2] P[ra…]

Rap Rat

Rat Rap

Working memory

WM

Person(Alan)

Person Alan

Fcp Fct

Fc

Figure 4.2: Step by step rule and fact processing

Figure 4.3: Different matching scenarios of the proposed algorithm

Chapter 4 99

School of Computer Science

checks that there is no variable in the rule and the only value available is

constant, which does not match with the fact-value, i.e. 11. Hence the rule

is discarded without any further processing. The algorithm can process both

the variable and constant in the same condition of a rule. The Algorithm 1

describes the steps involved in conflict set generation.

4.5.2 Select: Conflict Resolution

In this phase, the conflict between rule instances residing in the conflict set is

resolved. Conflict resolution is the order that a rule instance is removed from

the agenda or conflict set and its actions executed. In this implementation,

we only use rule ordering strategy using the rule priority, which is an integer,

determines which rule should be executed before the others. The Algorithm 2

describes the steps involved in conflict resolution, which is selecting one rule

instance from the conflict set that has the highest priority. If there are

multiple rule instances with the same priority exist, the rule instance to be

executed is selected randomly.

4.5.3 Act: Execution Of The Selected Rule Instance

Execution of a rule instance is straight forward. When the rule instance se-

lected from the conflict set is forwarded for execution, its consequent is added

to the working memory as well as processed for further actions depending on

the nature of the rule. Consequent of the rule instance can be in the form of

Chapter 4 100

School of Computer Science

Input: R: Rule-Base,WM: Working Memory
[Rs: A single rule, Ri:A rule instance, Rb: Rule body, Rc: Rule consequent, Ra: Rule atoms in
the body, Rap: Rule atom predicate, Rat: Rule atom terms, Fc: Current fact, Fcp: Current fact
predicate, Fct: Current fact terms, Pra: Patterns in rule body, VAR: Arraylist to hold KEY and
VALUE]
Result: CS: Conflict set

1 START
2 for r = 0 to size of R do
3 Clear VAR
4 Rs =R[r]
5 Find patterns in Rb of Rs

6 Add to Array Pra

7 Flag:Array of size equal to | Pra |
8 for pra = 0 to size of Pra do
9 Select Pra[pra]

10 Seperate Rap from Rat

11 for f=0 to size of WM do
12 Fc= WM[f]
13 Seperate Fcp from Fct

14 if Rap==Fcp then
15 if Rat==Fct || pattern(Rat==Fct) then
16 Add 1 to Flag
17 KEY=Rat

18 VALUE=Fct

19 if (VAR does not contian KEY) then
20 Add KEY to VAR
21 Add VALUE to VAR

22 end

23 end
24 else
25 Add 0 to Flag exit nested loop
26 end

27 end

28 end

29 end
30 if Flag does not contain 0 then
31 for var= 0 to size of VAR do
32 Key=VAR[var]
33 Value=VAR[var+1]
34 Ri= Replace Key with Value in Rs

35 Rc=consequent(Ri)
36 var ← var+2

37 end
38 if WM does not contain Rc && CS does not contain Ri then
39 Add Ri to CS
40 end

41 end

42 end
43 END

Algorithm 1: Conflict set generation

Chapter 4 101

School of Computer Science

Input: CS:Conflict set [Po: Priority Operator, SPR: Same priority
rules, Cics: An element of CS, Rip: Rule instance priority]

Result: to fire= A selected rule instance to be fired
1 START
2 Po=0
3 for cs = 0 to size of CS do
4 Cics = CS[cs]
5 get Rip for Cics

6 if Rip > Po then
7 Po=Rip

8 to fire = Cics

9 end
10 else if Po == Rip then
11 Add Cics to SPR
12 end

13 end
14 if | SPR | >0 then
15 Add to fire to SPR
16 to fire = select a random instance from SPR

17 end
18 END

Algorithm 2: Conflict resolution

Chapter 4 102

School of Computer Science

communication directive, which may invoke the communication process or it

can be a fact as a newly derived context to be added to the working memory

or taking any other action. In order to achieve this, as we have already men-

tioned, the flag indicates a rule nature. If the flag is ‘G’, then a goal has been

achieved, consequent will be added to the working memory, and the system

needs to halt. Similarly, the flag ‘C’ indicates that the communication part

needs to be invoked for this specific execution of rule instance. On the other

hand, the flag ‘D’ indicates that the consequent will only be added to the

working memory.

4.5.4 Working Memory Updating

The working memory of an agent carries facts which can be initial facts, the

newly inferred facts as a result of the execution of any rule, or the communi-

cated facts received as messages from other agents. In any case, it provides

a holder for the available current contexts and to perform context reasoning.

In the whole system design and implementation processes where the empha-

sis is given on the resource constraints, memory is one of the key resources

we aim to save. The limit on the size of the working memory is to ensure it

does not exceed the maximum number of contexts it can store at any given

time, but the facts are generated at almost every iteration and keeping the

facts that are more vital to the execution is a crucial task. In our implemen-

tation, the working memory is a fixed size array. The working memory of

an agent is divided into static memory and dynamic memory. The dynamic

Chapter 4 103

School of Computer Science

memory is bounded in size, where one unit of memory corresponds to the

ability to store an arbitrary context. The static part contains initial facts

to start up the system; thus, the size is determined by the number of initial

facts. The dynamic part contains newly derived facts as the agent performs

context-aware reasoning. Only facts stored in the dynamic memory may get

overwritten, and this happens if an agent’s memory is full or a contradic-

tory context arrives in the working memory (even if the memory is not full).

Whenever newly derived context arrives in the memory, it is compared with

the existing contexts to see if any conflict arises. If so, then the corresponding

contradictory context will be replaced with the newly derived context; oth-

erwise, an arbitrary context will be removed if the dynamic memory is full.

Because of the limited dynamic memory, there might be the case when the

system can go into an infinite execution if there is no forceful stop, and the

goal is not achievable. To overcome this issue we set the number of iteration

equal to the number of rules we have to ensure that every rule is checked

and in case of no matches is found, instead of abrupt behaviour it will halt

itself, saving resources of the host system. The Algorithm 3 describes the

steps involved in the execution of the selected rule instance and the updating

of the working memory.

4.5.5 Communication And Subroutine Handling

Besides the conventional rule firing and updating the working memory facts,

the application is also capable of handling different behaviour, which are

Chapter 4 104

School of Computer Science

Input: to fire: A selected rule instance to be fired [Rc: A communication
rule instance, Rg: A rule instance contains a goal context, Rd: A
deduction rule instance, Rf : Rule Flag, Rcons: Consequent,
MAX SIZE: memory size]

Output: Rule instance executed, consequent added to WM and
corresponding action performed.

1 START
2 to fire from conflict resolution and Rcons is the consequent
3 if Rg then
4 if Rcons is a conflicting context then
5 Overwrite the contradictory context with Rcons

6 end
7 else if |WM| < MAX SIZE then
8 Add Rcons to WM
9 end

10 else
11 Overwrire an existing context with Rcons

12 end
13 Goal Reached
14 Execution Halts

15 end
16 else
17 if Rcons is a conflicting context then
18 Overwrite the contradictory context with Rcons

19 if Rc then
20 initiate communication module
21 end

22 end
23 else if |WM| < MAX SIZE then
24 Add Rcons to WM
25 if Rc then
26 initiate communication module
27 end

28 end
29 else
30 Overwrite an existing context with Rcons

31 if Rc then
32 initiate communication module
33 end

34 end

35 end
36 END

Algorithm 3: Execution of a rule
Chapter 4 105

School of Computer Science

the outcomes of the consequent of a rule instance. For instance, agents

can exchange messages regarding their current contexts. In order to achieve

this, an agent has to invoke communication subroutine. Where the com-

munication subroutine is responsible for exchanging the information from

one device to another. In [109], Ask and Tell primitives have been defined

to achieve communication between agents (e.g., two smart devices), Ask is

used when one device asks for some contextual information, similarly Tell

is used to answer the ask or simply conveying some contextual information

without being asked. However, in practice, how the contextual information

is sent or received is a matter of question. In our implementation, the de-

vices can communicate via SMS and Bluetooth. We further proposed that

in order to achieve efficient communication, a table has to be maintained

and distributed among all the connected devices. This table contains a list

of available communication modes supported in the domain. Each device is

assigned with a numeric ID, and this ID can be used in the Ask(i, j, p(t1, t2))

and Tell(i, j, p(t1, t2)), which will also keep the logical structure of the rule in-

tact. The i and j specify the FROM and TO respectively. If we assign them

numbers, it can specify which devices are communicating with each other.

For example, when i = 2 and j = 3, the Ask primitive becomes Ask(2, 3,

p(t1, t2)), where p(t1, t2) is an atomic context which neither contains an Ask

nor a Tell, and according to the Table 4.3 where the ID 3 is associated with

a caregiver device (as agent 3) and 2 is associated with a patient care device

(as agent 2). In case if the patient care agent wants to communicate with

Chapter 4 106

School of Computer Science

the blood pressure monitor agent, it can use the same format by specify-

ing the ID of the blood pressure monitor device. The rest of the columns

specify the different available modes of communication and their respective

addresses. In the case of Bluetooth communication, these devices have to

be paired with each other. Once paired names are added to a pair list, they

can be specified in the table in order to initiate communication. Once the

agent’s IDs are specified, the communication mode can be specified explicitly

by adding the communication mode at the beginning of the Ask and Tell

rule, e.g., Bluetooth(Ask(i, j, p(t1, t2))), which will be taken as agent i wants

to communicate with agent j using Bluetooth only. In case if no pre-rule

communication method is defined, then any of the available communication

modes can be used. While this is so far handling communication using the

rules, but in order to make it work every communication method has to be

attached with its respective handler and a method has to be specified which

can understand the rule and interpret it into Android specific format. These

rules before triggering will be checked with the Ask and Tell rules. If any

of them is found, a subroutine will be called to handle the rule, which will

extract its FROM and TO from the agent ID table along with the commu-

nication addresses and act accordingly. The communicated contexts, when

received by a receiver agent, are stored in a buffer before putting them into

the working memory. If the receiving agent is in the middle of the execution,

it will first complete its current execution, and in the next iteration, it will

add the received contexts from the buffer to the working memory and will

Chapter 4 107

School of Computer Science

Agent ID Bluetooth IP address ICCID
(Cell number)

1 BP monitor x.y.z.a 111222333
2 Patient care x.y.z.b 111222444
3 Caregiver x.y.z.c 111222555

Table 4.3: Agent ID table

continue further processing.

4.5.6 Time And Space Complexity Of Core Algorithms

In this section we try to find the asymptotic complexity of our proposed

algorithm both in terms of the time and space. As discussed earlier (See

3.5.1 that the time and space complexity of the RETE algorithm along with

other eager evaluation algorithm can reach to the O(WMRC) [71, 99].

Match Algorithm Complexity

In the Table 4.4, we found the time complexity for Algorithm 1.

Calculating the (cost * frequency) for each step to find the dominating

factor of the algorithm in order to find the order of growth in terms of n. It

is noted that the asymptotic time complexity of the algorithm is O(n2)

Let T(n) = c1 + nc1 + c2n + c3n + c4n + c5n + c6n + c7n + c7n
2 + c8n

2 +

c9n
2 + c10mn2 + c11mn2 + c12mn2 + c13mn2 + c14mn2 + c15mn2 + c16mn2 +

c17mn2 +c18mn2 +c19mn2 +c20mn2 +c21mn2 +c22mn2 +c23n+c24n
2 +c24n+

c24n
2 + c25n

2 + c26n
2 + c27n

2 + c28n
2 + c29n

2 + c30n
2 + c31n

2 + c32n
2

Chapter 4 108

School of Computer Science

Algorithm cost frequency
For r=0 to size of R c1 n+1

Clear VAR c2 n
Rs =R[r] c3 n
Find patterns in Rb of Rs c4 n
Add to Array Pra c5 n
Flag: Array of size equal to Pra c6 n
For ra = 0 to size of |Ra| do c7 n(n+1)

Select Ra[ra] c8 n2

Seperate Rap from Rat c9 n2

For f=0 to size of WM do c10 n2m
Fc = WM[f] c11 n2m
Seperate Fcp from Fct c12 n2m
if Rap == Fcp then c13 n2m

if Rat == Fct | pattern(Rat==Fct) then c14 + c15 n2m
Add 1 to flag c16 n2m
KEY = Rat c17 n2m
VALUE = Fct c18 n2m
if(VAR does not contain KEY) then c19 n2m

Add KEY to VAR c20 n2m
Add VALUE to VAR c21 n2m

else Add 0 to Flag and Exit Loop c22 n2m
if Flag does not contain 0 then c23 n

For var=0 to size of VAR do c24 n(n+1)
Key = VAR[var] c25 n2

Value = VAR[var + 1] c26 n2

Ri Replace Key with Value in Rs c27 n2

Rc = consequent(Ri) c28 n2

var ← var+2 c29 n2

if WM !contain Rc AND CS !contain Ri then c30 +c31 n
Add Ri to CS c32 n

Table 4.4: Conflict set generation Algorithm Complexity

Chapter 4 109

School of Computer Science

= c1 + n(c1 + c2 + c3 + c4 + c5 + c6 + c7 + c23 + c24 + c30 + c31 + c32) +

m(c10 + c11 + c12 + c13 + c14 + c15 + c16 + c17 + c18 + c19 + c20 + c21 + c22))

let c33 = c1 + c2 + c3 + c4 + c5 + c6 + c7 + c23 + c24 + c30 + c31 + c32

letc34 = c8 + c9 + c25 + c26 + c27 + c28 + c29

letc35 = c10 + c11 + c12 + c13 + c14 + c15 + c16 + c17 + c18 + c19 + c20 + c21 + c22

The equation becomes

c1 + c33n + (c34 + mc35)n2

let c36 = c34 + c35m - m being constant

= c1 + c33n + (c36)n2

So the T(n) becomes

T (n) = c1 + c33n + (c36)n2

We remove the c1 + c33n to get (c36)n2 only, which is a dominant factor of

this algorithm. We can further remove the constant factor to get the order

of n here.

The space complexity of our algorithm is O(n) since the two main arrays

which carry the patterns and flag has the highest complexity of O(n). Com-

paring the time and space complexity of the proposed algorithm, we have

an advantage on the space side. Also, in the algorithm, there is always a

trade-off between space and time. Time can be accommodated by providing

more space and vice versa. However, the worst cases of our algorithm are

Chapter 4 110

School of Computer Science

Algorithm cost frequency
Po =0 c 1
For cs = 0 to size of CS c1 n

Cics = CS[cs] c2 n
get Rip from Cics c3 n
if Rip > Po c4 n
Po = Rip c5 n
to fire = Cics c6 n

end
else if Po == Rip then c7 n

Add Cics to SPR c8 n
end

end
if SPR > 0 then c9 1

Add to fire to SPR c10 1
to fire = random(SPR) c11 1

end
END

Table 4.5: Algorithm Conflict Resolution Running Cost

considerably low and also usable on any low resource devices efficiently. As

the framework is intended for use on small devices and the smart systems

are usually designed with a small set of rules.

Conflict Resolution Algorithm Complexity

The conflict resolution input depends on the number of rules that are selected

in the conflict set. It iterates through the CS and finds the highest priority for

execution. The time complexity and space complexity is provided in Table

4.5 for Algorithm 2

In this algorithm, let T represent the time it takes for the algorithm to

Chapter 4 111

School of Computer Science

execute. T= c+(c1...c8)n + c9 + c10 + c11

adding C=c + c9 + c10 + c11 and M=c1 + + c9

Such that, T=C+Mn considering the most significant term we get the O(n)

complexity, this goes same for the space complexity as there is only one array

that holds the values for CS.

Execution Of Rule Complexity

The rule execution is quite straight forward. When a rule is passed by the

conflict resolution phase, then it is ready to be fired. The fired rule can

have different impacts i.e it can add something to the working memory or

initiate communication as in case of ask,tell rules or simple reach the goal and

terminate the process. The Table 4.6 provides the complexity for Algorithm

3.

In the rule execution complexity the calculation is very clear, as the fre-

quency of all the iterations are static. In order to calculate the time let us

assume T is time required to execute the rule execution.

T= (1 ∗ C1) + + (1 ∗ C19) yielding T = 1(C1 + ... + C19)

Considering only the most significant part for the complexity we have O(1).

In terms of space, the algorithm only read from the memory which is already

calculated in the previous algorithms and creating no new space to be added.

Chapter 4 112

School of Computer Science

Algorithm cost frequency
START
If Rg then C1 1

If Rcons is a conflicting context Then C2 1
Overwrite the contradictory context with Rcons C3 1

Else If |WM| < MAX SIZE then C4 1
Add Rcons to WM C5 1

Else Overwrite an existing context with Rcons C6 1
Goal Reached C7 1
Execution Halts C8 1

Else
If Rcons is a conflicting context C9 1

Overwrite the contradictory context with Rcons C10 1
If Rc then C11 1

initiate communication module C12 1
Else If |WM| < MAX SIZE C13 1

Add Rcons to WM C14 1
If Rc then C15 1

initiate communication module C16 1
Else Overwrire an existing context with Rcons C17 1

If Rc then C18 1
initiate communication module C19 1

END

Table 4.6: Cost for Executing a Selected Rule Instance

Chapter 4 113

School of Computer Science

4.6 Rule Generation And System Design

Rules are the central driving unit behind the whole framework. Rules give

the system the ability to think. In this model, two different ways to create a

rule is provided. One is the web-based rule formation tool, while the other

one is an enhanced prototype of Onto-HCR translator, which integrates as a

plugin in the protégé. The section following describe each method in detail.

4.6.1 Web Based Rule Generator

The desktop interface is a web-based application, which uses Apache web

server, MySQL Database, Jquery and PHP language as its main components

besides HTML for the interface design. The application is platform indepen-

dent and runs in any standard browser on different platforms, e.g. Windows,

Linux, Macintosh with minimum setup. This interface can be made online

to be accessed from any computer with an Internet connection. The user can

add rules from this interface, and it allows validating both the Left Hand

Side(LHS) or body and Right Hand Side(RHS) or head (or consequent) of

any rule provided. If the rule qualifies the format specified, it will be returned

as valid; otherwise, the user will be prompted to enter a rule according to the

intended format. The interface allows creating an agent program by receiv-

ing a set of rules and initial working memory facts. The various phases of

the desktop interface are provided in Figures 4.4, 4.5, and 4.6. In Figure 4.4

(a), a system developer can create a rule-base. Once a rule-base is created,

Chapter 4 114

School of Computer Science

Figure 4.4: Rule-base initialization

the next interface is shown in Figure 4.4(b), is ready to receive input a set

of rules. Figure 4.5 shows the validation of the rule and allowing the system

developer to save it if the rule entered is according to the correct format. Fig-

ure 4.6 shows the phase where the system developer wants to enter the facts;

it auto-suggest the rules as a developer starts typing so that the chances for

adding irrelevant or erroneous facts are minimized. The Desktop interface

produces its output in the form of a JSON 4 file. JSON is a lightweight data

interchange format. The JSON file is then further provided as an input to

the Android application.

