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ABSTRACT 
 

Recently, Joo, Aguinis and Bradley (2017), using a novel distribution 

pitting technique, have found that the exponential tail distributions-- 

exponential and power law with an exponential cut-off -- and their 

generative mechanism – namely, incremental differentiation -, are the most 

frequent distribution in many individual outputs across different 

organizations, sectors, jobs and activities. 

 

However, this may not be totally accurate in nascent 

entrepreneurship processes: the first section of this research shows that the 

lognormal distribution in entrepreneurial outcomes seems predominant 

throughout the different panels – i.e., longitudinal studies - in different 

countries. We have studied those in which the datasets are in the public 

domain: Australia, Sweden, US PSED I & II (Reynolds, 2017b). The power 

law distribution with an exponential cut-off may also be a plausible fit in 

some particular panel outcomes variables. A definitive conclusion regarding 

which of these two distributions may be the better fit will require the 

analysis of the rest of 14 still ongoing longitudinal projects around the world. 

The pervasiveness of lognormality offers relevant clues to understand 

nascent entrepreneurial processes, their generative mechanism, and it will 

offer strategies to allocate resources to foster and promote new 

entrepreneurial ventures. 

 

The second section of this research is the design and 

implementation of a baseline agent-based model as a research tool, “A 

nascent entrepreneurial agent-based model”. Inspired by previous simpler 

entrepreneurial models, our model introduces new layers of complexity, 

making possible parametrization and calibration. This baseline model, 

initially with parameters similar to the public available panel datasets --

Australia, Sweden, US PSED --, is able to generate the patterns that were 

found in the empirical results: the heavy-tailed distributions. 
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Although PSED-type of longitudinal panels have been performed in 

more than a dozen countries, their results and datasets are not publicly 

available yet. This base model is, therefore, flexible in order to be easily 

adapted to each of the empirical dataset under study. The model, at this 

initial stage, has not been fully parametrized and calibrated for any specific 

country. The baseline model takes the main parameters from the datasets 

available as examples, in order to show that multiplicative processes --as 

main generative mechanism-- are able to simulate the empirical patterns. 

 

 The baseline model is designed as a research tool to experiment 

and to help entrepreneurship researchers to test their theories, and for 

exploring in more detail the mechanisms involved in the emergence of new 

ventures. The baseline model and its background documentation will be 

openly available to the research community in two major agent-based 

repositories. Taking this baseline model as a “backbone”, researchers can 

change parameters, agents, behaviours, schedules or global variables for 

their own theory building or calibration of their specific country’s simulation. 

 

Keywords 

Heavy-tailed distributions 

Power-law distributions 

Generative processes 

Fitting procedures 

Nascent venturing processes 

Agent-based modelling 
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1. INTRODUCTION: THE PARADIGM SHIFT 
 

 

1.1  THE CONCEPTUAL SHIFT FROM GAUSSIAN DISTRIBUTIONS 
TO HEAVY-TAILED DISTRIBUTIONS IN ORGANIZATIONAL 
RESEARCH: ANTECEDENTS. 

 

Although the concept of “paradigm” is highly controversial (Tasaka, 

1999), the academic community would agree that complexity – or 

“complexity sciences” or “complexity theory” - can be considered an 

emerging post-Newtonian paradigm (Kuhn, 1996). It tries, from a somehow 

unifying point of view, to address specific phenomena that occur in systems 

constituted by many subunits, drawing on methods, concepts and tools 

from nonlinear dynamics, statistical physics, probability and information 

theory, data analysis, networks and numerical and agent-based simulations 

(Nicolis and Rouvas-Nicolis, 2007). “Complexity” studies complex systems. 

It is an interdisciplinary domain that tries to explain how large numbers of 

simple entities organize themselves, without any central controller, creating 

patterns, using information, and, in some cases, able to learn and evolve. 

Complex systems may include ant colonies, immune systems, brains, 

markets and economies (Mitchell, 2009). 

 

Currently, complexity - its methods, concepts and tools - is 

ubiquitous in natural and social sciences, although the development of its 

theory is in an incipient stage and a general unified framework across 

disciplines is still missing (Sporns, 2007). Newman (2011) would argue that 

there is not a “general theory of complex systems”, but rather a body of 

knowledge with different “theories” not fully integrated yet (Newman, 2011). 

The mathematician Steven Strogatz has suggested that science has not yet 

developed the right concepts and mathematical tools to address complex 

systems and to formulate and describe the different forms of complexity 

that are seen in nature and societies; that something such as a conceptual 

equivalent to calculus is missing, an “ultracalculus” – as he calls it - able to 
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model the multiple interactions of a complex system (Strogatz, 2004). In any 

case, there are properties common to all complex systems, and several 

universal complex systems principles have been proposed. Some 

examples are: the universal properties of chaotic systems, the principles of 

self-reproduction (John von Newman), the principle of balancing 

exploitation and exploration (John Holland), general conditions for the 

evolution of cooperation (Robert Axelrod), the principle of computational 

equivalence (Stephen Wolfram), the principle of preferential attachment as 

a general mechanism for the development of real-world networks (Albert-

Laszlo Barabasi and Reka Alberts), etc. (Mitchell, 2009). 

 

In the last 20 years, Complexity Science, originally developed mainly 

in the context of the mathematical description of natural dynamical systems, 

has been progressively used in Organization Studies, Economics and 

Management. In related fields, such as economics or finance, complexity 

science has an increasing and stronger presence than in Management or 

Organizational Studies (especially in financial time series analysis)   

(Mantegna and Stanley, 1999; Sornette, 2004; Easley and Kleinberg, 

2010). In economics, for example, the works of Harvard Economist Ricardo 

Hausmann and MIT's physicist Cesar A. Hidalgo, at the Observatory of 

Economic Complexity (Harvard-MIT), have introduced the concepts of 

Economic Complexity and Economic Complexity Index (Hausmann, 

Hidalgo et al., 2011). As it has occurred in the past, gradually, cross-

fertilization among disciplines and the borrowing of theory and analytical 

techniques from one to another is becoming common practice (for example, 

how XIX century economics mimicked XIX physics concepts) (Whetten, 

Felin & King, 2009). 

 

Now, it is becoming quite frequent to find Complexity Science-based 

papers on Organization Science (the first monographic issue on this topic 

was edited in 1999), Academy of Management publications, and many 

other relevant journals in the field.  The SAGE Handbook of Complexity and 
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Management tried to recapitulate the work published on this specific 

approach during the last years, and to draw the possible future lines of 

research (Allen et al., 2011). 

 

Initially, in the 1990s, the Complexity approach in management 

research tried to explicate the new concepts and terminology (chaos, 

fractals, emergence, nonlinear dynamics, networks, self-organization, 

complex adaptive systems, etc.), to describe the methods, and to introduce 

the “New Science” (Wolfram, 2002) to the Management academia and 

practitioners, explaining its potential implications (Maguire, 2006). Most of 

the works during that decade was descriptive, it was scarce in empirical 

studies, and very few works developed theory or models (Maguire, Allen 

and McKelvey 2011). McKelvey (1999) pointed out that without sound 

complexity applications rooted in empirical data and solid theoretical 

foundations there were a risk of turning Complexity Science applied to 

management into an “another management consulting fad”. A review 

conducted by Maguire and McKelvey (1999) in 1999 found that the books 

published until then on Complexity and Management were mostly and 

merely “metaphorical” and thought-provoking, but without presenting the full 

toolkit of complexity methods (Maguire and McKelvey, 1999). 

 

However, soon, the mathematical tools and the Complexity Science 

methods also demonstrated their capabilities in Management and 

Organizational research, mainly in the introduction of a new mathematical 

formalism and in the development of its new computational modelling 

techniques: cellular automata, genetic algorithms, neural networks, 

Kauffman’s NKCS “fitness landscape”, Agent-Based Modelling, etc. In the 

special issue of the journal Organization Science devoted to the application 

of Complexity Theory to this field (Organization Science Vol. 10, No 3 May-

Jun 1999), Anderson (1999) published - under the section “Perspective” - a 

call for the need of the organizational scholars to understand at a high level 

how to use these new computer models given their potential to open new 



13 
 

perspectives on organizational life (Anderson, 1999). This Special Issue of 

1999 was one of the major milestones in the introduction of Complexity 

Science to the Management scholars. In the same year, 1999, the first 

journal on complexity science and organization studies appeared, 

Emergence - now called Emergence: Complexity and Organization: E:CO) - 

aiming to build empirical and theoretical solid foundations in this incipient 

and interdisciplinary field. 

 

By 2006, Maguire et al. (Maguire, 2006) found and reviewed around 

331 references in Organization Studies and Management research using 

complexity concepts and methods, which, compared with the enormous 

amount of references based in Complexity Theory in other disciplines – 

mainly in natural sciences -, shows that this approach was still immature in 

the fields of Management and Organizational Sciences. 

 

In 2009, ten years later after the special issue on Complexity and 

Organizational research, the journal Organization Science revisited again 

the interdisciplinary area of Complexity Science and Organization Studies. 

The paper in the section “Perspective” – which points out the more 

promising future lines of research - was authored by Andriani and McKelvey 

(2009). Andriani and McKelvey (2009) proposed to redirect Organization 

Science research toward Pareto distributions. They thought that, although 

there are some topics in which normal/Gaussian/bell shape distributions fit 

properly and have an appropriate application, the discovery of the Pareto 

rank/frequency distribution – or other types of heavy tail distributions - in 

organizational datasets make necessary to incorporate its specific statistics. 

 

Many of the Gaussian statistics are not meaningful addressing these 

heavy-tailed distributions in social science datasets. Pareto means are 

unstable or non-existent. The Paretian distribution has long and “fat/heavy 

tails”. These power laws show potentially infinite variance: the variance may 
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cross many orders of magnitude (from the revenues of a small store in a 

countryside village – in the range of thousands of dollars - to the billions of 

dollars revenues of Wall-Mart globally – ranges can go across 11 

magnitudes -). The confidence intervals are thus less significant. Gaussian 

statistics also miss “key extreme outliers”, where significant events occur, 

such as the emergence of “Facebook” or “Twitter”. 

 

What do Pareto/heavy-tailed distributions say from a theoretical and 

causal point of view? What is the difference with the Gaussian, normal 

distribution? According to these authors, “the difference lies in assumptions 

about the correlations among events” (Andriani and McKelvey 2009, p. 

1055). From a Gaussian perspective, data are independent-additive, and 

generate the normal Gaussian distribution. On the order hand, when causal 

elements are independent-multiplicative, they show a lognormal 

distribution (another kind of heavy-tailed distribution). However, when 

events are interdependent, interactive, or both, Pareto distributions emerge. 

 

Andriani and McKelvey (2009) complained that most of the statistics 

in organization science is based on the Gaussian, normal distribution 

scheme and denounced that many social researches had decided to ignore 

other distributions such as the Paretian ones. They claimed that Pareto 

distribution and its specific statistics are commonly unknown to most 

quantitative organizational researches. On the other hand, the use of 

certain mathematical tools is not neutral. Any mathematical tool has its own 

philosophical and methodological background. Gaussian statistics is related 

to “linear science and linear way of thinking” – as opposed, for example, to 

the Poincaré’s chaos mathematics -. 

 

“The adoption of normal distribution statistics carries a heavy burden of 

assumptions. Reliance on linearity, randomness, and equilibrium 

influences how theories are built, how legitimacy is conferred, and how 

research questions are formulated” (Andriani and McKelvey 2009, p. 

1053). 
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This consideration is very important for the authors because 

“ignoring power-law effects risk drawing false conclusions and promulgating 

useless advice to practitioners” (Andriani and McKelvey 2009, p. 1053). 

Real organizations and real managers live in a world with interdependent 

events (not of the Gaussian hypothetical independent ones). 

 

But how to explain the presence of heavy tailed distributions in 

organizational data? How to explain the scalability (fractal geometry), the 

self-similarity (McKelvey, Lichtenstein and Andriani, 2012)? What are the 

forces that cause the scalability patterns or scaling laws?  Andriani and 

McKelvey (2009) suggested 15 Scale Free theories that can be applied to 

organizations and that would explain the power-law scaling behaviour of 

those systems. We will explore some these scale-free theories in 

subsequent sections of this document. For Andriani and McKelvey (2009), 

“the power law signature” is the best evidence of emergence, which 

operates in different organizational dimensions. 

 

 

1.2. THE DISCOVERY OF NON-NORMAL AND HEAVY RIGHT-
TAILED DISTRIBUTIONS IN THE FIELD OF 
ENTREPRENEURSHIP 

 
 

B.B. Lichtenstein has extensively reviewed the contribution of the 

Complexity Theory to understand the emergence of firms and he has 

pointed out the areas that do still need further research (Lichtenstein, 

2011). Bill McKelvey has even postulated the possibility of developing an 

entrepreneurship theory using the Complexity Science corpus and its 

specific methodological and mathematical tools (McKelvey, 2004). Although 

the research using the tools of Complexity Science is still embryonic in 

entrepreneurship studies, it is becoming more common. The Best-Paper of 
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2013 Academy of Management Annual Conference Proceeding was 

precisely based on the application of complexity science theory and tools to 

the study of the emergence of new ventures (Crawford and Lichtenstein, 

2013). 

  

One of the conceptual keys of entrepreneurship, at all different levels 

of analysis, is the concept of emergence (Lichtenstein, 2011). This 

emergence can be of firms, technologies, networks, clusters, new markets, 

industries, institutions, etc. Complexity Science offers useful models to 

understand the emergence of new patterns and structures in the natural 

and social world. Hence, some of the tools used by Complexity Science 

may be indispensable to study entrepreneurial emergence. 

 

Lichtenstein (2011) has made quite an extensive compilation of the 

different complexity science approaches applied in entrepreneurship 

research to explain the phenomenon of emergence and the entrepreneurial 

processes (Lichtenstein, 2011). However, as in the field of Management, 

most of the research on complexity and entrepreneurship has been 

“metaphorical”. Lichtenstein (2011) distinguished four types of contributions 

to entrepreneurship and entrepreneurial emergence, where Type I consists 

in using complexity as “metaphor”, Type II is defined as “discovering” 

complexity, Type III is modelling complexity - it includes the studies using 

agent-based modelling and simulations -, and Type IV is related to 

“generative” complexity. Lichtenstein (2011) studied and classified the 28 

published papers that specifically apply Complexity Science to 

entrepreneurship. It is interesting to notice that in Lichtenstein’s review that 

spans for almost 20 years, there is a small number of papers and research 

works conducted with this interdisciplinary approach – just 28 papers, few 

of them empirical -, showing somehow “a gap in the field”, an 

underdeveloped line of research. Given that emergence is a core theme in 

entrepreneurship, and the theoretical and methodological power of the 

Complexity Science tools dealing with emergence that so fruitfully has been 
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applied in other disciplines – from astrophysics to neurobiology -, this lack 

of entrepreneurial research using Complexity Science is perplexing 

(Lichtenstein, 2011). It is also strange the lack of entrepreneurial research 

on emergent networks, given that networks are so relevant for 

entrepreneurial development and the success of network science in other 

fields (Lichtenstein, 2011). 

 

The emergence of new ventures is one of the current central themes 

in entrepreneurship research (Gartner, 1985; Westhead and Wright, 2013). 

However, many scholars have pointed out the lack of enough knowledge 

about its causes, effects, and processes, and the lack of a global 

perspective on this complex and multi-dimensional phenomenon (Leitch et 

al., 2010). An adequate knowledge of the phenomenon of emergence of 

new firms is necessary given the importance of entrepreneurship at 

different economic and social levels of an economy (Amorós and Bosma, 

2014). Furthermore, entrepreneurship activity  — the process of starting 

and establishing a new business — has already demonstrated to be 

essential for the development, growth and prosperity of nations, increasing 

the competitiveness of an economy, creating jobs, reducing unemployment, 

developing innovation, and fostering economic and social mobility (OECD, 

2007; Naudé, 2010; Baumol and Schilling, 2008), in particular by that small 

proportion of high-performing new ventures – the high impact firms or 

“gazelles” - that are the driver of the majority of innovation, wealth creation, 

and new job generation (Nightingale and Coad, 2014). 

 

However, there is yet neither a comprehensive theory of creation of 

new ventures nor a consolidated praxis that help the entrepreneurial 

process (Headd, 2003; Crawford and McKelvey, 2012; Westhead and 

Wright, 2013; Crawford et al., 2014; Crawford et al., 2015). For example, 

why do very few new firms survive after three years? What is the underlined 

dynamics that produces such results and these high new firm closure rates 

(Westhead and Wright, 2013)? Is the emergence of new firms a “random 
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walk” process, a “game of chance”, a case of “Gibrat’s law”, “a variant of 

Gambler's Ruin in which performance is random but where survival merely 

depends on access to resources” as Coad and colleagues propose (Coad 

et al., 2013)?  Would a comprehensive theory of the entrepreneurial 

processes help us to 1) explain it, 2) foster it, and 3) mitigate the economic, 

social and emotional damages of firm closure? 

 

On the other hand, an accurate knowledge of entrepreneurial 

processes may enhance the effect of public policies for the promotion of 

creation of new ventures avoiding wasting scarce public resources, and 

making those policy interventions effective and efficient (Pons Rotger, 

Gørtz and Storey, 2012). Currently the cost-benefit analysis of these policy 

interventions has been proven to be extremely difficult to ascertain both in 

its overall effectiveness, and in the effectiveness of its diverse elements 

(Lundström et al., 2014). Should policy support focus on promoting a large 

number of new firms, or concentrate the resources in fewer companies but 

with more wealth creation potential? How should this potential be 

measured? The understanding of the mechanisms of firms’ emergence may 

help to implement a better cost-benefit analysis and effectiveness 

evaluation, as well as a better selection of the better new firms to invest in 

(Westhead and Wright, 2013; Arshed, Carter and Mason, 2014). The 

objective of this PhD research is, precisely, to explore these plausible 

generative mechanisms that may explain the emergence of new 

ventures and the idiosyncratic features of their outcome datasets -- 

the presence of heavy-tailed distribution --. 

 

After the analysis of three panel (- longitudinal -) studies referred to 

the creation and emergence of new ventures in the United States of 

America, Crawford and McKelvey found that nascent entrepreneurial 

outcome variables such as numbers of employees or revenues, follow long-

tail distributions that they identified – with the fitting software techniques 

available then - as power-law distributions (Crawford and McKelvey, 2012; 
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Crawford et al., 2014; Crawford et al., 2015). Initially, Crawford, McKelvey 

and Lichtenstein (2014) were able to pinpoint the long-tail distributions in 

outcome variables such as nascent ventures’ numbers of employees and 

annual revenues in several datasets. Subsequently, Crawford, Aguinis, 

Lichtenstein, Davidsson, and McKelvey (2015) detected these long-tail 

distributions not only in outcome variables (number of employees, 

revenues, etc.) but also in input variables such as entrepreneurial 

resources, entrepreneurial activities, etc. 

 

Although, by then, there were some studies on the application of 

Complexity Sciences methods and tools in Management, Organizational 

and Business Studies (Maguire et al., 2006; Allen et al., 2011), and an 

important tradition on the study of highly skewed distributions in economics 

and finance, Crawford and McKelvey’s (2012) paper was the first study 

to specifically address the presence of power-law, i.e. heavy tailed, 

distributions in nascent entrepreneurship datasets. That is, only a very 

small number of nascent entrepreneurs become better-off over time, while 

most of them have less entrepreneurial success, attaining smaller 

outcomes. Later on, Crawford et al. extended and deepened this line of 

research in Crawford et al. (2014) and Crawford et al. (2015), where they 

introduced a new theoretical approach and proposed several alternative 

methodological techniques more suitable for addressing heavy tailed 

distributions (Bayesian statistics, agent-based computational modelling, 

etc.). 

 

Several studies had already shown that the size (numbers of 

employees) distributions of already established firms were well described 

by a power law (a Zipf’s law). These power law distributions also hold for 

other different measures, such as assets or market capitalization in the 

United States (Axtell, 2001; Fujiwara, 2004; Gabaix, 2009) and, even for 

those measures, for distributions in other countries (Gabaix, 2008). The 

extinction of firms also seems to follow a scaling invariant distribution, 
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another power law (Cook and Omerod, 2003; Di Guilmi, Gallegati, and 

Ormerod, 2004). 

