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Abstract—This paper introduces a learning-based framework
for dynamic placement of threads of parallel applications to the
cores of Non-Uniform Memory Access (NUMA) architectures.
Adaptation takes place in two levels, where at the first level each
thread independently decides on which group of cores (NUMA
node) it will execute, and on the second level it decides to which
particular core from the group it will be pinned. Naturally,
these two adaptation levels run on different time-scales: a low-
frequency switching for the NUMA-node adaptation, and a
high-frequency switching for the CPU-node level adaptation. In
addition, the learning dynamics have been designed to handle
measurement noise and rapid variations in the performance of
the threads.

The advantage of the proposed learning scheme is the ability to
easily incorporate any multi-objective criterion and easily adapt
to performance variations during runtime. Our objective is to
demonstrate that this framework is appropriate for supervising
parallel processes and intervening with respect to better resource
allocation. Under the multi-objective criterion of maximizing
total completed instructions per second (i.e., both computational
and memory-access instructions), we compare the performance of
the proposed scheme with the Linux operating system scheduler.
We have observed that performance improvement could be
significant especially under limited availability of resources and
under irregular memory-access patterns.

I. INTRODUCTION

Efficient resource allocation for multi-threaded applications
in NUMA architectures has attracted significant scientific
attention due to a) the involved complexity of the decision-
making process, and b) the need to incorporate alternative
optimization criteria that go beyond standard maximization
of execution speed. This statement is further reinforced by
the recent advancement of tools for parallelizing complex
applications, that gave birth to non-trivial and highly advanced
parallel and data patterns [1], [2], [3], [4]. As expected, the
problem of efficiently utilizing resources, while concurrently
maximizing a multi-objective criterion, cannot be treated by
standard heuristic-based techniques.

To this end, this paper proposes and investigates the poten-
tial of a learning- or measurement-based scheme that could
operate in a supervisory manner on top of the existing operat-
ing system (OS) by regularly correcting/improving allocation
decisions given the observed application’s performance.
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In particular, this paper proposes a distributed learning
scheme specifically tailored for addressing the problem of
dynamically assigning/pinning threads of a parallelized appli-
cation to the available processing units. The proposed scheme
is flexible enough to incorporate any multi-objective optimiza-
tion criterion and provide convergence guarantees to at least
suboptimal assignments. Given the fact that it is measurement-
based, it is computationally efficient with a linear-complexity
with the number of threads. Since it is iterative in nature, it
also exhibits minimal memory requirements.

In our previous work [5], [6], we have proposed a
reinforcement-learning-based distributed scheduling frame-
work (PaRLSched), adapted to Uniform Memory Architec-
tures (UMA). In this paper, our goal is to provide a general-
ized methodology that also extends to Non-Uniform Memory
Architectures (NUMA). Such framework should be considered
as a supervisory scheme that acts on top of any OS scheduling
and performs either low- or high-frequency allocation correc-
tions possibly subject to alternative multi-objective criteria.
For example, when optimizing with respect to both computa-
tional and memory-access instructions completed per second,
the learning scheme should find the right balance between
computing bandwidth and memory affinities. In this paper, we
are not concerned with memory migrations.

Lastly, it is worth noting that we target an online learning
framework where allocation decisions are taken during run-
time, and without requiring any prior application knowledge.

The paper is organized as follows. Section II discusses
related work and contributions. Section III describes the
problem formulation and objective of the paper. Section IV
presents the main features of the proposed Dynamic Scheduler
(PaRLSched) and Section V presents a comparison with
benchmark applications. Finally, Section VI presents conclud-
ing remarks and future work.

II. RELATED WORK AND CONTRIBUTIONS

Prior work has demonstrated the importance of thread-to-core
bindings in the overall performance of a parallelized appli-
cation [7]. The task of discovering such optimal bindings is
rather complex, given the structure of NUMA architectures [8].
This task becomes even harder given the need for developing
tools that can easily generalize to any architecture and they
are application independent.

For example, [9] describes a tool that checks the per-
formance of each of the available thread-to-core bindings
and searches for an optimal placement. Unfortunately, the
exhaustive-search type of optimization that is implemented
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may prohibit runtime implementation. Reference [10] com-
bines the problem of thread scheduling with scheduling hints
related to thread-memory affinity issues. A similar scheduling
policy is also implemented by [11].