4JSON-http://www.json.org/

Chapter 4 115

School of Computer Science

Figure 4.5: Validation of Horn-clause rules

Figure 4.6: Facts interface with auto suggestion

Chapter 4 116

School of Computer Science

4.6.2 Onto-HCR Protégé Plugin For Heterogeneous

Ontologies

To extract the rules from different ontologies, a plugin based on our previous

work [110] is developed for Protégé IDE. It allows the user to select OWL

2 RL ontology files augmented with SWRL rules and translate into a set

of plain text Horn clause rules, once translated the user can further edit

the rules, e.g., to inset priorities, flags or preferences. Once the editing is

complete, the translated Horn clause rules could be used to model the desired

context-aware system.

Figure 4.7: Distributed semantic knowledge translation process

Overall the plugin is a few step process. First, it let the user select the

downloaded ontologies which are in OWL/XML format. The plugin then

Chapter 4 117

School of Computer Science

translates it into plain horn-clause rules; once the rules are generated, the

user can select another file in order to get rules from multiple ontologies.

Finally, the user selects the generated file for editing, and once the edits are

done, the resulting file can be used to create any semantic web rule-based

application. Figures 4.8, 4.9 and 4.10 show the various steps involved in

translating the ontologies. This step can be repeated for different ontologies

individually, which will be translated into a single file containing the plain

text Horn-clause rules extracted from multiple ontologies. The following

subsections describe the relevant details of various aspects of the plugin.

Development Environment

The development of Protégé plug-in is carried out in the Eclipse IDE for

Protégé version 3.4.1. In order to develop a plugin, there are quite a few

steps involved. First, set up the project and name it after the plugin as

DontoHCR. Once a project is set up, there is a need to add all the external

libraries that are required by the plugin, by adding external JAR’s within

the IDE to the project. To create a tab widget, one has to extend the

AbstractTabWidget class from the protege.jar to implement the initialize()

method. This method runs when the plugin starts on the Protégé the main

interface. This gives the user a place where user can put their code that can

appear in the Protégé as a tabbed plugin. However, in order to run it on

Protégé first there is the need to set the manifest file, which makes the Protégé

to recognize the new plugin. For testing, change the run configuration and

Chapter 4 118

School of Computer Science

set the working directory besides some other changes, to the Protégé main

directory. This way when the IDE tries to run the program, it launches the

Protégé interface which can run the plugin and check its functionalities. The

technical components of the plugin are described below.

Working Mechanism Of The Plugin

The plugin is an OWL-API based translator, to extract rules from different

ontologies. It is the high-level Java-based API that supports the creation

of OWL ontologies and also enables us to manipulate the ontologies. The

OWL API enables third-party developers, to create and/or customize differ-

ent implementations for their components. It is helpful in loading, saving,

parsing and serializing ontologies in different syntaxes such as, OWL/XML,

RDF/XML, functional syntax, Manchester syntax, KRSS and Turtle syn-

tax which are commonly used. Furthermore, it has a set of interfaces for

probing, manipulating and reasoning with OWL ontologies. Some of the

main features of OWL API are an axiom-centric abstraction, reasoner inter-

faces, validations for different OWL 2 profiles and first class change support.

In terms of functionalities, the plugin input is the ontology. Which trans-

lates the set of axioms into Horn-clause rule. The set of axioms can be

OWL 2RL and SWRL form. The plugin translates DL-safe rules axioms into

Horn-clause rules. In addition to that, it extracts concepts from multiple on-

tologies and maps them correspondingly in the form of bridge rules. These

bridge rules are first converted into OWL 2 RL rule format and then into

Chapter 4 119

School of Computer Science

Horn-Clause rules. Figure 4.7 shows the process of translation. When the

plugin is loaded, an ontology file is provided as an input. OWL parser is

used then to parse the ontology into OWL API objects which then extracts

the set of TBox and ABox axioms. The resultant set of TBox and ABox

axioms is then translated into Horn-clause rules. The process is repeated for

any number of ontologies, and the final output is a single file which contains

a set of plain text Horn-clause rules.

4.7 Discussion

Based on the understanding from previous chapters, in this Chapter, we have

formally proposed a framework and define its working mechanism in detail.

The proposed framework platform is selected to be on Android devices. An-

droid devices are not limited to smartphones only; rather, it can be found on

small chips, TV, Set-Top Boxes and similar devices. Android having a larger

user base also make it favourable for selection. Since the sensors are the

main hardware interface that perceives its environment, it has to be clear in

working. How the sensors raw data is gathered and by which mechanism it

has to be acquired. Having context in hand makes eligible for the reasoning.

For the reasoning part, the Rule-based system takes into consideration the

acquired context. In other words, the context drives the rule-based system in

such a way that it reacts to contexts as it arrives and based on the context,

it can adapt itself or act on behalf of a user. We argued that the RETE

Chapter 4 120

School of Computer Science

Figure 4.8: Enabling the plugin in protégé

Chapter 4 121

School of Computer Science

Figure 4.9: Selecting ontology for translation

Chapter 4 122

School of Computer Science

Figure 4.10: Editing the translated file

algorithm in RBS is not a recommended approach, especially when the re-

sources are limited. Therefore we define our efficient algorithm published in

[111], which consumes meagre resources, have fewer lines of code and has

satisfactory time and space complexity. We also looked into the matter of

rules generation, and there can be instances when we need a limited set of

rules, and we do not have ontology to translate the rules. In order to solve

this problem, we developed web-based rule generator which can be used to

encode human expert knowledge into rules directly, which can be used on

the framework rule-engine without any need of a translator. Besides rules

translation from ontologies, the tool has also been tailored as a plugin to be

used in the Protégé IDE as a plugin. Which can be used to translate, edit

Chapter 4 123

School of Computer Science

and save different ontologies into the same file as simple Horn-clause rules.

In the end, we define how to use the plugin in Protégé. Since being resource

friendly algorithm is not enough, as the rules itself can upgrade/degrade the

efficiency of the rule-engine, we further enhanced the rule-engine by intro-

ducing a novel approach of preferences, which not only reduce the rule-base

size but also provide the user with personalized services. Preferences are

defined in detail in the upcoming Chapter.

Chapter 4 124

School of Computer Science

Chapter 5

Preferences

5.1 Introduction

In the previous chapter, we discussed the rule-based reasoning framework for

tiny or resource-bounded devices. In this chapter, we present a preference

model for personalisation of resource-bounded context-aware applications,

which provides a novel approach to reduce the number of rules to be pro-

cessed by the matching phase, reducing rules increase the overall efficiency

of the system, aside from reduction in rules it gives the user a control to

select the subsets of preferred rules. We aim to achieve this by keeping the

current core of the framework untouched and do the preferences execution

beforehand. As the role of preferences in multi-agent systems has received

very little attention [112] we strive to define a well-structured preference se-

lection method. Preferences main task is to provide a user with related data.

Chapter 5 125

School of Computer Science

This data can be in form of recommended applications [113], personalizing

notifications [114, 115], UI customization [116], rule to trigger, context-aware

personalization [117] or it can provide a user with list of places a user might

be interested to visit while on a tour [118]. In any method, the idea be-

hind is to find/get the user preference and based on the preferences serve the

user accordingly. As discussed in the research work, [116] the user interface

of a terminal can be changed according to the preferences specified by the

user. The GPII personalisation infrastructure enables auto-personalisation

from preferences. When a user signs in, the automatic personalisation of

signed in device starts. The login is supported by user listeners such as

USB or NFC. Once logged in, the flow manager (which is mainly responsible

for personalisation process) acquire the user preferences from a cloud-based

preferences server. Device reporter provides information about the device

the user has signed in similarly other reporters provide relevant information

if any. After receiving these, the matchmaker part assembles a complete

list of solutions and features that shall be configured on the device. These

setting or configuration are then passed on to the lifecycle manager as in-

structions, to perform the actual adaptation of the device. In this setup,

it may be noted that a complete cloud-based preference server is used just

for managing user preferences. The preferences are also defined within the

ontology, increasing the size of ontology. This method is not recommended

especially in resource-bounded devices as it has to access cloud server (need

active connection), use preference reasoning from ontology (need more com-

Chapter 5 126

School of Computer Science

putation) and matchmaker has to define all the possible solution instead of

providing some specified solutions. In [119] preferences can be predicted of

a user by knowing how a user is selecting different items, e.g. applications

in the current context. Defining relationships between the items selected by

a user in one context is used to define latent preferences related to the user.

The interest is to find those hidden reasons for which a user acts in a certain

way. The similarity matrix created for user helps in identify such preferences.

However, the process may face a cold start issue and needs a dedicated mod-

ule to observe and predict preferences. Similarly, the approach used in [118]

may also face a cold start problem in case if there are no comments for a

venue or the venue is recently open. In this paper, a venue is said to be

recommended to a user based on the context-aware mechanism by gathering

related words related to a particular venue, e.g. Family, kids, parents all are

related in a form that represents a family. If a particular venue has such

words in comments, then the system process such comments in the context

of users preference and recommends places accordingly. The terms are col-

lected from Location-Based Social Networks (LBSN). Venue suggestion aims

to helps users by providing personalised recommendations of places to visit,

using LBSN such as Foursquare. In order to make it context-aware, it has

to take the related context of the user into consideration. Such context can

be the location of the user and time of the day along with others. The au-

thors have exploited word embedding techniques to infer the vector-space

representations of venues, users existing preferences, and users contextual

Chapter 5 127

School of Computer Science

preferences. Another preference mining approach presented in [120] is to de-

velop a context log for users from the user activities, then mining common

context-aware preferences from these logs for different users. After mining

the personal context-aware preference of each mobile user, the predicted cat-

egory of contents is preferred for a given user according to the corresponding

context. To put it simply, if the system infers that the user would like Puzzle

games, then the recommended games will be puzzle games. However, when

we keep in mind the resource limitation and to avoid the extra computation

required to predict user preferences by tracking the user’s current behaviour

may not be an ideal solution. Instead, a user should be given control over

the preferences that may be of interest to them by explicitly providing them

in the knowledge base. Using this same concept, we provided an extended

framework that can accommodate the preferences explicitly.

5.2 Preference In Context-Aware Agents

In this section, the extended framework by defining components that allow

personalised services is discussed. In order to implement user preferences, an

extra preference manager layer is added while the original working inference

engine remains intact.

The main idea of user preference is to select a subset of rules based on

preferences, and this allows the framework to process only the rules that

are of importance to the user instead of going through all the rules. The

Chapter 5 128

School of Computer Science

whole process is composed of different steps and modules which are explained

throughout this chapter. The preference manager layer mainly consists of

Context Set (CS), Context Monitor (CM), Preference Set Generator (PSG)

while Context of Interest (COI) provided by the user beforehand is the con-

text in which a user has interest for personalisation. Figure 5.1 shows how

these components are related to each other.

CoI

CM

CV

PSG

Rules

Pref Set

Facts

Memory

Inference Engine

Preference Manager

Derived Context

D
er

iv
ed

 C
o

n
te

xt

D
er

iv
ed

 C
o

n
te

xt

Resolve

conflict

Act Match

Live Pref

Figure 5.1: Preference generation overview

5.2.1 Context Set

The context set (CS) component is a column added to rule-base. The literals

in this column against each rule works as an indicator for that particular

rule. It indicates if a rule belongs to a particular context, e.g., Person(?p),

OfficeRoom(?o), hasLocation(?p, ?o) → inOffice(?p, ?o) with indicator “L”

Chapter 5 129

School of Computer Science

in CS can be attributed towards the context location, which represents that

the rule belongs to group of rules that are part of location rules. CS may

contain multiple indicators, for example, if user location and his/her blood

pressure mentioned in the same rule, then CS can indicate both contexts

defined with two different literals. These all CS indicators can easily indicate

the contexts included in a rule. For example, a user may want preference

based on location only. So the preference set will be generated where all the

rules share the location indicator in the CS column. It is pertinent to mention

that any rule that does not have CS indicator is a general rule, represented

by “-” in the context set, and will be added to every subset that is created

for preference set.

5.2.2 Context Monitor

The context monitor (CM) holds the Context of Interests (COI) of a user,

i.e., it holds the values provided by the user. Context monitor after reading

the values passes them to the Preference Set Generator (PSG) which defines

a subset of rules based on the user preferences called preference set. This

subset is then passed to the inference engine for processing. Context monitor

actively monitors the contexts of interests. Any change in the context is

forwarded to PSG to derive a new set of rules to be processed according to

the changing preferences. The changes can be from the user or the system

itself.

Chapter 5 130

School of Computer Science

5.2.3 Preference Set Generator

The preference set generator (PSG) is the main part which gives the frame-

work an ability to provide personalized services. This layer provides a subset

of rules which are personalized set of rules for a current context of the user.

PSG receives instructions from the CM to derive a set of personalized rules.

The rule-base of an agent consists of a variety of rules; some rules may never

get a chance to execute while some may be actively executed. The preference

set generated at this stage has the rules which have higher chances of being

fired. It replaces the main rule-base and acts as a small rule-base for the

inference engine.

5.2.4 Working Mechanism

In this section, it is defined that how different components work together in

order to provide personalized services to a user. All the rules are initially

stored in the main knowledge base or rule-base. As the process starts, the

COI is provided by the user, and the CM component retrieves the values.

The CM forwards the values to the PSG. PSG further communicates with

the rule-base and picks only those rules that are of interest to the user based

on the values specified in the COI. The PSG makes use of the CS to fetch

the desired rules. When the PSG rules are ready, these rules are provided to

be used as the knowledge base for further processing. Practically addition of

preference layer is the significant change, which reduces the overall burden

Chapter 5 131

School of Computer Science

from main inference engine and making it more efficient in terms of reducing

rules.

5.3 Type Of Preferences

Exploring the different type of contexts, and their usage yields that the pref-

erences can be composed of at least three different types. Each of them

has their selection and execution criteria. The rules can be categorized into

three different categories, such as context-based, derived context-based and

live context. The explanation for each of them is provided in this section.

5.3.1 Context-Based

The context-based preference is the simplest one. It makes a subset of rules,

based on the user’s selected context before the system starts processing. The

rules are grouped by the same context set indicator or CS. A single rule can

be a member of different subsets. Once the user selects the context, it can

proceed to the next process by creating a subset from the main rule-base.

Although it has advantages, there is one issue when a user is anticipating

some context in the future to come, and it is not selected in the preference

set. For that reason, the derived context based preference is used.

Chapter 5 132

School of Computer Science

5.3.2 Derived Context-Based Preference

When a user is expecting some context to appear in the future and the user

wants to enable the preference on that context, then it can be enabled by

putting certain rules in a category which a user then keep under watch until

it is derived. A good example is if a user visits the hospital for some reason

other than for a check-up, then the rules associated with the person being a

patient should not execute. However, if the user is visiting the hospital and

his/her condition is detected as being ill, then the patient rules should apply.

Figure 5.2 provides a graphical illustration of the derived context preference

set generation.

5.3.3 Live Preference

Live preference comes in handy when a user wants some context to monitor

continuously until it occurs. For example, if a user wants to keep logging the

GPS unless a certain point comes to execute some rules. Once the system

detects the context, the preference set is enabled and vice versa. A good

example is a user applying some specific rules on a Sunday; in that case,

the context of day is monitored unless it becomes Sunday. On other days

normal rules will be applied for processing. Similarly, GPS data can be

monitored to enable or disable specific rules. For example, a user only enables

the office rules when the user location is detected as in the office. Once

the context of office changes from office to any other, the rules will change

Chapter 5 133

School of Computer Science

Figure 5.2: Derived context based preference set generation

Chapter 5 134

School of Computer Science

Figure 5.3: Live preference change detection

subsequently. Figure 5.3 gives a schematic view of live preference execution,

while Algorithm 4 provides the stepwise essential execution of live preference.

5.3.4 Preference Set Generation

To put it simply, all the changes are directed towards the COI. COI, when

sensing any change in its contents, direct a new preference set generation

instruction. Based on the contents of the COI which are either context-

based, derived, live or general ones. At the end of the process, all it matters

is what is residing in the COI regardless of its source. The new preference set

is generated and put forward for the system for execution. The Algorithm 5

shows the process.

Chapter 5 135

School of Computer Science

Result: Live Preference Set
START
if If(Flag != 00) then

if Context in L == Context in R then
Select all from Rule-base where identifier equals context
received
Flag=00

end

else
Do Nothing

end
Algorithm 4: Live preference set generation for single context

5.4 Case Studies

In this section, different case studies are studied to check the framework

integrity and results.

5.4.1 Case Study 1

Published in [110]. Some rules are used as general rules to be added into the

preference set, which will be added to the preference set in any case. Due

to the long set of steps from different ontologies, annotations and preference

set we limit our case study to elaborate more the preferences side, and how

the preference sets are generated, while the execution of the rules remains

the same as described. Therefore in our case study, we take two different

ontologies, one of the ontologies deal with the smart office while the second

ontology is for patient care system. However we can use both the ontologies,

and then use preferences in them so that a user when in the office can be cared

Chapter 5 136

School of Computer Science

Input: COI:Context of Interest,R: Rules, Fe: Facts from external
agents or sensors,Fd: Facts derived, CS: Context Set, Regex:
regular expression

Output: Preference Set based on COI
1 START
2 if Regex(COI)==[a-zA-Z] then
3 Fetching Simple preference based on literals

for r→[R] do
4 if ∃x ∈ COI such that x ∈ CS[r] then
5 Add r to Preference Set
6 end

7 end

8 end
9 else if Regex(COI)==[a-zA-Z]+([a-zA-Z0-9]+) OR

[a-zA-Z]+([a-zA-Z0-9]+,[a-zA-Z0-9]) then
10 Derived or Live preference of the form A(b) or B(b,c)

for r→[R] do
11 if ∃x ∈ COI such that x ∈ CS[r] AND x ∈ Fe then
12 Add r to Preference Set
13 end

14 end

15 end
16 else if CS[r]== ”-” then
17 Add r to general rule
18 end
19 END

Algorithm 5: Preference set creation based on COI values

Chapter 5 137

School of Computer Science

Figure 5.4: Smart office ontology

by the patient care rules. In our Case Study 1, we presented basic preferences,

i.e. context-based, which are added before the rule engine starts. However,

in case study 2, we will slowly build up the rules as we progress and as new

contexts are derived.The ontologies are provided in Figures 5.4 and 5.5. We

can observe that both different ontologies have their own rules, if we process

them all together, it can drain the battery fast and also can make the rule-

engine work slower beside other drawbacks. We will now annotate the rules

to provide preferences based on user choices. Doing so will decrease the rules

also. Since a designer is well aware of the concepts that are coming from the

Chapter 5 138

School of Computer Science

Figure 5.5: Patient care ontology

ontology and on the other hand, he also knows the preferences provided by

the user. In our scenario, we assume that a user wants to have a different

set of preferences at home and university, i.e. UNMC. He wants to enable

the air conditioner whenever he is available in his office. Further he wants

to keep a check on his blood pressure and in case of an emergency, he wants

to be notified. The preferences for the user at home is to check for blood

pressure only and not to include the rules that deal with the UNMC. The

rules in Table 5.1 are a small sample of rules. Next, we assume that the user

is at home and will move to the office, and we observe the context changes,

and so are the rules.