 

 

FIGURE 1 - FIGURE FROM AXTELL (2001, P. 1819), REPRESENTING THE FREQUENCY OF U.S. FIRMS SIZE 

BY EMPLOYEES PLOTTED IN LOG-LOG AXES, CORRESPONDING TO A POWER LAW DISTRIBUTION WITH 

EXPONENT 1.059 (APPROXIMATELY A ZIPF’S LAW). DATA ARE FOR 1997 FROM THE UNITED STATES 

CENSUS BUREAU. 

 

According to Crawford and McKelvey’s initial empirical analysis 

(2012), power laws were ubiquitous in the six outcomes tested within three 

American entrepreneurial longitudinal datasets. They proposed that these 

results may offer an empirically validated comprehensive theory of the 

emergence of new firms and ventures. Indeed, literature on entrepreneurial 

creation continuously mentions the difficulties of developing a 

comprehensive theory of new ventures’ dynamics (Leitch, Hill and 

Neergaard, 2010; McKelvey and Wiklund, 2010). 

 

Crawford and McKelvey’s contribution, with their heavy-tailed 

distribution analyses, opened a new line of research that may explain the 

skewed outcomes observed in data related to the emergence of new firms. 

In that paper of year 2012, and in the subsequent of years 2014 and 2015, 

Crawford et al. studied entrepreneurial outcomes embracing the line of 
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research pointed by Anderson (1999) and Andriani and McKelvey (2009) in 

their seminal papers published in Organization Science, in which they 

proposed to focus on Pareto’s statistics, based on the study of 

interdependence and interconnection, rather than on the traditional and 

standard Gaussian approaches, linked to events completely independent 

and identically distributed. The Gaussian (normal) perspective and methods 

may not be able to explain the highly skewed distributions in emerging firms 

which have to deal with such a diverse reality, from thousands of retail high 

street stores to an extreme event, such as the uniqueness of the 

emergence of Amazon or Google (McKelvey, Lichtenstein and Andriani, 

2012). 

 

As we mentioned above, Andriani and McKelvey (2009) showed that 

heavy tails are present in the organizational world, pointing out to Pareto 

rank/frequency distributions, fractals, scale-free phenomena, and nonlinear 

organizational dynamics. They reviewed the presence of power laws in 

social networks, industry sectors, growth rates of firms, bankruptcies, 

transition economies, profits, sales decay, economic fluctuations, intra-firm 

decisions, consumer sales, salaries, size of firms, ecosystems, sector 

networks, etc., introducing more than a hundred of different kinds of power 

laws in organizational setting, suggesting that these Pareto rank/frequency 

distributions are more common that it seems to be, and much more relevant 

for organizational research and practice than they are considered now. 

 

When plotted in double-log scales, a Pareto rank/frequency 

distribution appears with an inverse sloping straight line (what it is called 

the “inverse power-law signature”). 
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FIGURE 2  - FIGURE FROM ANDRIANI AND MCKELVEY (2009, P. 1056). 

 

The overwhelming presence of heavy tails distributions, also 

discovered in entrepreneurship, challenges the traditional “normal 

distribution”, the “Gaussian bell curve” researchers’ mind-set and may force 

to change research methods and theoretical assumptions in the field 

(Crawford et al., 2015). Crawford and McKelvey (2012) claimed that their 

findings would be the foundation of the building of a new theory of 

entrepreneurial emergence using complexity science: they “provide an 

empirically validated basis for a comprehensive theory of venture growth” 

(Crawford and McKelvey, 2012, p. 2). Crawford et al. (2015) enumerated 

the most relevant potential generative causal processes that may produce 

heavy tailed distributions. However, they did not intent to enter in further 

theoretical development that would have been necessary to explain the 

presence of heavy tailed distributions and to describe the processes that 

produce their emergence. What could these processes be in 

entrepreneurship?  
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1.3. THE ANTECEDENTS OF OUR RESEARCH: THE CRAWFORD’S 
ET AL. CONTRIBUTION (2012, 2014, 2015) 

 

Let us analyse more in detail Crawford’s et al. work (2012, 2014, 

2015). As we explained above, in the search for a comprehensive theory of 

emergence and growth that could explain new ventures performance, 

Crawford et al. (2012) asked: “Are outcomes in the domain of 

entrepreneurship power-law distributed?” (p. 4). They thought that the 

emergence of these power-law distributions could provide the foundation 

stone of a new theory, using the complexity science perspective. Taking 

into account those entrepreneurial outcomes that may be more relevant for 

constructing a theory of the emergence of firms and with more potential for 

practical considerations, Crawford and McKelvey (2012) selected six 

outcomes: 

 

 Revenue. 

 Number of employees. 

 Revenue growth (%). 

 Revenue gain (in absolute monetary terms). 

 Number of employees’ growth (%).  

 Employee gain (in absolute numbers). 

 

 

They considered both revenue and number of employees the most 

relevant outcomes for theoretical and practical purposes. They also 

included relative and absolute growth in revenue and number of 

employees, measuring the relative growth as percent (they use the term 

“growth” for the relative measure) and the absolute growth as difference in 

amount (they use the term “gain” for the absolute increase in amount). 
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Crawford and McKelvey (2012) hypothesized that these major 

entrepreneurial outcomes of emerging firms are power-law distributed. 

They analysed the outcomes of three samples in datasets from United of 

State of America: 

 

1) Data collected in the Panel Study of Entrepreneurial 

Dynamics II (PSED II) that focused on the nascent 

entrepreneurial population (1214 subjects). 

2) The Kauffman Firm Survey (KFS) (On-going businesses). 

3) The Inc. 500® (INC) Extreme outcomes. Fastest-growing in 

USA. 500 companies with the highest growth rate published in 

Inc. Magazine. 

 

Using MATLAB software, and the scripts, protocols and techniques 

for calculating power-law model fit developed by Causet, Shalizi and 

Newman (2009), the authors estimate a) the parameters for the slope α - 

the scaling exponent -, b) the minimum value in the distribution that shows 

power-law behaviour (xmin), c) the standard errors of the estimates and d) 

the goodness-of-fit (Kolmogorov-Smirnov (KS) tests). 

 

Crawford and McKelvey (2012) found that – except one - all the 

models that they run supported their power-law hypotheses in the different 

datasets. Analysing the data distributions, they argued that the xmin, defined 

in the statistical procedure, identifies a tipping point, a threshold, in which 

the system – the entrepreneurial emergence - goes from an additive, linear 

state into a non-linear state. This point (xmin) - the minimum value in the 

distribution that shows power-law behaviour - separates the Gaussian and 

Paretian regions, the dotted line in figure 1b, the “Gaussian world” from the 

“Paretian world”. 



25 
 

 

FIGURE 3 -  FIGURE FROM CRAWFORD AND MCKELVEY (2012, FIG 1, P. 14). 

 

 

This point is called in complexity science the threshold, the 

bifurcation point, the critical value, the phase transition point, and, beyond 

this threshold, the system changes to a non-linear state, and firms operate 

“in a much more interdependent, highly scalable, non-linear environment 

and, thus, have the potential to influence outcomes at a higher level” 

(Crawford and McKelvey, 2012, p. 8; Lamberson and Page, 2012). It is the 

region of emergent complexity, where “organisms are more likely to survive 

because they have a solid enough foundation of resources, yet maintain 

enough flexibility to change when environmental perturbations dictate” 

(Crawford and McKelvey, 2012, p. 8). 

 

According to Crawford and McKelvey (2012), firms, in the non-linear 

zone, beyond the tipping points, have the potential to influence greatly their 

environment producing non-linear outcomes, positive extreme events, and 

co-evolutionary effects. In the “region of emergent complexity”, as they call 

it, around the threshold or beyond the tipping point, firms have solid 

foundations and the required flexibility to adapt, to change and to success. 
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On the other hand, beyond the tipping point, unexpected negative 

extreme events can also occur if a firm has not compensated outcomes. 

The authors gave the example of a nascent firm with a non-linear number 

of employees but only linear revenue: would this firm survive having not 

compensated outcomes? Would therefore these power laws have 

predictive potential? Although Crawford and McKelvey (2012) did suggest 

it, and they proposed to use the tipping points as benchmarks to increase 

the probabilities of survival and promote growth, they did not go deeper into 

this issue in that paper. Furthermore, Crawford and McKelvey (2012) 

proposed several practical applications that could be derived from the study 

of these power laws such as in counselling, pedagogy, policy interventions, 

etc. 

 

In Crawford et al. (2015) they extended the research done in 2012 

and 2014 1) geographically, studying also the Australian panel data set, 

and 2) conceptually, incorporating not only outcome variables (revenues, 

employees) but also input variables, such as human capital resources 

variables, financial capital resources variables, cognitive variables 

(expectations), start up activities, and industrial sectors aspects (business 

environment). Again, results revealed that 48 out of 49 essential variables 

of more than 12,000 nascent, young, and hyper-growth firms in U.S.A. and 

Australia exhibited power law – heavy-tailed - distributions. 

 

 

 

1.3.1 PREDICTIVE POTENTIAL OF POWER LAW DISTRIBUTIONS 
 

Crawford and McKelvey (2012) suggested several practical 

implications derived from their discovery, such as the predictive possibilities 

associated to power laws and aspects related to policy implementations. 

The forecasting potential of power laws and their linked complex systems 

has already been explored, for example, in geophysics and seismology 
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(Rundle et al., 2003). Based on the Gutenberg-Richter empirical law, a 

power law that formulate the relationship between the size (magnitude) of 

the earthquakes and their frequency (Gutenberg and Richter, 1954), it has 

been possible to develop methods for earthquake forecasting: the 

frequency of big earthquakes can be extrapolated from the frequency of the 

small ones (Sornette and Sornette, 1989). 

 

Crawford & McKelvey (2012) briefly raised an example of a potential 

forecasting possibility of these power laws using the tipping points of these 

distributions. They considered the xmin - the minimum value in the 

distribution that shows power-law behaviour - as the critical threshold of the 

distribution: beyond this tipping point appears the region of emergent 

complexity. 

 

Let us consider the results from the PSED for the fifth year: 
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FIGURE 4 - FIGURE AND TABLE FROM CRAWFORD & MCKELVEY (2012, P. 9) 

 

From the table and figures above, a firm is in the area of complexity 

(beyond the threshold xmin) when the number of employees in more than 3 

(2 ± 1), and the revenue is beyond $600,000. Now, what would happen if a 

firm has a number of employees in the complexity zone, let us say 4 

employees, and, however, only a linear revenue, for example, the mean 

revenue value in the fifth year ($35,000)? Crawford and McKelvey (2012) 

suggested that a negative extreme event such as lay-offs or firm closure 

might occur because the firm has not compensated outcomes: it may be 

financially difficult to support 4 employees with a linear revenue. A more 

adequate revenue amount, beyond the complexity threshold of $600,000, 

could allow the firm to survive. Crawford and McKelvey (2012) did not enter 

in more detail in this paper. It would be necessary to analyse the data set, 

firm by firm, to check the accuracy of this statement. Would firms with not 

compensated outcomes – values in different regions of the thresholds - 

collapse? This type of analysis also would be applied to other similar 

datasets such as the Australian CAUSEE or the UK PSED (Reynolds and 

Curtin, 2011; Reynolds, Hart and Mickiewicz, 2014). 

 

There would also be policy and practical implications. Should a 

public institution trying to promote entrepreneurship give a grant to a 

nascent firm that has not compensated outcomes? If this study concludes 

that that firm would collapse because lack of compensation, would this be a 
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waste of tax payers’ resources? Would a venture capital firm invest in an 

uncompensated company? Would this investment fail? Or should a venture 

capitalist focus its investments on those areas of the firm (outcomes) that 

are not beyond the complexity threshold – in the area of the power law - in 

order to help them to compensate the outcomes and allow the firm to 

survive and flourish? 

 

 

 

 

1.4. NEW DEVELOPMENTS: NEW STATISTICAL METHODS AND 
SOFTWARE PACKAGES AND THEIR IMPACT ON THE STUDY 
OF HEAVY-TAILED DISTRIBUTIONS IN ENTREPRENEURIAL 
DATASETS. 

 

 

Crawford et al.’s (2014, 2015) based their statistical analysis in the 

method developed by Clauset, Shalizi and Newman (2009) that combines 

maximum-likelihood fitting techniques with goodness-of-fit tests based on 

the Kolmogorov-Smirnov statistic and likelihood ratios (also in: Virkar and 

Clauset, 2014). Several new implementations of the methods described in 

Clauset et al. (2009) article have been proposed since then, that have 

made it much easier to evaluate the best fit among different alternative 

distributions (pure power law, power law with cut-off, exponential, log-

normal, etc.) (Alstott et al., 2014 for Python, Gillespie, 2015 for R, ‘plpva.m’ 

function for Matlab, C++, etc.). 

 

The application of these new developments in statistical software 

packages, such as the poweRlaw package for R (Gillespie, 2015), led 

Shim (2016) to the conclusion that lognormal distributions – another kind of 

heavy-tailed distributions, rather than pure power laws - were a better fit for 

entrepreneurial outcomes. Shim (2016) applied Clauset et al.’s (2009) fitting 
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techniques to several variables from the Panel Studies of Entrepreneurial 

Dynamics II (PSED II) in USA (Reynolds and Curtin, 2008) checking not 

only power law distributions but also other alternative models such as log-

normal and exponential distributions. He found that lognormal 

distributions were the best model for these American entrepreneurial 

outcomes variables and that the distributions change into power law over 

time. That is, in the early stages of the new ventures, the outcome variables 

follow a log-normal pattern and, after the emergence of the venture, the 

outcome variables turn into power law distributions. Shim proposed then a 

transitional process from lognormal to power law. The ventures’ early-stage 

outcome distributions are less skewed; over time, those distributions will 

change to more skewed power law patterns (Shim, 2016). This proposed 

transition from log-normal distribution to power law in nascent 

entrepreneurial outcome datasets made perfect sense because it is 

possible to observe similar transitions in nature and social sciences. For 

example, at the beginning of the dataset, the distribution of income shows 

lognormal distribution with the lower/medium income, but, with large 

incomes, the dataset becomes an inverse power law, the Pareto’s law. 

Similarly, this transition can also be observed in the distribution of the 

number of papers published by scientists, the Lotka’s Law (West and 

Deering, 1995). 

 

Based on Mitzenmacher (2004) and on Nirei and Souma (2007), 

Shim (2016) also suggested a multiplicative process as the possible 

generative mechanism of these long-tail distributions and he performed a 

simulation in R software to determine whether this hypothesis was 

plausible. He found that the log-normal distribution was a better fit than the 

power law model at every stage of the simulation, unlike the empirical 

results. Thus, his computer simulation results cast serious doubts on the 

theory of the outcome distribution change over time – from log-normal to 

power law - mentioned above. 
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Continuing also the path opened by Andriani and McKelvey (2009), 

recently, Joo, Aguinis and Bradley (2017), using a novel distribution pitting 

technique – a new fitting software - have found that the exponential tail 

distributions - exponential and power law with an exponential cut-off - and 

their generative mechanism - incremental differentiation -, are the most 

frequent distribution in many individual outputs across different 

organizations, sectors, jobs and activities. However, as Shim (2006) 

pointed out, this may not be totally accurate in nascent entrepreneurship 

processes: this thesis research will show that the lognormal 

distribution in entrepreneurial outcomes seems predominant 

throughout the different panel studies in different countries. The 

power law distribution with an exponential cut-off may also be a plausible fit 

in some particular panel outcomes variables. 

 

Applying complexity science methods and tools in the field of 

entrepreneurship, this study will continue the search for the identification of 

heavy tailed distributions in nascent entrepreneurial longitudinal 

datasets in different countries, and it will explore the processes that origin 

the emergence of these kinds of distributions. This research will focus on 

the period of time that elapses before becoming an established firm, i.e. 

before being a fully established organization, in the period in which nascent 

entrepreneurs carry out the decisive decisions and actions that would lead 

to venture emergence. This study is not about “new” firms, but rather about 

“emerging” firms, nascent ventures in the process of becoming, nascent 

entrepreneurial processes, and nascent entrepreneurs. This period of time 

centred on nascent entrepreneurs and the process of organization creation 

has also been called “organizational emergence” (Gartner, Bird and Starr, 

1992), the “preorganization” (Katz and Gartner, 1988; Hansen, 1990), 

“gestation” – using the biological metaphor (Reynolds and Miller, 1992) - , 

or start-up (Carter, Gartner and Reynolds, 1996), and it is the period of time 

targeted by longitudinal panels on entrepreneurial activities such as the 

U.S. Panel Studies of Entrepreneurial Dynamics (PSED) and their 

counterparts in other countries. 
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1.5. THE METHODOLOGICAL SHIFT: MODELLING COMPLEX 
SYSTEM WITH NEW MODELLING TECHNIQUES. THE 
AGENT-BASED APPROACH 

 

Agent-based modelling and simulation (ABMS) is a relatively recent 

methodology for modelling complex systems, related to the research of 

non-linear dynamics and artificial intelligence, based on interacting, 

autonomous ‘agents’ that was facilitated by the arrival of personal 

computers in the 1980s and early 1990s. 

 

“An agent‐based model is a computer program that creates an artificial 
world of heterogeneous agents and enables investigation into how 
interactions between these agents, and between agents and other factors 
such as time and space, add up to form the patterns seen in the real world” 
(Hamill and Gilbert, 2016, p. 4). 

 

This agent perspective is the most essential and distinctive 

characteristic of ABMS: the system is viewed as made of agents in 

interaction with other agents and the environment (Macal, 2016). Agents 

behave according to rules and they interact with other agents. These 

agents also interact in space and time according to rules.  These 

behaviours and interactions of the agents at a micro-level may produce a 

distinct behaviour of the system as a whole. New patterns and structures 

may emerge, without explicit previous programming into the model, that 

arise by the combination of agents’ attributes, behaviours and interactions 

(Macal and North, 2010). These interactions at a micro-level, the 

aggregation of these micro-level and meso-level behaviours, may create 

emergent patterns at a macro-level: these patterns emerge from the bottom 

up (Page, 2008; Schelling, 2006, prev. ed. 1978). 
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A standard agent-based model has three basic features: 

 A set of agents, with their attributes (state variables) and 

behaviours. 

 A set of agents’ methods of interaction (“rules of 

engagement”). There is an underlying topology of 

interconnection that defines how and with whom agents 

interact. 

 The agents’ environment: The environment affects agents 

and their interactions. 

 

Agents have the capability to act autonomously, that is, to act by 

themselves without external direction depending of the situation. Agents 

have a set of rules and behaviours that allow them to take independent 

decisions. 

 

From the practical modelling perspective, agents have the following 

characteristics: 

 An agent is a self-contained and a uniquely identifiable 

individual. It has a boundary. In addition, it has attributes 

(state variables) that make that agent different from other 

agents. 

 Agents are autonomous. They are independent based in the 

environment and in the interaction with other agents. The 

behaviour of an agent can be defined by simple rules or 

sophisticate adaptive mechanisms such as neural networks or 

genetic algorithms. 

 An agent has state variables that change over time. These 

state variables are related to the agent’s attributes. 

 An agent has a dynamic interaction with other agents that 

affect its behaviour. An agent has a set of protocols for 
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interaction with other agents: communication, how to move 

and respect the topology of the model world, how to respond 

to environment, etc. 

 

 

FIGURE 5  - A TYPICAL AGENT ACCORDING TO MACAL & M J NORTH (2010, P. 154, FIGURE 2) 

 

 

ABMS (Agent-Based Modelling and Simulation) draws its theory and 

concepts from complexity science, systems science, computer sciences 

and artificial life (Macal and North, 2009). The study of Complex Adaptive 

Systems (CAS) is the historical root of ABMS, in which systems are also 

built from the ground-up (Kauffman, 1993; Holland, 1995). Complex 

Adaptive Systems (CAS) address the question of how complexity arises 

from autonomous agents, and it was initially focused on adaptation and 
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emergence of biological systems. Complex Adaptive Systems (CAS) are 

those that can self-organize and dynamically reorganize to be able to 

survive in their environments (adaptive ability): they are defined by a group 

of interacting agents, who can act and react to the actions of the other 

agents. Examples of CAS are ecosystems, financial markets, colonies of 

ants, etc. Emergence, defined as a macro or meso-level phenomenon as a 

result of local micro-level interactions, is one of the most important 

phenomena that can occur in Complex Adaptive Systems (Macal and 

North, 2009). ABMS were fundamentally developed as the corpus of ideas, 

techniques, and tools for implementing computational models of complex 

adaptive systems (Macal and North, 2010). ABMS (Agent-Based Modelling 

and Simulation) can be used both for the investigation of the dynamic of a 

process – a simulation - or for developing models designed to do 

optimization, such as particle swarm optimization and ant optimization 

algorithms. 