At the same time, given that no prior knowledge of the
application’s details is available, a centralized optimization
formulation is prohibitive. Such design restrictions give rise
to learning-based techniques, where scheduling decisions are
taken based only on performance measurements. This need for
learning from data has been recognized in [12], where a ma-
chine learning based mechanism is designed for transactional
applications. In this case, each instance of the application has
to be run and profiled before any learning process is to be
implemented.

Even such learning processes could be computationally
complex given the quite large search space. For this rea-
son, distributed or game-theoretic optimizations have been
attempted in the past for related problems, including coop-
erative game formulation for allocating bandwidth in grid
computing [13], the non-cooperative game formulation in the
problem of medium access protocols in communications [14]
or for allocating resources in cloud computing [15]. These
approaches can significantly reduce the involved computa-
tional complexity and also allow for the development of online
selection rules based on performance measurements. However,
such modeling techniques have not yet been implemented in
the context of pinning of parallelized applications.

Recognizing this need for both learning- and distributed-
based optimization, and contrary to the aforementioned ref-
erences on pinning of parallelized applications, our recent
work [5], [6] proposed a scheduling scheme for optimally allo-
cating threads of a parallelized application that combines both
a learning- and a distributed-based optimization. It requires
a minimum information exchange, where only measurements
collected from each running thread are needed. Furthermore,
it is flexible enough to accommodate alternative optimization
criteria depending on the available performance counters. It
was shown both analytically and through experiments under
the Linux operating system, that the proposed methodology
can learn a locally-optimal assignment, which under certain
conditions also corresponds to the global optimum [5], [6].
However, one potential drawback was the fact that no special
consideration was taken upon the possible non-uniform mem-
ory access (NUMA) architectures, as it did not distinguish
between moving a thread to a “local” (within the same NUMA
node) and “remote” (from a different NUMA node) core.

This paper extends the scheduling framework of our previ-
ous work [5], [6] with respect to the following contributions:
(C1) We propose a novel two-level scheduling process that

is appropriate for NUMA architectures. At the higher
level, the scheduler decides on which NUMA node each
thread should be assigned, while at the lower level it
decides on which CPU core (within that NUMA node)
to execute the thread.

(C2) We propose a novel learning dynamics motivated by
aspiration learning for making decisions at the higher

NUMA-node level.
(C3) We advance the low-level learning dynamics for CPU-

node selection by also incorporating satisfaction levels
which significantly reduce unnecessary switching be-
tween CPU nodes within a NUMA node.

(C4) We demonstrate the efficiency of the proposed approach
on several benchmark applications with different char-
acteristics with respect to their computational and data
intensity.

III. PROBLEM FORMULATION AND OBJECTIVE

Let a parallel application comprises n threads, I =
{1, 2, ..., n}. We denote the assignment of a thread i to a set
of available NUMA nodes JNUMA by αi ∈ JNUMA. Within
the selected NUMA node αi, thread i should be assigned
to one of the available CPU cores JCPU(αi), denoted by
βi ∈ JCPU(αi). Let also α = {(αi, βi) , i ∈ I} denote the
overall assignment profile, and let A be the set of all profiles.

The Resource Manager (RM) periodically checks the perfor-
mance of a thread and makes decisions about its assignment
for the next scheduling iteration. For the remainder of the
paper, we will assume that: a) The internal properties and
details of the threads are not known to the RM. Instead, the
RM may only have access to measurements related to their
performances; b) Threads may not be idled or postponed by
the RM. Instead, the goal of the RM is to assign the currently
available resources to the currently running threads.

1) Static optimization and issues: A possible centralized
objective that we may consider is:

max
α∈A

f(α,w)
.
=

∑n
i=1 ui(α,w)/n, (1)

where, for example, ui may represent the processing speed of
thread i. In general, ui will depend on the assignment profile
α and exogenous disturbances (e.g., other applications) sum-
marized within w. Any solution to the optimization problem
(1) corresponds to an efficient assignment. However, there are
two practical issues when posing an optimization problem in
this form: a) the function ui(α,w) is unknown and it may only
be evaluated through measurements of the objective, denoted
by ũi; and, b) w is also unknown and may vary with time.

2) Measurement- or learning-based optimization: We wish
to address a static objective of the form (1) through a
measurement- or learning-based methodology. That is, the RM
reacts to measurements of f(α,w), periodically collected at
time instances k = 1, 2, ... and denoted by f̃(k). The measured
objective may take on the form f̃(k)

.
=

∑n
i=1 ũi(k)/n.

Given these measurements and the current assignment α(k)
of resources, the RM selects the next assignment of resources
α(k + 1) so that the measured objective approaches the true
optimum of the unknown performance function f(α,w).