Chapter 5 139

School of Computer Science

Id Rule Identifier
1 Patient(?p), hasBloodPressure(?p, Low)−→ hasSitua-

tion(?p, Emergency)
GPS(Home)

2 Patient(?p), hasBloodPressure(?p, Stage2)−→ hasSitu-
ation(?p, Emergency)

GPS(Home)

3 Patient(?p), Tell(2,1,hasBloodPressure(?p, Stage2)−→
hasBloodPressure(?p,Stage2)

GPS(Home)

4 Patient(?p), Tell(2,1,hasBloodPressure(?p, Low)−→
hasBloodPressure(?p,Low)

GPS(Home)

5 GPS(?loc), Person(?p) −→ isLocated(?p, ?loc) -
6 Occupancy Sensor(?p, ?no) −→

Tell(6,9,hasOccupancy(?p,?yes)
GPS(UNMC)

7 Tell(6,9,hasOccupancy(?p,?yes)) −→ hasOccu-
pancy(?p,?yes)

GPS(UNMC)

8 Occupancy Sensor(?yes), Person(?p) −→
Tell(6,8,hasOccupancy(?p,?yes))

GPS(UNMC)

9 hasOccupancy(?p,?yes) −→ SwitchAirconFor(?p,?on) GPS(UNMC)
10 hasOccupancy(?p,?yes) −→

Tell(6,8,hasOccupancy(?p,?yes))
GPS(UNMC)

Table 5.1: Sample rules from two ontologies with identifiers

Chapter 5 140

School of Computer Science

Facts, CoI and Rules transition

In table 5.2 we elaborate the transition of facts, Context of Interest and

how it effect the rules. We start from the user location home towards the

UNMC. The CoI column defines the preferences provided by the user, which

we assume to be constant throughout the execution and can be changed on

demand. The facts column are the high-level contexts received from the sen-

sors. The rules column is populated with the rules as a result of preferences

and CoI. Whenever the CoI is found in the facts, it will generate a set of

rules as described earlier. We assume a whole cycle from a user Home to

UNMC and back to Home.

I CoI Facts CoI found in facts Rules
1 GPS(Home), GPS(UNMC) GPS(Home) Yes 1,2,3,4,5
2 GPS(Home), GPS(UNMC) ∼ GPS(Home),∼ GPS(UNMC) No 5
3 GPS(Home), GPS(UNMC) ∼ GPS(Home),∼ GPS(UNMC) No 5
4 GPS(Home), GPS(UNMC) GPS(UNMC) Yes 5,6,7,8,9,10
5 GPS(Home), GPS(UNMC) ∼ GPS(Home),∼ GPS(UNMC) No 5
6 GPS(Home), GPS(UNMC) GPS(Home) Yes 1,2,3,4,5

Table 5.2: Preference set transition

The six iterations in Table5.3 shows a whole cycle with a different set of

rules selected from a total of ten rules as a sample.

Discussion

In this Paper, we discussed and presented a preference model for the person-

alisation of resource-bounded context-aware applications based on facts. We

also discussed the updated progress of the preferences that are based on the

Chapter 5 141

School of Computer Science

Iteration 1
CoI provided by the user is GPS(Home) and GPS(UNMC)
GPS sensor sent facts are GPS(Home)
CoI which is GPS(Home)is available in Facts which is GPS(Home)
The generated set of rules as a preference set is composed of
Patient(?p), hasBloodPressure(?p, Low)−→ hasSituation(?p, Emergency)
Patient(?p), hasBloodPressure(?p, Stage2)−→ hasSituation(?p, Emergency)
Patient(?p), Tell(2,1,hasBloodPressure(?p, Stage2)−→ hasBloodPressure(?p,Stage2)
Patient(?p), Tell(2,1,hasBloodPressure(?p, Low)−→ hasBloodPressure(?p,Low)
GPS(?loc), Person(?p) −→ isLocated(?p, ?loc)
Iteration 2 and 3
CoI provided by the user is GPS(Home) and GPS(UNMC)
GPS sensor sent facts are neither GPS(Home) nor GPS(UNMC)
CoI is not available in the fact
The generated set of rules as a preference set is composed of general rule only
GPS(?loc), Person(?p) −→ isLocated(?p, ?loc)
Iteration 4
CoI provided by the user is GPS(Home) and GPS(UNMC)
GPS sensor sent facts is GPS(UNMC)
CoI GPS(UNMC) is available in fact which is GPS(UNMC)
The generated set of rules as a preference set is composed of following rules
GPS(?loc), Person(?p) −→ isLocated(?p, ?loc)
Occupancy Sensor(?p, ?no) −→ Tell(6,9,hasOccupancy(?p,?yes)
Tell(6,9,hasOccupancy(?p,?yes)) −→ hasOccupancy(?p,?yes)
Occupancy Sensor(?yes), Person(?p) −→ Tell(6,8,hasOccupancy(?p,?yes))
hasOccupancy(?p,?yes) −→ SwitchAirconFor(?p,?on)
hasOccupancy(?p,?yes) −→ Tell(6,8,hasOccupancy(?p,?yes))
Iteration 5
CoI provided by the user is GPS(Home) and GPS(UNMC)
GPS sensor sent facts are neither GPS(Home) nor GPS(UNMC)
CoI is not available in the fact
The generated set of rules as a preference set is composed of general rule only
GPS(?loc), Person(?p) −→ isLocated(?p, ?loc)
Iteration 6
CoI provided by the user is GPS(Home) and GPS(UNMC)
GPS sensor sent facts are GPS(Home)
CoI which is GPS(Home)is available in Facts which is GPS(Home)
The generated set of rules as a preference set is composed of
Patient(?p), hasBloodPressure(?p, Low)−→ hasSituation(?p, Emergency)
Patient(?p), hasBloodPressure(?p, Stage2)−→ hasSituation(?p, Emergency)
Patient(?p), Tell(2,1,hasBloodPressure(?p, Stage2)−→ hasBloodPressure(?p,Stage2)
Patient(?p), Tell(2,1,hasBloodPressure(?p, Low)−→ hasBloodPressure(?p,Low)
GPS(?loc), Person(?p) −→ isLocated(?p, ?loc)

Table 5.3: Preference set transition with rules

Chapter 5 142

School of Computer Science

preferences, along with the rules obtained from different ontologies. Next, we

would like to narrow down the preferences further so that it can be applied

to the derived context in the working memory. In that case, it will be not

only applied before hand, but any context that a user expects to be derived

can also opt for preferences.

5.4.2 Case Study 2

Published in [121]. For simplicity sake, we explain in Table 5.4, a different set

of rules belonging to different preference indicator, i.e. CS column to focus

only on the preferences. The Table explains first some rules which determine

low towards high blood pressure stages in four different rules. Similarly, the

heart rate is defined in seven different rules to detect weather heart beat is

poor or otherwise. Here we assume to add all the blood pressure and heart

rate related rules. However, we put preferences to derive different situations.

Since the preference set creation mechanism mainly depends on the type of

preference applied, and the method of creating a preference set is identical in

all case which is selecting all rules from the rule-base having a particular CS

indicator (It can be context-based, derived or live preference). Therefore we

use context based and derived context to add some rules into the preference

set. As it can be observed in the CS of Table 5.4, we have CS indicator as

hasHRCategory(Alan, Poor). This implies that whenever some rules infer

that Alan has poor heart rate or more formally hasHRCategory(Alan, Poor)

is added to working memory, then add all rules into preference set corre-

Chapter 5 143

School of Computer Science

sponding to preference set indicator as applied, i.e. hasHRCategory(Alan,

Poor), which will utilise the newly derived context to further infer more con-

text or deduce some output. From the Table, the emergency rules are added

only after the hasHRCategory(Alan, Poor) is derived from previous rules.

Otherwise, these rules will not be processed. Similarly, simple context-based

preference, which is applied directly, can be utilised to add rules to pref-

erence set directly. In this case, if patient blood pressure drops often, the

patient can opt to add the rule directly without the need to first infer, if the

blood pressure is low, e.g. hasBPCategory(Alan,LowBp). Using this method,

upon startup of the system, the context based preference will be applied first.

While rules corresponding to the conditions of poor heart rate will be added

only when the previous states infer that the patient heart rate is poor. The

hasLocation(Alan, UNMC) is live preference and will be invoked only when

the GPS sensor senses the location of Alan at UNMC.

Category m Corresponding rule F CS

Low BP 1 Person(?p), hasSystolicBloodPressure(?p,?sbp),

hasDiastolicBloodPressure(?p,

D -

?dbp), lessThan(?sbp, ’90), lessThan(?dbp,60) −→

hasBPCategory(?p,LowBP)

Normal 1 Person(?p),hasSystolicBloodPressure(?p,?sbp),

hasDiastolicBloodPressure(?p,

D -

?dbp), greaterThan(?sbp,90),

greaterthan(?dbp,60), lessThan(?sbp,120), less-

Chapter 5 144

School of Computer Science

Than(?dbp,80) −→ hasBPCategory(?p,Normal)

Pre high 1 Person(?p), hasSystolicBloodPressure(?p,?sbp),

hasDiastolicBloodPressure(?p,

D -

?dbp),greaterThan(?sbp,120),

greaterThan(?dbp,80),lessThan(?sbp,140), less-

Than(?dbp,90)−→ hasBPCategory(?p,PreHigh)

High 1 Person(?p), hasSystolicBloodPressure(?p,?sbp),

hasDiastolicBloodPressure(?p,

D -

?dbp), greaterThan(?sbp,140),

greaterThan(?dbp,90)−→ hasBPCategory(?p,

HighBP)

Category m Corresponding rule F CS

Athlete 1 Person(?p), hasHeartRate(?p,?hrt),

greaterThan(?hrt,48), lessThan(?hrt,55)

D -

−→ hasHRCategory(?p, Athlete)

Excellent 1 Person(?p), hasHeartRate(?p,?hrt),

greaterThan(?hrt,54), lessThan(?hrt,62)

D -

−→ hasHRCategory(?p,Excellent)

Good 1 Person(?p), hasHeartRate(?p,?hrt),

greaterThan(?hrt,61), lessThan(?hrt,66)

D -

−→ hasHRCategory(?p,Good)

Above Average 1 Person(?p), hasHeartRate(?p,?hrt),

greaterThan(?hrt,65), lessThan(?hrt,71)

D -

−→ hasHRCategory(?p,AboveAverage)

Chapter 5 145

School of Computer Science

Average 1 Person(?p), hasHeartRate(?p,?hrt),

greaterThan(?hrt,70), lessThan(?hrt,75)

D -

−→ hasHRCategory(?p,Average)

Below Average 1 Person(?p), hasHeartRate(?p,?hrt),

greaterThan(?hrt,74),lessThan(?hrt,82)

D -

−→ hasHRCategory(?p,BelowAverage)

Poor 1 Person(?p), hasHeartRate(?p,?hrt),

greaterThan(?hrt,81)

D -

−→ hasHRCategory(?p,Poor)

Category m Corresponding rule F CS

Emergency 2 Patient(?p), hasBPCategory(?p,HighBP),

hasHRCategory(?p,Poor)→ hasSituation

(?p,Emergency)

D hasHRCategory

(Alan, Poor)

Emergency 2 Patient(?p), hasBPCategory(?p,PreHigh),

hasHRCategory(?p,Poor)→ hasSituation

(?p,Emergency)

D hasHRCategory

(Alan, Poor)

Emergency 2 Patient(?p),hasBPCategory(?p,Normal),

hasHRCategory(?p,Poor)→ hasSituation

(?p,Emergency)

D hasLocation

(Alan,Unmc)

Emergency 2 Patient(?p),hasBPCategory(?p,LowBp),

hasHRCategory(?p,Poor) → hasSituation

(?p,Emergency)

D hasBPCategory

(Alan,LowBp)

Chapter 5 146

School of Computer Science

Non Emergency 1 Patient(?p),hasBPCategory(?p,Normal),

hasHRCategory(?p,Average) → ∼hasSituation

(?p,Emergency)

D hasLocation

(Alan,UNMC)

Non Emergency 1 Patient(?p),hasBPCategory(?p,Normal),

hasHRCategory(?p,AboveAverage) →

∼hasSituation (?p,Emergency)

D hasLocation

(Alan,UNMC)

Non Emergency 1 Patient(?p),hasBPCategory(?p,Normal),

hasHRCategory(?p,Good) → ∼hasSituation

(?p,Emergency)

D hasLocation

(Alan,UNMC)

Table 5.4: Blood pressure, heart rate rules and example rules

While executing the sample rules initially, the preference set will have

only single rule, i.e. with CS of hasBPCategory(Alan, LowBP). After fur-

ther execution and when the Heart Rate Monitor derive a new context of

hasHRCategory(Alan, Poor). The preference set will have a few more rules

which belong to derived preference with CS hasHRCategory(Alan, Poor).

Similarly, rest of the rules with CS hasLocation(Alan, UNMC), will only be

added when the user is physically at UNMC, and the device(GPS) detects

the user location at UNMC. In that way the preference set is slowly building

up instead of putting all the rules at once it only adds rules which the user

has selected based on the CS and preference mechanism.

Chapter 5 147

School of Computer Science

5.4.3 Case Study 3

Published in [122]. We consider a system consisting of several agents,

including a person agent (Agent 1 represented by a smartphone) who is a

user and may change his location detected by the GPS embedded into his

smartphone. The user is also known to have his Blood pressure issues, which

is monitored by the BP device (Agent 2) and has a heart rate monitor enabled

(Agent 3). The user casually visits the hospital for the check-up, and person

agent can interact with Out Patient handling agent (Agent 4, located at

Hospital). The user also has some preferences for his office, which is located

at UNMC. The office has an occupancy sensor (Agent 5), which can detect

if the user is in the office or not.

Context-based Preferences

As mentioned above, the user is not static, and he changes his location. As

he arrives at the hospital, his location is detected and processed to derive

a new context being a patient. We will use this derived context to make a

preference set for him at the hospital, which will illustrate how the sensed/ex-

ternally received context-based preference as well as derived-context based

preference work together to minimise the load on the agent’s inference engine

by minimising the number of rules while still receiving the desired results.

The rules in Table 5.5 are some example rules that are used to design Agent

1. The initial facts provided to the system are PatiendID(101) and hasPati-

entID(Alan,101), and the GPS sensor detects the location and that location

Chapter 5 148

School of Computer Science

is added to the agent’s working memory as a fact. Once the COI is defined,

the system checks and separate the COI from COI. The COI is put aside

for the later use once the system starts working. As a result, the Table 5.6

shows us details on the rules that are supposed to be in the preference set

for a given set of user-provided preferences. In Table 5.6, we elaborate on

the transition of facts, Context of Interest, and how it affects the rules. We

assume the initial location of the user is at his Home. Later on, the user visits

the smart hospital and accordingly, his location is detected, which in turns

deduce that the user is a patient. Accordingly, the derived-context used as a

preferred context that helps to generate a new set of rules by replacing the

existing rules to be used in the agent’s inference engine.

Rule-based Preferences

It is always possible that a conflict occurs between the rules, and to resolve it,

we assign priorities (column m in Table 5.5) to the rules. The rule priorities

give one rule preference over another rule. In this case study, we deliber-

ately made a scenario where according to the facts we can have two different

rules generating contradictory outcome as hasSituation(Alan, Emergency)

and ∼hasSituation(Alan, Emergency). Which if not handled, can derive an

unwanted conclusion. Therefore, we assigned the priorities to rules, as a part

of defeasible reasoning, and in the scenario described below the rules, R1 and

R2 are assigned priority 3, while R5 has priority 1. Since R1 and R2 having

higher priority than that of R5, the preference will be given to R1 and R2

Chapter 5 149

School of Computer Science

Id m Rule Identifier
R1 3 Patient(?p), hasBloodPressure(?p, Low)−→ hasSitua-

tion(?p, Emergency)
Patient(Alan)

R2 3 Patient(?p), hasBloodPressure(?p, High)−→ hasSitua-
tion(?p, Emergency)

Patient(Alan)

R3 2 Tell(2,1,hasBloodPressure(?p, High)−→ hasBloodPres-
sure(?p,High)

Patient(Alan)

R4 2 Tell(2,1,hasBloodPressure(?p, Low)−→ hasBloodPres-
sure(?p,Low)

Patient(Alan)

R5 1 Patient(?p), hasHeartRate(?p, Normal)−→ ∼ hasSitu-
ation(?p, Emergency)

Patient(Alan)

R6 2 Tell(3,1,hasHeartRate(?p, Normal)−→ has-
HeartRate(?p,Normal)

Patient(Alan)

R7 1 Person(?p), GPS(?loc) −→ hasLocation(?p, ?loc) -
R8 2 hasLocation(?p, Hospital), PatientID(101),

hasPID(?p,101) −→ Patient(?p)
-

R9 2 Patient(?p), hasReason(?p, ?r), MedicalReason(?r) −→
isOutPatient(?p,?r)

Patient(Alan)

R10 2 isOutPatient(?p, ?r) −→ Tell(1, 4, isOutPatient(?p, ?r)) Patient(Alan)
R11 2 Tell(5,1,hasOccupancy(?p, Yes)) −→ hasOccu-

pancy(?p,Yes)
GPS(UNMC)

R12 2 hasOccupancy(?p,Yes)) −→ Tell(1, 6, hasAir-
con(?p,On))

GPS(UNMC)

Table 5.5: Some example rules of Agent 1

over R5. Thus, avoiding any unwanted outcome. A more detailed discussion

on defeasible reasoning can be found in [107].