 

The application of Agent-Based Modelling and Simulation (ABMS) 

across natural, social and physical disciplines is growing unceasingly, 

despite the debate on its methodological nature and current discussions on 

their proper implementation and development (Grimm et al., 2014; Grimm 

and Berger, 2016; Macal, 2016). Since the publication of the book Growing 

Artificial Societies (Epstein and Axtell, 1996), it has been a continuous 

development of new agent-based models with diverse applications, new 

methods and theory building. 

 

Agent-Based Modelling and Simulation (ABMS) has already been 

used to address many complex systems phenomena both in natural 

processes (Vicsek, 2002), in social sciences (Bonabeau, 2002b, Epstein 

2006, Gilbert, 2008), economics (Farmer and Foley, 2009; Hamill and 

Gilbert, 2016) and management (Davis et al., 2007). New computational 

capabilities have made possible to apply these ABMS techniques to 

different disciplines and subjects, from modelling agent behaviour in stock 
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markets (Arthur et al., 1997) to simulating and predicting the spread of an 

epidemical disease (Macal and North, 2009). Currently, applications of 

agent-based model can be found almost in all disciplines not only in the 

natural, social or physical sciences but also in engineering, business, 

operation management, and similar fields, becoming a common simulation 

technique (Fioretti, 2013; Macal, 2016). However, there are discussions 

about the nature of ABMS, how to develop the models and the relationship 

with other types of simulation and modelling because ABMS is used in 

many, different scientific communities, each of them with a different 

interpretation. Given that ABMS can offer an explicit framework for 

modelling people (agents) behaviours, social interactions and social 

processes, it has become the leading method to model societies and 

organizations (Robertson and Caldart, 2008). Besides the traditional 

inductive or deductive methods, the possibility of grow artificial societies 

using ABMS opens a new kind of generative social science (Epstein, 2006), 

a third way of doing science (Axelrod, 1997). One of the main reasons to 

develop ABMS is because this modelling technique allows a better 

representation of human behaviour and the discovery of the collective 

effects of organizations and societies. Fields such as behavioural 

economics or behavioural operation management are looking for improved 

models of behaviour, in which bounded rational agent model can be 

introduced including realistic constrains on time, effort, information, 

capabilities, etc. (Simon, 1991; Balke and Gilbert, 2014; Macal, 2016). 

Epstein (2014) has even proposed the possibility of incorporating 

neuroscience knowledge into ABMS to replicate emotions, cognitive and 

social aspects of agents. Agent-based modelling can be a useful tool for 

incorporating neuroscience theory and methods into entrepreneurship 

research (de Holan,  2014; Nicolaou and Shane, 2014). 
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1.6. AGENT-BASED MODELLING AND SIMULATION IN SOCIAL 
SCIENCES AND ENTREPRENEURSHIP 

 

McMullen and Dimov (2013) – and prior to them, McKelvey (2004) - 

have proposed that Agent-Based Modelling and Simulation (ABMS) will be 

a very important tool and methodology for the generation of theory in 

entrepreneurship. In spite of the fact that the number of management and 

operations researchers interested in computer simulation methods has 

increased in the last 20 years (Davis et al., 2007, 2009; Harrison et al., 

2007; Robertson and Caldart, 2008; Günther et al., 2011),  agent-based 

simulations remain scarce in entrepreneurship research (Aldrich, 2001; 

Coviello and Jones, 2004; Van de Ven and Engleman, 2004; Yang and 

Chandra, 2013). Entrepreneurship scholars have been slower to adopt 

agent-based modelling (McDonald et al., 2015), compared with those from 

natural science and other social sciences such as economics (Tesfatsion, 

2002) or sociology (Sawyer, 2003). The publication of papers on 

entrepreneurship using agent-based models has just started few years ago 

(Bhawe et., 2016; Shim, Bliemel, & Choi, 2017; Breig, Coblenz & Pelz, 

2018). 

 

Social agent-based modelling, that is, to model social processes 

from the individual level, “from the ground up”, has been developed since 

1970s, using, for example, cellular automata models (North and Macal 

2007). Epstein and Axtell have suggested several social processes that 

could be successfully agent-based modelled (Epstein and Axtell, 1996; 

Epstein, 1999; Epstein, 2006). Together with Schelling's segregation model 

(Schelling, 1969), the Sugarscape model of Epstein and Axtell (1996) have 

been the most well-known agent-based models in social sciences. This 

bottom-up computational modelling can be readily applied to 

entrepreneurship considering the “entrepreneur” as an agent – with its 

attributes - that interacts in a complex way with other agents - of similar or 

different nature - and environments. On the other hand, entrepreneurs fulfil 

the major characteristics of the agents in ABMS: they are autonomous, 
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interdependent, and adaptive, and they follow operational, behavioural and 

strategic rules (McMullen and Dimov, 2013; Miller and Page, 2007). 

 

Yang and Chandra (2013) in their paper “"Growing artificial 

entrepreneurs: Advancing entrepreneurship research using agent‐based 

simulation approach" offered a rationale of this methodology for 

entrepreneurship research, and sketched a roadmap for its use in this field 

(Yang and Chandra, 2013): 

 

“(…) agent‐based simulation approach can be useful for explaining, 
discovering – and thus formulating formal theory – and predicting the 
unpredictable phenomena in entrepreneurship. (Yang and Chandra, 2013, 
p 227). 

 

Yang and Chandra (2013) argued that there are shared conceptual 

foundations between entrepreneurship and ABMS such as autonomy, 

heterogeneity, bounded rationality, learning, and disequilibrium. Yang and 

Chandra (2013) examined the possibilities of formalizing the 

entrepreneurial processes into ABMS code based on empirical facts and 

generally accepted foundations of entrepreneurship, and they considered 

that computer simulations can advance entrepreneurship research because 

those models allow the analysis of internal validity of theories of 

entrepreneurship and can be explored through “systematic 

experimentation”. Computer‐simulations, as part of the “science of the 

artificial” (Simon, 1996; Sarasvathy, 2003), allow the researchers to test the 

robustness of their theories on entrepreneurship and to understand, explain 

and predict the implications of those theories. These tasks may result very 

difficult using other research methodologies (Gilbert and Terna, 2000).  

Experimentation in ABMS is implemented changing the rules of behaviour 

or introducing new agents, or varying different scenarios to discover their 

impact on the global system (Yang and Chandra, 2013). Our model “A 

nascent entrepreneurial agent-based model” is partially rooted in the 
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definitions of the rules and assumptions about agents from the conceptual 

model theoretically described by Yang and Chandra (2013). 

 

As we mentioned above, one of the most recent attempts of the 

simulation of entrepreneurial outcomes distributions was initially developed 

by Shim (2016) using R software. He performed a simulation to determine if 

heavy-tailed distributions can be obtained through multiplicative processes 

in entrepreneurship. Shim (2016) was able to show that the distributions of 

the simulated outcomes were quite similar to the empirical datasets and 

that lognormal models have better fit than other heavy-tailed distributions in 

most of the nascent venture early stages (activities) results. However, Shim 

(2016) suggested that more sophisticated agent-based modelling and 

simulations were needed, given that a random multiplicative process was 

not enough to explain the complexity of the empirical and simulated 

patterns. 

 

Based on a bibliometric method and on the behavioural rules 

inferred from the entrepreneurship literature, Shim, Bliemel and Choi (2017) 

proposed a simple agent-based model based on essential concepts – 

“stylized facts” -, that was able to simulate the emergence of heavy-tailed 

distributions in nascent venture outcomes and that was consistent with the 

empirical datasets. Their model consists in two agents (“entrepreneur” and 

“investor”) and two objects (“opportunity” and “resources”), being the 

amount of resources modelled as state variables of entrepreneurs and 

investor. Breig, Coblenz and Pelz (2018) has recently proposed another 

simulation model, used as an illustrative example of statistical validation for 

the entrepreneurial variable “venture debt” with the empirical data extracted 

from the second Panel Study of Entrepreneurial Dynamic (PSED II). 

 

However, in order to explore more complex phenomena in nascent 

entrepreneurship or to introduce other essential elements of this nascent 
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entrepreneurial process, a more complex agent-based model would be 

required. Our objective is to introduce a baseline model with new 

layers of complexity to previous entrepreneurial agent-based model 

attempts. Our model is designed to explore questions regarding the 

emergence of new ventures and their nascent entrepreneurial processes, 

and to identify the mechanisms that produce the emergence of heavy-tailed 

distributed outcomes (“patterns”, Grimm, 2005) in nascent entrepreneurs’ 

longitudinal data panels (PSED and similar empirical datasets). Although 

our model adopts most of the basic features and conceptual framework 

used in previous models (especially the conceptual model of Gartner, 1985) 

and the roadmap proposed by Yang and Chandra (2013), it introduces new 

levels of complexity in comparison to them (Shim, 2016; Shim, Bliemel and 

Choi, 2017; Breig, Coblenz and Pelz, 2018).  Our model has additional 

features, more internal state variables for agents, additional forms of 

interactions among them, additional rules of behaviour and types of agents, 

new global environmental variables (Martinez, Yang and Aldrich, 2011), 

that allow the possibility of further research in relationship with the empirical 

data: calibration, parametrization, verification, etc. One of the purposes of 

this model is to expand previous “stylized fact” type of agent-based 

modelling - based on basic principles - to richer representation of real-world 

scenarios based on empirical datasets. A more complex model also allows 

deeper theory development from simulation (Davis et al., 2007). 

 

Our model starts with the discovery of the heavy tailed distribution 

patterns at the macro level – the “stylized fact” -, and it tries to simulate the 

underlying processes and behaviours of individual entrepreneurs at the 

micro level that produce that “stylized fact” (the pattern: the heavy tailed 

distribution) (Shim, Bliemel and Choi, 2017). 
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1.7. RESEARCH OBJECTIVES 
 

This research has two major sections: 

 

1) Data analysis: Extension of the empirical datasets analysis of other 

international longitudinal panels freely available and exploration of 

their distribution patterns (Crawford et al., 2012; Crawford et al., 

2015; Shim, 2016; Shim et al., 2017). 

 

2) Design and implementation of an agent-based model as a 

research tool, with enough complexity to be able to simulate the 

heavy tailed distributions patterns in the different international 

empirical longitudinal studies, and as a baseline research tool - 

openly available to the research community - to test and explore new 

theories and empirical datasets in nascent entrepreneurial 

processes. 

 

DATA ANALYSIS 

 

Crawford and McKelvey (2012) discovered ubiquitous power law 

distributions in the Panel Study of Entrepreneurial Dynamics II (PSED) that 

assesses the level of initial entrepreneurial activity in a representative 

sample of American nascent entrepreneurial population (Reynolds and 

Curtin, 2008). The Panel Studies of Entrepreneurial Dynamics (PSED) has 

also been conducted in other countries using similar methodology over the 

last 15 years: Canada, Netherlands, Norway, Sweden, United States, 

Australia, China, Germany, Latvia, and UK (Reynolds and Curtin, 2011; 

Reynolds, Hart and Mickiewicz, 2014). Crawford et al. (2015) also identified 

power law distributions in outcome variables in the Australian longitudinal 

study (CAUSEE). 
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Research questions: 

 Are these heavy-tailed distributions also present in similar 

longitudinal studies conducted in other countries? 

 Which heavy-tailed distributions (power law, log-normal, etc.) 

are the best fit for these data? 

 What are the generative mechanisms that produce these 

heavy-tailed distributions? 

 

 THEORY DEVELOPMENT THROUGH AGENT-BASED MODELLING AND SIMULATION 

(ABMS). 

 

Agent-Based Modelling and Simulation (ABMS) has already been 

used to address many complex systems phenomena both in natural 

processes (Vicsek, 2002) and in social sciences (Epstein and Axtell, 1996; 

Cederman, 2005; Epstein, 2006), and it has proven its capacity to generate 

theory, “agent-based generative theory” (Epstein, 1999; Davis et al., 2007). 

Given the characteristics of the phenomenon of emergence of heavy-tailed 

distribution in entrepreneurial processes, originated in the interactions of 

multiple agents in a specific set of conditions, it seems reasonable to use 

agent-based modelling and simulation techniques to model this emergence. 

 

Research questions: 

 

 How can the mechanisms that produce the emergence of 

heavy-tailed distributed outcomes in nascent entrepreneurial 

processes be simulated by an agent-based model with a 

complex set of agents’ variables and behaviours, and be 

parametrized and calibrated with empirical datasets? 
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 How can a versatile baseline model be designed and 

implemented to explore other international longitudinal panel 

datasets? 
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2. LITERATURE REVIEW 

 

2.1. VENTURE EMERGENCE AND NASCENT 
ENTREPRENEURSHIP: DEFINITIONS AND BACKGROUND. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1.  “EMERGING” FIRMS VERSUS “NEW” FIRMS: THE CONCEPTS OF VENTURE 

EMERGENCE AND NASCENT ENTREPRENEURSHIP. 
 

Heavy-tailed distributions have been reported on already 

established firms. The literature on already established firm size 

distributions and industrial organization population dynamics will be 

explored in the next section under the title “Heavy tail distributions in 

VENTURE EMERGENCE AND NASCENT ENTREPRENEURSHIP: 

Definitions and Concepts. 

HEAVY-TAILED 

DISTRIBUTIONS AND THEIR 

GENERATIVE MECHANISMS: 

How venture emergence 

occurs 

NASCENT 

ENTREPRENEURIAL 

PROCESSES: 

Characteristics and 

Activities 
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Economics: Antecedents” and it will provide a relevant background and 

useful insights in the modelling section of this thesis. 

 

This research, however, focuses on the emergence of new ventures 

and the nascent entrepreneurial processes related to them: it deals with the 

series of events that happen before becoming a firm. It analyses the 

processes that occur before of being an established organization, in that 

period in which nascent entrepreneurs carry out the decisive decisions and 

actions that would lead to venture emergence (Reynolds, 2017). As Carter, 

Gartner and Reynolds (1996) have pointed out, to study new organizations 

is not the same that to study emerging organizations (Ács and Audretsch 

2010), given that the activities and processes related to maintaining or 

modifying the operations of established firms are not the same that those 

related to the creation of new organizations (Gartner et al., 2010).  

 

The distinction between “new organizations” and “emerging 

organizations” is methodologically decisive in this research. Studies on 

entrepreneurs who are operating already established new businesses 

provide partial information about the process of organization creation: it 

assumes the outcomes of emergence – the established firm - without 

providing information regarding those entrepreneurs that tried to create a 

new organization and failed (Gartner et al., 2010). To study only 

entrepreneurs who have successfully started a new venture introduces a 

selection bias, with no information on start-up activities on nascent 

entrepreneurs that failed in their attempts (Delmar and Shane, 2004).  

 

Assuming that a “new” venture is not the same as an “emergent” 

venture, this research will focus on studies that use samples of nascent 

entrepreneurs, that is, it will be centred in those studies that analyse what 

happens in the process of starting a business rather than on those studies 

that survey entrepreneurs of new on-going firms (Gartner et al., 2010). 
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Therefore, here, a nascent entrepreneur - the subject of our research - is 

defined as someone in the process of establishing a new venture but who 

had not yet succeeded in making the transition to new business ownership 

(Carter et al., 1996; Dimov, 2010). 

 

A nascent entrepreneur seeks a business opportunity, that is: 

o to introduce a new product or service, or 

o to open a new market, or 

o to develop a more efficient and profitable production method 

(Shane and Venkataraman, 2000). 

 

 A nascent or emerging venture is considered the sum of the 

efforts, actions and judgments carry out by the nascent entrepreneur. At 

some point in time, an emerging venture may become a new venture, or be 

extinguished – or even remain latent -. During the process, the emerging 

venture will receive increasing inputs, not only by the nascent entrepreneur 

– who is essential at the beginning - but also from other stakeholders, such 

as new partners, resources, financial institutions, etc. (Dimov, 2010). 

 

New data on the process of starting new ventures and the nascent 

entrepreneurs’ activities have been provided by surveys such as the Panel 

Studies of Entrepreneurial Dynamics (PSED)  – PSED I and PSED II -. 

Before the existence of the PSED studies, literature on this emerging period 

was scarce. Most of the published entrepreneurship research was based on 

samples of already established and existing firms. Studies on the earliest 

phases, before becoming a firm, for example, in Carter, Gartner and 

Reynolds (1996), were rare (Davidsson and Honig, 2003). 

 

The Panel Studies of Entrepreneurial Dynamics – PSED I and PSED 

II- were detailed longitudinal surveys that were able to identify a 

representative sample of nascent entrepreneurs in United States, and have 
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generated important information into the process of how ventures emerge. 

In PSED, a nascent entrepreneur is identified and classified as such if this 

person initiated at least one start-up activity by the time of the interviews, 

among a number of other potential entrepreneurial gestation behaviours 

(see below a list of these gestation activities). 

 

2.1.2.  LONGITUDINAL METHODS: THE ENTREPRENEURIAL PROCESS AS A DYNAMICAL 

PHENOMENON. 
 

This research will make use of longitudinal panel studies such as the 

PSED II responding to the call for considering entrepreneurial activity as 

a process rather than a punctual act, and taking into account the role of 

time in this phenomenon (McMullen and Dimov, 2013, p. 1482): 

 

“Prior work has thus tended to diminish the role of time in the 
entrepreneurial process by studying entrepreneurship as an act, as 
opposed to a journey that explicitly transpires over time. To look forward, 
we reiterate and illustrate the tenets of a process approach by paying 
attention to the unit of explanation, logic of causal relationship, and nature 
of cause. We propose that a shift in inquiry from act to journey may 
advance scholarly understanding of the entrepreneurial phenomenon by 
evoking a number of challenging questions (McMullen and Dimov, 2013, p. 
1482). 

 

The processes of organization formation have to be considered, 

therefore, a fundamental core of entrepreneurship (Gartner, 1985; Carter et 

al,, 1996; Gartner et al., 2010). 

 

PSED II, started in 2005 as an improved replication of PSED I, 

provides a description of the initial stages of the entrepreneurial process. It 

makes a series of follow-up interviews of an initial cohort of 1,214 nascent 

entrepreneurs (Reynolds and Curtin, 2008). Longitudinal studies on venture 

creation, such as the Panel Studies of Entrepreneurial Dynamics (PSED), 

are able to identify those individuals entering in the start-up of the new firms 



48 
 

and to follow up their activities and outcomes during several years. They 

tracked the development of new ventures, from the emergence of a 

business idea and the organization of the start-up team, through the birth of 

an operational and legal registered firm. 

 

 

FIGURE 6  - THE QUESTION MARKS IN THE FIGURE POINTS OUT THE PERIOD TO BE STUDIED IN THIS 

RESEARCH: IT IS WHEN A NASCENT ENTREPRENEUR UNDERTAKES THE PROCESS OF 

ORGANIZATION CREATION (“START-UP PERIOD”, “ORGANIZATIONAL EMERGENCE”, 
“GESTATION”).  FIGURE FROM CURTIN AND REYNOLDS (2007), P.12. 

 



49 
 

 

FIGURE 7 - CONCEPTUALIZATION OF THE ENTREPRENEURIAL PROCESS . FIGURE FROM RAYNOLDS 

2017B. 

 

 

These panel studies provide information such as:  

 The length of time required to start-up and to constitute new 

firms.  

 The amount and types of activities before registering the new firm 

in the registries or Chambers of Commerce.  

 The amount and type of financial resources - formal or informal - 

that is gathered before the new firm is registered. 

 The strategies and business models that these nascent ventures 

implement. 
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 The nature, composition, and background of the entrepreneurial 

teams.  

 The use of and reaction to entrepreneurship promoting programs. 

 The proportion of start-up ventures that become profitable and 

viable new firms.  

 The main aspects of the transition to a profitable and viable new 

firm or to disengagement. 

 

The book New Business Creation: An International Overview, edited 

by Reynolds and Curtin (2010), makes an extensive analysis of these 

longitudinal studies in different countries: The U.S. projects (the first and 

second Panel Studies of Entrepreneurial Dynamics, PSED I and II) and 

their counterparts in a number of other countries such as Australia, 

Canada, China, Latvia, Netherlands (two projects), Norway, and Sweden. 