3) Multi-agent formulation: We further distribute the
decision-making process into a thread-based optimization,
where the RM makes decisions independently for each thread.
Equivalently, we may assume that each thread makes its own
independent decisions as in multi-agent formulations. Such
distribution reduces the complexity of the decision-making



process, since each thread has a reduced number of choices as
compared to the number of choices of the group of threads.
Furthermore, it increases robustness, since any performance
degradation noticed in a group of threads can immediately be
treated by the affected threads, thus avoiding the complexity
of centrally designed assignment corrections.

4) Multi-level decision-making and actuation: Recent work
by the authors [5], [6] has demonstrated the potential of
learning-based optimization in UMA architectures. However,
when an application runs on a NUMA machine, additional
information can be exploited to enhance scheduling of a
parallelized application. To this end, a multi-level decision-
making and actuation process is considered. We extend the
PaRLSched dynamic scheduler of [5], [6] by introducing two
nested decision processes depicted in Figure 1. At the higher
level (Level 1), the performance of a thread is evaluated with
respect to its own prior history of performances, and decisions
are taken with respect to its NUMA placement. At the lower
level (Level 2), the performance of a thread is evaluated
with respect to its own prior history of performances, and
decisions are taken with respect to its CPU placement (within
the selected NUMA node).

IV. DYNAMIC SCHEDULER

Each one of the two levels of the decision process will
take place at different frequencies and possibly based on
different reasoning. In particular, NUMA-node switching may
be costly, especially when performed with high frequency
due primarily to memory affinities, while CPU-node switching
within the same NUMA node may be costless (with respect
to its impact to the processing speed). For this reason, we
have introduced two measurement-based learning algorithms
specifically tailored to accommodate these different needs
(Figure 1):
− (Level 1) Aspiration learning for NUMA-node switch-

ing, that responds only to significant performance vari-
ations and does not require frequent migrations.

− (Level 2) Perturbed learning automata for CPU-core
pinning within a given NUMA node, that allows fre-
quent CPU-core switches.

We introduce periodic time instances with period T > 0,
and indexed by k = 1, 2, ..., at which decisions at Level 2
(CPU-core pinning) are revised. Decisions at Level 1 (NUMA-
node switching) are performed less frequently, at periodic time
instances of period mT , for some m ∈ N, which will be
indexed by ` = 1, 2, ....

A. Utility Function

A cornerstone in the design of any such multi-agent formu-
lation is the preference criterion or utility function ui for each
thread i ∈ A. The utility function captures the benefit of a
decision maker (thread) resulting from the assignment profile
α, i.e., it represents a function of the form ui : A → R+

(where we restrict it to be a positive number). The action
profile (i.e., the selections of all threads) constitutes a “state”
of the environment that directly determines the performances

Fig. 1. Two-level scheduling where the RM decides firstly the NUMA node
and secondly the CPU core at which each thread should be pinned on.

of all threads. We are interested in building learning-based
reflex agents that respond only to current measurements in an
effort to “eventually” learn to play efficient assignments.

It is important to note that the utility function ui of each
agent/thread i is subject to design and it is introduced in
order to guide the preferences of each agent. Thus, ui may
not necessarily correspond to a measured quantity, but it
could be a function of available performance counters. For
example, a natural choice for the utility of each thread is its
own execution speed, which can be measured by the number
of executed instructions per unit of time. This may also be
combined with other counters, e.g., the number of memory-
access instructions, the number of cache misses, etc., to give
a better representation of the performance of a thread.

B. Aspiration learning for NUMA-node switching

We developed a novel learning scheme for NUMA-node
switching that is based upon the notions of benchmark ac-
tions/performances and bears similarities with the so-called
aspiration learning [16]. The novelty here lies in the in-
troduction of two benchmark levels in order to handle the
possibility of noisy measurements. Such type of learning
dynamics try to gradually reach assignment profiles where all
threads perform well. They have the advantage that exploration
(of new assignments) can be performed selectively (e.g., when
a significant reduction in performance is observed). In this
way, a low-frequency NUMA-node switching can be attained.
The specific steps are depicted in Table I.

It is important to note that the above learning scheme will
react immediately to a rapid drop in performance. In particular,
when the performance drops below the lower benchmark, then
with high probability the action will change, while in any
other case, the action will change with a small probability
ζ > 0. The reason for maintaining both an upper and lower
benchmark is in order to minimize the effect of noise in the
decision process.