5.4.4 Case Study 4

In this case study, a detailed study is provided. The case study focuses on a

one-day scenario of a user. The scenario follows a user-assisted living style

for a whole day. The case study includes scenarios such as home, office,

hospital, market and smart fridge. Also, it shows how preferences can reduce

Chapter 5 150

School of Computer Science

System status COI COI Facts in WM
Initial information GPS(UNMC) Patient(Alan) PatientID(101),

hasPatientID(Alan, 101)
Iterations of the system case scenario, where a user moves to different locations at
different times with preferences enabled are GPS(UNMC) and Patient(Alan)
User location Derived facts Preference indicator Corresponding

found in WM subset of rules
GPS(Home) – No R7, R8
GPS(UNMC) – GPS(UNMC) R7, R8, R11, R12
GPS(Hospital) hasLocation(Alan, Hospital) Patient(Alan) R1,R2,R3,R4,

Patient(Alan) R5,R6,R7,R8,R9,R10

Table 5.6: Preference set transition

rule-base size. Before moving to the case study, a detailed explanation of

the system setups, different environment, ontologies, agents used and their

respective rules are provided for reference.

System Setup

The system is based on different agents, the majority of the agents are

Android-based agents with their inference engine and memory. Some agents

are only capable to sense data and send it, and does not have any inference

ability. In order to cover full scenario details, some agents are simulated

such as lighting sensor. Overall there are five ontologies, having 29 different

agents. There are total of 167 rules, working together to accomplish a variety

of tasks without the user intervention. Furthermore, rules corresponding to

their agents, along with other details, are provided in the appendix section

of this thesis.

Chapter 5 151

School of Computer Science

Figure 5.6: Ontologies with corresponding agents

Ontologies and Agents

Figure 5.6 provides all the ontologies and their corresponding agents. The

grey heading defines the name of the ontologies, while the list below gives

the agents used in the ontology.

The patient care ontology onto-graphs is presented for reference at Figure

5.7.

As discussed in chapter 4, the Onto-HCR tool is used to access the on-

tologies and translate them into the corresponding horn-clause rules. The

five different ontologies are translated into a single file and amended for pref-

erences on the rules and priorities. The resultant rule-base comprises of more

than 150 rules.

Chapter 5 152

School of Computer Science

F
ig

u
re

5.
7:

P
at

ie
n
t

C
ar

e
O

n
to

lo
gy

Chapter 5 153

School of Computer Science

Scenarios

The case study focuses on the normal routine of a user. System response is

checked on a different location, e.g. home, office, market and hospital. In the

next section, each of the following locations is briefly discussed and also the

role of a specific agent is briefed. In this case study, preferences are provided

on the rules which dynamically change the system behaviour.

Agents Details

• Smart Home: Smart home provides services that are specific to home

use. It has nine different agents, which works together to serve the user

in a better way.

1. Authorization sensor : It checks if the user is authorized to use the

services or not.

2. Motion Detector : This agent detects the motion in different rooms,

based on the detection it can operate further.

3. Light Sensor : It works with lights, especially turning the lights

on and off.

4. Aircon Controller : This sensor controls the working of the air

conditioner, to keep the temperature at a comfortable level.

5. Home Controller Sensor : This sensor checks the occupancy and

authorization of the user at home.

Chapter 5 154

School of Computer Science

6. Temperature Sensor : Temperature sensor sense the temperature

in the room and accordingly send it to the air conditioner for

adjusting to the comfortable level.

7. Door Control Sensor : This sensor is attached to the doors, and it

can open/close the door, OR it can show if the door is opened.

8. Gas Leak Detector : It detects the gas leakage, and if the leakage

is found, it can alert the user.

9. Smoke Sensor : Just like a Gas detector, it detects the smoke and

fire the alarm in case of smoke is detected

• Smart Office: Smart office facilitates the user in the office by keeping

the environment comfortable according to its rules.

1. Smart Task Manager : It provides the user the tasks list or more

like things to do memo at the office.

2. Employee: It checks for the user employee status at the office.

3. Smart Chair : It detects if the user is sitting in the office, it also

reminds the user to change posture or walk in case it detects that

the user is sitting for a long.

4. Light Lamp: It controls the lights at the office.

5. windows blinds : It controls the windows blinds to open or close

them.

Chapter 5 155

School of Computer Science

6. Office temperature: it checks the office temperature, and in case

the temperature is not comfortable, the air con agents adjust it.

7. Office Aircon : it maintains the office temperature.

• Smart Health Care: This is one of the main system, responsible for

checking the user’s health and in case of emergency, it can alert the

emergency services.

1. Patient care agent : This agent is the main agent to facilitate

the user health condition. It checks for different condition and

accordingly, for example, in case of emergency, it can alert the

emergency service.

2. Blood Pressure Monitor : It checks for the user blood pressure and

sends it to the Patient care agent.

3. Diabetes meter : It checks for the diabetes level and sends it to

the Patient care agent.

4. Fever Monitor : It checks for the Fever level and sends it to the

Patient care agent.

5. Pulse Monitor : It checks for the user pulse and sends it to the

Patient care agent.

6. Emergency Monitor : This agent is responsible for handling the

emergency situation when the user is in a critical situation.

Chapter 5 156

School of Computer Science

7. GPS sensor : GPS sensor finds the user location and when re-

quired, send it to other agents. For example, in an emergency

situation, it can send the GPS to the ambulance.

• Smart Market: Its main task is to remind the user of the required

grocery at home; it is attached to the Smart Fridge.

1. Smart Shopping Cart : It mainly receives instructions from the

Smart fridge, and let the user reminds about the grocery required.

• Smart Fridge: It monitors different items in the fridge and their

quantity.

1. Egg sensor : It checks for the egg quantities in the fridge.

2. Milk Sensor : It checks the milk if the user is short on milk; it

notifies the user when the user is in the market.

3. Butter Sensor : It checks for the butter quantity.

4. Water Dispenser : It checks if the water dispenser has enough

water or not.

5. Fridge Door Monitor : It checks for the door open/close status.

Scenario Execution Smart Patient, Home And Office

In this section, we execute different case scenarios to understand the system

behaviour, with preferences applied to the rule-base. The preference in these

cases is applied on different levels. The scenario executed provides a user

Chapter 5 157

School of Computer Science

who has medical issues, and the user goes to the office, and have preferences

set-up for his/her medical, home and office scenario. The user has opted out

from the market and smart fridge execution.

Dry Run Analysis

Since the framework works in a collaborative way to accomplish a goal. In the

Tables 5.8, 5.9, 5.10, an execution of scenario for smart patient is provided

stepwise. It takes a total of 23 steps and seven different agents to respond

to an emergency situation. The preferences are set to turn on whenever an

emergency is deduced. For normal condition or not emergency cases, it does

not inform the doctor or caregiver. In the dry run, the findings are quite

impressive. In the Table 5.7, agent-wise distribution is elaborated. It can be

observed that the first column refers to the Agent name and its corresponding

number. Associated rules refer to rules associated with a particular agent.

No of rules shows the total number of rules a particular agent has. The fourth

column represents the number of rules after certain preferences are provided.

The last column shows the number of processable rules in percentage form.

The last row shows consolidated results for all agents.

Chapter 5 158

School of Computer Science

Agent Name and Number Associated

Rules

No. of

Rules

Rules

After

Prefer-

ence

Rules in

%

Patient Care Agent-1 1-42 42 29 69

Blood Pressure Agent-2 43-51 9 2 22

Diabetes Meter Agent-3 52-61 10 2 20

Fever Monitor Agent-4 62-69 8 2 25

Pulse Monitor Agent-5 70-78 9 2 22

Emergency Monitor Agent-6 79-83 5 5 100

GPS Sensor Agent-7 84-85 2 2 100

Authorization Sensor Agent-8 86-88 3 3 100

Motion Detector Agent-9 89-95 7 7 100

Light Sensor Agent-10 96-99 4 4 100

Aircon Controller Agent-11 100-105 6 6 100

Home Controller Sensor Agent-12 106-109 4 0 0

Temperature Sensor Agent-13 110-114 5 5 100

Door Control Sensor Agent-14 115 1 0 0

Gas Leak Detector Agent-15 116 1 0 0

Smoke Sensor Agent-16 117 1 0 0

Smart Task Manager Agent-17 118-120 3 0 0

Employee Agent-18 121-127 7 1 14

Chapter 5 159

School of Computer Science

Agent Name and Number Associated

Rules

No. of

Rules

Rules

After

Prefer-

ence

Rules in

%

Smart Chair Agent-19 128-130 3 0 0

Light Lamp Agent-20 131-136 6 0 0

Window Blinds Agent-21 137-143 7 0 0

Office Temperature Agent-22 144-149 6 6 100

Office Aircon Agent-23 150-153 4 0 0

Smart Shopping Cart Agent-24 154-159 6 0 0

Egg Container Sensor Agent-25 160-161 2 0 0

Milk Pack Quantity Sensor Agent-26 162-163 2 0 0

Butter Cube Quantity Sensor Agent-27 164-165 2 0 0

Fridge Door Sensor Agent-28 166-167 2 0 0

Total 167 76 45%

Table 5.7: Complete Agent Wise Rules and Reductions

in Rules

In the Table 5.7, it is observed that the number of rules required to

handle the emergency situation case can be completed with 44 different rules

from 7 different agents, which represent that the remaining rules are either

redundant or give results which are not required, hence removed successfully

Chapter 5 160

School of Computer Science

with the use of preferences.

In the smart home scenario, a location-based preference is enabled on

rules. The GPS senses the location and based on the sensed context; a

preference set is defined. The complete rules for the ontology is defined in

the Appendix A. Stepwise execution is provided in the Tables 5.11, 5.12,

5.13.

In the smart office scenario combination of preferences work together to

get the employee to adjust only air-conditioner as per the preference defined.

The execution is defined in Table 5.14, while a complete set of rules are

provided in Appendix A.

5.4.5 Case Study 5

In this case study, we tested the system with the worst possible rules. In

this experiment, we have used five different rules that are enough to deduce

some goal. Then the same rules are repeated numerous times so that we

have duplicate rules, rules with the same priority, same variable instantia-

tions, and matching rule for various times to name a few of the possibilities.

The purpose of testing the system with such rules is to check if the system

can accurately produce the same results without preference and then when

the preferences are enabled, how many rules does it take to reach the goal.

The goal is already known; this test is conducted to check for the working

mechanism in both cases. The output is provided in Figure 5.8 with pref-

erences enabled and Figure 5.9 with preference disabled. Figure 5.9 shows

Chapter 5 161

School of Computer Science

Figure 5.8: Preferences enabled

Figure 5.9: Preferences disabled

Chapter 5 162

School of Computer Science

that the rule-engine has to go through all the rules in order to generate re-

sults which can be derived with only five rules. It has to rematch, evaluate

all the rules, variable bindings and produce the goal of cured(alan). Figure

5.8 shows that when we enabled the preferences, and the carefully applied

context-based preferences are defined, then the rule-engine before go through

rule-base make a subset of the eligible rules and picks only five qualified rules

based on the preferences for processing. It can be seen in the Figures that

both produce the same results while without preferences the number of rules

is ninety-seven, while with preferences the number of rules is reduced to only

five.

5.4.6 Case Studies Results

In case study 1, we have a total of 10 rules. Average used rules are 3.1. The

average reduction is 69%. Maximum reduction was found to be 90%, while

the minimum reduction was 60%. In case study 2, we have a total of 18 rules.

Average rules used were 3. The average reduction in rules was found to be

28%. Maximum reduction was 44% while the minimum reduction was 22%.

In case study 3, we have a total of 12 rules with average rules reduction at

55%, and the maximum reduction was found to be 83.3%, and the minimum

reduction was found to be 16.6%. Case study 4, which is the most detailed

case study in all these studies, shows a total reduction in rules to be 55%,

where the total number of rules is 167. Case study 5, is slightly different from

the rest of the case studies, instead of reduction in rules we tested it with five

Chapter 5 163

School of Computer Science

qualified rules of the same nature to check the worst case of the rule-engine.

The rule-engine provided the same results with and without preferences.

Only the number of processed rules changed with and without preferences

as described in the case study. Overall the results are quite satisfactory in

different scenarios provided.

5.5 Discussion

In this chapter, we have extended our previous framework to include pref-

erences. Preferences are used to achieve two main purposes. First, it can

reduce the size of rule-base significantly. Secondly, it uses the same feature

to provide the user with personalized services, for example, having office re-

lated rules in rule-base when the user is in office. In the preferences, we have

covered all the instances when the context can play a role to change the shape

of the rule-base. It can be applied before the rule-engine starts and also in run

time while a new context is derived or a live context change is detected. The

chapter covers different case studies with different preferences and applied

preferences. Also, we covered logical case studies, dry run analysis and imple-

mentation of rules. The results with and without preferences show the same

results but with a different number of processed rules. The results further

attest the efficiency of the system. The execution tracing of a single scenario

takes much effort. Therefore the dry run is designed in a way to provide the

concrete steps and omitting any unnecessary steps involved. The execution

Chapter 5 164

School of Computer Science

halts after it reaches its final state. The output received in case study 4,

is satisfactory, and the same results are obtained without preferences, which

shows the correctness of the system with and without preferences is the same.

The preference here plays an important role and reduce the redundancy that

may arise when unwanted rules are processed every single time; the system

is working. Since this thesis covered major technical areas to deploy a frame-

work, there is always room for improvement. In the next chapter, the thesis

is concluded along with suggested future direction for research.

Chapter 5 165

School of Computer Science

st
ep

P
a
ti

en
t

C
a
re

A
g
en

t(
1
)

A
ct

io
n

B
lo

o
d

P
re

ss
u

re
M

o
n

it
o
r(

2
)

A
ct

io
n

1
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
)

R
1

D
ia

st
o
li
cB

P
(9

0
),

P
er

so
n

(A
la

n
),

S
y
st

o
li
cB

P
(1

3
0
),

h
a
s-

D
ia

st
o
li
cB

P
(A

la
n

,
9
0
),

h
a
sS

y
st

o
li
cB

P
(A

la
n

,
1
3
0
),

g
re

a
te

rT
h

a
n

O
rE

q
u

a
l(

9
0
,

8
5
),

g
re

a
te

rT
h

a
n

O
rE

q
u

a
l(

1
3
0
,

1
2
5
)

—
—

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

)

R
4
5

2
id

le
-

D
ia

st
o
li
cB

P
(9

0
),

P
er

so
n

(A
la

n
),

S
y
st

o
li
cB

P
(1

3
0
),

h
a
s-

D
ia

st
o
li
cB

P
(A

la
n

,
9
0
),

h
a
sS

y
st

o
li
cB

P
(A

la
n

,
1
3
0
),

g
re

a
te

rT
h

a
n

O
rE

q
u

a
l(

9
0
,

8
5
),

g
re

a
te

rT
h

a
n

O
rE

q
u

a
l(

1
3
0
,

1
2
5
)

—
—

T
el

l(
2
,1

,
h

a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))

R
5
1

3
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

T
el

l
(2

,
1
,

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
co

p
y

4
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
R

3
6

5
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,T

el
l

(3
,

1
,

h
a
s-

D
B

C
a
te

g
o
ry

(A
la

n
,

H
ig

h
)

)

co
p
y

6
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

)

R
2
9

7
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

),
T

el
l

(4
,

1
,

h
a
s-

F
ev

er
’(

A
la

n
,

H
ig

h
)

co
p
y

8
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

),
h

a
sF

ev
er

’(
A

la
n

,
H

ig
h
)

R
3
0

9
P

a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

),
h

a
sF

ev
er

’(
A

la
n

,
H

ig
h

)
,T

el
l

5
,

1
,

h
a
sP

u
ls

eR
a
te

’(
A

la
n

,
H

ig
h

)

co
p
y

1
0

P
a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

),
h

a
sF

ev
er

’(
A

la
n

,
H

ig
h

)
,h

a
sP

u
ls

eR
a
te

(A
la

n
,

H
ig

h
)

R
3
3

1
1

P
a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

),
h

a
sF

ev
er

’(
A

la
n

,
H

ig
h

)
,h

a
sP

u
ls

eR
a
te

(A
la

n
,

H
ig

h
),

h
a
sS

it
u

a
ti

o
n

(A
la

n
,

E
m

er
g
en

cy
)

R
5

1
2

P
a
ti

en
tI

D
(0

1
),

P
er

so
n

(A
la

n
),

h
a
sP

a
ti

en
tI

D
(A

la
n

,
0
1
)

—
—

P
a
ti

en
t(

A
la

n
),

h
a
sB

lo
o
d

P
re

ss
u

re
(A

la
n

,
H

ig
h

))
,h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

),
h

a
sF

ev
er

’(
A

la
n

,
H

ig
h

)
,h

a
sP

u
ls

eR
a
te

(A
la

n
,

H
ig

h
),

h
a
sS

it
u
a
ti

o
n

(A
la

n
,

E
m

er
g
en

cy
),

T
el

l(
1
,6

,h
a
sS

it
u

a
ti

o
n

(A
la

n
,

E
m

er
g
en

cy
))

R
4
2

1
3

id
le

R
4
4

1
4

id
le

-
id

le
id

le
1
5

id
le

-
id

le
id

le

Table 5.8: Execution of Smart Patient (A)

Chapter 5 166

School of Computer Science
S

te
p

D
ia

b
et

es
(A

g
en

t
3
)

A
ct

io
n

F
ev

er
(A

g
en

t
4
)

A
ct

io
n

P
u

ls
e

M
o
n

it
o
r

(A
g
en

t
5
)

A
ct

io
n

1
B

lo
o
d

S
u

g
a
rL

ev
el

(2
5
0
),

P
er

-
so

n
(A

la
n

),
g
re

a
te

rT
h

a
n

O
rE

-
q
u

a
l(

2
5
0
,1

3
0
),

le
ss

T
h

a
n

(2
5
0
,3

0
0
)

–
h

a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
)

R
5
6

B
o
d

y
T

em
p

er
a
tu

re
(1

0
2
),

p
er

-
so

n
(A

la
n

),
h

a
sB

o
d

y
T

em
-

p
er

a
tu

re
(A

la
n

,1
0
2
),

g
re

a
te

rT
h

a
n

O
rE

q
u

a
l(

A
la

n
,

9
9
),

le
ss

T
h

a
n

(1
0
2
,

1
0
3
)

–
h

a
sF

ev
er

(A
la

n
,

H
ig

h
)

R
6
5

P
er

so
n

(A
la

n
),

P
u

ls
e(

1
1
5
),

h
a
sP

u
ls

e(
A

la
n

,
1
1
5
),

g
re

a
te

rT
h

a
n

O
rE

-
q
u

a
l(

1
1
5
,1

0
0
),

le
ss

T
h

a
n

(1
1
5
,1

2
0
),

–
h

a
sP

u
ls

eR
a
te

(A
la

n
,

H
ig

h
)