These projects have been implemented over the past decade, and they are 

at different stages of development. Currently, only the complete datasets of 

four of these projects are publicly available (Australia, Sweden, US PSED I 

& II): 

 

 Australia: “The Comprehensive Australian Study of Entrepreneurial 

Emergence“ (CAUSEE). 

 Canada: “The Canadian Panel Study of Entrepreneurial Dynamics”. 

 China: “Anatomy of Business Creation in China: Initial Assessment 

of the Chinese Panel Study of Entrepreneurial Dynamics”. 

 Germany: “German Panel of Nascent Entrepreneurs”. 

 Latvia: “Panel Study of Entrepreneurial Dynamics Overview”. 

 Netherlands: “New Business Creation in the Netherlands”. 

 Norway: “Business Start-up Processes in Norway”. 
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 Sweden: “The Swedish PSED: Performance in the Nascent 

Venturing Process and Beyond”. 

 United States: “Panel Study of Entrepreneurial Dynamics I, II”. 

 The UK 2013 Panel Study of Entrepreneurial Dynamic has also been 

implemented (Reynolds, Hart and Mickievicz, 2014). 

 

 

Eventually, the principal outcome of the process of entrepreneurial 

activity is that the organization comes to existence or not. Other outcomes 

may occur in the process: the creation of new products or services, new 

customers or segments of costumers, etc. However, the identification and 

the definition of whether and when there is a new organization is a 

challenge (Gartner et al., 2010; Reynolds, 2017a). Different measures have 

been used – e.g., sales, business license, etc. - but none of these 

measures are able to capture fully by themselves whether an organization 

exists. For example, an entrepreneur may have obtained a business license 

to operate and, however, he or she may not have a clear idea about what is 

the objective of the firm, he or she may not have any sales, or he or she 

may not have a physical location or any specific human or financial 

resources yet. On the other hand, although a first sale often signals a 

nascent firm’s eventual emergence, sometimes, it may happen very early in 

the process, when the emerging organization may be not fully operational 

or registered (Carter et al., 1996; Davidsson and Honig, 2003). 

 

Katz and Gartner (1988) sought to identify a theoretical and 

empirically based framework for identifying the properties of emerging 

organizations. They found that many of the proposed theories in the 

literature assumed properties that happen only after organizations achieve 

some particular size, instead of some set of characteristics that can 

differentiate an emerging organization from other types of social situations 

(Carter et al., 1996). Katz and Gartner (1988) suggested four emergent 
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properties that would be indicators that an organization is in the process of 

coming into existence: 

 

 Intention: activities that show purpose and goals, such as 

membership lists of entrepreneurial organizations, 

subscription lists to entrepreneurial magazines, client lists of 

specialized organizations in entrepreneurship (entrepreneurial 

training companies, etc.), membership to entrepreneurs 

networks, etc. 

 Resources: search of human and financial capital, such as 

applications for loans from banks, savings and loans, finance 

companies, directories of new occupants in office buildings 

and commercial centres, venture capital proposals, etc. 

 Boundary: conditions that distinguish the firm, such as a tax 

number, phone listings, licenses, permits, etc. 

 Exchange: transactions between the emerging firm and 

others stakeholders, such as sales, loans, or investments, 

Chamber of Commerce membership, etc. 

 

An emerging organization would flag itself in different ways, at 

different times, during the process of creation. Organizing is a process not a 

state (Katz and Gartner, 1988; Delmar and Shane, 2004). Katz and 

Gartner’s (1988) properties are a way to explore the emergence of the 

organizations and to identify firms in the process of emergence. Given that 

entrepreneurship is a process and that the various properties of venture 

emergence appear over time, Gartner, Carter and Reynolds (2010) have 

proposed to consider the emergence of a firm as having sequential 

“birthdays”, with these “birthdays” being the different measures used to 

identify a new organization (start-up team personal commitment, first sale, 

first employee, first outside financial support, etc.), although the sequence 
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of appearance of these properties seems to differ for the different industrial 

sectors (Reynolds and Miller, 1992). 

 

 

 

2.1.3. THE PROCESSES OF NEW VENTURE EMERGENCE: CHARACTERISTICS AND 

ACTIVITIES. 
 

Wiklund et al.’s (2011) defined entrepreneurship as an 

“organizational phenomenon” (Gartner et al., 2010, p 99), the phenomenon 

of “emergence of new economic activity”: 

 

“We strongly recommend that entrepreneurship research be unified 
as a field approached theoretically and empirically in terms of the 
phenomenon. We propose that the phenomenon of “emergence of new 
economic activity” lies at the heart of entrepreneurship (where “economic” 
has a much wider meaning than “commercial”).” (Wiklund, 2011, p. 5). 

 

Davidsson states: “Entrepreneurship is about emergence” 

(Davidsson, 2003, p.55). Current definitions on entrepreneurship focus on 

the concept of emergence, suggesting that research should analyse the 

early phases of the phenomenon, the mechanism of detecting opportunities 

and how they are acted upon, or how new ventures appear (Gartner, 1988; 

Shane and Venkataraman, 2000). However, empirical knowledge on 

entrepreneurship using this emergence approach is still limited (Davidsson 

and Honig, 2003). This research deals with entrepreneurship using the 

methods and tools that are already in place for analysing other emergent 

phenomena that occur in nature and in other social context (Goldstein, 

2011). Therefore, semantically, “emergence” here refers to the same 

definition that is formulated in the study of other - natural or social - 

complex systems (Goldstein, 1999). 
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Entrepreneurship is “a complex and multidimensional phenomenon” 

(Gartner, 1985, p. 696-7), an “organizing process” (Gartner et al., 2010, p 

99), in which multiple variables interact. Several scholars have proposed 

different frameworks to explain the characteristics of the firm creation 

process (Carter et al., 1996). Gartner’s theoretical framework (1985) for 

describing new venture creation is particularly suitable for this research that 

tries to develop a model of venture emergence. According to Gartner, 

venture creation involves the following aspects (Gartner, 1985): 

 

 Characteristics of the individual(s) who start the venture, such as 

age, education, need for achievement, risk taking propensity, etc. 

They also include: 

o Locus of control. 

o Job satisfaction. 

o Previous work experience. 

o Entrepreneurial parents or friends or partner. 

 

 The organization which they create and its characteristics, 

organizational structure and strategy of the new venture, such as the 

new product or service, joint ventures, customer contracts, etc. Other 

characteristics are: 

o Overall cost leadership. 

o Differentiation. 

o Focus. 

o Parallel competition. 

o Franchise entry. 

o Geographical transfer. 

o Supply shortage. 
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o Tapping unutilized resources. 

o Customer contract. 

o Becoming a second source. 

o Licensing. 

o Market relinquishment. 

o Sell off of division. 

o Favoured purchasing by government. 

o Governmental rule changes. 

 

 The environment surrounding the new venture and its conditions 

and context, such as competitors, venture capital availability, 

accessibility of suppliers, customers, transportation, etc. Also: 

o Venture capital availability. 

o Technically skilled labour force. 

o Accessibility of customers or new markets. 

o Governmental influences. 

o Proximity of universities. 

o Availability of land or facilities. 

o Accessibility of transportation. 

o Attitude of the area population. 

o Availability of supporting services. 

o Living conditions. 

o High occupational and industrial differentiation. 

o High percentages of recent immigrants in the population. 

o Large industrial base. 
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o Larger size urban areas. 

o Availability of financial resources. 

o Barriers to entry. 

o Rivalry among existing competitors. 

o Pressure from substitute products. 

o Bargaining power of buyers. 

o Bargaining power of suppliers. 

 

 The process by which the new venture is started and the activities 

undertaken by nascent entrepreneurs during the new venture 

creation process: location of the business opportunity, accumulation 

of resources, etc. These are: 

o The entrepreneur locates a business opportunity. 

o The entrepreneur accumulates resources. 

o The entrepreneur markets products and services. 

o The entrepreneur produces the product. 

o The entrepreneur builds an organization. 

o The entrepreneur responds to government and society. 

 

Gartner proposed a list of variables of new venture creation under 

each different dimension of this framework. The different possible 

interactions among the variables have the potential of a high degree of 

complexity and they would explain the “kaleidoscopic” diversity among the 

processes of the emergence of ventures and the “enormously varying 

patterns of new venture creation” (Gartner, 1985, p. 701). Gartner’s 

framework and variables would be extremely useful, especially in the 
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modelling section, given that it provides a sound way to conceptualize 

variation and complexity in the context of an agent-based methodology. 

 

A firm is not instantaneously established. The creation of a firm 

requires performing a series of activities undertaken by nascent 

entrepreneurs during the organization creation process (Carter et al., 1996). 

These venture organizing activities “consist of those activities that establish 

the physical structure and organizational processes of a new firm” (Delmar 

and Shane, 2003). These activities are performed with great variations, to 

different degrees, different order, different points in time, and even by 

different member of the entrepreneurial team. Does the timing these 

activities determine the survival of new ventures? Although the kinds of 

activities that nascent entrepreneurs undertake, the number of activities, 

and the sequence of these activities have an impact on the success of 

creating a new venture, it is not clear if the sequence itself is significant 

(Delmar and Shane, 2004).   

 

Empirical research following up Katz and Gartner’s (1988) 

framework were not able to find a pattern or sequence of events or 

activities in common to all emerging organization undertaken by nascent 

entrepreneurs during the organization creation process or organization 

gestation (Reynolds and Miller, 1992; Carter et al., 1996; Gartner et al., 

2010). However, Delmar and Shane (2004) have argued that the timing of 

undertaking particular organizing activities indeed has an influence in the 

survival of new ventures. In particular, those nascent entrepreneurs who 

initially focus their activities on acquiring legitimacy would be in better 

position for survival. Legitimacy of a new venture is understood as a way in 

which stakeholders can recognize that the new entity adheres to accepted 

rules, norms, principles and standards, such as establishing a legal form or 

writing a business plan (Delmar and Shane, 2004). Legitimacy increases 

the ability of create social capital, making connections with external 

stakeholders, establishing external legitimacy through the improvement of 
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the terms of transactions with other actors (suppliers, clients, investors, 

etc.), and consolidating internal production procedures for transforming 

resources (Delmar and Shane, 2004). On the other hand, Shim and 

Davidsson (2018) found that the higher probabilities of venture emergence 

are around three months after initiation of the nascent entrepreneurial 

process. As time goes by, the venture emergence chance decreases and 

the risk of abandonment and failure increase after seven months. 

 

The most common first activity in the creation of an organization is a 

personal commitment by nascent entrepreneurs involved in the new 

venture. The most common last activities in the creation of a new firm were 

to hire first employees, first sales income, and to get external financial 

support (Carter et al., 1996). But organizations emerge neither in an orderly 

periodic progression of activities nor in a random sequence, and that none 

of the individual gestation activities may be a necessary condition to 

success (Arenius, Engel and Klyver, 2017). The sequence of start-up 

activities in venture emergence seems to follow a “chaotic pattern” that 

points out to a process consisting in a nonlinear dynamical system neither 

stable or predictable, nor purely stochastic or random (Cheng and van de 

Ven, 1996). The low-dimensional chaotic pattern of organization 

emergence suggests a simple nonlinear dynamic systems of only a few 

variables (Cheng and van de Ven, 1996) that would make possible to 

develop a meaningful model. Examining the dynamic patterns among these 

activities using theory and methods from complexity science, Lichtenstein 

et al. (2007) found that emergence of new firms occurs when the rate of 

start-up activities is high, they are spread over time, and they are 

concentrated at a later time in the process of organizing (Lichtenstein, 

Carter and Gartner, 2007). 

 

The Panel Study of Entrepreneurial Dynamics (PSED) provided a list 

of organization formation activities, obtained from previous studies on the 

relationship between nascent entrepreneurial behaviour and the creation of 
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new firms (Reynolds and Miller, 1992; Gatewood et al., 1995; Carter et al., 

1996). These start-up activities in PSED, I and II, ordered by prevalence, 

were (Reynolds and Curtis, 2008, Table 5.8, p. 214): 

 Serious thought given to the start-up. 

 Actually invested own money in the start-up. 

 Began saving money to invest in the start-up. 

 Began development of model, prototype of product, service. 

 Began talking to customers. 

 Began defining market for product, service. 

 Organized start-up team. 

 First use of physical space. 

 Purchased materials, supplied, inventory, components. 

 Initiated business plan. 

 Began to collect information on competitors 

 Purchased or leased a capital asset. 

 Began to promote the good or service. 

 Receive income from sales of goods or services. 

 Took classes, seminars to prepare for start-up. 

 Determined regulatory requirements. 

 Open a bank account for the start-up. 

 Established phone book or internet listing. 

 Developed financial projections. 

 Arranged for child care, household help. 

 Began to devote full time to the start-up. 

 Established supplier credit. 

 Legal form of business registered. 

 Sought external funding for the start-up. 

 Hired an accountant. 

 Liability insurance obtained for start-up. 

 Established dedicated phone line for the business. 

 Initiated patent, copyright, trademark protection. 

 Hired a lawyer. 
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 Hired an employee. 

 Received first outside funding. 

 Joined a trade association. 

 Proprietary technology fully developed. 

 Initial positive monthly cash flow. 

 Acquired federal Employer Identification Number (EIN). 

 Filed initial federal tax return. 

 Filed for fictitious name (DBA). 

 Paid initial federal social security payment. 

 Paid initial state unemployment insurance payment. 

 Know that Dun and Bradstreet established listing. 

 

The variables names with the start-up activities and their prevalence (in 

percentage) has recently been compiled by Reynolds (2017b): 

 

TABLE 1 - TABLE OF START-UP ACTIVITIES PREVALENCE (FROM REYNOLDS, 2017B.): 
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Table of start-up activities prevalence (from Reynolds, 2017b.) 
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2.1.4. THE INDIVIDUAL ASPECTS OF VENTURE EMERGENCE: NASCENT 

ENTREPRENEURS’ HUMAN AND SOCIAL CAPITAL AND THEIR OPPORTUNITY 

RECOGNITION. 
 

Eventually, this project will develop an agent-based model to 

understand the emergence of new ventures. One of the key agents of the 

model is the concept of nascent entrepreneur. This subsection will briefly 

address three important aspects of this individual agent that would have to 

be taken into account in the model: human and social capital of the nascent 

entrepreneur, the concept of opportunity, and the mechanisms of 

recognition and exploitation of this opportunity.  

 

HUMAN CAPITAL 

 

The nascent entrepreneur brings two types of human capital -- 

knowledge and skills - to the new venturing project. On one hand, the 

general human capital, such as age, genetics, personality, overall 

education and life history and work experience, and, on the other hand, the 

specific human capital related directly to the tasks involved in organization 

creation (Dimov, 2010). Davidsson and Honig (2003) showed that general 

human capital made more probable the engagement in venturing, although 

it was not a good predictor of business success. 

 

Among the components of nascent entrepreneur’s human capital, 

there are two very specific to the organization creation: experience in 

previous venture start-up processes, and knowledge and acquaintance of 

the industry or sector (Dimov 2010). These aspects of the human capital 

help to the process of venture emergence, and, although the “tacit, 

procedural knowledge” acquired through prior previous entrepreneurial and 

industry experience are important resources for the nascent entrepreneur, 

they did not predict a successful emergence process, but rather an 
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increase of the frequency of gestation activities over time (Davidsson and 

Honig, 2003; Dimov, 2010). 

 

SOCIAL CAPITAL 

 

Nascent entrepreneurs also bring their social capital to the new 

venturing project. Social capital is understood as the beneficial aspects that 

can be provided by nascent entrepreneur’s social structures, networks and 

memberships such as closed and extended family, community-based or 

organizational relationships, etc. The effects of social capital have a broad 

range: it can be provision of concrete resources, like a loan provided by the 

family, to intangible assets, like the information on a new potential client 

(Davidsson and Honig, 2003). 

 

Davidsson and Honig (2003), based on the strength of ties, 

distinguish between “bonding social capital” and “bridging social capital”. 

Bonding social capital is referred to “strong ties”, such as having parents or 

close friends who owned firms, and it increases the possibility of becoming 

a nascent entrepreneur. Bridging social capital is based on “weak ties”, 

such as being a member of a business network, member of the Chamber of 

Commerce, Rotary or Lions, etc., and it is a strong predictor of rapid and 

frequent gestation activities and for carrying the venture emergence further, 

for example, to a first sale or a profit, and signalling a successful emerging 

process (Davidsson and Honig, 2003). 

 

OPPORTUNITY RECOGNITION 

 

Together with the concept of “emergence”, the idea of “opportunity” 

has become a fundamental aspect of the phenomenon of entrepreneurship 

(Shane and Venkataraman, 2000). Nevertheless, there is certain debate 
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regarding the nature of the process of opportunity discovery and 

recognition. Some scholars consider that opportunities are real, concrete 

entities ready to be noticed, discovered and exploited by entrepreneurs. 

Entrepreneurs’ social capital would provide networks that help to discover 

and exploit opportunities (Davidsson and Honig, 2003). This “opportunity 

discovery approach” uses an economics framework, giving relevance to 

alertness and informational asymmetries among individuals. Opportunities, 

so to speak, come from “outside” of the entrepreneur (Alvarez and Barney, 

2007). 

 

On the other hand, other scholars will argue that opportunity should 

be considered an emergent cognitive and social process - the “social 

psychological approach” - in which opportunities would depend on 

entrepreneurs’ own abilities, efforts and activities: it would be as a creative 

process (Gartner et al., 2010). Gartner et al. (2008), using data from PSED 

I, suggested that the entrepreneurs’’ own experience is closer to the 

“opportunity creation” approach. However, more empirical research is 

needed (Gartner et al., 2010). 

 

This research would take this debate relative to the nature of 

opportunities, discovery or creation, from a modelling point of view. The 

relevant aspect for modelling is that the entrepreneur “encounters” an 

opportunity, and this encounter in itself is what it counts. It may can from 

“inside”, internal, such as a painter finds an inspirational theme for a 

canvas, or from “outside”, created by exogenous shocks to an industry or a 

market (Alvarez and Barney, 2007). 
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2.2. HEAVY-TAILED DISTRIBUTION IN ECONOMICS: 
ANTECEDENTS 

 

2.2.1.  HEAVY-TAILED DISTRIBUTIONS 
 

A power law - also referred as a kind of heavy-tail distributions, 

Pareto distributions, or Zipf’s distributions - is usually expressed as a 

rank/frequency expression: 

  

EQUATION 1 – POWER LAW 

F(N) ~ N-α 

 

Where F is the frequency of the event, N is the rank (and the 

variable), and α, the exponent, that, in power laws, is constant (In 

exponential equations, however, the exponent is the variable, such as in 

f(x) ~ eax) (Newman, 2005; Sornette, 2006; Clauset et al., 2009; Virkar and 

Clauset, 2014). 

 

Power laws or scaling laws have been observed in several 

phenomena in economics and finance since its identification by Pareto at 

the end of the nineteenth century (Gabaix, 2008). A special type of power 

laws relative to the distribution of the variables is also called a Pareto law  - 

a distributional power law -, where the variable Y expresses the probability 

of occurrence of event X, and where the exponent α is independent of the 

units in which the law is expressed (Y = kXα). The Zipf’s law has been 

defined as a Pareto law with exponent α approximately equal to 1. 
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FIGURE 8 - FROM WEST AND DEERING, 1995, P. 173, FIGURE 3.28: FREQUENCY 

DISTRIBUTION OF INCOMES IN U.S.A. IN 1918. 

 

A typical Pareto’s Law distribution of income figure illustrates the 

distribution of income in a Western country on log-log axes. A straight line 

with a negative slope signs an inverse power law, with α being the slope of 

the line. Because Pareto found similar power law income distributions for 

many Western societies, he thought that the slope, α, was a universal 

constant for western societies, with a value of 1.5, independently, of their 

particular social structure and institutions. Subsequently, Pareto’s 

assumptions were questioned and several other distributions of income 

were proposed: Levy, log-normal, Champernowne, Gamma, Boltzmann-

Gibbs, and other Pareto variations (West and Deering, 1995; Dragulescu & 
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Yakovenko, 2001a; 2001b; Brzezinski, 2014; Bee, Riccaboni and Schiavo, 

2017). Mandelbrot considered that Pareto’s law only applies to the high 

incomes (Mandelbrot, 1960); Gibrat (1931) proposed that income and 

wealth distributions were generated by multiplicative random processes, 

which results in log-normal distributions; Kalecki (1945) insisted that that 

these log–normal distributions were not stationary, but their width increases 

in time. Current econophysicists also proposed several versions of 

multiplicative random processes in order to model and explain theoretically 

wealth and income distributions (Dragulescu & Yakovenko, 2001a). 