TABLE I
ASPIRATION LEARNING FOR NUMA-NODE SWITCHING

At fixed time instances denoted by ` = 1, 2, ..., the following steps are
executed recursively for each thread i in parallel.
(1) Performance measurement. For the currently selected NUMA-node
αi(`) thread i retrieves its current performance measurement, ũi(`).
(2) Aspiration-level update. Given the current performance measurement
ũi(`), update the discounted running average performance of the thread, as
follows:

ρi(`+ 1) = ρi(`) + ν · [ũi(`)− ρi(`)], (2)

where ũi(`) is the current measurement of the utility of thread i.
(3) Benchmarks update. Define the upper benchmark performance, bi(`),
as a performance threshold over which a performance is considered satis-
factory, and the lower benchmark performance, bi(`), as a performance
threshold under which a performance is considered unsatisfactory, with
bi(`) < bi(`). They are updated as follows:
− if ρi(`+ 1) ≥ bi(`), then

bi(`+ 1) = ρi(`+ 1)

bi(`+ 1) = ρi(`+ 1)/η

− if bi(`) ≤ ρi(`+ 1) < bi(`), then

bi(`+ 1) = bi(`)

bi(`+ 1) = bi(`)

− if ρi(`+ 1) < bi(`), then

bi(`+ 1) = η · ρi(`+ 1)

bi(`+ 1) = ρi(`+ 1)

for some constant η > 1.
(4) Action update. A thread i selects actions according to the following
rule:

a) if ρi(`+ 1) < bi(`), i.e., if the updated discounted running average
performance is unsatisfactory, then thread i will perform a random
switch to a better reply, i.e.,

αi(`+ 1) ∈ randunif
[
BRNUMA,i(α)

]
,

where BRNUMA,i(α) denotes the better-reply of thread i to the
assignment α, defined as

BRNUMA,i(α)
.
={

α′i ∈ JNUMA : ρi(`) < γ

∑
{j∈I:αj(`)=α

′
i}
ρj(`)∣∣{j ∈ I : αj(`) = α′i}

∣∣
}

for some γ ∈ (0, 1). The set {j ∈ I : αj(`− 1) = α′i} includes all
those threads that selected action α′i in the previous time instance.
In other words, an action α′i ∈ BRNUMA,i(α) if the average of the
threads selecting α′i did better on average than thread i.

b) if ρi(`+1) ≥ bi(`) , then each thread i will keep playing the same
action with high probability and experiment with any other action
with a small probability ζ > 0, i.e.,

αi(`+ 1) =

{
αi(`), w.p. 1− ζ
randunif [BRNUMA,i(α)], w.p. ζ

(3)

When the thread needs to select a new NUMA node, it
will select among the set of better replies, i.e., nodes at which
other threads perform better so far. Note that a thread may not
have a-priori knowledge of the exact impact an action switch
has on his own utility (until this action switch is performed).
However, we may use prior data of the performances of other
threads, as defined in BRNUMA,i(α). Thus, at step (4a), we
may direct threads that currently do not perform well to the
NUMA nodes where threads perform better.

Similarly to the analysis presented in [16], the process will
gradually approach (in probability) allocations with higher
utility (even suboptimal). The introduced perturbation ζ in the
action selection provides the necessary randomness for the
process to continuously adjust to performance variations.

C. Perturbed Learning Automata for CPU-core pinning

Let us assume that, at Level 1, and for each one of the
running threads i ∈ I, the RM has already selected a NUMA
node αi ∈ JNUMA. Then, at Level 2, the RM needs to decide
which CPU-core each thread should be pinned to. Given that
CPU-core switching within the same NUMA node is usually
costless, we have designed a learning algorithm that allows
frequent switching and therefore a faster convergence rate.
To this end, we employ a variation of perturbed learning
automata [17], namely aspiration-based perturbed learning
automata [18], developed by the authors. Such dynamics
perform well in the presence of noise contrary to alternative
schemes, as discussed in [17], and can guarantee convergence
to at least locally optimal assignments [6].

The basic idea behind learning automata is rather simple.
Each agent i keeps track of a strategy vector that holds its
estimates over the best choice. We denote this strategy by
σi = [σij ]j , where j ∈ JCPU(αi), σij ≥ 0 and

∑
j σij = 1.