R
7
0

2
B

lo
o
d

S
u

g
a
rL

ev
el

(2
5
0
),

P
er

-
so

n
(A

la
n

),
g
re

a
te

rT
h

a
n

O
rE

-
q
u

a
l(

2
5
0
,1

3
0
),

le
ss

T
h

a
n

(2
5
0
,

3
0
0
),

–
T

el
l(

3
,1

,h
a
sD

B
C

a
te

g
o
ry

(A
la

n
,

H
ig

h
))

R
6
0

B
o
d

y
T

em
p

er
a
tu

re
(1

0
2
),

p
er

-
so

n
(A

la
n

),
h

a
sB

o
d

y
T

em
-

p
er

a
tu

re
(A

la
n

,1
0
2
),

g
re

a
te

rT
h

a
n

O
rE

q
u

a
l(

1
0
2
,

9
9
),

le
ss

T
h

a
n

(1
0
2
,

1
0
3
)

–
T

el
l(

4
,1

,h
a
sF

ev
er

(A
la

n
,

H
ig

h
))

R
6
7

P
er

so
n

(A
la

n
),

P
u

ls
e(

1
1
5
),

h
a
sP

u
ls

e(
A

la
n

,
1
1
5
),

g
re

a
te

rT
h

a
n

O
rE

-
q
u

a
l(

1
1
5
,1

0
0
),

le
ss

T
h

a
n

(1
1
5
,

1
2
0
)

–
T

el
l(

5
,1

,h
a
sP

u
ls

eR
a
te

(A
la

n
,

H
ig

h
))

R
7
7

3
id

le
id

le
id

le
id

le
id

le
id

le
4

id
le

id
le

id
le

id
le

id
le

id
le

5
id

le
id

le
id

le
id

le
id

le
id

le
6

id
le

id
le

id
le

id
le

id
le

id
le

7
id

le
id

le
id

le
id

le
id

le
id

le
8

id
le

id
le

id
le

id
le

id
le

id
le

9
id

le
id

le
id

le
id

le
id

le
id

le
1
0

id
le

id
le

id
le

id
le

id
le

id
le

1
1

id
le

id
le

id
le

id
le

id
le

id
le

1
2

id
le

id
le

id
le

id
le

id
le

id
le

1
3

id
le

id
le

id
le

id
le

id
le

id
le

1
4

id
le

id
le

id
le

id
le

id
le

id
le

1
5

id
le

id
le

id
le

id
le

id
le

id
le

1
6

id
le

id
le

id
le

id
le

id
le

id
le

1
7

id
le

id
le

id
le

id
le

id
le

id
le

1
8

id
le

id
le

id
le

id
le

id
le

id
le

1
9

id
le

id
le

id
le

id
le

id
le

id
le

2
0

id
le

id
le

id
le

id
le

id
le

id
le

2
1

id
le

id
le

id
le

id
le

id
le

id
le

2
2

id
le

id
le

id
le

id
le

id
le

id
le

2
3

id
le

id
le

id
le

id
le

id
le

id
le

Table 5.9: Execution of Smart Patient (B)Chapter 5 167

School of Computer Science
S

te
p

s
E

m
er

g
en

cy
A

g
en

t(
6
)

A
ct

io
n

G
P

S
(7

)
A

ct
io

n
1
5

P
a
ti

en
t(

A
la

n
),

P
h
y
si

ci
a
n

(A
le

x
)

—
—

T
el

l
(1

,
6
,

h
a
sS

it
u

a
-

ti
o
n

(A
la

n
,E

m
er

g
en

cy
)

co
p

ie
d

id
le

1
6

P
a
ti

en
t(

A
la

n
),

P
h
y
si

ci
a
n

(A
le

x
)

—
—

h
a
sS

it
u

a
ti

o
n

(A
la

n
,E

m
er

g
en

cy
)

R
7
9

id
le

1
7

P
a
ti

en
t(

A
la

n
),

P
h
y
si

ci
a
n

(A
le

x
),

h
a
sG

-
P

S
L

o
ca

ti
o
n

(A
la

n
,

U
N

M
C

)
—

—
h

a
sS

i-
tu

a
ti

o
n

(A
la

n
,E

m
er

g
en

cy
),

A
sk

(6
,

7
,

h
a
sG

P
S

L
o
ca

ti
o
n

(A
la

n
,

?
lo

c)
)

R
8
1

id
le

1
8

id
le

-
G

P
S

L
o
ca

ti
o
n

(U
N

M
C

),
P

er
so

n
(A

la
n

)
—

—
A

sk
6
,

7
,

h
a
sG

P
S

L
o
ca

ti
o
n

’(
A

la
n

,
?
lo

c)

co
p
y

1
9

id
le

-
G

P
S

L
o
ca

ti
o
n

(U
N

M
C

),
P

er
so

n
(A

la
n

)
—

—
A

sk
(6

,
7
,
h

a
sG

P
S

L
o
ca

ti
o
n

’(
A

la
n

,
?
lo

c)
),

h
a
sG

P
S

L
o
ca

ti
o
n

(A
la

n
,

U
N

M
C

)

R
8
4

2
0

id
le

-
G

P
S

L
o
ca

ti
o
n

(U
N

M
C

),
P

er
so

n
(A

la
n

)
—

—
A

sk
(6

,
7
,
h

a
sG

P
S

L
o
ca

ti
o
n

’(
A

la
n

,
?
lo

c)
),

h
a
sG

P
S

L
o
ca

ti
o
n

(A
la

n
,

U
N

M
C

),
’T

el
l

(7
,

6
,

h
a
sG

P
S

L
o
-

ca
ti

o
n

’(
A

la
n

,
U

N
M

C
))

R
8
5

2
1

P
a
ti

en
t(

A
la

n
),

P
h
y
si

-
ci

a
n

(A
le

x
)

—
—

h
a
sS

it
u

a
-

ti
o
n

(A
la

n
,E

m
er

g
en

cy
),

T
el

l
(7

,
6
,

h
a
sG

P
S

L
o
ca

ti
o
n

(A
la

n
,

U
N

M
C

))

co
p
y

id
le

-

2
2

P
a
ti

en
t(

A
la

n
),

P
h
y
si

ci
a
n

(A
le

x
)

—
—

h
a
sS

it
u

a
ti

o
n

(A
la

n
,E

m
er

g
en

cy
),

h
a
sG

P
S

L
o
ca

ti
o
n

(A
la

n
,

U
N

M
C

)

R
8
1

id
le

-

2
3

P
a
ti

en
t(

A
la

n
),

P
h
y
si

ci
a
n

(A
le

x
)

—
—

h
a
sS

it
u

a
ti

o
n

(A
la

n
,

E
m

er
g
en

cy
)

,h
a
s-

G
P

S
L

o
ca

ti
o
n

(A
la

n
,

U
N

M
C

),
is

D
ia

g
-

n
o
se

d
B

y
(A

la
n

,
A

le
x
)

R
8
2

id
le

-

Table 5.10: Execution of Smart Patient (C)

Chapter 5 168

School of Computer Science

steps Authorization Agent(8) Action
1 AuthorizationID(A01), BiometricSensor(B01), Per-

son(Alan), hasAuthorizationID(Alan, A01), hasBio-
metricID(Alan, B01)——

r86

2 AuthorizationID(A01), BiometricSensor(B01), Per-
son(Alan), hasAuthorizationID(Alan, A01), hasBio-
metricID(Alan, B01)—— isAuthorizedPerson(Alan,
Yes)

r87

3 AuthorizationID(A01), BiometricSensor(B01), Per-
son(Alan), hasAuthorizationID(Alan, A01), hasBio-
metricID(Alan, B01)—— isAuthorizedPerson(Alan,
Yes)

r88

4 idle idle
5 idle idle
6 idle idle
7 idle idle
8 idle idle
9 idle idle
10 idle idle
11 idle idle
12 idle idle
13 idle idle

Table 5.11: Execution of Smart Home (A)

Chapter 5 169

School of Computer Science

steps Motion Detector(9) Action Light Sensor(10) Action
1 idle idle idle idle
2 Room(Bedroom), MotionDetector(true), isAvail-

able(Alan, Bedroom) ——Tell(8, 9, isAuthorizedPer-
son(Alan, Yes))

copy idle idle

3 Room(Bedroom), MotionDetector(true), isAvail-
able(Alan, Bedroom) ——isAuthorizedPerson(Alan,
Yes))

r94 idle idle

4 Room(Bedroom), MotionDetector(true), isAvail-
able(Alan, Bedroom) ——isAuthorizedPerson(Alan,
Yes))

r92 idle idle

5 Room(Bedroom), MotionDetector(true), isAvail-
able(Alan, Bedroom) ——isAuthorizedPerson(Alan,
Yes)), hasOccupancy(Alan, Yes)

r89 idle idle

6 Room(Bedroom), MotionDetector(true), isAvail-
able(Alan, Bedroom) ——isAuthorizedPerson(Alan,
Yes)), hasOccupancy(Alan, Yes)

r90 ——Tell(9,
10, hasOccu-
pancy(Alan,
Yes)

rule
copied
to
WM

7 Room(Bedroom), MotionDetector(true), isAvail-
able(Alan, Bedroom) ——isAuthorizedPerson(Alan,
Yes)), hasOccupancy(Alan, Yes)

r91 —— hasOc-
cupancy(Alan,
Yes)

r100

8 Room(Bedroom), MotionDetector(true), isAvail-
able(Alan, Bedroom) ——isAuthorizedPerson(Alan,
Yes)), hasOccupancy(Alan, Yes)

r93 idle idle

9 isAvailable(Alan, Bedroom), Room(Bedroom), isAvail-
able(Alan, Bedroom)

r95 —— hasOc-
cupancy(Alan,
Yes), Tell(
9, 10, Avail-
ableAt(Alan,
Bedroom))

copy

10 idle idle —— hasOc-
cupancy(Alan,
Yes),AvailableAt(Alan,
Bedroom))

r96

11 idle idle —— hasOc-
cupancy(Alan,
Yes),AvailableAt(Alan,
Bedroom),
hasLightSta-
tus(Alan,On)

r99

12 idle idle idle idle
13 idle idle idle idle

Table 5.12: Execution of Smart Home (B)

Chapter 5 170

School of Computer Science

steps Air Con Con-
troller(11)

action Temperature Sen-
sor(13)

Action

1 idle idle idle idle
2 idle idle idle idle
3 idle idle idle idle
4 idle idle idle idle
5 idle idle idle idle
6 idle idle idle idle
7 idle idle idle idle
8 ——Tell(9, 11,

hasOccupancy(Alan,
Yes)

copy idle idle

9 ——hasOccupancy
(Alan, Yes)

r102 idle idle

10 —— hasOccu-
pancy(Alan, Yes),
Tell(9, 11, Avail-
ableAt(Alan, Bed-
room),

copy Temperature(30)——
hasTemp(30, Hot)

r113

11 —— hasOccu-
pancy(Alan, Yes),
AvailableAt(Alan,
Bedroom)

r105 Temperature(30)——
hasTemp(30, Hot)

r112

12 ——hasOccupancy(Alan,
Yes), isAvail-
ableAt(Alan, Bed-
room), Tell(13, 11,
hasTemp(30, Hot)

copy idle idle

13 ——hasOccupancy(Alan,
Yes), Avail-
ableAt(Alan, Bed-
room), hasTemp(30,
Hot) ——hasAircon-
Status(Bedroom,On)

r100 idle idle

Table 5.13: Execution of Smart Home (C)

Chapter 5 171

School of Computer Science

step Employee (19) action OfficeTemperature (23) action Office Aircon (24) action
1 EmployeeID(0001),

Person(Alan) ——
Employee(Alan)

r121 idle idle idle idle

2 EmployeeID(0001),
Person(Alan) ——
Employee(Alan)

r122 idle idle idle idle

3 EmployeeID(0001),
Person(Alan) ——
Employee(Alan)

r123 idle idle idle idle

4 EmployeeID(0001),
Person(Alan)——
Employee(Alan)

r124 idle idle idle idle

5 EmployeeID(0001),
Person(Alan)——
Employee(Alan)

r125 idle idle idle idle

6 EmployeeID(0001),
Person(Alan)——
Employee(Alan)

r126 idle idle idle idle

7 EmployeeID(0001),
Person(Alan)——
Employee(Alan)

r127 OfficeTemp(28)—— copy idle idle

8 idle idle OfficeTemp(28) ——
Tell(18,22, Em-
ployee(Alan))

r145 idle copy

9 idle idle OfficeTemp(28) ——Em-
ployee(Alan),

idle idle idle

10 idle idle OfficeTemp(28) ——
Employee(Alan),
OfficeTemp(28),
greaterThanOrEqual(28,
25)

r147 idle idle

11 idle idle OfficeTemp(28) ——
Employee(Alan),
OfficeTemp(28),
greaterThanOrEqual(28,
25), hasOfficeTemp(28,
Hot)

r146 idle copy

12 idle idle idle idle OfficeAircon(11)——, Em-
ployee(0001), Tell(22, 23,
hasOfficeTemp(28, Hot))

r152

13 idle idle idle idle OfficeAircon(11)—— Em-
ployee(Alan), hasOfficeTemp(28,
Hot)), hasAirconStatus(11,On)

r156

Table 5.14: Execution of Smart Office

Chapter 5 172

School of Computer Science

Chapter 6

Conclusion And Future Work

In this Chapter, we conclude our research thesis and provide insights into

future work. While providing context-aware services on resource-bounded

devices is still a new area to be explored. A very satisfying number of research

works are progressing toward the same area. In the conclusion section, we

try to summarise our thesis.

6.1 Conclusion

This thesis has familiarised us with a new vision relating to the context-

aware systems on small devices in a highly decentralised environment using

agents. Since context-aware systems tend to adapt to their environment and

are used mainly on smart devices. Therefore, problems arise with the usage

of such devices, especially in terms of memory, computation power, battery

Chapter 6 173

School of Computer Science

power, as discussed in previous chapters. This thesis contributed towards

overcoming such issues by providing an algorithm which is small enough and

has low complexity to run on devices which has lower resources . Further, the

introduction of preferences for rule filtration is a novel approach to reduce the

size of the rule-base and ultimately increase the overall efficiency by limiting

the number of inputs. Since this thesis has provided solutions which span

over a few major areas in computer science, and it is vital to summarise them

chapter wise briefly. Chapter 1 introduces the user with the research problem

statements and main contributions. The contributions discuss the algorithm,

preferences and its types along with rule generation methodologies that are

used in the later chapters. We provided our aim and concrete steps on how

do we achieve the main aim. The Chapter also details the methodology to

accomplish objectives, that will contribute towards achieving the aim.

Chapter 2 familiarise the reader with the notion of context, context-aware,

and context-aware systems. Context-aware is one part of the areas that are

covered in the same Chapter. Different types of context-aware systems are

discussed such as location-aware, energy-aware, among others, followed by

its different application to give us a nice idea of its applications in real life.

Further, its design and architectural models are briefed to provide an idea of

how a context-aware system can be designed in different ways. Next, Mod-

elling of context is discussed. Followed by ontologies introduction. Different

reasoning techniques are explained to give a better understanding of how the

reasoning process works. The last section describes the rule-based systems.

Chapter 6 174

School of Computer Science

Since the rule-based system is composed of different parts (rule-base, rule-

execution, rule-matching, conflict resolution and act) integrated to work as

a single body. Each part is distinctly defined with great details. As the ma-

jor portion of this thesis deal with the RBS, it is important to have a clear

understanding of RBS and its internal working mechanism. Chapter 2, ba-

sically introduced context-aware systems, ontologies and rule-based system

and their inter-operation to provide one seamless framework.

Chapter 3 details the related work from context-aware systems and rule-

based systems. However, rule-based systems for mobile devices are explained

separately and comparison is made between different rule-engines and frame-

work using Table. The Table illustrates various aspects that are vital for a

rule-engine to possess, in order to have it categorised as a rule-engine for

resource-bounded devices. Since rule engines work on matching rules with

facts, and a well-known algorithm for such operation is RETE. The RETE

algorithm developed by Charles Forgy is explained along with its analysis

and the problems associated with it. The reason to mention the algorithm

here is so that we can devise and overcome the issues related to the RETE

algorithm, which is still widely used in industry for rule-based systems.

Chapter 4 defines in detail our proposed platform for smart devices backed

with arguments as to why we choose a specific platform. Full schemas of

context acquisition are clearly stated. Since rule-based systems do not have

any particular format, we devise a format to be used in our framework. We

developed efficient algorithms for every single phase of the rule-based system

Chapter 6 175

School of Computer Science

and also calculated its complexities both in term of time and space. The end

of the Chapter defines different methods on how a rule can be generated,

which includes a specialised plugin to translate ontology and web-based rule

generator. This Chapter mainly discusses the thesis contribution, which deals

with the execution of the system.

Chapter 5 provides a novel approach by offering preferences before the

start of the system and during execution and using live preferences, reducing

the number of processable rules and increasing system performance by reduc-

ing redundancy. Without preferences, unwanted rules are processed, which

may never be fired. While with preferences enabled, all the rules have higher

chances of being matched and executed. This Chapter also has very detailed

case studies ranging from simple to very detailed case studies, it covers differ-

ent scenarios and in different operation level. We detailed case studies that

are already published in reputable conferences and journals, while creating

new case studies with dry-run analysis and implementation. For almost ev-

ery case study, we calculated the average reduction in rules, maximum and

minimum reduction in rules. The nature of results shows that the correctness

of the system and performance of the system is not compromised.

While considering the scope of the proposed system, it still needs many

features to enhance its working mechanism further. It is not possible to cover

all the aspects in the short period, therefore the future work section defines

our plans for the framework.

Chapter 6 176

School of Computer Science

6.2 Future Work

The current work makes an effort to provide a direction for research in future.

In our research, we achieved the core goals and made the system work with

satisfactory results. However, there is always room for improvement from

logical, practical and hardware platforms. Below we discuss some of the

possibilities to enhance the framework further.

6.2.1 Hardware Advancement

The framework has the potential to be expanded and further explored for the

better use of humankind. Since this thesis focused mainly on the technology

of Android to test the feasibility of the framework. Similarly, other technolo-

gies, which are available on small devices such as Arduino1, Rasberrypie2 and

LEGO Mindstorms3 have great potential to make use of the framework. This

platform not only use a variety of sensors in different ways, but any sensor can

be added/removed, which gives us more control over the hardware side. The

Lego Mindstorm mainly provides sensors embedded framework with more

focus on the robotic field. In this way, a moveable, context-aware system can

be developed. Such usage can significantly reduce the cost of hardware as a

single robot can move different places and collect context, which has to be

received by separate sensors otherwise. All of the systems mentioned have

1https://www.arduino.cc/
2https://www.raspberrypi.org/
3https://www.lego.com/en-us/mindstorms

Chapter 6 177

School of Computer Science

mature communication, processing and development environment with the

availability of 3rd party sensors, which makes them a very nice options for

context-aware devices.