Eventually, the theoretical justifications of these proposed distributions 

developed into two schools: 

 

 The socio-economic school: Appealing to economic, political 

and demographic factors to explains the distribution (for 

example, Levy, 1987).  

 The statistical school: it tries to explain the distributions in 

terms of stochastic processes, in the econophysics line of 

research (Dragulescu & Yakovenko, 2001a, 2001b; Tao, 

2015; Tao et al., 2017). 

 

2.2.2. PROCESSES FOR GENERATING POWER LAW DISTRIBUTIONS 
 

Stumpf and Porter have stated that although one may statistically 

validated a heavy-tailed distribution, it is necessary to have a theory to 

support it, i.e. a description of the generative processes that explain it, a 

model, based on a theoretical framework, that explains the emergence of 

that distribution (Stumpf and Porter, 2012). Mitzenmacher (2004), Newman 

(2005), Sornette (2006), and Gabaix (2009) have described several 

candidate generative processes to explain the emergence of power-law 

distributions both in natural and social systems, from the simplest algebraic 

methods to the more complex models, in which critical phenomena are 

involved. 
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Although, heuristically, it may be tempting to set aside the more 

simplest generative processes, more frequent in physics or chemistry, in 

which randomness - via statistical mechanics - has an important role, this 

research would also consider them in the second section (agent-based 

modelling) because, in human social interactions, such as the 

entrepreneurial nascent processes, chance, luck, randomness, unplanned 

events, fortuitousness, Gibrat’s law events, may play a relevant role (Coad 

2009; Coad, 2013; Frankish et al., 2013; Lotti et al., 2009). 

 

Newman (2005) identifies several categories of possible generative 

models for power laws, starting from the most simple ones, the 

multiplicative processes - products of random numbers - (Mitzenmacher, 

2004) to the more theoretically sophisticated concepts such as Self-

Organized Criticality. The capacity of power laws of undergoes several 

mathematical operations and still give another power law distribution is a 

remarkable characteristic. For example, feeding an agent-based model with 

power law distributed inputs, may generate power law distributed outputs, 

merely for mathematical reasons: 

 

“Power laws have very good aggregation properties: taking the sum 

of two (independent) power law distributions gives another power 

law distribution. Likewise, multiplying two power laws, taking their 

max or their min, or a power, etc. gives again a power law 

distribution. This partly explains the prevalence of power laws: they 

survive many transformations and the addition of noise.” (Gabaix,  

2014, p. 9-10) 

 

“One thus expects power laws to emerge naturally for rather 

unspecific reasons, simply as a by-product of mixing multiple 

(potentially rather disparate) heavy-tailed distributions.” (Stumpf 

and Porter, 2012, p. 666). 
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Combinations of exponentials: 

This process has been considered the mechanism to explain 

the power-law distribution of the frequencies of words, the 

metaphor of ‘monkeys with typewriters’, or “Monkeys Typing 

Randomly” (Miller, 1957).  

 

Inverses of quantities: 

This mechanism has been used in theoretical physics to 

explain, for example, magnetic behaviour (Ising model of a 

magnet) (Sornette, 2006). 

 

Random walks: 

In nature, random walks show some properties that are 

distributed in a power-law form. For example, processes that 

fluctuate randomly and that end when it hits zero – ‘gambler’s 

ruin’ - show a power law distribution of the lifetimes. Coad et 

al. (2013) have applied this process to explain firm growth. 

 

This mechanism has also been used to explain the apparent 

power law distribution of the lifetime of biological genera in the 

fossil records –and also in other biological taxa – ranks of the 

Linnaeus’ hierarchy - and branches of the evolutionary trees 

such as families, orders, and so on. 

 

We will also use partially this mechanism to assign value to 

some of the variables of the agent-based model of the second 

section. 
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The Yule process (or preferential attachment): 

One of the most applicable processes to understand the 

presence of power law distributions is the Yule process, 

developed by G. Udny Yule in the 1920s, in the context of the 

study of the distribution of the number of species in a genus, 

family or order, - that also seems to follow power law patterns 

- (Willis and Yule 1922; Yule, 1925). The Yule process was 

mathematically improved by Herbert Simon (1955) and it has 

been used to explain power laws in many different systems 

such as city sizes (Simon, 1955), paper citations (Price, 

1976), links to pages on the internet web (Barabasi and 

Albert, 1999), city populations, or personal income, becoming 

the most widely accepted theory for understanding them 

(Newman 2005). 

 

This type of ‘rich-get-richer’ process has also be called 

Gibrat’s rule, the Matthew effect (Merton, 1968), 

cumulative advantage (Price, 1976), or preferential 

attachment (Barabasi and Albert, 1999; Newman, 2005) 

 

 

 

Phase transitions and critical phenomena: 

 

This model has been used mostly in physics, addressing what 

happens to a system when is in the vicinity of continuous 

phase transitions, also called critical phenomena, critical 

points, or phase transitions. Percolation transitions, for 

example, show power law distributions in the mean cluster 

size in the critical point (Gabaix, 2009; Sornette, 2006). 
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Self-organized criticality: 

 

Some dynamical systems are able to arrange themselves to 

be always at the critical point. These systems self-organize, 

showing self-organized criticality (Bak, Tang and Wiesenfeld, 

1987; Jensen, 1998). Self-organized criticality has been 

proposed as the generic mechanism to explain the origins of 

power-law distributions in phenomena such as forest fires 

(Drossel and Schwabl, 1992), earthquakes (Bak and Tang, 

1989), biological evolution (Bak and Sneppen, 1993) 

avalanches (Bak, Tang and Wiesenfeld, 1987) and other 

natural phenomena (Bak, 1996; Jensen, 1998). 

 

From a more specific organizational viewpoint, Andriani and 

McKelvey (2009) also described several additional generative mechanisms 

(i.e. causal processes) that yield power law distributions such as 

hierarchical modularity, event bursts, interacting fractals, least effort 

principle, niche proliferation, etc. (Andriani and McKelvey, 2009). They 

classified these scale-free theories about causes of power law distributions 

in four major categories which Crawford et al. reformulated from an 

entrepreneurship theoretical perspective (2015): 

 

 Positive Feedback mechanisms such as preferential 

attachment. Given that some firms begin with more resources 

than others, “Matthew effect” my explain power laws in 

entrepreneurship. 

 

 Contextual Effects mechanisms such as self-organized 

criticality (SOC). If a start-up is positioned at a critical point, 

the addition of a single new input (a patent, an investor) can 
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cause dramatic change, producing an avalanche of outcomes 

(“black swan” events, Taleb, 2007). 

 

 

 Ratio Imbalances mechanisms such as Simon’s hierarchical 

modularity, in which loosely coupled organizations are more 

adaptable to a dynamic and changeable environment (Simon, 

1962). 

 

 Multiple Distributions mechanisms such as in those systems 

with multiplicative effects, and where the interactions of the 

parts produce a multiplicative phenomenon rather than an 

additive one (fractal food webs, positive feedback loops 

systems, firm and industry size, etc.). 

 

 

Dealing with complex social phenomena, like the emergence of 

firms, the most important of these are 1) the Yule process (preferential 

attachment), 2) the critical phenomena and the associated concept of self-

organized criticality (Newman, 2005) and  3) the multiplicative processes. 

These processes are able to produce power law distributions, and they can 

also be modelled using agent-based modelling techniques (Epstein, 1999). 

 

Historically, the first Pareto law was referred to income and wealth. 

Vilfredo Pareto gathered data on wealth and income through different 

countries and epochs and noticed that the distribution of income and wealth 

among the population followed a power law: approximately 80% of the 

wealth was owed by 20% of the population (Pareto, 1896). Schumpeter, 

commenting Pareto’s Law and his contribution to economics, wrote: 
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“Few if any economists seem to have realized the possibilities that such 
invariants hold out for the future of our science. (…) In particular, nobody 
seems to have realized that the hunt for, and the interpretation of, 
invariants of this type might lay the foundations of an entirely novel type of 
theory” (Schumpeter, 1949, p. 155-6) (Also in Gabaix, 2008, and Gabaix, 
2009). 

 

From the empirical point of view, several power laws have been 

suggested in economics. The principal mechanism proposed to explain 

distributional power law in economics – Pareto’s distributions - has been 

proportional random growth (Gabaix, 2009). Proportional random growth 

generates distributional power laws. Using Yule mathematical theory of 

evolution (1925), Champernowne (1953) and Simon (1955) applied this 

mechanism in economics. The work of Champernowne (1953), Simon 

(1955) and Mandelbrot (1963) explored these distributions in different areas 

such as firms sizes, cities sizes, and income, and opened a new research 

path based on stochastic growth that has been followed since then (Sutton, 

1997; Luttmer, 2007). 

 

However, the explanation of the stability of the Pareto exponent in 

different economies, societies and epochs is still under discussion (Gabaix, 

2008; Bee, Riccaboni and Schiavo, 2017). Power laws in economics also 

appear, for example, in city sizes (Gabaix and Ioannides, 2004), salaries of 

executives (Gabaix and Landier, 2008), in stock market activities such as 

returns, trading volume and trading frequency (Gopikrishnan et al., 1999; 

Gopikrishnan et al., 2000), or even in the distribution of macroeconomic 

disasters worldwide (Barro and Tao, 2011). Many of these empirical 

regularities, with the current economic theories apparatus, has not been 

explained yet (Gabaix, 2009; Gabaix 2014). Several attempts have been 

made to introduce the concepts, methods and models of statistical 

mechanics, dynamical systems and complexity to address them in the 

context of this new multidisciplinary branch of economics called 

“econophysics” (Stanley et al., 2000; Stanley and Plerou, 2001; Durlauf, 
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2005; Rosser, 2008; Holt, Rosser and Colander, 2011; Buldyrev, et al., 

2013). 

 

2.2.3. FIRM SIZE DISTRIBUTIONS 
 

Firm size distributions are the results of many complex interactions 

among several economic forces: entry of new firms, growth rates, business 

cycles, business environment, public regulations, etc. The underlying 

dynamics and explanations that drives the distribution of firms’ size is still 

an issue under intense debate (Zambrano, 2015; Bee, Riccaboni and 

Schiavo, 2017) and organization scholars are discussing which distribution 

– log-normal, Pareto, Weibull or a mixture of them - is the best-fitting 

(Gaffeo et al., 2012). The distribution of firms’ sizes seems to follow a Zipf’s 

law (i.e. a power law with an exponent close to 1), and this regularity holds 

for different methods for measuring firm sizes (number of employees, 

assets, market capitalization) and different countries (In USA: Axtell, 2001; 

Gabaix and Landier 2008; Luttmer 2007; In Europe: Fujiwara et al., 2004; In 

Japan: Okuyama et al., 1999). However, there are significant deviations 

from the Zipf’s distribution for the very small and the very large, and for 

different industrial sectors – the lower and the upper tails of the firm size 

distribution - (Cabral and Mata 2003; Marsili, 2005; Marsili, 2006; Cefis, 

Marsili and Schenk, 2009). 

 

Previous research, before the 2000s, although using partial data –

only firms listed in the stock market -, was also able to identify Zipf’s laws in 

firm sizes (Ijiri and Simon, 1974; Stanley et al., 1995). These studies were 

mainly conducted over data sets at a very high of aggregation that included 

large firms in multiple industrial sectors. For example, Hart and Prais (1956) 

studied the U.K. manufacturing industry, and Simon and Bonini (1958) and 

Hall (1987) focused on the U.S. manufacturing firms across all sectors 

(Bottazzi and Secchi, 2006). 
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Simon (1955) described a stochastic mechanism that produced a 

distribution similar to Pareto’s law, a model with similar underlying structure 

of Champernowne’s (1953) (Simon 1955). These mechanisms assume that 

the process satisfies “Gibrat’s law”: “all firms have the same expected 

growth rate and the same standard deviation of growth rate“ (Gabaix, 2014, 

p. 6). 

 

In the 1930s, the French engineer Gibrat proposed the first formal 

model of the dynamics of firm size and industry structure to explain the 

empirically observed size distribution of firms (Sutton, 1997), taking on the 

following assumptions:  

 

(a) The growth rate of a firm is independent of its size (also known 

as “the law of proportionate effect”). 

(b) The successive growth rates of a company are uncorrelated in 

time. 

 (c) Firms do not interact (Gibrat, 1931). 

 

It has also been defined a Gibrat’s law for means (“the mean of the 

growth rate is independent of size”), and a Gibrat’s law for variance (“the 

variance of the growth rate is independent of size”) (Gabaix, 2009). 

 

Gibrat’s firm size distribution regularity was not studied in depth until 

the 1950s and 60s, when several models were proposed combining 

Gibrat’s Law with other assumptions and caveats (Sutton, 1997). This 

generation of models based on “stochastic growth” culminated with the 

works of Simon and his co-authors in the late 70s. Their models modified 
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Gibrat’s assumptions to better fit the empirical data and defined the market 

as a sequence of independent opportunities, which arise over time.  

 

 Simon and Bonini’s model (1958) was one of the first attempts of 

finding an economic explanation to the regularity in the size distribution of 

firms. Instead of the traditional explanation based on the static cost curve 

that was not able to predict the distribution of firms by size and has not 

explanation of the observed Pareto distribution, they proposed a theory 

based on a stochastic model of the growth process. They assumed the 

Gibrat’s law - the law of proportionate effect - , that is, that size has no 

effect upon the expected percentage growth of a firm: a firm with assets a 

billion dollars’ worth has the same probability of growing, for example, 20%, 

as a firm with a million dollars in assets (Simon and Bonini, 1958, p. 609): 

 

“It has been shown (Simon 1955) that the Pareto curve can be derived 

from Gibrat's law, which states that the percentage growth rate of a firm is 

distributed independently of its size.” (Ijiri and Simon, 1974, p. 316) 

 

Without the assumption of the law of proportionate effect – Gibrat’s 

law, or an approximation to it - distributions from stochastic processes do 

not generate highly skewed distributions such as the log-normal, the Pareto 

distribution, the Yule distribution, or others (Simon and Bonini, 1958). The 

law of proportionate effect is a central feature of Simon and Bonini’s model. 

Successive models trying to explain and model firms’ size distribution will 

retain this concept or adapt it (Ijiri and Simon 1964; Sutton, 1997; Gabaix, 

2009). 

 

The second key basic assumption of Simon and Bonini (1958) model 

– being the first the law of proportionate effect - is that “new firms are being 

born in the smallest-size class at a relatively constant rate” (Simon and 

Bonini, 1958, p. 610). This assumption of a constant “birth rate” for new 
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firms determine the generation of Yule/Pareto distributions, instead of log-

normal ones. An economic interpretation for the parameter α of the power 

law was proposed: “it measures, in a certain sense, the rate of new entry 

into the industry” (Simon and Bonini, 1958, p. 615). They also called for “a 

new statistical measures of the degree of concentration and new 

interpretations of the economic implications of concentration” (Ijiri and 

Simon, 1964, p. 77). Thus, the slope of the Pareto curve should be 

understood as a measure of the degree of business concentration in an 

industry or an economy (Cefis, Marsili and Schenk, 2009). 

 

Simon and Bonini (1958) foresaw the potential public policy 

implications of the processes involved in the firm sizes distribution that, 

determined by a stochastic dynamics, can be altered through different 

administrative interventions, and they proposed to re-examine the principles 

of public policy based on static equilibrium economic schemes developing 

stochastic models of economic growth instead (Simon and Bonini, 1958; 

Durlauf, 2012). Degree of industrial concentration – for example, via 

mergers and acquisitions -, antitrust policies, or monopoly inefficiencies are 

pertinent examples of major issues related to firm distributions and their 

growth dynamics (Lucas, 1978; Cefis, Marsili Schenk, 2009). 

 

In 1964, Ijiri and Simon (1964) developed an improvement in the 

stochastic model for firm sizes distributions, in which they “weakened” one 

of the key assumptions of the model in order to obtain a more consistent 

one closer to the observed facts:  they introduced some variations into the 

law of proportionate effect or Gibrat’s law. Instead of considering that the 

probabilities of the size changes are independent of a firm’s present size, 

that is, each firm has the same probability as any other firm of increasing or 

decreasing in size by any amount in year-to-year changes (say, 5%, 10%, 

etc.) – a Markoff process -, they reformulated the assumption applying the 

Gibrat’s law only to firm size groups or strata, and not to individual firms (Ijiri 

and Simon, 1964). They observed that, in reality, the rate of change in size, 
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are not equal for all individual firms. Year-to year changes in firm size 

showed different percentage variance, decreasing with increase in size. 

“Strong” Gibrat’s law compliance only was observed with whole size 

groups, such as in different industry groups (Ijiri and Simon, 1964). Gibrat’s 

law, assumed in a weak form, was also able to produce skewed equilibrium 

distribution (Ijiri and Simon, 1964). 

 

Surprisingly, now that agent-based modelling is a trend in natural 

and social sciences (Farmer and Foley, 2009), we can already glimpse the 

concepts and principles of agent-based modelling in the Ijiri and Simon’s 

simulations (1964), experimenting with the growth patterns produced by the 

model through additional “runs”, following the individual firms – agents - at 

successive time intervals and changing the parameters (Ijiri and Simon, 

1964). Their results were decisive in the confirmation of the plausibility of 

stochastic modelling and explanation for the Pareto/Yule distribution of firm 

size, based on the “size independence of percentage growth rate (Gibrat’s 

law) and constancy of the entry rate” (Ijiri and Simon, 1974, p. 317).  

 

The 1964 model of Ijiri and Simon was still too simple and did not 

include the effect of mergers and acquisitions, or the possibility of a 

decrease in size of individual firms (Ijiri and Simon, 1964). Later, it was 

discovered that mergers and acquisitions indeed do affect the Pareto 

distribution, increasing the concavity of the curve and introducing a 

significant departure from the theoretical Pareto distribution (Ijiri and Simon, 

1974; Cefis, Marsili and Schenk, 2009). However, when the entire 

population of firms is considered, mergers and acquisitions do not affect the 

global Pareto size distribution and remains invariant, that is, Pareto law 

may only hold when we focus on aggregate statistics (Cefis, Marsili and 

Schenk, 2009).  
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This new framework of stochastic growth would be decisive in the 

later literature, although it was forgotten for almost a decade (Sutton, 1997). 

With new empirical findings, showing that within an industry, smaller firms 

grow faster and are more likely to fail than large firms, literature on this 

tradition had a revival during the mid-80s, such as the Jovanovic’s 

Bayesian learning model (1982) (Bottazzi and Secchi, 2006). In Jovanovic’s 

model, firms learn about their efficiency as they operate within an industry: 

“the efficient grow and survive; the inefficient decline and fail” (Jovanovic, 

1982, p. 649). 

 

Nevertheless, there were a certain discontent with the “pure 

stochastic” character of the models of the 1950s and 1960s. Rather, the 

aim was to develop standard, conventional maximizing models with the 

mere introduction of some stochastic elements into them (Sutton, 1997). On 

the other hand, from an empirical point of view, Gibrat’s law was highly 

controversial and different studies had shown that it may not hold: Gibrat’s 

law contrasts with many theories of firms’ growth and it is at odds with other 

empirical data (Caves 1998; Cefis, Ciccarelli and Orsenigo, 2007). 

Eventually, Sutton (1997) formulated new empirical facts that do not always 

were in agreement with Gibrat’s assumptions: 

 

1. The probability of survival increases with firm size (Hopenhayn, 

1992, p. 1141; Caves 1998, p. 1957). 

2. The proportional rate of growth of a firm conditional on survival is 

decreasing in size (Evans, 1987; Hall, 1987; Cabral and Mata, 2003, 

p. 1075). 

3. For any given size of firm, the proportional rate of growth is smaller 

according as the firm is older, but its probability of survival is greater 

(Caves 1998, p. 1959). 