To provide an example, consider the case of 3 available CPU
cores, i.e., JCPU(αi) = {1, 2, 3}. In this case, a vector of the
form σi = (0.2, 0.5, 0.3) is a strategy vector, such that 20%
corresponds to the probability of assigning itself to CPU-core
1, 50% to CPU-core 2 and 30% to CPU-core 3. Briefly, the
CPU-core selection will be denoted by βi ∈ JCPU(αi). Note
that if σi is a unit vector, say ej , then agent i selects its jth
action with probability one.

In particular, the steps executed in each iteration of the per-
turbed learning automata learning dynamics are depicted in Ta-
ble II. According to this recursion, if the current performance
is satisfactory, ũi(k) ≥ ρi(k), i.e., better than the discounted
running average performance, then φ(ũi(k)− ρi(k)) = 1, and
the new nominal strategy will increase in the direction of the
currently selected action αi(k) and proportionally to the utility
received from this selection, ũi(k). In case of an unsatisfactory
response, i.e., ũi(k) < ρi(k), then the corresponding strategy
will increase proportionally to h > 0, which should be taken
sufficiently small. In general, we would like that unsatisfactory
responses are not reinforced.

Finally, we should note that the above recursion consists of
a two time-scale dynamics, the slow update of xi(k) and the
fast update of ρi(k) (by selecting µ to be larger than ε). This
is because we would like that the discounted running average
performance keeps close track of the strategy updates.

In comparison to our previously considered dynamics in
the context of dynamic pinning [6], the difference lies in the
reinforcement direction. As Equation (5) dictates, the strategy
vector is only adjusted when a performance is higher than the
discounted running average performance ρi, which provides a
faster adjustment towards better assignments.



TABLE II
PERTURBED LEARNING AUTOMATA FOR CPU-CORE PINNING

At fixed time instances denoted by k = 1, 2, ..., the following steps are
executed recursively for each thread i in parallel.
(1) Performance measurement. For the currently selected CPU-core βi(k)
thread i retrieves its current performance measurement, ũi(k).
(2) Strategy update. Given that αi is the current NUMA-node assignment
of thread i, and |JCPU(αi)| is the number of the available CPU cores, the
strategy of thread i with respect to its CPU-core pinning is defined as:

σi(k) = (1− λ)xi(k)−
λ

|JCPU(αi)|
(4)

where λ > 0 corresponds to a perturbation term (or mutation) and xi(k)
corresponds to the nominal strategy of agent i. The nominal strategy is
updated according to the following update recursion:

xi(k+ 1) = xi(k) + ε · ũi(k) · [eβi(k) − xi(k)] · φ(ũi(k)− ρi(k)) (5)

for some constant step-size ε > 0, where

φ(y)
.
=

{
1, if y ≥ 0

max {h, 1 + y/h} , if y < 0.

and ρi(k) is the running average performance of thread i that is updated
according to the recursion

ρi(k + 1) = ρi(k) + µ · (ũi(k)− ρi(k)) ,

for a constant step size µ > 0.
(3) Action update. The action of each thread i is updated as follows:

βi(k + 1) = randσi [JCPU(αi)] .

V. EXPERIMENTS

In this section, we present an experimental study
of the proposed framework. Experiments were conducted
on 28×Intel c©Xeon c©CPU E5-2650 v3 2.30 GHz
running Linux Kernel 64bit 3.13.0-43-generic. The cores are
divided into two NUMA nodes (Node 1: 0-13 CPU cores,
Node 2: 14-27 CPU cores).

In all experiments, the utility of each thread is defined as
the total instructions completed per second which incorporates
both the computational and memory-access instructions. This
is a multi-objective criterion and it is expected that the larger
the number of instructions completed, the larger the processing
speed of a thread. We compared the overall performance of
the application (in terms of processing speed of threads and
completion time of an application) with that of the Linux OS
scheduler. We considered a number of parallel applications
under different levels of resource availability (i.e., number of
CPU cores available for the applications) and background-load
settings (i.e., number of threads of other applications running
on the available cores at the same time).

A. Benchmark applications

In particular, we have considered the following benchmark
applications:
− Swaptions (SWA), that uses the Heath-Jarrow-Morton

(HJM) framework to price a portfolio of swaptions. The
HJM framework describes how interest rates evolve for
risk management and asset liability management [19].
The application employs Monte-Carlo simulation to

TABLE III
COMPUTATIONAL/MEMORY INTENSITY OF CASE STUDIES (TOT INS =

TOTAL INSTRUCTIONS, LST INS = LOAD/STORE INSTRUCTIONS, TLB DM
= DATA TRANSLATIONS)

Index BLA SWA ACO CSO
TOT INS / LST INS O(10+7) O(10+6) O(10+5) O(10+2)
TLB DM / LST INS O(10−7) O(10−6) O(10−5) O(10−2)

compute the prices. It is regular in terms of task sizes,
with a low degree of communication between different
threads. It was taken from the Parsec benchmark suite.