6.2.2 Unified Ruling System

Another future progress can be on the rule generation strategy. Since the

rules are designed in some software or using some tool and then processed

traditionally. In our case, we have a variety of channels for generation and

editing of the rules such as web-based interface, writing to JSON file or

using Onto-HCR tool. Further, we make changes to the generated rule for

preferences and likewise. It will be more convenient if dedicated research is

carried out in this direction, to make one standalone system capable of doing

all of the tasks as mentioned above and with automation.

6.2.3 Reversal Of Preference Set

Although, in our proposed system, we have a well-explained mechanism for

deriving a preference set from a set of rules. This set depends on a variety of

choices by a user such as context-based, derived or live preferences. However,

it is unavoidable to make a strategy that can reverse a set of rules when not

required. The preference set may be able to remove rules which are not likely

to fire in the future by its own. By doing this, the redundancy will be more

reduced to maximise the system output.

Chapter 6 178

School of Computer Science

6.2.4 Working Memory Limitation And Updation

In this section, we discuss some possible conceptual solutions towards the

working memory limitation. As the working memory has a limitation, the

limitation has to follow some methodology. Below we discuss potential meth-

ods to explore further.

Distinct WM

In the database analogy, the distinct returns all the results so that the du-

plicated values are only shown once instead of repeating it. Similarly, the

working memory maximum limit can be put equal to the number of distinct

consequences of the rules. If there are a hundred rules and there are some

rules which have the same consequences, then the working memory can be

equal to the distinct size of total consequences. Mathematically Let R be

the total number of rules, let Rc be the total consequences of the rules. Let

RDc be the distinct consequences such that RDc ≤ Rc AND RDc > 0, and

size of WM = RDc

Average of the preference sets

In this technique, the preferences sets are taken into consideration. It is more

complicated than the previous method with a more space-saving mechanism

when preferences are supposed to implement. This mechanism considers the

rules in different preference sets, and takes the average of the set and create

a working memory of the average size. Mathematically, Let R be a rule

Chapter 6 179

School of Computer Science

base. Let P1, P2, P3 be three different preference set with varied preference

methods. Let Rx be a single rule instance, where Rx ⊂ (P1∪P2∪P3), Let Pa

be the average of the preference sets, and n be the number of the preference

sets available and nr be the number of total rules in all preference sets we

get Pa = nr/n. The size of the working memory become equal to Pa.

User assigned

In this case, it is totally in the control of a user. A user can determine the

size of the working memory and based on his/her knowledge of the rules, and

any size can be provided as far as it is available. This particular procedure

is the case presented in the thesis.

There is always a chance that a newer element in some cases can overwrite

an element in working memory. How this overwritten is handled currently

is randomised overwriting, which may lead to unwanted delays if not correct

results. Therefore, this area can also be one of a complex research problem.

It should be efficient enough to replace any context that has little to no

impact on the overall results.

Further, some more realistic advancement can be proposed in the com-

munication model, depending on the technology used and distances of the

devices from each other. Variety of communication channels can be used.

The mode of communication has to be energy efficient and reliable enough

to send/receive data on time accurately.

Chapter 6 180

School of Computer Science

Appendix A

Complete List Of Rules

In this section, a complete rules sets required to test different scenarios from

a person daily routine are provided. The rules are arranged agent wise. The

initial facts required to initiate any agent are also provided. Further, the

preferences are added to understand which rules are added and which will

be excluded in the runtime of the system where applicable. As the execution

indicates, some of the rules are entirely excluded without affecting the output.

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

1 Patient Care Agent (1) PatientID(?pid), Person(?p), hasPati-

entID(?p, ?pid)

Patient(?p) .

2 PatientID(01), Person(Alan), hasPati-

entID(Alan,01)

Patient(?p), hasFever(?p, Hyper-

pyrexia)

hasSituation(?p, Emergency) Patient(Alan)

3 Patient(?p), hasBloodPressure(?p,

High), hasDBCategory(?p, Low),

hasFever(?p, High), hasPulseRate(?p,

High)

hasSituation(?p, Emergency) Patient(Alan)

Chapter A 181

School of Computer Science

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

4 Patient(?p), hasBloodPressure(?p,

Low), hasDBCategory(?p, Low),

hasFever(?p, High), hasPulseRate(?p,

Low)

hasSituation(?p, Emergency) Patient(Alan)

5 Patient(?p), hasBloodPressure(?p,

High), hasDBCategory(?p, High),

hasFever(?p, High), hasPulseRate(?p,

High)

hasSituation(?p, Emergency) Patient(Alan)

6 Patient(?p), hasPulseRate(?p, Abnor-

mal)

hasSituation(?p, Emergency) Patient(Alan)

7 Patient(?p), hasDBCategory(?p, Nor-

mal)

hasNotSituation(?p, Emer-

gency)

GPSLocation(Hospital)

8 Patient(?p), hasDBCategory(?p, Hy-

poglycaemia)

hasSituation(?p, Emergency) Patient(Alan)

9 Patient(?p), hasFever(?p, Normal) hasNotSituation(?p, Emer-

gency)

GPSLocation(Hospital)

10 Patient(?p), hasBloodPressure(?p,

Normal)

hasNotSituation(?p, Emer-

gency)

GPSLocation(Hospital)

11 Patient(?p), hasBloodPressure(?p,

Hypotention)

hasSituation(?p, Emergency) Patient(Alan)

12 Patient(?p), hasPulseRate(?p, Nor-

mal)

hasNotSituation(?p, Emer-

gency)

GPSLocation(Hospital)

13 Patient(?p), hasFever(?p, Hypopy-

rexia)

hasSituation(?p, Emergency) Patient(Alan)

14 Patient(?p), hasBloodPressure(?p,

Hypertention)

hasSituation(?p, Emergency) Patient(Alan)

15 Patient(?p), hasDBCategory(?p, Hy-

perglycaemia)

hasSituation(?p, Emergency) Patient(Alan)

16 Nurse(?nurse), Patient(?p), hasBlood-

Pressure(?p, Low)

isCaredBy(?p, ?nurse) GPSLocation(Hospital)

Chapter A 182

School of Computer Science

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

17 Nurse(?nurse), Patient(?p),

hasPulseRate(?p, High)

isCaredBy(?p, ?nurse) GPSLocation(Hospital)

18 Nurse(?nurse), Patient(?p), has-

Fever(?p, High)

isCaredBy(?p, ?nurse) GPSLocation(Hospital)

19 Nurse(?nurse), Patient(?p), hasDB-

Category(?p, High)

isCaredBy(?p, ?nurse) GPSLocation(Hospital)

20 Nurse(?nurse), Patient(?p), hasBlood-

Pressure(?p, High)

isCaredBy(?p, ?nurse) GPSLocation(Hospital)

21 Nurse(?nurse), Patient(?p),

hasPulseRate(?p, Low)

isCaredBy(?p, ?nurse) GPSLocation(Hospital)

22 Caregiver(?caregiver), Patient(?p) hasCaregiver(?p, ?caregiver) GPSLocation(Hospital)

23 Nurse(?nurse), Patient(?p), hasDB-

Category(?p, Low)

isCaredBy(?p, ?nurse) GPSLocation(Hospital)

24 Tell(2, 1, hasBloodPressure(?p, Low)

)

hasBloodPressure(?p, Low) Patient(Alan)

25 Tell(3, 1, hasDBCategory(?p, Hypo-

glycaemia))

hasDBCategory(?p, Hypogly-

caemia)

Patient(Alan)

26 Tell(3, 1, hasDBCategory(?p, Nor-

mal))

hasDBCategory(?p, Normal) Patient(Alan)

27 Tell(4, 1, hasFever(?p, Low)) hasFever(?p, Low) Patient(Alan)

28 Tell(2, 1, hasBloodPressure(?p, Nor-

mal))

hasBloodPressure(?p, Normal) Patient(Alan)

29 Tell(3, 1, hasDBCategory(?p, High)) hasDBCategory(?p, High) Patient(Alan)

30 Tell(4, 1, hasFever(?p, High)) hasFever(?p, High) Patient(Alan)

31 Tell(2, 1, hasBloodPressure(?p, Hypo-

tention))

hasBloodPressure(?p, Hypo-

tention)

Patient(Alan)

32 Tell(3, 1, hasDBCategory(?p, Hyper-

glycaemia))

hasDBCategory(?p, Hypergly-

caemia)

Patient(Alan)

33 Tell(5, 1, hasPulseRate(?p, High)) hasPulseRate(?p, High) Patient(Alan)

34 Tell(5, 1, hasPulseRate(?p, Low)) hasPulseRate(?p, Low) Patient(Alan)

35 Tell(3, 1, hasDBCategory(?p, Low)) hasDBCategory(?p, Low) Patient(Alan)

Chapter A 183

School of Computer Science

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

36 Tell(2, 1, hasBloodPressure(?p, High)

)

hasBloodPressure(?p, High) Patient(Alan)

37 Tell(4, 1, hasFever(?p, Hyperpyrexia)

)

hasFever(?p, Hyperpyrexia) Patient(Alan)

38 Tell(2, 1, hasBloodPressure(?p, Hy-

pertention))

hasBloodPressure(?p, Hyper-

tention)

Patient(Alan)

39 Tell(4, 1, hasFever(?p, Normal)) hasFever(?p, Normal) Patient(Alan)

40 Tell(5, 1, hasPulseRate(?p, Abnor-

mal))

hasPulseRate(?p, Abnormal) Patient(Alan)

41 Tell(5, 1, hasPulseRate(?p, Normal)) hasPulseRate(?p, Normal) Patient(Alan)

42 Patient(?p), hasSituation(?p, Emer-

gency)

Tell(1, 6, hasSituation(?p,

Emergency))

Patient(Alan)

43 Blood Pressure Monitor (2) DiastolicBP(?dbp), Person(?p), Sys-

tolicBP(?sbp), hasDiastolicBP(?p,

?dbp), hasSystolicBP(?p, ?sbp),

lessThan(?dbp, 70), lessThan(?sbp,

110)

hasBloodPressure(?p, Low) GPSLocation(Hospital)

44 DiastolicBP(90), Person(Alan), Sys-

tolicBP(130),hasDiastolicBP(Alan,90),

hasSystolicBP(Alan,

130),greaterThanOrEqual(90,

85),greaterThanOrEqual(130, 125)

DiastolicBP(?dbp), Person(?p), Sys-

tolicBP(?sbp), hasDiastolicBP(?p,

?dbp), hasSystolicBP(?p, ?sbp),

lessThan(?dbp, 60), lessThan(?sbp,

90)

hasBloodPressure(?p, Hypo-

tention)

GPSLocation(Hospital)

45 DiastolicBP(?dbp), Person(?p), Sys-

tolicBP(?sbp), hasDiastolicBP(?p,

?dbp), hasSystolicBP(?p, ?sbp),

greaterThanOrEqual(?dbp, 85),

greaterThanOrEqual(?sbp, 125)

hasBloodPressure(?p, High) .

Chapter A 184

School of Computer Science

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

46 DiastolicBP(?dbp), Person(?p), Sys-

tolicBP(?sbp), hasDiastolicBP(?p,

?dbp), hasSystolicBP(?p, ?sbp),

greaterThanOrEqual(?dbp, 95),

greaterThanOrEqual(?sbp, 150)

hasBloodPressure(?p, Hyper-

tention)

GPSLocation(Hospital)

47 DiastolicBP(?dbp), Person(?p), Sys-

tolicBP(?sbp), hasDiastolicBP(?p,

?dbp), hasSystolicBP(?p, ?sbp),

greaterThanOrEqual(?dbp, 70),

greaterThanOrEqual(?sbp, 110),

lessThan(?dbs, 85), lessThan(?sbp,

125)

hasBloodPressure(?p, Normal) GPSLocation(Hospital)

48 hasBloodPressure(?p, Hypotention) Tell(2, 1, hasBloodPres-

sure(?p, Hypotention))

GPSLocation(Hospital)

49 hasBloodPressure(?p, Normal) Tell(2, 1, hasBloodPres-

sure(?p, Normal))

GPSLocation(Hospital)

50 hasBloodPressure(?p, Hypertention) Tell(2, 1, hasBloodPres-

sure(?p, Hypertention))

GPSLocation(Hospital)

51 hasBloodPressure(?p, High) Tell(2, 1, hasBloodPres-

sure(?p, High))

hasBloodPressure(?p,

High)

52 Diabetes Meter (3) BloodSugarLevel(?bsl), Person(?p),

lessThan(?bsl, 50)

hasDBCategory(?p, Hypogly-

caemia)

GPSLocation(Hospital)

53 BloodSugarLevel(250), Person(Alan),

greaterThanOrEqual(250, 130),

lessThan(250, 300)

BloodSugarLevel(?bsl), Person(?p),

greaterThanOrEqual(?bsl, 300)

hasDBCategory(?p, Hypergly-

caemia)

GPSLocation(Hospital)

54 BloodSugarLevel(?bsl), Person(?p),

lessThan(?bsl, 80), greaterThanOrE-

qual(?bsl, 50)

hasDBCategory(?p, Low) GPSLocation(Hospital)

55 BloodSugarLevel(?bsl), Person(?p),

greaterThanOrEqual(?bsl, 80),

lessThan(?bsl, 130)

hasDBCategory(?p, Normal) GPSLocation(Hospital)

Chapter A 185

School of Computer Science

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

56 BloodSugarLevel(?bsl), Person(?p),

greaterThanOrEqual(?bsl, 130),

lessThan(?bsl, 300)

hasDBCategory(?p, High) .

57 hasDBCategory(?p, Low) Tell(3, 1, hasDBCategory(?p,

Low))

GPSLocation(Hospital)

58 hasDBCategory(?p, Hyperglycaemia) Tell(3, 1, hasDBCategory(?p,

Hyperglycaemia))

GPSLocation(Hospital)

59 hasDBCategory(?p, Normal) Tell(3, 1, hasDBCategory(?p,

Normal))

GPSLocation(Hospital)

60 hasDBCategory(?p, High) Tell(3, 1, hasDBCategory(?p,

High))

hasDBCategory(?p,

High)

61 hasDBCategory(?p, Hypoglycaemia) Tell(3, 1, hasDBCategory(?p,

Hypoglycaemia))

GPSLocation(Hospital)

62 Fever Monitor (4) BodyTemperature(?temp), Per-

son(?p), hasBodyTemperature(?p,

?temp), greaterThanOrEqual(?temp,

103)

hasFever(?p, Hyperpyrexia) GPSLocation(Hospital)

63 BodyTemperature(102),person(Alan),

gasBodyTemperature(Alan,102),

greaterThanOrEqual(102, 99),

lessThan(102, 103)

BodyTemperature(?temp), Per-

son(?p), hasBodyTemperature(?p,

?temp), lessThan(?temp, 96)

hasFever(?p, Low) GPSLocation(Hospital)

64 BodyTemperature(?temp), Per-

son(?p), hasBodyTemperature(?p,

?temp), greaterThanOrEqual(?temp,

96), lessThan(?temp, 99)

hasFever(?p, Normal) GPSLocation(Hospital)

65 BodyTemperature(?temp),person(?p),

hasBodyTemperature(?p,?temp),

greaterThanOrEqual(?temp, 99),

lessThan(?temp, 103)

hasFever(?p, High) .

66 hasFever(?p, Hyperpyrexia) Tell(4, 1, hasFever(?p, Hyper-

pyrexia))

GPSLocation(Hospital)

Chapter A 186

School of Computer Science

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

67 hasFever(?p, High) Tell(4, 1, hasFever(?p, High)) hasFever(Alan, High)

68 hasFever(?p, Normal) Tell(4, 1, hasFever(?p, Nor-

mal))

GPSLocation(Hospital)

69 hasFever(?p, Low) Tell(4, 1, hasFever(?p, Low)) GPSLocation(Hospital)

70 Pulse Monitor (5) Person(?p), Pulse(?pluse),

hasPulse(?p, ?pulse),

greaterThanOrEqual(?pulse, 100),

lessThan(?pulse, 120)

hasPulseRate(?p, High) .

71 Person(Alan), Pulse(115),

hasPulse(Alan, 115),

greaterThanOrEqual(115, 100),

lessThan(115, 120)

Person(?p), Pulse(?pluse),

hasPulse(?p, ?pulse),

greaterThanOrEqual(?pulse, 60),

lessThan(?pulse, 100)

hasPulseRate(?p, Normal) GPSLocation(Hospital)

72 Person(?p), Pulse(?pluse),

hasPulse(?p, ?pulse), lessThan(?pulse,

50)

hasPulseRate(?p, Abnormal) GPSLocation(Hospital)

73 hasPulseRate(?p, Abnormal) Tell(5, 1, hasPulseRate(?p,

Abnormal))

GPSLocation(Hospital)

74 hasPulseRate(?p, Normal) Tell(5, 1, hasPulseRate(?p,

Normal))

GPSLocation(Hospital)

75 Person(?p), Pulse(?pluse),

hasPulse(?p, ?pulse),

greaterThanOrEqual(?pulse, 120)

hasPulseRate(?p, Abnormal) GPSLocation(Hospital)

76 Person(?p), Pulse(?pluse),

hasPulse(?p, ?pulse),

greaterThanOrEqual(?pulse, 50),

lessThan(?pulse, 60)

hasPulseRate(?p, Low) GPSLocation(Hospital)

77 hasPulseRate(?p, High) Tell(5, 1, hasPulseRate(?p,

High))

hasPulseRate(?p, High)

78 hasPulseRate(?p, Lowl) Tell(5, 1, hasPulseRate(?p,

Low))

GPSLocation(Hospital)

Chapter A 187

School of Computer Science

Table A.1: Set of rules for Smart Patient

Rule No Agent Name and Facts Condition Consequent Preference

79 Emergency Monitor (6) Tell(1, 6, hasSituation(?p, Emer-

gency))

hasSituation(?p, Emergency) .

80 Patient(Alan),Physician(Alex) Tell(7, 6, hasGPSLocation(?p, ?loc)) hasGPSLocation(?p, ?loc) .

81 Ask (6, 7, hasGPSLocation(?p, ?loc)) hasGPSLocation(?p, ?loc) .

82 Patient(?p), Physician(?physc),

hasGPSLocation(?p, ?loc), hasSitua-

tion(?p, Emergency)

isDiagnosedBy(?p, ?physc) .