4. It is frequently observed that the number of producers tends first to 

rise to a peak, and later falls to some lower level. 
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Systematic departures from the Pareto Law can also be observed 

when the analysis is at the sectorial level, or at specific industrial sectors – 

in contrast to the aggregate level -. Concavity and different distributional 

forms appear - such as the log-normal -, and technology play a relevant 

role in shaping firm size distributions (Dosi et al., 1995; Marsili, 2005). In 

the Pareto distribution, the size of small firms is underestimated and the 

size of large firms is overestimated (Marsili, 2006). On the other hand, the 

distribution seems to change over time (Cabral and Mata, 2003), be 

affected by recessions, institutional changes and other macro-economic 

events (Marsili 2006), and may differ from a lognormal-like distribution, 

evolving over time toward symmetry (Cabral and Mata, 2003).  

 

Some authors have argued that the apparent regularities of the 

Pareto distribution and the Gibrat’s law are simply statistical “artefacts”, the 

results of the aggregation of multiple data, which conceals the high 

heterogeneity in firm size distribution and the real dynamics of industries 

across different sectors (Bottazzi and Secchi, 2006). However, further 

research is needed regarding the evolution of the firm size distribution over 

time at different levels (global, sectorial, etc.) (Cabral and Mata, 2003; 

Marsili, 2006). 

 

Other different models have been proposed that have tried to 

improve the drawbacks of Gibrat’s Law assumptions. Bottazzi and Secchi 

(2006) presented a model that tried to avoid the implicit Gibrat’s assumption 

that firms’ growth processes are independent, that there is no form of 

competition among firms. Although Bottazzi and Secchi (2006) still used the 

random, stochastic, Simon-inspired tradition on firm dynamics, they built a 

model in which a stylized idea of competition is introduced: “luck is the 

principal factor that finally distinguishes winners from losers among the 

contenders” (Bottazzi and Secchi 2006, p. 236). The idea of competition is 

implemented through the assignment procedure of different business 
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opportunities among different firms. The probability of obtaining new 

opportunities depends of the number of opportunities already caught by the 

firm. In this way, they introduced the “increasing returns” feature in the 

growth process of firms, a characteristic of the possible diverse positive 

feedback mechanisms observed within markets, business and industries: 

economies of scope, economies of scale, networks possibilities, knowledge 

accumulation, etc. It would be like a version of the “preferential attachment” 

mechanism applied to business opportunities. 

 

Luttmer (2007) was able to obtain the observed firm size distribution 

based on entry and fixed cost, firm-specific preference and technology 

shocks, and selective survivals of firms. Entering firms were able “to 

imitate” in order to success (Luttmer, 2007). The mechanism used random 

growth and Brownian motion similarly to the model developed by Gabaix 

(1999) for the city size distribution (Luttmer, 2007). In this model, the 

observed Zipf’s law distribution is interpreted “to mean that entry cost are 

high or that imitation is difficult, or both.” (Luttmer, 2007, p. 1103). The 

small size of the entrant firms points out that imitation is not an easy task 

for companies. 
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FIGURE 9 - FROM: LUTTMER, E. G. (2007). SELECTION, GROWTH, AND THE SIZE 

DISTRIBUTION OF FIRMS. THE QUARTERLY JOURNAL OF ECONOMICS, P. 1104. 

 

In addition to the several proposed models for the random growth of 

firms such as Luttmer (2007), Gabaix (2009; 2014) has also proposed 

another mechanism that may also play a relevant role in economics: 

efficiency maximization. In biology, the energy that an animal of mass M 

requires to live (metabolic rate) is proportional to M¾. West et al. (1997) 

proposed that the explanation is related to optimization, to maximize 

physiological efficiency: the M3/4 law emerges because the optimal network 

system to send nutrients to the animal is a fractal (scale-free) system. 

Gabaix (2014) has posed the question that if in economics, optimization 

may also explain the network of power law distributed firms: “does it come 

from optimality, as opposed to randomness?” (Gabaix 2014, p. 15). Hence, 
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stochastic processes may not be the main reason to observe power law 

distribution in firms’ sizes or outcomes. Optimal organization may also be a 

decisive factor, and this property may arise in economics as much as in 

biology (West, 2017). 

 

Zambrano et al. (2015) - following the econophysics and 

econochemistry movement in a paper titled “Thermodynamics of firms’ 

growth” - have presented a new thermodynamic model based on the 

Maximum Entropy Principle that tries to describe the dynamics and 

distribution of firms’ growth. They explain the empirical exponent of Pareto’s 

law as the capacity of the economic system for creating or destroying firms. 

If the exponent is larger than 1, creation of firms is favoured; when it is 

smaller than 1, destruction of firms is favoured; if it is equal to 1 (Zipf's law), 

the system is in a full macroeconomic equilibrium, allowing free creation or 

destruction of firms. They expect to build a formalized theory based on 

thermodynamics of the evolution of firms that would lead to a clear and 

intuitive interpretation of the exponents, and to find a tool for making better 

diagnosis of the  health of an economy and facilitating the development of 

improved public policies on fair competence and antitrust measures 

(Zambrano, 2015). 
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3. HEAVY-TAILED DISTRIBUTIONS IN NASCENT 
ENTREPRENEURIAL PROCESSES. 

 

 

3.1. HEAVY-TAILED DISTRIBUTIONS CLASSIFICATION: THE 
RELEVANCE OF THE PROPER TAXONOMY OF THE 
ENTREPRENEURIAL EMPIRICAL DISTRIBUTIONS. 

 

The proper classification (taxonomy) of an empirical distribution has 

an enormous relevance: it reveals the generative mechanism of an 

organizational process and how and why it emerges (Joo, Aguinis and 

Bradley, 2017). The accurate identification of a distribution has major 

implications for appropriately understanding and, eventually, modelling a 

complex process such as nascent ventures’ emergence (Virkar and 

Clauset, 2014). To get statistical evidence for or against a certain 

distribution is complicated, especially if we have large fluctuation at the tail 

of the empirical dataset (Virkar and Clauset, 2014). Therefore, the 

classification of a dataset is not a straightforward task and it may require 

the combination of graphical and statistical tests to reach a desired level of 

confidence in analysing real data (Clauset et al., 2009; Cirillo, 2013). On the 

other hand, the identification of the best fit distribution in nascent 

entrepreneurial outcomes is not a trivial matter: it affects the foundations of 

theory and practice in the research of entrepreneurship (Crawford, Aguinis, 

Lichtenstein, Davidsson, and McKelvey, 2015). It may be critical for 

entrepreneurial theory development, testing, modelling, forecast and 

practice. 

 

As it was mentioned above, non-normal heavy-tail distributions have 

captured the attention of researchers in different disciplines (West, 2017), 

and their study have produced important theoretical and practical 

innovations in several fields, such as physics, computer science, 
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biomedicine, and economics (Mitzenmacher, 2004; Newman, 2005). For 

example, in the identification of power law distributions, Mitzenmacher 

(2005) proposed that the following issues should be addressed: 

 

(a) Observation: Collection of the data on the behaviour of the 

system and demonstration that a heavy tail distribution 

appears to fit the data sets. 

(b) Interpretation: Explanation of the significance of the distribution 

behaviour to the system. 

(c) Modelling: The proposal of an underlying model that explains the 

distribution behaviour, for example, with the use of Agent-

based Modelling and Simulation (ABMS). 

(d) Validation: Data validation of the model, including the necessary 

modifications of the model and its parameters. 

(e) Control: to control, modify, and improve the system behaviour 

using the understanding from the model. 

 

In the last years, several statistical methods for fitting heavy-tailed 

distributions have been developed lowering the barriers for classification 

that involves complex mathematical procedures, sophisticated algorithms 

and elaborated code writing (Clauset et al., 2009; Ginsburg, 2012; Alstott et 

al., 2014; Gillespie, 2015). This paper directly benefits from these new 

fitting packages, especially those from Joo, Aguinis and Bradley (2017) and 

Gillespie (2015), both based in Clauset’s et al. methods (Clauset et al., 

2009). Otherwise the analysis of the different international data sets would 

have been extremely complicated and time consuming (Limpert and Stahel, 

2011). 

 

The goodness of fit of a distribution requires comparing it with the fit 

of other distributions; in this case, using log-likelihood ratios to identify 
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which of the several potential fits are better (Joo, Aguinis & Bradley, 2017). 

Methodologically, it is not necessary to know if a distribution exactly follows 

a certain function or not, but rather if the distribution considered is the best 

description available of the real data set. Systems in the real world have 

noise, and, therefore, few empirical processes should be expected to follow 

a theoretical mathematical distribution (Alstott et al., 2014). On the other 

hand, observed data come from a specific real system and the generative 

mechanism of that system produced the observed data. The candidate 

distribution and its associated generative mechanism have to be plausible 

to the system and the processes that we are analysing. If the candidate 

distribution does not offer a meaningful and credible generative 

mechanism, there is no reason to use it to describe a real data set. 

 

When studying non-normal heavy-tailed distributions in real 

entrepreneurial data sets, initially, most of the methodological approaches 

have assumed the pure power law distribution as the main hypothesis 

(Crawford et al., 2014, 2015). However, not all non-normal heavy-tailed 

distribution fit a pure power law (Aguinis et al., 2016). Not until very 

recently, software improvements have increased the precision of the 

analysis, providing new data treatment procedures that makes much easier 

to explore the better fits for a given heavy-tailed distribution. 

 

The objective of this research – and future research - is to analyse 

the entrepreneurial outcomes of several panel studies on nascent 

entrepreneurs in different countries in order to discover if they follow any 

distinct distribution, taking into consideration the different types and families 

of non-normal heavy-tailed distribution. Previous research has focused 

mainly in US and Australia data (US PSED and Australian CAUSEE): this 

paper will introduce also the analysis of other countries – those with their 

panel datasets are in the public domain - in order to explore if a worldwide 

pattern may exist. 
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The theoretical framework that this research uses is the distribution 

taxonomy developed by Joo, Aguinis & Bradley (2017), and it will be 

applied to nascent entrepreneurial outcomes. This research will also 

consider how these distributions are associated with an idiosyncratic 

generative mechanism, and it will explain how the identified generative 

mechanism may work in the entrepreneurial processes. Methodologically, 

we will use the distribution pitting techniques newly developed in R 

(software package “Dpit”) also by Joo, Aguinis & Bradley (2017)  (freely 

available on http://www.hermanaguinis.com or on the Comprehensive R 

Archive Network – CRAN -) which is able to compare many distributions 

types and to assess how well each distribution may fit a given data set. 

 

Our study, extended across different panel study in different 

countries, suggests that lognormal is the more common distributions in 

entrepreneurial outcomes. In some datasets, the power law with an 

exponential cutoff distribution seems a better fit, but the p value makes very 

difficult to discern if the difference is statistically significant with regard to 

the lognormal distribution fit (see table 2 in the Appendix). 

 

If lognormal distributions are pervasive in nascent entrepreneurial 

outcome, generative mechanisms that are not consistent with this 

distribution are not meaningful for explaining the process. Former research 

in entrepreneurship pointed out to the prevalence of pure power law 

distribution in the outcome variable and its generative mechanism (for 

example, self-organized criticality). 

 

 

 

 

http://www.hermanaguinis.com/
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3.1.1. CLASSIFICATION/TYPES OF NON-NORMAL HEAVY-TAILED 

DISTRIBUTION IN ENTREPRENEURIAL OUTCOMES 
 

Joo, Aguinis and Bradley (2017) have proposed a new taxonomy of 

distributions in organizational literature, consisting in seven possible total 

distributions, grouped into four general categories: 

 

(1) Pure power law. 

(2) Lognormal. 

(3) Exponential tail (including exponential and power law with an 

exponential cutoff). 

(4) Symmetric or potentially symmetric, including Normal, Poisson, 

and Weibull (Clauset, Shalizi and Newman, 2009). 

 

Most of natural - and even social - phenomena can be described by 

these seven functions (Limpert, Stahel and Abbt, 2001; Sornette, 2006). 

And each distribution category can usually be explained by a particular 

generative mechanism: pure power law by self-organized criticality (Bak, 

1996), log-normal distributions by proportional differentiation (Limpert et al., 

2001), exponential tail distributions by incremental differentiation (Amaral et 

al., 2000; Nirei & Souma, 2007), and symmetric distributions (Normal, 

Poisson, and Weibull) by homogenization processes. These four generative 

mechanisms are mutually exclusive and, therefore, they may contribute 

greatly to a better development of theory and modelling (Joo, Aguinis & 

Bradley, 2017). 
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TABLE 2 - TAXONOMY OF JOO, AGUINIS & BRADLEY (2017) WITH THEIR GENERATIVE MECHANISMS 

 

General Distribution Category Generative Mechanism 

pure power law distributions self-organized criticality 

log-normal distributions proportional differentiation 

exponential tail distributions 

(including exponential and power 

law with an exponential cutoff) 

incremental differentiation 

symmetric distributions (Normal, 

Poisson, and Weibull) 

homogenization processes 

 

. 
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FIGURE 10 - VISUAL REPRESENTATION OF THE TAXONOMY OF OF JOO, AGUINIS & 

BRADLEY (2017) WITH SEVEN MAIN TYPES OF DISTRIBUTIONS.  

Parameters: Pure power law (α = 1.5); log-normal (µ = 5, σ = 2); exponential (λ = 0.5); 

power law with an exponential cut-off (α = 1.5, λ = 0.01); Normal or Gaussian (µ = 100, σ = 

1); Poisson (µ = 10); and Weibull (β = 20, λ = 10). The x-axis represents values of a 

continuous variable and the y-axis is the probability of a given value or range of values, 

except for the Poisson distribution, in which the x-axis is a discrete variable, and the y-axis 

the probability of the discrete variable taking on a given discrete value. 
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Although Joo, Aguinis & Bradley (2017) introduced seven 

distributions, the next section will show that the empirical study on nascent 

entrepreneurial outcome variables data sets across different countries only 

detected two main prevalent distributions: log-normal, and until certain 

extent, power law with exponential cut-off (or Weibull, although it is difficult 

to confirm it). This research will follow the “theory pruning” approach, 

focusing only in those processes that are able to generate the more 

pervasive distributions in our nascent entrepreneurial data sets (Leavitt et 

al., 2010). Then, we will explore the theoretical and practical implications for 

the entrepreneurial process of these distributions and their generative 

mechanisms, applying the methodology and data processing described by 

Joo, Aguinis & Bradley (2017). 
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4. MATERIALS AND METHODS 
 

4.1.  INTERNATIONAL LONGITUDINAL PANEL STUDIES AND 
VARIABLES 

 

Although there are several theoretical and conceptual difficulties to 

measure size and growth of nascent ventures and their performance, given 

the variables currently available in the empirical data sets, this research will 

follow Crawford and McKelvey (2012) study, taking as the main variables 

revenues and the number of employees (Cooper, 1993; Coad 2009). 

Specifically, this study analysed these two outcomes variables - revenues 

and number of employees - in different nascent entrepreneurial panel 

studies across three countries located in three different continents: USA, 

Australia and Sweden. Only these four data sets (Australia, Sweden, and 

U.S. PSED I & II), out of the 14 projects that have already been 

implemented, are currently publicly available (Reynolds, 2017b). 

 

4.1.1. PANEL STUDIES OF ENTREPRENEURIAL DYNAMICS II (PSED II) – 

USA. 
 

As described above, PSED II (started in 2005) was an improved 

replication of PSED I, and it makes a series of follow-up interviews of an 

initial cohort of 1,214 American nascent entrepreneurs (Reynolds and 

Curtin, 2008). These longitudinal studies were also replicated in other 

countries - such as Australia, Canada, China, Latvia, Netherlands, Norway, 

UK and Sweden - over the past decade, and they still are at different stages 

of development (Reynolds and Curtin, 2011). 

 

Full details on all interview schedules and questionnaires of the 

Panel Study of Entrepreneurial Dynamics, as well as codebooks and 
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complete data sets are freely available on the project website at the 

University of Michigan: http://www.psed.isr.umich.edu 

 

From the PSED II, this research considers ten variables related to 

new venture outcomes, measured by the number of employees and annual 

revenues at every yearly wave, wave B to F: 

 

These variables are - as defined in the code book by Curtin (2012) -: 

Total Revenues: 

 PSED II USA - Total Revenues BV2 

 PSED II USA - Total Revenues CV2 

 PSED II USA - Total Revenues DV2 

 PSED II USA - Total Revenues EV2 

 PSED II USA - Total Revenues FV2 

 

Number of regular Employees: 

 PSED II USA – Number of regular Employees BU2 

 PSED II USA - Number of regular Employees CU2 

 PSED II USA - Number of regular Employees DU2 

 PSED II USA - Number of regular Employees EU2 

 PSED II USA - Number of regular Employees FU2 

 

 

 

 

http://www.psed.isr.umich.edu/
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4.1.2. THE COMPREHENSIVE AUSTRALIAN STUDY OF 

ENTREPRENEURIAL EMERGENCE RESEARCH PROJECT 

(CAUSEE) 
 

Inspired by the American PSED, the Australian CAUSEE follows a 

sample of approximately 600 emerging start-ups, firms that are in the 

process of being established (nascent firms), and another sample of 

approximately 600 newly established young firms (Davidsson and Steffens, 

2011). The four annual waves of data collection were completed in 2007/8 - 

2010/11 (Davidsson, Steffens and Gordon, 2011). There is extensive 

documentation on the dataset in the related codebook (Gruenhagen et al., 

2016). The CAUSSE datasets, documentation and reports are freely 

available at: 

https://www.qut.edu.au/research-all/research-projects/the-comprehensive-

australian-study-of-entrepreneurial-emergence-causee 

https://eprints.qut.edu.au/49327/ 

 

The variables studied in this research were: 

 

CAUSEE Australia 

Number of full-time Employees 

Young Firms – Wave 1 (Year 1) 

Variable Name: W1: Q205#  

CAUSEE Australia 

Number of full-time Employees 

Young Firms – Wave 2 (Year 2) 

Variable Name: W2_B16 

 

https://www.qut.edu.au/research-all/research-projects/the-comprehensive-australian-study-of-entrepreneurial-emergence-causee
https://www.qut.edu.au/research-all/research-projects/the-comprehensive-australian-study-of-entrepreneurial-emergence-causee
https://eprints.qut.edu.au/49327/
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CAUSEE Australia 

Number of full-time Employees 

Young Firms – Wave 3 (Year 3) 

Variable Name: W3_B16 

CAUSEE Australia 

Number of full-time Employees 

Young Firms – Wave 4 (Year 4) 

Variable Name: W4_B16 

CAUSEE Australia 

Number of full-time Employees 

Young and Nascent Firms – Wave 5 (Year 5) 

Variable Name: W5_Q24 

CAUSEE Australia 

Number of full-time Employees 

Nascent Firms – Wave 1 (Year 1) 

Variable Name: W1: Q252# 

CAUSEE Australia 

Number of full-time Employees 

Nascent Firms – Wave 2 (Year 2) 

Variable Name: W2_C79 

CAUSEE Australia 

Number of full-time Employees 

Nascent Firms – Wave 3 (Year 3) 

Variable Name: W3_C79 

CAUSEE Australia 

Number of full-time Employees 
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Nascent Firms – Wave 4 (Year 4) 

 Variable Name: W4_C79 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 1 (Year 1) 

Variable Name: W1 Q2027# 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 2 (Year 2) 

Variable Name: W2_B18 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 3 (Year 3) 

Variable Name: W3_B18 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 4 (Year 4) 

Variable Name: W4_B18 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 5 (Year 5) 

Variable Name: W5_Q18 [ &R32] [note: same as NF] 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 1 (Year 1) 

Variable Name: W1 Q2030# 
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CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 2 (Year 2) 

Variable Name: W2_C85_consolidated 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 3 (Year 3) 

Variable Name: W3_C85 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 4 (Year 4) 

Variable Name: W4_C85_consolidated 

CAUSEE Australia 

Sales in $ (Total) (Last 12 Months) 

Nascent and Young Firms – Wave 5 (Year 5) 

Variable Name: W5_Q18[& R32] Misma variable que YF 
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4.1.3. SWEDISH PANEL STUDY OF ENTREPRENEURIAL DYNAMICS 

(SWEDISH PSED). 
 

 

Similarly to the US PSED II and the Australian CAUSEE, the 

Swedish PSED  followed 623 nascent entrepreneurs during a six-year 

period (Samuelsson, 2011; Honig and Samuelsson, 2012). The data sets 

are freely available in Dr. Samuelsson's ResearchGate page. 