− Blackscholes (BLA), that calculates, using differential
equations, how the value of an option changes as the
price of the underlying asset changes; parallel implemen-
tation calculates values for a number of options at the
same time, assigning a thread to each option (or a group
of options). If the options are equally divided between
threads, this results in a regular (in terms of task sizes)
parallel application. In practice, similar calculations are
used by financial houses to price 10-100 thousands of
options. This is computationally intensive application
as depicted in Table III. It was taken from the Parsec
benchmark suite.

− Ant Colony Optimization (ACO) [20] is a metaheuristic
used for solving NP-hard combinatorial optimization
problems. In this paper, we apply ACO to the Single
Machine Total Weighted Tardiness Problem (SMTWTP).
Briefly, this is a scheduling problem of jobs that are
characterized by varying processing times, deadlines
and weights. The objective is to find the schedule that
minimizes the total tardiness. A detailed description of
this use case is provided in [5]. This is computationally
intensive application as depicted in Table III.

− Stochastic-Local-Search for Cutting-Stock Industrial
Optimization (CSO) that optimizes classical bin-packing
and cutting-stock optimization problems using an evo-
lutionary stochastic-local-search (SLS) algorithm. The
use case and the type of parallelization (which is based
on the Fast-Flow parallelization library [21]) has been
described in detail in [22]. In particular, we used the
Scholl 1–3 datasets for classical bin packing problems
provided in [23]. According to the implemented SLS
algorithm, an initial number of candidate solutions (pool)
of a bin-packing/cutting-stock problem, are processed
continuously through a series of heuristic based oper-
ations/modifications (optimization cycle). In each such
cycle, multiple threads are assigned a portion of the
candidate solutions. Since the application usually runs
for a fixed time, the total number of candidate solutions
processed in all optimization cycles completed consti-
tutes an indication of the average processing speed.

B. Experimental setup

The period of the CPU pinning is fixed to 0.05 sec, which
is also the interval in which the RM collects measurements of
the total instructions completed per sec (using the PAPI library



TABLE IV
ALGORITHM SETTINGS

Parameter Value
ε 0.2/ρi/10

8

λ 0.005
µ 0.01

ν 0.01
ζ 0.2
γ 0.9
η 0.8
T 50

[24]) for each one of the threads separately. In other words,
the utility ui of thread i corresponds to the total instructions
completed per sec for thread i.

Pinning of threads to CPU cores is achieved through the
sched.h library. In all experiments, the RM is executed by
the master thread of an application, which is always running
in a fixed CPU core (usually the first available CPU core of
the first NUMA node).

In Table V, we provide an overview of the conducted
experiments. We classify the experiments with respect to the
resource availability and the CPU availability. We classify the
resource availability as small (around 4 application threads
per CPU core), medium (1 thread per CPU core) and high
(0.2 threads per CPU core). We classify the CPU availability
as uniform, when no background applications are running
and therefore all CPU cores are fully available to the tested
application, non-uniform where 8 threads of a background
application are running on the first 8 CPU cores of the machine
for the whole duration of the running of the tested application
and time-varying, where initially the availability is uniform,
but after some time background application starts running on
8 cores, as in the non-uniform case.

Our goal is to investigate the performance of the scheduler
under different set of available resources, and how the dynamic
scheduler adapts to background load.

TABLE V
CLASSIFICATION OF THE EXPERIMENTS.

Exp. Resource availability CPU availability
A.1 Small Uniform
A.2 Small Non-uniform
A.3 Small Time-varying
B.1 Medium Uniform
B.2 Medium Non-uniform
B.3 Medium Time-varying
C.1 Large Uniform
C.2 Large Non-uniform
C.3 Large Time-varying

C. Experimental Results

Tables VI–IX show the execution times of the four chosen
applications under OS and PaRLSched scheduler and under
the experimental scenarios of Table V. Below, we analyze each
application separately.