83 Patient(?p), hasGPSLocation(?p,

?loc), hasSituation(?p, Emergency)

isRescuedBy(?p, ?amb) .

84 GPS Sensor (7) Ask(6,7, hasGPSLocation(?p, ?loc)) hasGPSLocation(?p, ?loc) .

85 hasGPSLocation(Alan,UNMC) hasGPSLocation(?p, ?loc) Tell(7, 6, hasGPSLocation(?p,

?loc))

.

Table A.2: Set of rules for Smart Home

Rule No Agent Name and facts Condition Consequent Preference

86 AuthorizationSensor (8) AuthorizationID(?aid), Bio-

metricSensor(?bid), Per-

son(?p), hasAuthoriza-

tionID(?p, ?aid), hasBio-

metricID(?p, ?bid)

isAuthorizedPerson(?p, Yes) GPSLocation(home)

87 AuthorizationID(A01), BiometricSen-

sor(B01), Person(Alan), hasAutho-

rizationID(Alan, A01), hasBiometri-

cID(Alan, B01)

isAuthorizedPerson(?p, Yes) Tell(8, 9, isAuthorizedPer-

son(?p, Yes))

GPSLocation(home)

88 . isAuthorizedPerson(?p, Yes) Tell(8, 15, isAuthorizedPer-

son(?p, Yes))

GPSLocation(home)

89 MotionDetector (9) hasOccupancy(?p, Yes) Tell(9, 10, hasOccupancy(?p,

Yes))

GPSLocation(home)

Chapter A 188

School of Computer Science

Table A.2: Set of rules for Smart Home

Rule No Agent Name and facts Condition Consequent Preference

90 Room(Bedroom), MotionDetec-

tor(True), isAvailableAt(Alan, Bed-

room)

hasOccupancy(?p, Yes) Tell(9, 11, hasOccupancy(?p,

Yes))

GPSLocation(home)

91 . hasOccupancy(?p, Yes) Tell(9, 12, hasOccupancy(?p,

Yes))

GPSLocation(home)

92 . MotionDetector(?true),

isAuthorizedPerson(?p, Yes)

hasOccupancy(?p, Yes) GPSLocation(home)

93 . isAvailableAt(?p, ?room)

,Room(?room)

Tell(9, 10, isAvailableAt(?p,

?room))

GPSLocation(home)

94 . Tell(8, 9, isAuthorizedPer-

son(?p, Yes))

isAuthorizedPerson(?p, Yes) GPSLocation(home)

95 . isAvailableAt(?p, ?room)

,Room(?room)

Tell(9, 11, isAvailableAt(?p,

?room))

GPSLocation(home)

96 LightSensor (10) Tell(9, 10, isAvailableAt(?p,

?room))

isAvailableAt(?p, ?room) isAuthorizedPerson(John,

Yes)

97 . isAvailableAt(?p, ?room),

hasOccupancy(?p, No)

hasLightStatus(?p, Off) isAuthorizedPerson(John,

Yes)

98 . Tell(9, 10, hasOccupancy(?p,

Yes))

hasOccupancy(?p, Yes) isAuthorizedPerson(John,

Yes)

99 . isAvailableAt(?p, ?room),

hasOccupancy(?p, Yes)

hasLightStatus(?p, On) isAuthorizedPerson(John,

Yes)

100 Aircon Controller (11) isAvailableAt(?p, ?room),

hasOccupancy(?p, Yes),

hasTemp(?t, Hot)

hasAirconStatus(?room, On) GPSLocation(home)

101 . isAvailableAt(?p, ?room),

hasOccupancy(?p, Yes),

hasTemp(?t, Cool)

hasAirconStatus(?room, Off) GPSLocation(home)

102 . Tell(9, 11, hasOccupancy(?p,

Yes))

hasOccupancy(?p, Yes) GPSLocation(home)

103 . Tell(13, 11, hasTemp(?t,

Cool))

hasTemp(?t, Cool) GPSLocation(home)

Chapter A 189

School of Computer Science

Table A.2: Set of rules for Smart Home

Rule No Agent Name and facts Condition Consequent Preference

104 . Tell(13, 11, hasTemp(?t, Hot)

)

hasTemp(?t, Hot) GPSLocation(home)

105 . Tell(9, 11, isAvailableAt(?p,

?room))

isAvailableAt(?p, ?room) GPSLocation(home)

106 Home Controller Sensor (12) Tell(9, 12, hasOccupancy(?p,

Yes))

hasOccupancy(?p, Yes) isAuthorizedPerson(John,

Yes)

107 . hasDoorStatus(?door, Open),

hasOccupancy(?p, Yes)

hasDoorStatus(?door, Close) isAuthorizedPerson(John,

Yes)

108 . hasDoorStatus(?door, Open),

hasOccupancy(?p, No)

hasAlert(?p,OpenDoor) isAuthorizedPerson(John,

Yes)

109 . Tell(14,12, hasDoorSta-

tus(?door, Open))

hasDoorStatus(?door, Open) isAuthorizedPerson(John,

Yes)

110 Temperature Sensor (13) Temperature(?t), lessThan(?t,

16)

hasTemp(?t, Cool) GPSLocation(home)

111 Temperature(30) hasTemp(?t, Cool) Tell(13, 11, hasTemp(?t,

Cool))

GPSLocation(home)

112 . hasTemp(?t, Hot) Tell(13, 11, hasTemp(?t,

Hot))

GPSLocation(home)

113 . Temperature(?t),

greaterThanOrEqual(?t,

25)

hasTemp(?t, Hot) GPSLocation(home)

114 . Temperature(?t),

greaterThanOrEqual(?t,

16), lessThan(?t, 25)

hasTemp(?t, Normal) GPSLocation(home)

115 Door Control Sensor (14) hasDoorStatus(?door, Open) Tell(14,12, hasDoorSta-

tus(?door, Open))

isAuthorizedPerson(John,

Yes)

116 Gas Leak Detector (15) LeakDetector(?ld), LeakDe-

tected(?ld, True)

hasAlert(?p,GasLeak) isAuthorizedPerson(John,

Yes)

117 Smoke Sensor (16) Smoke(?s), isSmokeDe-

tected(?s, True)

hasAlert(?p,SmokeDetected) isAuthorizedPerson(John,

Yes)

Chapter A 190

School of Computer Science

Table A.3: Set of rules for Smart Office

Rule No Agent Name and facts Condition Consequent Preference

118 Smart Task Manager (17) Employee(?p),

TaskList(?task), TaskPend-

ing(?p, ?task)

isNotTaskDone(?p, Yes) Employee(John)

119 . Employee(?p),

TaskList(?task), Designat-

edTask(?p, ?task)

isTaskDone(?p, Yes) Employee(John)

120 . Tell(18, 17, Employee(?p) Employee(?p) Employee(John)

121 Employee (18) EmployeeID(?empID), Per-

son(?p), hasEmployeeID(?p,

?empID)

Employee(?p) GPSLocation(UNMC)

122 EmployeeID(?empID), Person(?p) Employee(?p) Tell(18,17, Employee(?p)) Employee(Alan)

123 . Employee(?p) Tell(18,19, Employee(?p)) Employee(Alan)

124 . Employee(?p) Tell(18,20, Employee(?p)) Employee(Alan)

125 . Employee(?p) Tell(18,21, Employee(?p)) Employee(Alan)

126 . Employee(?p) Tell(18, 22, Employee(?p)) Employee(Alan)

127 . Employee(?p) Tell(18, 23, Employee(?p)) Employee(Alan)

128 Smart Chair (19) Employee(?p),

SmartChair(?sc)

hasSmartChair(?p, ?sc) Employee(John)

129 . Tell(18,19, Employee(?p)) Employee(?p) Employee(John)

130 . Posture(?pos), Time(?time),

hasSmartChair(?p, ?sc),

greaterThanOrEqual(?time,

15)

ChangePosture(?p, ?pos) Employee(John)

131 Light Lamp (20) hasLightLumens(?l, ?lumens),

isGreaterThen(?lumens,

5000), isLessThen(?lumens,

10000)

hasLightStatus(?l, Normal) Employee(John)

132 . hasLightLumens(?l, ?lumens),

isLessThen(?lumens, 5000)

hasLightStatus(?l, Dim) Employee(John)

Chapter A 191

School of Computer Science

Table A.3: Set of rules for Smart Office

Rule No Agent Name and facts Condition Consequent Preference

133 . hasLightLumens(?l, ?lumens),

isGreaterThen(?lumens,

10000)

hasLightStatus(?l, Bright) Employee(John)

134 . Tell(18,20, Employee(?p)) Employee(?p) Employee(John)

135 . hasLightStatus(?l, Dim) Tell(20, 21, hasLightStatus(?l,

Dim)

Employee(John)

136 . hasLightStatus(?l, Bright) Tell(20, 21, hasLightStatus(?l,

Bright)

Employee(John)

137 Window Blinds (21) Blinds(?curtin), BlindsPosi-

tion(?curtin, down), hasLight-

Status(?l, Dim)

hasChangeBlindsStatus(?curtin,

up)

Employee(John)

138 . Tell(18,21, Employee(?p)) Employee(?p) Employee(John)

139 . Tell(20, 21, hasLightStatus(?l,

Bright)

hasLightStatus(?l, Bright) Employee(John)

140 . Tell(20, 21, hasLightStatus(?l,

Dim)

hasLightStatus(?l, Dim) Employee(John)

141 . Blinds(?curtin), BlindsPosi-

tion(?curtin, up), hasLight-

Status(?l, Bright)

hasChangeBlindsStatus(?curtin,

down)

Employee(John)

142 . Blinds(?curtin), hashasBlind-

Status(?curtin, ?status)

BlindsPosition(?curtin, down) Employee(John)

143 . Blinds(?curtin), hashasBlind-

Status(?curtin, ?status)

BlindsPosition(?curtin, up) Employee(John)

144 Office Temperature (22) OfficeTemp(?temp),

lessThanOrEqual(?temp,

16)

hasOfficeTemp(?temp, Cool) Employee(Alan)

145 OfficeTemp(28) Tell(18,22, Employee(?p)) Employee(?p) Employee(Alan)

146 . hasOfficeTemp(?temp, Hot) ,

Employee(?p)

Tell(22, 23, hasOf-

ficeTemp(?temp, Hot))

Employee(Alan)

Chapter A 192

School of Computer Science

Table A.3: Set of rules for Smart Office

Rule No Agent Name and facts Condition Consequent Preference

147 . OfficeTemp(?temp),

greaterThanOrEqual(?temp,

25)

hasOfficeTemp(?temp, Hot) Employee(Alan)

148 . OfficeTemp(?temp),

greaterThanOrEqual(?temp,

16), lessThan(?temp, 25)

hasOfficeTemp(?temp, Nor-

mal)

Employee(Alan)

149 . hasOfficeTemp(?temp, Cool) ,

Employee(?p)

Tell(22, 23, hasOf-

ficeTemp(?temp, Cool))

Employee(Alan)

150 Office Aircon (23) OfficeAircon(?ac), hasOf-

ficeTemp(?temp, Hot) ,

Employee(?P)

hasAirconStatus(?ac, On) Employee(Alan)

151 OfficeAircon(11) OfficeAircon(?ac), hasOf-

ficeTemp(?temp, Cool) ,Em-

ployee(?P)

hasAirconStatus(?ac, Off) Employee(Alan)

152 . Tell(22, 23, hasOf-

ficeTemp(?temp, Hot))

hasOfficeTemp(?temp, Hot) Employee(Alan)

153 . Tell(22, 23, hasOf-

ficeTemp(?temp, Cool))

hasOfficeTemp(?temp, Cool) Employee(Alan)

Table A.4: Set of rules for Smart Shopping Cart

Rule No Agent Name and facts Condition Consequent Preference

154 Smart Shopping Cart (24) BuyButterCube(?cube),Person(?p) hasAlert(?p, BuyBut-

ter)

155 Person(Alan) BuyMilkPack(?pack),Person(?p) hasAlert(?p, BuyMilk)

156 . BuyEgg(?qty),Person(?p) hasAlert(?p, BuyEgg)

157 . Tell(27, 24, BuyButterCube(?bqty)) BuyButterCube(?cube)

158 . Tell(26, 24, BuyMilkPack(?pack)) BuyMilkPack(?pack)

159 . Tell(25, 24, BuyEgg(?qty)) BuyEgg(?qty)

Chapter A 193

School of Computer Science

Table A.5: Set of rules for Smart Shopping Cart

Rule No Agent Name and facts Condition Consequent Preference

160 Egg container sensors (25) EggShelf(?qty), lessThanOrE-

qual(?qty, 4)

BuyEgg(?qty)

161 . BuyEgg(?qty) Tell(25, 24, BuyEgg(?qty))

162 Milk Pack Qantity Sensor (26) MilkPack(?pack),

lessThanOrEqual(?pack,

2)

BuyMilk(?pack)

163 . BuyMilk(?pack) Tell(26, 24, BuyMilk-

Pack(?pack))

164 Butter Cube Qantity Sensor (27) Bucket(?bqty), , lessThanOrE-

qual(?bqty, 4)

BuyButter(?bqty)

165 . BuyButter(?bqty) Tell(27, 24, BuyButter-

Cube(?bqty))

166 Fridge Door Sensor (28) FridgeDoor(?door), SensorSta-

tus(Open)

hasStatus(?door, Open) .

167 . hasStatus(?door, Open) hasAlert(?p, DoorOpen) .

Chapter A 194

School of Computer Science

Bibliography

[1] M. INC, “Motorola demonstrates portable telephone to be availabe for

public use by 1976,” April 3 1973. Press Release from Motorola Inc.

[2] R. Ballagas, J. Borchers, M. Rohs, and J. G. Sheridan, “The smart

phone: a ubiquitous input device,” Pervasive Computing, IEEE, vol. 5,

no. 1, pp. 70–77, 2006.

[3] S. Schrittwieser, P. Frühwirt, P. Kieseberg, M. Leithner, M. Mulazzani,

M. Huber, and E. R. Weippl, “Guess who’s texting you? evaluating

the security of smartphone messaging applications.,” in 19th Annual

Network and Distributed System Security Symposium, 2012.

[4] M. Weiser, “The computer for the 21st century,” Scientific american,

vol. 265, no. 3, pp. 94–104, 1991.

[5] C. Pei, H. Guo, X. Yang, Y. Wang, X. Zhang, and H. Ye, “Sensors in

smart phone,” in Computer and Computing Technologies in Agriculture

IV, pp. 491–495, Springer, 2011.

Chapter 6 195

School of Computer Science

[6] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “Contextphone:

A prototyping platform for context-aware mobile applications,” Perva-

sive Computing, IEEE, vol. 4, no. 2, pp. 51–59, 2005.

[7] W. V. Woensel, N. A. Haider, P. C. Roy, A. M. Ahmad, and S. S. Abidi,

“A comparison of mobile rule engines for reasoning on semantic web

based health data,” in Proceedings of the 2014 IEEE/WIC/ACM In-

ternational Joint Conferences on Web Intelligence (WI) and Intelligent

Agent Technologies (IAT)-Volume 01, pp. 126–133, IEEE Computer

Society, 2014.

[8] G. J. Nalepa and B. Szymon, “Rule-based solution for context-aware

reasoning on mobile devices,” Computer Science and Information Sys-

tems, vol. 11, no. 1, pp. 171–193, 2014.

[9] C. Mukherjee, Which Rules Engine Is Best for Building Smart Appli-

cations?, pp. 3–14. Berkeley, CA: Apress, 2018.

[10] B. N. Schilit and M. M. Theimer, “Disseminating active map informa-

tion to mobile hosts,” Network, IEEE, vol. 8, no. 5, pp. 22–32, 1994.

[11] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-

tions,” in Mobile Computing Systems and Applications, 1994. WMCSA

1994. First Workshop on, pp. 85–90, IEEE, 1994.

Chapter 6 196

School of Computer Science

[12] J. Pascoe, “Adding generic contextual capabilities to wearable comput-

ers,” in Wearable Computers, 1998. Digest of Papers. Second Interna-

tional Symposium on, pp. 92–99, IEEE, 1998.

[13] A. K. Dey, “Understanding and using context,” Personal and ubiqui-

tous computing, vol. 5, no. 1, pp. 4–7, 2001.

[14] T. Winograd, “Architectures for context,” Human-Computer Interac-

tion, vol. 16, no. 2, pp. 401–419, 2001.

[15] A. Soylu, P. De Causmaecker, and P. Desmet, “Context and adaptivity

in context-aware pervasive computing environments,” in Ubiquitous,

Autonomic and Trusted Computing, 2009. UIC-ATC’09. Symposia and

Workshops on, pp. 94–101, IEEE, 2009.

[16] H. Chen and S. Tolia, “Steps towards creating a context-aware software

agent system,” HP. Technical Report HPL-2001-231, 2001.

[17] P. E. Agre, “Changing places: contexts of awareness in computing,”

Human-computer interaction, vol. 16, no. 2, pp. 177–192, 2001.

[18] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more to context

than location,” Computers & Graphics, vol. 23, no. 6, pp. 893–901,

1999.

[19] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket

location-support system,” in Proceedings of the 6th annual interna-

Chapter 6 197

School of Computer Science

tional conference on Mobile computing and networking, pp. 32–43,

ACM, 2000.

[20] P. Castro and R. Muntz, “Using context to assist in multimedia object

retrieval,” in First International Workshop on Multimedia Intelligent

Storage and Retrieval Management, 1999.

[21] T. Kindberg and J. Barton, “A web-based nomadic computing system,”

Computer Networks, vol. 35, no. 4, pp. 443–456, 2001.

[22] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-

tions,” in Mobile Computing Systems and Applications, 1994. WMCSA

1994. First Workshop on, pp. 85–90, IEEE, 1994.

[23] S. Sehic, S. Nastic, M. Vögler, F. Li, and S. Dustdar, “Entity-

adaptation: a programming model for development of context-aware

applications,” in Proceedings of the 29th Annual ACM Symposium on

Applied Computing, pp. 436–443, ACM, 2014.

[24] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context

aware computing for the internet of things: A survey,” Communications

Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 414–454, 2014.

[25] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,

and P. Steggles, “Towards a better understanding of context and

context-awareness,” in Handheld and ubiquitous computing, pp. 304–

307, Springer, 1999.

Chapter 6 198

School of Computer Science

[26] R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The active badge

location system,” ACM Trans. Inf. Syst., vol. 10, no. 1, pp. 91–102,

1992.

[27] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: Aiding

the development of context-enabled applications,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, (New

York, NY, USA), pp. 434–441, ACM, 1999.

[28] J. E. Bardram, , and N. Nørskov, “A context-aware patient safety

system for the operating room,” in Proceedings of the 10th international

conference on Ubiquitous computing, pp. 272–281, 2008.