 

https://www.researchgate.net/project/Swedish-PSED 

 

This page includes: 

 Samuelsson, Mikael. Dataset: erc-neo-ne6-n12-n18-n24-proj—

project based data file will all waves from month 0 to month 14, 

SPSS.SAV file available on Research Gate. 

 Samuelsson, Mikael, Dataset: ERC/PSED-75. 75 month follow up 

data. Technical Report: SWE PSED codebook— all variables with 

names and waves. 

Also: 

Delmar, Frederic. Data form the Swedish PSED (n=223), 1998-2000. 

https://www.researchgate.net/publication/266630741_Swedish_PSE

D_Final_Data_1998 

Delmar, Frederic. Coding Manual for file Swedish PSED data 1998. 

https://www.researchgate.net/publication/262796537_Coding_manu

al_for_Swedish_PSED_final_data 

 

The variables studied in this research were: 

 

https://www.researchgate.net/project/Swedish-PSED
https://www.researchgate.net/publication/266630741_Swedish_PSED_Final_Data_1998
https://www.researchgate.net/publication/266630741_Swedish_PSED_Final_Data_1998
https://www.researchgate.net/publication/262796537_Coding_manual_for_Swedish_PSED_final_data
https://www.researchgate.net/publication/262796537_Coding_manual_for_Swedish_PSED_final_data
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SWEDISH PSED 

Number of full-time Employees – SWE PSED 1 

Wave 1 (Year 0) 

Variable Name: gw31nn00 

SWEDISH PSED 

Number of full-time Employees– SWE PSED 1 

Wave 2 (6 months) 

Variable Name: gw31nn06 

SWEDISH PSED 

Number of full-time Employees – SWE PSED 1 

Wave 3 (12 months) 

Variable Name: gw31nn12 

SWEDISH PSED 

Number of full-time Employees – SWE PSED 1 

Wave 4 (18 months) 

Variable Name: gw31nn18 

SWEDISH PSED 

Number of full-time Employees – SWE PSED 1 

Wave 5 (24 months) 

Variable Name: gw31nn24 

SWEDISH PSED 

Number of full-time Employees – SWE PSED 1 

Wave N75 (75 months) 

Variable Name: gw31n 
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SWEDISH PSED - Outcome Variables 

Sales Turnover (Thousands SEK) 

Last Year 

Variable Name: pt11nn18 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 

First 3 Months 

Variable Name: pt12nn18 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 

First 6 Months 

Variable Name: pt13nn18 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 

First 12 Months 

Variable Name: pt14nn18 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 

Second year of operation (24 months) 

Variable Name: pt11nn24 (global dataset) 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 

Sales Turnover in 1997 

Variable Name: pt31nn24 (global dataset) 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 
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Sales Turnover in 1998 

Variable Name: pt21nn24 (global dataset) 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 

Last Year Sales Turnover after 75 months. 

Variable Name: pt11n (N75 SPSS file) 

SWEDISH PSED 

35. Sales Turnover (Thousands SEK) 

Second year of operation (24 months) file SPSS erc-n24 

Variable Name: SWE_pt11nn24_erc-n24 

36. Sales Turnover (Thousands SEK) 

Sales Turnover in 1998 

Variable Name: pt21nn24_erc-n24 – ver otro file SPSS erc-n24 

SWE_pt21nn24_erc-n24 

SWEDISH PSED 

Number of full-time Employees – SWE PSED 1 

Wave 5 (24 months) 

Variable Name: gw31nn24 – Specific dataset SPSS erc-n24 

SWEDISH PSED 

Sales Turnover (Thousands SEK) 

Sales Turnover in 1997 

Variable Name: pt31nn24_erc-n24 – Specific dataset SPSS erc-n24 
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4.1.4.  DIRECT ACCESS TO THE DATASETS 
 

 Australia: 

Comprehensive Australian Study of Entrepreneurial Emergence 

(CAUSEE). 

 Sweden (SE-PSED): 

https://www.researchgate.net/project/Swedish-PSED 

 

 Delmar, Frederic. Coding Manual for file Swedish PSED data 

1998. Author provided. 

 Samuelsson, Mikael. Dataset: erc-neo-ne6-n12-n18-n24-proj—

project based data file will all waves from month 0 to month 14, 

SPSS.SAV file available on Research Gate. 

 Samuelsson, Mikael, Dataset: ERC/PSED-75. 75 month follow up 

data. Author provided. Samuelsson, Mikael. Technical Report: 

SWE PSED codebook—all variables with names and waves, 

available on Research Gate. 

 U. S. PSED I, II: 

All interview schedules, data sets, and codebooks available online. 

 Five Cohort Harmonized Data Set: 

Reynolds, P. D., Hechavarria, D., Tian, L.-R., Samuelsson, M., & 

Davidsson, P. (2016). Panel Study of Entrepreneurial Dynamics: A 

Five Cohort Outcomes Harmonized Data Set. Research Gate. 

 

4.2. DATA ANALYSIS 
 

The accurate identification of the distribution patterns is complicated 

because of the large fluctuations in the empirical tail of the data distribution, 

that make very difficult the distinction from alternative heavy-tailed 

distributions (for example, the power law, the log-normal or the stretched 

exponential or the Weibull) (Virkar and Clauset, 2014). The proper 

identification of a heavy tailed distribution has theoretical implications and it 

should be statistically validated (Stumpf and Porter, 2012). For example, to 

https://eprints.qut.edu.au/41374/
https://eprints.qut.edu.au/41374/
https://www.researchgate.net/project/Swedish-PSED
http://www.psed.isr.umich.edu/psed/home
http://business.oxfordre.com/view/10.1093/acrefore/9780190224851.001.0001/acrefore-9780190224851-e-86#acrefore-9780190224851-e-86-bibItem-0025
http://dx.doi.org/10.13140/RG.2.1.2561.7682
http://dx.doi.org/10.13140/RG.2.1.2561.7682
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test for the fit of a power law, Clauset et al. (2009) propose a Kolgomorov-

Smirnov test, while Gabaix proposes a simpler alternative method (Gabaix 

and Ibragimov, 2009; Gabaix, 2009). 

 

To calculate the power law model fit and to validate it statically, 

Crawford and McKelvey (2012) and Crawford et al. (2014; 2015) used the 

mathematical procedures described by Clauset et al. (2009). Virkar and 

Clauset (2014) have also developed and updated the protocols for 

analysing heavy-tailed distributions in binned empirical data. Clauset has 

developed a companion web page, hosted by the Santa Fe Institute, in 

which the MATLAB and R scripts (also with other software scripts) of the 

protocols and techniques are freely accessible at: 

http://tuvalu.santafe.edu/~aaronc/powerlaws/ 

http://tuvalu.santafe.edu/~aaronc/powerlaws/bins/ 

 

In the first section of this research, we used and followed procedures 

and layouts of the R statistical package Dpit () designed by Joo, Aguinis & 

Bradley (2017) in order to identify the better fit of the heavy tailed 

distributions of the empirical – real world - datasets. The Dpit package aims 

to identify the better-fit options. However, if we need to study a specific 

distribution more in detail, we need to use complementary statistical 

packages, already developed and tested in R. For this task, we will use the 

R package ‘goft’ version 1.3.4 (“Tests of Fit for some Probability 

Distributions”) and the more sophisticated package ‘fitdistrplus’ version 

1.0-9 (“Help to Fit of a Parametric Distribution to Non-Censored or 

Censored Data”). Both packages are freely available at the CRAN package 

repository (https://cran.r-project.org/). 

 

 

http://tuvalu.santafe.edu/~aaronc/powerlaws/
http://tuvalu.santafe.edu/~aaronc/powerlaws/bins/
https://cran.r-project.org/
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THE DPIT() PACKAGE (IN R) 
 

Distribution fitting is not a straightforward task, especially dealing 

with non-normal and heavy tailed functions (Stumpf & Porter, 2012). It is 

necessary to compare distributions with one another in order to find the 

distribution that better fits a sample. Until very recently, with the statistical 

software packages available, the implementation of this comparative 

process among distributions was especially difficult and time-consuming. 

Lately, Joo, Aguinis, & Bradley (2017) have developed a methodology for 

distribution fitting and a new R package, called Dpit, that is able to compare 

simultaneously the seven types of distributions of their proposed taxonomy: 

1) pure power law, 2) lognormal, 3) exponential, 4) power law with an 

exponential cutoff, 5) Normal, 6) Poisson, and 7) Weibull. Researchers can 

then examine the fit of the seven distributions per sample. 

 

The package is freely available on: http://www.hermanaguinis.com and 

on the Comprehensive R Archive Network (CRAN), with other related 

packages such as poweRlaw (Gillespie, 2015). Dpit was also built using 

the code available at http://tuvalu.santafe.edu/~aaronc/powerlaws/ (Clauset, 

Shalizi, and Newman, 2009; Virkar and Clauset, 2014). In particular, they 

mainly borrowed their package from Shalizi's code. However, the Dpit 

package differs from previous packages in relevant aspects. The Dpit 

package has several remarkable features that make the comparison 

procedure among alternative distribution much easier. 

 

Firstly, it has loop functions that automatically clean samples, 

removing missing cases and zeros. Secondly, it skips over unsuccessful 

calculations and continues processing the rest of the data. These features 

were not available in previous packages (for example, poweRlaw package 

in R; Gillespie, 2015). Thirdly, Dpit sets the minimum value in a sample to 

the lowest positive number, and, consequently, try to assess the fit of the 

distribution not only in the tail, but also in the complete data set. That is, the 

http://www.hermanaguinis.com/
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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Dpit() function does not reject data points that fall below a certain 

threshold, or xmin. This is because the goal of Dpit() is to determine whether 

the complete data set itself follows a certain type of distribution, not whether 

the tail end (only a fragment) of the data set follows a certain type of 

distribution. This feature is decisive, because previous methodologies and 

packages focused only on the tail of the distribution, and, as a result, the 

data set was incomplete and truncated, and many data points that fell 

below a certain threshold were rejected. The resulting analysis was then 

biased and distorted, making impossible to identify clearly the generative 

mechanism of the distribution. 

 

COMPLEMENTARY STATISTICAL SOFTWARE PACKAGES 
 

 

Additionally, to the Dpit() distribution comparison package, this research 

also uses two complementary statistical software packages in R: Goft and 

‘fitdistrplus’. These packages do not compare distributions, but rather they 

analyse more in detail an empirical dataset and offer illustrative statistical 

metrics on a specific distribution (p-value, several goodness-of-fit tests, 

etc.). 

 

The R Goft package, developed by Elizabeth Gonzalez-Estrada and 

Jose A. Villasenor-Alva, is a straightforward package that provides quick 

tests for the goodness-of-fit and p-values for the different distribution 

possibilities: gamma, inverse Gaussian, log-normal, 'Weibull', 'Frechet', 

Gumbel, normal, multivariate normal, Cauchy, Laplace or double 

exponential, exponential and generalized Pareto distributions. 

(https://CRAN.R-project.org/package=goft) (Villasenor and Gonzalez-

Estrada, 2009; 2015). This package offer a good first approximation to the 

best fit looking at the p-value of the test. 

 

https://cran.r-project.org/package=goft
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The second package, ‘fitdistrplus’, developed by Delignette-Muller and 

Dutang, (2014, 2015), offer a more complete set of statistics, plots and 

comparisons among the potential distributions (https://CRAN.R-

project.org/package=fitdistrplus). It provides functions to help the fit of a 

parametric distribution to non-censored or censored data. It also provides 

maximum likelihood estimation (MLE), moment matching (MME), quantile 

matching (QME) and maximum goodness-of-fit estimation (MGE) methods 

(when is possible to performance these calculations). 

.  

In the second section of this research, in the data analysis of the 

agent-based model, another useful package is RNetLogo (Thiele, 2014) 

can be used. It provides an interface to the agent-based modelling platform 

NetLogo. The interface allows to use and access Wilensky's NetLogo 

(Wilensky 1999) from R (R Core Team, 2018) using either headless (no 

GUI) or interactive GUI mode. It offers functions to load models, execute 

commands, and get values from reporters making much easier to transfer 

big amount of data from the agent-based model, generated by the agent-

based platform Netlogo, to the statistical software R. Once the agent-based 

platform has transferred the dataset to R, it can be processed and analysed 

with the R software packages decribed above. 

 

 

 

 

 

 

 

 

 

https://cran.r-project.org/package=fitdistrplus
https://cran.r-project.org/package=fitdistrplus
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Software Authors Description Location 

R statistical 

package Dpit 

() 

Joo, 

Aguinis & 

Bradley 

(2017) 

Identification of 

the better fit of 

heavy tailed 

distributions in 

empirical 

datasets. 

http://www.hermanaguinis.com 

 

R package 

‘goft’ version 

1.3.4  

Villasenor 

and 

Gonzalez

-Estrada 

(2009, 

2015) 

“Tests of Fit for 

some 

Probability 

Distributions” 

https://CRAN.R-

project.org/package=goft 

package 

‘fitdistrplus’ 

version 1.0-9  

Delignett

e-Muller 

and 

Dutang, 

(2014, 

2015) 

“Help to Fit of 

a Parametric 

Distribution to 

Non-Censored 

or Censored 

Data”. 

https://CRAN.R-

project.org/package=fitdistrplu

s 

RNetLogo  Thiele, 

2014. 

It allows to use 

and access 

Wilensky's 

NetLogo 

(Wilensky 

1999) from R 

(R Core Team, 

2018) 

 

 

http://cran.r-

project.org/web/packages/RN

etLogo/index.html 

 

http://www.hermanaguinis.com/
https://cran.r-project.org/package=goft
https://cran.r-project.org/package=goft
https://cran.r-project.org/package=fitdistrplus
https://cran.r-project.org/package=fitdistrplus
https://cran.r-project.org/package=fitdistrplus
http://cran.r-project.org/web/packages/RNetLogo/index.html
http://cran.r-project.org/web/packages/RNetLogo/index.html
http://cran.r-project.org/web/packages/RNetLogo/index.html
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poweRlaw 

package in R 

Gillespie, 

2015. 

Statistical 

software 

package to 

analyse heavy-

tailed 

distributions. 

CRAN package repository: 

https://cran.r-project.org/ 

 

 

 

DPIT() PROCEDURE 
 

Although Dpit() has embed an internal function that cleans the 

sample, in any case, to avoid any potential problem, for this research, data 

sets were previous cleaned removing zeros (the logarithm of zero is 

undefined), and codes related to “Do not know” or “NA” (Alstott et al., 

2014). 

 

After loading the Dpit package and the PoweRlaw package, the 48 

samples of entrepreneurial outcomes were introduced in R, and then, we 

entered the command line in R: out <- Dpit(data set) for each sample. This 

command led to comparing all seven distributions with each other per 

sample (i.e., 21 instances of distribution pitting per sample). See Appendix 

Table 1: Distribution Pitting Statistics ( Dpit() Results). 

 

For each comparison between two distributions, the Dpit package 

offers two types of statistics for the data set: a log-likelihood ratio (LR) and 

its associated p value. The log-likelihood ratio (LR) measures the degree to 

which the first distribution fits better than the second distribution. Dpit treats 

one distribution as the first distribution and the other as the second 

distributions. A positive log-likelihood ratio means that the first distribution is 

https://cran.r-project.org/
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a better fit. A negative log-likelihood ratio means that the second 

distribution is a better fit. 

 

A log-likelihood ratio value of zero establishes the null hypothesis 

(both distributions in the comparison fit similarly). The p value of each log-

likelihood ratio reflects the extent to which the presence of a nonzero log-

likelihood ratio value can be explained merely by random fluctuations 

(Clauset et al., 2009). Therefore, in this statistical package, the higher the p 

value, the more probable that the log-likelihood ratio value is simply 

originated by randomness. Joo, Aguinis and Bradley (2017) and Clauset et 

al. (2009), adopted the p value cut-off of 0.10, and considered p values 

higher that 0.10 not statistically significant. When comparing among the 

different potential distributions, if only one type of distribution was never the 

worse fit (log-likelihood ratio and p-value), it was considered the probable 

dominant distribution for that concrete the nascent entrepreneurial data set. 

 

Joo, Aguinis and Bradley (2017) developed a sophisticated protocol 

to decide which would be the distribution that better fit in the cases that the 

distribution pitting results were not conclusive. Their data sets were very 

diverse - 229 samples - and they were able to identify many different types 

of distributions (such as Weibull, Normal, exponential, etc.). However, 

unlike the Joo, Aguinis and Bradley (2017) data sets, the nascent 

entrepreneurial datasets of this study largely showed only two possible 

dominant distributions: lognormal and power law with exponential cut-off. In 

many cases, the p high values (randomness, noise) made it inconclusive to 

identify the best fit between lognormal and power law with exponential cut-

off distributions. 
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4.3. RESULTS 
 

Table 1 (see Appendix 1: “Distribution Pitting Statistics ( Dpit() 

Results”) shows the complete detailed distribution pitting statistics 

generated by the package Dpit. There each log-likelihood ratio value and 

its p-value (p-value in parentheses) can be found for the 21 comparison in 

total between potential distributions, for each of the nascent entrepreneurial 

dataset variables. 

 

Table 3 (below) show an example of the Dpit results (distribution 

pitting) for one of the outcome variable of the CAUSEE panel study in 

Australia, Sales in $ (AUD), in the first wave (first year of the study) for 

nascent ventures (firms in the process of establishing) (sample number 16). 

The software compares each of the seven potential distributions with each 

other. The abbreviation NormvPL means the comparison between the 

normal distribution versus the pure power law distribution (“Norm v PL”). A 

positive result of the normalized log-likelihood ratio value implies that the 

first distribution indicates a superior fit in the comparison abbreviation name 

“NormvPL”. On the other hand, a negative result of the normalized log-

likelihood ratio value implies that the second distribution (pure power law, 

PL) is the superior fit. 

 

For example, the results corresponding to the comparison between 

the power law with exponential cut-off versus the lognormal distribution 

(abbreviated as “CutvLogN”) were -3.61 (0.0003). That means that value of 

the normalized log-likelihood ratio is -3.61 and the p-value is 0.0003. The 

log-likelihood ratio value is negative; therefore, the second distribution of 

this comparison “CutvLogN”, the log-normal distribution, should be 

preferred. The p-value is 0.0003, is below the 0.10-cutoff, implying that the 

lognormal distribution (LogN) is a better fit in comparison to the power law 

with exponentical cut-off (Cut) and that the comparison is statistically 

significant and not only due to randomness in the sample. If we analyse the 
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rest of the 20 comparisons for this CAUSEE outcome variable (Sales in $ 

(AUD), in the first wave, nascent firms), with their log-likelihood ratios and 

their p values, we can conclude that, in this specific sample, the lognormal 

distribution is indeed the best fit, and this result is statistically significant. 

 

 

 

TABLE 3 – DPIT () RESULTS FOLLOWING PROCEDURE AND DATA LAYOUT OF JOO, AGUINIS AND BRADLEY 

(2017) :  
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Table 3: Dpit results - with procedure and data layout of  Joo, Aguinis and Bradley (2017) - (distribution pitting) for one of the outcome 

variable of the CAUSEE panel study in Australia, Sales in $ (AUD), in the first wave (after the first year of the study) for nascent ventures 

(firms in the process of establishing) (sample number 16). 

The six columns of the table show the comparison results calculated by the software package Dpit() in R. For each comparison, it is shown the 

normalized log-likelihood ratio value followed by the normalized p-value (in parentheses). 

Abbreviations of distribution names: PL = Pure power law, LogN = Lognormal, Exp = Exponential, Cut = Power law with an exponential cutoff, 

Norm = Normal, Pois = Poisson, and Weib = Weibull. 

Abreviations of comparison between distributions: For example, NormvPL means Normal distribution versus power law distribution. A positive 

result of the normalized log-likelihood ratio value implies that the first distribution indicates a superior fit in the comparison abbreviation name 

NormvPL. On the other hand, a negative result of the normalized log-likelihood ratio value implies that the second distribution is the superior fit. 

p = statistical significance for the normalized log-likelihood ratio value. 

 Poisson’s log-likelihood ratio and p-values are not available for continuous data. 