TABLE VI
COMPLETION TIMES OF OS AND PaRLSched SCHEDULING FOR

SWAPTIONS APPLICATION. WE SHOW THE MEAN EXECUTION TIME OF
THE APPLICATION, MEAD DEVIATION AND IMPROVEMENT IN EXECUTION

TIME OF PaRLSchedOVER OSSCHEDULING

Exp/
Resources

OS PaRLSched Diff. (%)Mean Dev Mean Dev
SWO (A.1) 225.58 1.28 225.27 1.41 +0.13
SWO (A.2) 385.75 17.00 344.53 3.38 +10.69
SWO (A.3) 337.46 14.62 311.17 2.98 +7.79

SWO (B.1) 163.40 0.56 158.10 2.20 +3.25
SWO (B.2) 289.31 5.93 285.68 5.28 +1.26
SWO (B.3) 240.81 5.22 238.05 4.89 +1.15

SWO (C.1) 122.54 0.79 129.85 3.25 −5.96
SWO (C.2) 206.68 1.94 202.85 2.83 +1.85
SWO (C.3) 164.11 1.49 161.54 3.19 +1.57

a) SWA: We observe that the PaRLSched scheduler
exhibits better behavior than the OS under small and medium
availability of resources (i.e., categories A and B) with or with-
out background interference. The improvement varies between
0.13% and 10.69%. In case of large availability of resources
(i.e., category C), the OS outperforms the PaRLSched but only
in the case where there is no background interference. Note
also that the percentages of the mean deviations are signifi-
cantly smaller than the corresponding performance differences
(except for the A.1 case), thus we may not attribute these
differences to noise.

b) ACO: In this set of experiments, we see a similar
behavior to the SWA experiments. The PaRLSched outper-
forms the OS in the case of small and medium availability
of resources and in the presence of background interference
(i.e., categories A.2–A.3 and B.2–B.3). The improvement
may reach up to 16.92%. In the absence of any background
interference, the behavior under small availability of resources
(i.e., category A.1) is about equivalent, while in the remaining
categories the OS outperforms the PaRLSched scheduler.

As a side note, we should mention that even under scenarios
where the OS outperformed PaRLSched, such as scenario C.3,
the average speed over all threads is not necessarily smaller,
as Figure 2 demonstrates. In other words, the PaRLSched
does indeed achieve a good level of the average speed, which
is its design criterion, but apparently completion time is not
only a matter of average speed. For example, a large average
speed over all threads does not necessarily guarantee that all
threads are running with identical speeds. Instead, there might
be significant differences in the speeds between threads, which
may have an impact on the overall completion time.

c) BLA: The performance under the Blackscholes ap-
plication is not deviating significantly in comparison with
the conclusions of ACO and SWA applications. In fact, we
observe a constantly better performance of the PaRLSched in
conditions of small resource availability which may reach up
to 4.05% improvement. On the other hand, the performance
under large resource availability has been up to -8.89% worse
than the OS performance.



TABLE VII
COMPLETION TIMES OF OS AND PaRLSched SCHEDULING FOR ACO APPLICATION. WE SHOW THE MEAN EXECUTION TIME OF THE APPLICATION,

MEAD DEVIATION (IN SECONDS) AND AVERAGE PROCESSING SPEED PER THREAD (IN 108 INSTRUCTIONS PER SECOND).

Exp/
Time(s)

OS PaRLSched Diff. (%)Mean Dev Avg. Spd. Mean Dev Avg. Spd
ACO (A.1) 1065.05 7.68 13.37 1075.48 6.45 14.87 −0.9
ACO (A.2) 1752.46 14.00 8.54 1455.92 22.8 9.82 +16.92
ACO (A.3) 1459.18 9.42 10.29 1402.00 4.06 10.41 +3.91

ACO (B.1) 673.09 5.69 21.26 699.16 10.24 22.16 −3.87
ACO (B.2) 1106.36 16.71 12.73 1041.33 16.71 14.94 +5.87
ACO (B.3) 1066.18 0.88 13.37 1019.11 8.39 14.87 +4.41

ACO (C.1) 455.87 5.08 31.90 496.26 5.08 33.46 −8.85
ACO (C.2) 659.78 27.45 21.57 688.80 18.66 24.15 −4.39
ACO (C.3) 659.35 3.62 21.82 676.03 7.72 23.72 −2.52

TABLE VIII
COMPLETION TIMES OF OS AND PaRLSched SCHEDULING FOR

BLACKSCHOLES (BLA) APPLICATION

Exp/
Resources

OS PaRLSched Diff. (%)Mean Dev Mean Dev
BLA (A.1) 193.20 1.89 190.43 0.62 +1.09
BLA (A.2) 322.32 4.98 314.73 8.40 +2.36
BLA (A.3) 285.76 4.17 274.17 7.30 +4.05