[29] M. Wooldridge, An Introduction to MultiAgent Systems. Wiley Pub-

lishing, 2nd ed., 2009.

[30] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware

applications,” Human-computer interaction, vol. 16, no. 2, pp. 97–166,

2001.

[31] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”

1995.

[32] D. C. Smith, A. Cypher, and J. Spohrer, “Kidsim: programming

agents without a programming language,” Communications of the

ACM, vol. 37, no. 7, pp. 54–67, 1994.

Chapter 6 199

School of Computer Science

[33] M. Wooldridge and N. R. Jennings, “Agent theories, architectures, and

languages: a survey,” in International Workshop on Agent Theories,

Architectures, and Languages, pp. 1–39, Springer, 1994.

[34] N. Petteri and F. Patrik, “Reasoning in context-aware systems. position

paper,” 2004.

[35] B. A. Michael, M. L. Sue, and C. Anthony, “Location-aware comput-

ing,” 2008.

[36] J. L. Hernández, M. V. Moreno, A. J. Jara, and A. F. Skarmeta, “A soft

computing based location-aware access control for smart buildings,”

Soft Computing, vol. 18, no. 9, pp. 1659–1674, 2014.

[37] B. Chakraborty and T. Hashimoto, “A framework for user aware

route selection in pedestrian navigation system,” in Aware Computing

(ISAC), 2010 2nd International Symposium on, pp. 150–153, IEEE,

2010.

[38] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a packet-level

simulator of energy-aware cloud computing data centers,” The Journal

of Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[39] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba, and J. L. Heller-

stein, “Dynamic energy-aware capacity provisioning for cloud comput-

ing environments,” in Proceedings of the 9th international conference

on Autonomic computing, pp. 145–154, ACM, 2012.

Chapter 6 200

School of Computer Science

[40] R. Raju, J. Amudhavel, N. Kannan, and M. Monisha, “Interpreta-

tion and evaluation of various hybrid energy aware technologies in

cloud computing environmenta detailed survey,” in Green Computing

Communication and Electrical Engineering (ICGCCEE), 2014 Inter-

national Conference on, pp. 1–3, IEEE, 2014.

[41] A. Acharya, M. Ranganathan, and J. Saltz, “Sumatra: A language for

resource-aware mobile programs,” in Mobile Object Systems Towards

the Programmable Internet, pp. 111–130, Springer, 1997.

[42] D. Molyneaux, S. Izadi, D. Kim, O. Hilliges, S. Hodges, X. Cao, A. But-

ler, and H. Gellersen, “Interactive environment-aware handheld projec-

tors for pervasive computing spaces,” in Pervasive Computing, pp. 197–

215, Springer, 2012.

[43] A. E. Hassan, D. Chiu, and J. S. Wilson, “Computing device with

environment aware features,” July 15 2008. US Patent 7,400,878.

[44] R. Sriram, S. Geetha, J. Madhusudanan, P. Iyappan, V. P. Venkate-

san, and M. Ganesan, “A study on context-aware computing frame-

work in pervasive healthcare,” in Proceedings of the 2015 International

Conference on Advanced Research in Computer Science Engineering &

Technology (ICARCSET 2015), p. 39, ACM, 2015.

Chapter 6 201

School of Computer Science

[45] R. J. Robles and T.-h. Kim, “Review: context aware tools for smart

home development,” International Journal of Smart Home, vol. 4,

no. 1, 2010.

[46] E. S. Chan, D. Gawlick, A. Ghoneimy, and Z. H. Liu, “Situation aware

computing for big data,” in Big Data (Big Data), 2014 IEEE Interna-

tional Conference on, pp. 1–6, IEEE, 2014.

[47] P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware applications:

from the laboratory to the marketplace,” Personal Communications,

IEEE, vol. 4, no. 5, pp. 58–64, 1997.

[48] R. Nitesh, “Geo tagging and automatic generation of metadata for

photos and videos,” May 19 2015. US Patent 9,037,583.

[49] J. E. Bardram, “The java context awareness framework (jcaf)–a service

infrastructure and programming framework for context-aware applica-

tions,” in Pervasive computing, pp. 98–115, Springer, 2005.

[50] M. Böhmer, L. Ganev, and A. Krüger, “Appfunnel: A framework for

usage-centric evaluation of recommender systems that suggest mobile

applications,” in Proceedings of the 2013 international conference on

Intelligent user interfaces, pp. 267–276, ACM, 2013.

[51] A. Karatzoglou, L. Baltrunas, K. Church, and M. Böhmer, “Climbing

the app wall: enabling mobile app discovery through context-aware

Chapter 6 202

School of Computer Science

recommendations,” in Proceedings of the 21st ACM international con-

ference on Information and knowledge management, pp. 2527–2530,

ACM, 2012.

[52] M. Böhmer, G. Bauer, and A. Krüger, “Exploring the design space of

context-aware recommender systems that suggest mobile applications,”

in 2nd Workshop on Context-Aware Recommender Systems, 2010.

[53] W.-H. Rho and S.-B. Cho, “Context-aware smartphone application cat-

egory recommender system with modularized bayesian networks,” in

Natural Computation (ICNC), 2014 10th International Conference on,

pp. 775–779, IEEE, 2014.

[54] J. E. Bardram, “Applications of context-aware computing in hospital

work: examples and design principles,” in Proceedings of the 2004 ACM

symposium on Applied computing, pp. 1574–1579, ACM, 2004.

[55] F. Ongenae, P. Duysburgh, M. Verstraete, N. Sulmon, L. Bleumers,

A. Jacobs, A. Ackaert, S. De Zutter, S. Verstichel, and F. De Turck,

“User-driven design of a context-aware application: an ambient-

intelligent nurse call system,” in Pervasive Computing Technologies

for Healthcare (PervasiveHealth), 2012 6th International Conference

on, pp. 205–210, IEEE, 2012.

Chapter 6 203

School of Computer Science

[56] G. W. Musumba and H. O. Nyongesa, “Context awareness in mobile

computing: A review,” International Journal of Machine Learning and

Applications, vol. 2, no. 1, pp. 5–pages, 2013.

[57] Z. Rok, H. Marjan, and R. Ivan, “Taxonomy of context-aware systems,”

ELEKTROTEHNIKI VESTNIK, vol. 79, no. 1-2, pp. 45–46, 2012.

[58] S. Lee, J. Chang, and S.-g. Lee, “Survey and trend analysis of context-

aware systems,” Information-An International Interdisciplinary Jour-

nal, vol. 14, no. 2, pp. 527–548, 2011.

[59] A. M. Langer, Guide to Software Development: Designing and Manag-

ing the Life Cycle. Springer Science & Business Media, 2012.

[60] G. Biegel and V. Cahill, “A framework for developing mobile, context-

aware applications,” in Pervasive Computing and Communications,

2004. PerCom 2004. Proceedings of the Second IEEE Annual Confer-

ence on, pp. 361–365, IEEE, 2004.

[61] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in In:

Workshop on Advanced Context Modelling, Reasoning and Manage-

ment, UbiComp 2004 - The Sixth International Conference on Ubiqui-

tous Computing, Nottingham/England, 2004.

[62] N. Guarino, D. Oberle, and S. Staab, “What is an ontology?,” in Hand-

book on ontologies, pp. 1–17, Springer, 2009.

Chapter 6 204

School of Computer Science

[63] T. R. Gruber, “A translation approach to portable ontology specifica-

tions,” Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[64] T. R. Gruber, “Toward principles for the design of ontologies used for

knowledge sharing?,” International journal of human-computer studies,

vol. 43, no. 5, pp. 907–928, 1995.

[65] N. F. Noy, D. L. McGuinness, et al., “Ontology development 101: A

guide to creating your first ontology,” 2001.

[66] A. Rakib and H. M. U. Haque, “A logical framework for the represen-

tation and verification of context-aware agents,” Mobile Networks and

Applications, vol. 19, no. 5, pp. 585–597, 2014.

[67] A. Rakib, R. U. Faruqui, and W. MacCaull, “Verifying resource re-

quirements for ontology-driven rule-based agents,” in Foundations of

Information and Knowledge Systems, pp. 312–331, Springer, 2012.

[68] J. Davies, R. Studer, and P. Warren, Semantic Web technologies:

trends and research in ontology-based systems. John Wiley & Sons,

2006.

[69] H. Boley, S. Tabet, and G. Wagner, “Design rationale for ruleml: A

markup language for semantic web rules.,” in SWWS, vol. 1, pp. 381–

401, 2001.

Chapter 6 205

School of Computer Science

[70] K. Latif, “Hybrid systems knowledge representation using modelling

environment system techniques artificial intelligence,” arXiv preprint

arXiv:1409.1170, 2014.

[71] E. Lagun, “Evaluation and implementation of match algorithms for

rule-based multi-agent systems using the example of jadex,”

[72] J. C. Giarratano and G. Riley, “Expert systems, principles and pro-

gramming, thomson course of technology,” Boston, Australia, 2005.

[73] G. F. Luger, Artificial Intelligence: Structures and Strategies for Com-

plex Problem Solving–6th Edition.

[74] E. Friedman, Jess in action: rule-based systems in java. Manning

Publications Co., 2003.

[75] A. Ligeza, logical foundations of Rule-Based Systems. Springer, 2006.

[76] A. Gupta, Parallelism in production systems. Morgan Kaufmann, 1987.

[77] G. Sehic, F. Li, S. Nastic, and S. Dustdar, “A programming model

for context-aware applications in large-scale pervasive systems,” in

Wireless and Mobile Computing, Networking and Communications

(WiMob), 2012 IEEE 8th International Conference on, pp. 142–149,

IEEE, 2012.

Chapter 6 206

School of Computer Science

[78] M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara, “Con-

textj: Context-oriented programming with java,” Information and Me-

dia Technologies, vol. 6, no. 2, pp. 399–419, 2011.

[79] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented pro-

gramming,” Journal of Object Technology, vol. 7, no. 3, 2008.

[80] B. Guo, D. Zhang, and M. Imai, “Toward a cooperative programming

framework for context-aware applications,” Personal and ubiquitous

computing, vol. 15, no. 3, pp. 221–233, 2011.

[81] N. P. Lopes, J. A. Navarro, A. Rybalchenko, and A. Singh, “Applying

prolog to develop distributed systems,” Theory and Practice of Logic

Programming, vol. 10, no. 4-6, pp. 691–707, 2010.

[82] D. Petcu and M. Petcu, “Distributed jess on a condor pool,” in Proceed-

ings of the 9th WSEAS International Conference on Computers, p. 11,

World Scientific and Engineering Academy and Society (WSEAS),

2005.

[83] I. Chronis, A. Madan, and A. S. Pentland, “Socialcircuits: the art of

using mobile phones for modeling personal interactions,” in Proceedings

of the ICMI-MLMI’09 Workshop on Multimodal Sensor-Based Systems

and Mobile Phones for Social Computing, p. 1, ACM, 2009.

Chapter 6 207

School of Computer Science

[84] J. J. Jung, “Contextualized mobile recommendation service based on

interactive social network discovered from mobile users,” Expert Sys-

tems with Applications, vol. 36, no. 9, pp. 11950–11956, 2009.

[85] D. O. Olgúın, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pent-

land, “Sensible organizations: Technology and methodology for auto-

matically measuring organizational behavior,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 1,

pp. 43–55, 2009.

[86] N. Eagle and A. S. Pentland, “Reality mining: sensing complex social

systems,” Personal and ubiquitous computing, vol. 10, no. 4, pp. 255–

268, 2006.

[87] W. M. Aly, K. A. Eskaf, and A. S. Selim, “Fuzzy mobile expert sys-

tem for academic advising,” in Electrical and Computer Engineering

(CCECE), 2017 IEEE 30th Canadian Conference on, pp. 1–5, IEEE,

2017.

[88] F. Sartori, L. Manenti, and L. Grazioli, “A conceptual and computa-

tional model for knowledge-based agents in android.,” WOA@ AI* IA,

vol. 2013, pp. 41–46, 2013.

[89] M. F. Abulkhair and L. F. Ibrahim, “Using rule base system in mobile

platform to build alert system for evacuation and guidance,” INTER-

Chapter 6 208

School of Computer Science

NATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE

AND APPLICATIONS, vol. 7, no. 4, pp. 68–79, 2016.

[90] C. Mukherjee, Build Android-Based Smart Applications: Using Rules

Engines, NLP and Automation Frameworks. Apress, 2017.

[91] C. Mukherjee, Issues Faced While Porting Rules Engines, pp. 51–53.

Berkeley, CA: Apress, 2018.

[92] T. Gu, H. K. Pung, and D. Q. Zhang, “A middleware for building

context-aware mobile services,” in Vehicular Technology Conference,

2004. VTC 2004-Spring. 2004 IEEE 59th, vol. 5, pp. 2656–2660, IEEE,

2004.

[93] H. Chen, An intelligent broker architecture for pervasive context-aware

systems. PhD thesis, University of Maryland, Baltimore County, 2004.

[94] H. M. Ul-Haque, A formal approach to modelling and verification of

context-aware systems. PhD thesis, University of Nottingham, 2017.

[95] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object

pattern match problem,” Artificial intelligence, vol. 19, no. 1, pp. 17–

37, 1982.

[96] M. Slazynski, S. Bobek, and G. J. Nalepa, “Migration of rule inference

engine to mobile platform. challenges and case study.,” Knowledge En-

gineering and Software Engineering (KESE10), p. 71, 2014.

Chapter 6 209

School of Computer Science

[97] I. Uddin, H. M. U. Haque, A. Rakib, and M. R. S. Rahmat, “Resource-

bounded context-aware applications: A survey and early experiment,”

in International Conference on Nature of Computation and Communi-

cation, pp. 153–164, Springer, 2016.

[98] R. B. Doorenbos, “Production matching for large learning systems.,”

tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT

OF COMPUTER SCIENCE, 1995.

[99] D. P. Miranker, D. A. Brant, B. J. Lofaso, and D. Gadbois, “On the per-

formance of lazy matching in production systems.,” in AAAI, vol. 90,

pp. 685–692, 1990.

[100] D. Armstrong, Memory Efficient Stream Reasoning on Resource-

Limited Devices. PhD thesis, Trinity College, 2014.

[101] G. Liu, S. Huang, D. Zhang, and Y. Du, “A rete rule reasoning algo-

rithm based on the audit method ontology,” Int. J. Hybrid Inf. Technol,

vol. 7, pp. 211–244, 2014.

[102] C. L. Forgy, On the efficient implementation of production systems.

PhD thesis, Carnegie-Mellon University, 1979.

[103] J. A. Kang and A. M. K. Cheng, “Shortening matching time in ops5

production systems,” IEEE Transactions on Software Engineering,

vol. 30, no. 7, pp. 448–457, 2004.

Chapter 6 210

School of Computer Science

[104] Partho, “Top 10 java business rule engines,” 2009.

[105] G. Developers, “Android studio,” 2015.

[106] B. DeLacey, “Google calling, inside android, the gphone sdk,” 2007.

[107] A. Rakib and H. M. U. Haque, “A logic for context-aware non-

monotonic reasoning agents,” in Human-Inspired Computing and Its

Applications, pp. 453–471, Springer, 2014.

[108] R. G. Smith and R. Davis, “Frameworks for cooperation in distributed

problem solving,” IEEE Transactions on systems, man, and cybernet-

ics, vol. 11, no. 1, pp. 61–70, 1981.

[109] A. Rakib and H. M. U. Haque, “A logic for context-aware non-

monotonic reasoning agents,” in Human-Inspired Computing and Its

Applications, pp. 453–471, Springer, 2014.

[110] I. Uddin, A. Rakib, H. M. U. Haque, and P. C. Vinh, “Modeling and

reasoning about preference-based context-aware agents over hetero-

geneous knowledge sources,” Mobile Networks and Applications, Sep

2017.

[111] A. Rakib and I. Uddin, “An efficient rule-based distributed reasoning

framework for resource-bounded systems,” Mobile Networks and Ap-

plications, vol. 24, no. 1, pp. 82–99, 2019.

Chapter 6 211

School of Computer Science

[112] F. Brandt, G. Chabin, and C. Geist, “Pnyx: : A powerful and user-

friendly tool for preference aggregation,” in AAMAS, 2015.

[113] A. Abbas, L. Zhang, and S. U. Khan, “A survey on context-aware

recommender systems based on computational intelligence techniques,”

Computing, vol. 97, no. 7, pp. 667–690, 2015.

[114] J. Auda, D. Weber, A. Voit, and S. Schneegass, “Understanding user

preferences towards rule-based notification deferral,” in Extended Ab-

stracts of the 2018 CHI Conference on Human Factors in Computing

Systems, p. LBW584, ACM, 2018.

[115] A. Mehrotra, R. Hendley, and M. Musolesi, “Prefminer: mining user’s

preferences for intelligent mobile notification management,” in Proceed-

ings of the 2016 ACM International Joint Conference on Pervasive and

Ubiquitous Computing, pp. 1223–1234, ACM, 2016.

[116] C. Loitsch, G. Weber, N. Kaklanis, K. Votis, and D. Tzovaras, “A

knowledge-based approach to user interface adaptation from prefer-

ences and for special needs,” User Modeling and User-Adapted Inter-

action, vol. 27, pp. 445–491, Dec 2017.

[117] P. T. Moore and H. V. Pham, “Personalization and rule strategies

in data-intensive intelligent context-aware systems,” The Knowledge

Engineering Review, vol. 30, no. 2, pp. 140–156, 2015.

Chapter 6 212

School of Computer Science

[118] J. Manotumruksa, C. Macdonald, and I. Ounis, “Modelling user pref-

erences using word embeddings for context-aware venue recommenda-

tion,” arXiv preprint arXiv:1606.07828, 2016.

[119] M. F. Alhamid, M. Rawashdeh, H. Dong, M. A. Hossain, and A. El Sad-

dik, “Exploring latent preferences for context-aware personalized rec-

ommendation systems,” IEEE Transactions on Human-Machine Sys-

tems, vol. 46, no. 4, pp. 615–623, 2016.

[120] H. Zhu, E. Chen, H. Xiong, K. Yu, H. Cao, and J. Tian, “Mining mo-

bile user preferences for personalized context-aware recommendation,”

ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 5, no. 4, p. 58, 2015.

[121] I. Uddin and A. Rakib, “A preference-based application framework for

resource-bounded context-aware agents,” in International Conference

on Mobile and Wireless Technology, pp. 187–196, Springer, 2017.

[122] U. Ijaz and A. Rakib, “A resource-aware preference model for context-

aware systems,” Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering, 2017.

Chapter 6 213