BLA (B.1) 129.98 1.09 129.88 1.31 +0.08
BLA (B.2) 236.62 4.18 245.09 2.64 −3.58
BLA (B.3) 192.45 5.16 200.15 4.46 −4.00
BLA (C.1) 98.97 1.11 107.77 1.25 −8.89
BLA (C.2) 166.50 1.46 172.65 3.00 −3.69
BLA (C.3) 130.24 2.13 135.42 3.87 −3.98

TABLE IX
CANDIDATE SOLUTIONS PROCESSED UNDER OS AND PaRLSched

SCHEDULING FOR CSO APPLICATION WITHIN 5MIN SIMULATION TIME

Exp/
Resources

OS PaRLSched Diff. (%)Mean Dev Mean Dev
CSO (C.1) 494.3 23.46 534.00 39.22 +8.03
CSO (C.2) 494.2 36.50 507.9 33.37 +2.75
CSO (C.3) 521.50 35.58 517.7 30.65 −0.73

d) CSO: The CSO application is a bit different than the
ones previously considered. It is characterized by scattered
memory pages as Table III reflects. In particular, under large
availability of resources (set C), we see a significant advantage
of the PaRLSched scheduler in the absence of any background
application that reaches up to 8.03%. This advantage dies away
under the presence of background applications. A possible
explanation of this type of behavior should be attributed to an
allocation of a large amount of memory that the application
needs to do at the beginning (in the first available NUMA
node), which creates uneven processing speeds between the
two available NUMA nodes.

D. Discussion

In general, we observed that the PaRLSched scheduler was
able to achieve better performance that the OS scheduler in
most cases of limited availability of resources and high back-
ground (exogenous) interference load. This is somewhat ideal
settings for the scheduler, since we expect the performance of
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Fig. 2. Sample responses for Experiments of category 3 (i.e., under time-
varying CPU availability. The running average speed is measured in (108· #
instructions/sec/thread).

individual threads to vary due to external influences and, there-
fore, it is important to make the correct remapping decisions.
Additionally, it is not possible to predict this variation solely
based on the characteristics of the application itself. Also, in
the data-intensive application (CSO), the scheduler was able
to better adapt to the irregularity in the memory-access speeds
between the two NUMA nodes (even under large availability
of resources).

On the other hand, the OS outperformed the PaRLSched
scheduler in most cases of large availability of resources (e.g.,
category C.1). This should be attributed to the fact that the
Linux scheduler is utilizing internal load balancing of threads



between cores, which has notable effect on the execution
time when there is not significant background interference
(in terms of additional running applications). In this case,
performance of the individual threads depends exclusively on
the distribution of threads of the application to cores, so there
is no additional benefit in measuring external interference in
the PaRLSched scheduler. The PaRLSched scheduler applies
rigid pinning of threads to cores, which means that it cannot
utilize any internal load balancing by the Linux scheduler.

Given the rather diverse nature of the considered appli-
cations, the observed improvements constitute a promising
indication. Note that the intention and goal of this work is not
to replace the OS scheduler, but instead to act on a supervisory
level, and possibly under alternative multi-objective criteria.
The notion of the utility function that drives the thread
placement can be designed to accommodate any such multi-
objective criterion, since the only assumption considered is the
positivity constraint.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a measurement- (or performance-) based learn-
ing scheme for addressing the problem of efficient dynamic
pinning of parallelized applications into many-core systems
under a NUMA architecture. According to this scheme, a cen-
tralized objective is decomposed into thread-based objectives,
where each thread is assigned its own utility function. Allo-
cation decisions were organized into a hierarchical decision
structure: at the first level, decisions are taken with respect to
the assigned NUMA node, while at the second level, decisions
are taken with respect to the assigned CPU core (within the
selected NUMA node). The proposed framework is flexible
enough to accommodate any multi-objective criterion, while
it is appropriately designed to handle noisy observations.

We demonstrated the utility of the proposed framework in
the maximization of the running average processing speed
of the threads and we evaluated its performance in four
benchmark parallel applications. We have concluded that the
PaRLSched scheduler can achieve better running speed in
certain cases, especially of small availability of resources or
large background load. These observations should be further
reinforced with additional benchmark tests. In addition, we
plan to identify and generalize the indicators that trigger these
advantageous responses of the PaRLSched scheduler and also
to consider additional utility functions, such as register count
of each thread.
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