 

Variable N (size of sample) 

NormvPL NormvCut NormvWeib NormvLogN NormvExp       NormvPois 

 

PLvCut PLvWeib PLvLogN PLvExp PLvPois 

  

CutvWeib CutvLogN CutvExp CutvPois 

   

WiebvLogN WeibvExp WeibvPois 

    

LogNvExp LogNvPois 

          ExpvPois 

 

16. Sales in $(AUD) (Total) (Last 12 Months) 302 -6.59 (0) -8.94 (0) -7.24 (0) -8.57 (0) -12.59 (0) 2.41 (0.016) 

Variable Name: W1 Q2030# 
  

-138.8 (0) -3.70 (0.0002) -14.27 (0) 1.82 (0.07) 2.41 (0.016) 

Nascent Firms – Wave 1 (Year 1) 
   

6.08 (0) -3.61 (0.0003) 4.47 (0) 2.41 (0.016) 

     
-11.09 (0) 2.56 (0.01) 2.41 (0.016) 

      
4.55 (0) 2.41 (0.016) 

       
2.41 (0.016) 
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Table 2 of the Appendix (“Distribution Pitting Conclusions”) shows 

the probable dominant distributions for the 47 (one sample is duplicated) 

selected nascent entrepreneurial outcome data sets from Australia, 

Sweden and USA, and some comments about whether the pitting results 

were statistically significant or not, and their probable generative 

mechanisms. In many cases, the log-likelihood ratio value pointed out to 

certain distributions but the p-values are too high, which cast doubts about 

the rejection of the null hypothesis, that is, about the conclusion that one 

distribution is indeed a better fit than the other. 

 

The analysis of the distribution pitting results in entrepreneurial 

outcome datasets showed that both the lognormal and the power law with 

an exponential cut-off were identified as the best fitting distribution for most 

of the samples. However, in the comparison between these two 

distributions, again, sometimes, the p-values were high and, therefore, we 

could not reject the null hypotheses, that is, that both distributions would 

have a plausible similar fitting: both may be acceptable statistically. In order 

to resolve these ambiguous situations, in which, because of the high p-

value we cannot determine the best fit - in this case, between lognormal or 

the power law with a exponential cut-off -, Joo, Aguinis and Bradley (2017) 

developed a set of decision rules. 

 

The first decision rule of Joo, Aguinis and Bradley (2017) has 

already been described above: taken into account the positive or negative 

value of the normalized log-likelihood ratio (being LR=0 the null 

hypothesis), and the p-value (being the p value cut-off of 0.10), per 

variable, if only one type of distribution – say, the lognormal - was never the 

worse fitting distribution, then, that distribution should be considered the 

probable dominant distribution. However, if several types of distributions 

were never identified as being the worse fitting option, then, Joo, Aguinis 

and Bradley (2017) proposed to apply two additional decisions rules. 
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Their second rule, based in the principle of parsimony, discriminated 

among nested distributions. Their taxonomy has three pairs of nested 

distributions. They are: 

 

(a) power law with an exponential cut-off (two parameters) and pure 

power law distribution (one parameter);  

(b) power law with an exponential cut-off (two parameters) and 

exponential distribution (one parameter);  

 (c) Weibull distribution (two parameters) and exponential distribution 

(one parameter). 

 

The second rule states that the distribution with more parameters in 

the nested distribution is the worst fitting option for the observed dataset. 

However, in our example, given that the lognormal distribution and the 

power law with an exponential cut-off are not a pair of nested distribution, 

we cannot apply this second rule in order to decide which distribution is 

better. 

 

The third decision rule is also based in the principle of parsimony, 

and it refers to the distribution with fewer possible “shapes”. In Joo, Aguinis 

and Bradley’s taxonomy (2017), this is related to their classification in terms 

of the flexibility of the distribution, that is, the possibility to change the 

shape of the distribution (for example, the skewedness) merely changing 

the value of their parameters: 

 

-flexible distributions: the lognormal, Poisson, and Weibull 

distributions. 

- Inflexible distributions: the pure power law, exponential, power law 

with an exponential cut-off, and normal distributions. 
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The third decision rule states that when we have to decide between 

a flexible and an inflexible distribution, we should consider the inflexible 

distribution the best explanation: it is better to choose the distribution with 

fewer possible distribution shapes. 

 

These decision rules, however, have strong methodological 

limitations: 

“(…), the three decision rules that we used for implementing distribution 
pitting should not be interpreted as leading to clear-cut, black-and-white results. 
Instead, our decision rules are designed to help the user choose the most likely 
dominant distribution for a given dataset, given that the shape of an individual 
output distribution may be the result of multiple mechanisms operating 
simultaneously. In the future, methodological advances may allow the user to 
identify and weigh the importance of each mechanism contributing to the shape of 

an individual output distribution.” (Joo, Aguinis and Bradley, 2017, p. 1043). 

 

In our samples, the Joo, Aguinis and Bradley’s (2017) third decision 

rule would prefer the power law with an exponential cut-off because it is 

inflexible, and they would recommend to reject the lognormal distribution 

because it is flexible. Overall, our results show a high level of 

inconclusiveness about the best fit distribution, even applying the three 

rules described by Joo, Aguinis and Bradley (2017). The third rule seems to 

impose a very strong restriction that forces us to choose only a distribution 

– power law with an exponential cut-off - in ambiguous situations without a 

clear methodological background to do so, or forcing us to choose a 

generative mechanism – incremental differentiation - that is always not 

coherent with the rest of results. If we consider only rule #1 and #2, the 

lognormal distribution would be plausible for most of the distributions 

(except a few variables in the Australian CAUSEE data set). On the other 

hand, it is possible that a sample may have a section of the data behaving 

in a log-normal manner, and another section showing a power law 
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distribution, and that the software is still not developed enough to 

differentiate both sections in the same sample. 

 

4.4. DISCUSSION OF THE RESULTS 
 

Joo, Aguinis and Bradley (2017) have proposed a new distribution 

pitting methodology for the assessment of the types of non-normal 

distributions that are better in the fitting of individual output distributions 

(Joo, Aguinis and Bradley, 2017). We have followed their methodology for 

nascent entrepreneurial outcomes datasets across different longitudinal 

studies in different countries. The implementation of the distribution pitting 

was through a new R statistical package, called Dpit. They also developed 

a set of decision rules to identify the more dominant function (or functions) 

and generative mechanism in each sample. After applying the Dpit 

package to the outcomes variables of nascent entrepreneurial datasets, we 

found that the results mostly suggested two types of distributions for these 

entrepreneurial samples: power law with an exponential cut-off and 

lognormal distributions.  

 

However, the results were not completely conclusive. Deciding 

between a lognormal distribution and a power law with an exponential cut-

off distribution, Rule #3 suggests choosing the less flexible distribution, 

which is the power law with an exponential cut-off. However, at level of 

Rule #2, choosing lognormal behaviour would offer a more inclusive and 

plausible common mechanism for explaining the complete set of samples. 

Choosing the power law with an exponential cut-off would leave behind 

almost half of the variables, many of which are definitively lognormal, and 

with a very strong statistical significance. 
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Except four samples in the Australian CAUSEE panel, which 

undoubtedly are power law with an exponential cut-off distributions, the 

complete set of entrepreneurial outcomes variables can be plausibly 

explained by lognormal distributions and its generative mechanism, 

proportionate differentiation. Our results in entrepreneurial outcome 

variables contrast with those of Joo, Aguinis and Bradley’s (2017) results in 

individual outputs in other organizational contexts. They found that 75% of 

the samples in different occupations and collectives suggested the 

exponential and power law with an exponential cut-off, and their associated 

generative mechanism - incremental differentiation - as the prevailing 

distribution and explanation, that is, some individuals have bigger linear 

increases in output than others. 

 

The fact that nascent entrepreneurial outcome variables seems 

to follow lognormal distributions has relevant theoretical and practical 

implications, and it may reveal that a different generative mechanism 

than in other organizational processes might be at play. If we may have 

to reject pure power law distributions and their generative mechanism (self-

organized criticality) for explaining the entrepreneurial dynamics, at least in 

most of the nascent entrepreneurial dataset, how can we explain the 

emergence of new ventures based on proportionate differentiation, the 

generative mechanism of lognormal distributions? 
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5. THEORETICAL AND PRACTICAL IMPLICATIONS: 
LOGNORMAL DISTRIBUTIONS VERSUS EXPONENTIAL 
DISTRIBUTIONS 

 

5.1. LOGNORMAL DISTRIBUTIONS 
 

5.1.1. DESCRIPTION OF THE LOGNORMAL DISTRIBUTION 
 

 

 

FIGURE 11  - FIGURE OF AN EXAMPLE OF LOGNORMAL DISTRIBUTION FROM JOO, AGUINIS 

& BRADLEY (2017, P. 1024). 

[µ = 5, σ = 2] 

 

The lognormal distribution belongs to the class of the skewed 

distributions. Many measurements in natural and social sciences show 

skewed behaviour, especially when mean values are low, variances are 

large, and the variable values cannot be negative (Limpert et al., 2001). 

Frequently, those skewed distributions are well described by the lognormal 

distribution pattern (Aitchison and Brown, 1957; Limpert et al., 2001; 

Antoniou et al., 2004). Lognormal distributions can be found across 

sciences, such as geology, epidemiology, environmental sciences, 
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microbiology, linguistic, economics or finance. Income distributions are 

classical examples in social sciences and economics (Aitchison and Brown 

1957; Limpert et al., 2001). In a classical text on log-normality, Aitchison 

and Brown (1957), for example, claimed that national income across 

countries shows lognormal distributions characteristics. 

 

The difference of variability between the normal (Gaussian) and 

lognormal distribution is based on the way in which different forces act 

independently of one another in a particular process, whereby the effects 

are additive in normal distributions but multiplicative in lognormal 

distributions. That is, the product of many independent positive random 

variables – equally distributed - produces lognormal distributions, similarly 

to the central limit theorem, but in its multiplicative version. This is called in 

probability “the multiplicative central limit theorem” (Limpert et al 2001, p. 

344). If the sum of several independent Gaussian variables produces a 

Gaussian random variable, the multiplication of several independent 

lognormal variables generates a lognormal distribution. 

 

The properties of lognormal distributions were defined since the XIX 

century (Galton, 1879; McAlister, 1879; Gibrat, 1931; Gaddum, 1945). If a 

random variable X is log-normally distributed, then its logarithm (Y= log(X)) 

has a normal distribution. The variable has to have positive values (log of 0 

is not defined) and the distribution is skewed to the left (see figure below 

from Limpert et al., 2001, p. 344). The lognormal distribution shows a bell 

shape head on the left and a finite heavy tail on the right (figure 11 a). 

Using a logarithm scale on a lognormal distribution will generate the well-

known bell shape of the normal distribution (see figure 11 b) 
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FIGURE 12 - FIGURE 3 FROM LIMPERT ET AL 2001, P. 344. AN EXAMPLE OF A 

LOGNORMAL DISTRIBUTION WITH ORIGINAL SCALE (A) AND WITH LOGARITHMIC SCALE 

(B). 

 

Lognormal distributions are Gaussian distributions in the logarithm 

form of a given variable. If Y is the variable, the distribution appears 

Gaussian when it is formulated in terms of the logarithm of Y. Similarly to 

the log Y, the function of the distribution itself in its logarithmic form of the 

variable is scale invariant. Lognormal distributions arise from non-linear 

transformations (West and Deering, 1995). 

 

As the normal (Gaussian) distribution, the lognormal distribution is 

also specified by two parameters of log (Y) of the variable: the mean mu 

(μ), always positive, and the standard deviation, or sigma (σ) (>0). The 

mean does not affect the heaviness of the distribution at the right tail; 

however, a high value of the standard deviation will make the right tail 

heavier. The ranges of the standard variation are meaningful because they 

are related to the sources of variability in the processes under study. For 

example, the lognormal distributions related to the infection processes of 

pathogens in humans may show different standard deviation depending on 

the genetic variability of the human populations (Limpert et al., 2001). 
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To generate a log-normal distribution using a standard statistical 

software, we have to consider the following steps: If Y represents the 

variable that we want to have a normal distribution, and µ is the mean and 

σ the standard deviation of Y, then a log-normal distribution can be code 

programmed as ℮^(random-normal M S) where: 

 

 M = ln(µ) – (β/2),  

S = √β, and  

β = ln [1 + (σ2 / µ2)],  

 

and “random normal” is a procedure that reports a normally 

distributed random floating point number (Railsback & Grimm, 2012). We 

will see the relevance of these algebraic expressions to understand 

lognormal distribution below in the agent-based model coding section of 

this research.    

 

However, lognormal distributions are difficult to identify (Limpert et 

al., 2001). The similarities with normal distributions in some aspects are 

probably the cause of been taken as normal until very recently (Limpert et 

al., 2001, p. 350). Only because of the new advances in computer software 

development, their identification has been possible and accessible to 

natural and social researchers (see above section of new pitting software). 

Curiously, a normal distribution can be fitted in terms of lognormality with 

high levels of statistically significance (p-values), but not the opposite. 

There are not examples of original measurements that follow normal 

distributions that cannot be described by a lognormal distribution just 

merely adapting accordingly the parameters (Limpert et al., 2001, p. 350). 
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FIGURE 13  - FIGURE FROM LIMPERT ET AL., 2001, P. 342: AN EXAMPLE OF NORMAL DISTRIBUTION 

(A) AND OF A LOGNORMAL DISTRIBUTION (B). IN THE FIGURE A, THE NORMAL DISTRIBUTION HAS A 

GOODNESS OF FIT P VALUE OF 0.75, BUT THE LOGNORMAL DISTRIBUTION MAY ALSO FIT EQUALLY 

WELL WITH A P VALUE OF 0.74. IN CONTRAST, IN FIGURE B, THE LOGNORMAL DISTRIBUTION FIT 

WITH A P VALUE OF 0.41, BUT NOT WITH THE NORMAL (P VALUE 0.0000). 

 

Normal and lognormal distributions can both describe well a certain 

dataset when there are small coefficients of variation. However, when we 

find high level of variability, often, the lognormal distribution is more 

appropriate. 
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FIGURE 14  - FIGURE 4 LIMPERT, 2011, P. 344. THE FIGURE SHOWS DENSITY FUNCTIONS OF 

DIFFERENT LOGNORMAL DISTRIBUTIONS COMPARED WITH A NORMAL DISTRIBUTION (SHADED, 
MEAN = 100; STANDARD DEVIATION = 20). ALL THE LOGNORMAL DISTRIBUTIONS HAVE THE SAME 

MEDIAN. MERELY CHANGING THE STANDARD DEVIATION OF THE LOGNORMAL DISTRIBUTION, THE 

NORMAL DISTRIBUTION CAN BE MIMICKED. IT IS POSSIBLE TO GET A NORMAL DISTRIBUTION OUT 

OF A LOGNORMAL DISTRIBUTION, BUT NOT THE OPPOSITE. 

 

Both pure power laws and lognormal distributions have heavy tails 

and extreme values on the right, however, lognormal distributions decay 

more intensely. In comparison with the rest of the distribution, after the pure 

power law distribution, the lognormal shows the second heaviest right tail. 
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5.1.2. LOGNORMAL DISTRIBUTIONS AND MULTIPLICATIVE PROCESSES 
 

It was mentioned above that lognormal distribution differs from the 

normal Gaussian distribution because the different forces acting 

independently on one process are multiplicative instead of additive. The 

product of many independent positive random variables – equally 

distributed - produces lognormal distributions. It is called “the multiplicative 

central limit theorem” (Limpert et al., 2001, p. 344). 

 

But why and how does a lognormal distribution emerge? Aitchison 

and Brown (1957) described mathematically several theories that may 

explain the genesis of lognormal distributions. They insist that a distribution 

with a good fit regarding the empirical data is not always enough. The 

search for the fundamental base of a distribution may provide clearer 

insights of the underlying process and it may offer a wider application of the 

system under study. On the other hand, it helps us to be able to know, 

understand and modify the distribution parameters in order to meet new 

circumstances and different empirical data of a similar process elsewhere 

(Aitchison and Brown, 1957). 

 

Based on the works of Kapteyn (1903) and his analogue machine to 

generate lognormal histograms, Aitchison and Brown (1957) developed a 

formulation of “the law of proportionate effect”, proposed as the generative 

mechanism of these distributions: 

 

“A variate subject to a process of change is said to obey the law of 

proportionate effect if the change in the variate at any step of the process 

is a random proportion of the previous value of the variate” (Aitchison y 

Brown 1957, p. 22). 
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It should be noticed that although the law has been usually 

considered as an ordered sequence of events in time, especially in the 

context of biological research – for example, during the period of growth to 

maturity of an organ or organism -, in other fields such as economics, this 

approach may be misleading. One variation of the law of proportionate 

effect states that the greater the number of steps in the sequence, that is, 

the longer the law of proportionate effect is in operation, the greater the 

value of the variance (σ2 parameter). This approach assumes that the law 

operates continually, ad infinitum. But many phenomena, for example, in 

the study of the size distribution of incomes, this “continuum” assumption 

cannot be accepted. If the law operates continually, the implication is that 

the inequalities of incomes, that it is measured by the parameter variance, 

σ2, must continually increase, which is not the empirical case: the inequality 

of incomes remains constant through time. To resolve this problem Kalecki 

(1945) proposed to abandon the assumptions related to consider the 

processes only in temporal terms. For example, the variations in the 

inequality of incomes may be considered as mainly determined by multiple 

economic forces. At any point in time, the distribution of the variable 

emerges out of an enormous number of causes which operate 

simultaneously. The outcome of these many different effects and causes, if 

they interact following the law of proportionate effect, is again to produce a 

lognormal distribution of incomes (Aitchison and Brown, 1957, p. 25). 

 

As another possible process that may generate lognormal 

distributions, Aitchison and Brown (1957, p.26-27) introduced the theory of 

breakage, originated in the study of particle-size statistics, based in the 

works of Kolmogoroff (1941) (later also Epstein, 1947, and Herdan, 1953). 

Kolmogoroff (1941) proposed this model to explain the emergence of two-

parameter lognormal distributions in ores that have been crushed either by 

natural process or by artificial ones. The theoretical background of 
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Komogorov’s discussion is essentially an application and restatement of the 

“theory of proportionate effect”, mentioned above. 

 

Applying the Russian mathematician Kolmogorov’s “theory of 

breakage”, West and Deering (1995) illustrated with an example how to 

explain the distribution of income. For West and Deering (1995, p. 152), the 

distribution of income should be understood as a “Multiplicative Statistical 

Process” that operates as follows. First, it is assumed that to in order to 

reach a certain level of income, a complex process, several sub-tasks have 

to be implemented, such as: 

 

1) To be born in a certain social background. 

2) To have a minimum educational level. 

3) To possess a determined personality type. 

4) To be able to perform certain technical skills. 

5) To have a certain level of communication skills. 

6) To be motivated. 

7) To be in the right place at the right time. 

8) To be willing of taking risks. 

 

For each individual, a series of probabilities is assigned for the 

implementation of each of the eight factors above. Thus, the probability of 

reaching a certain level of total income is proportional to the product of 

each of these eight probabilities: p1 * p2 * p3 *…* p8. Following Kolmogorov 

theory, the results will be a lognormal distribution (West & Deering, 1995, p. 

152). 
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FIGURE 15 - FIGURE PROPOSED BY WEST & DEERING (1995, P. 151) TO SHOW A LOGNORMAL 

DISTRIBUTIONS OF INCOME LEVELS FOR FAMILIES AND SINGLE INDIVIDUALS IN 1935-36 (FIGURE 

3.16) 

 

In this figure (3.16), the lognormal distribution seems to fit 

adequately for a 97% or 98% of the total population. However, the last 2% 

or 3% seems to follow an inverse power law (West and Deering 1995, p. 

152). 

 

 

Another example of a multiplicative process generating a lognormal 

distribution, also introduced by West & Deering (1995), was developed by 

the controversial Nobel Prize William Shockley in a completely different 
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context. In the 1950s, Shockley was puzzled for the fact that there was a 

great difference among the number of scientific publications published by 

the staff of scientific research laboratories. Some scientists were able to 

publish at a rate even higher than fifty times more than others were. 

Shockley also noticed that differences in the rates of performing other 

human activities are not so big among individuals, for example walk speed 

(in a range of 2 to 5 mph), running speed, pulse rate, talk speed, etc. show 

much narrower limits (Shockley, 1957, p. 284). So, why then were there 

such individual variations of productivity in Research Laboratories that can 

reach even nearly one hundred-fold between extreme individuals? Why are 

the spread in rates so greater than it is for other human activities? Shockey 

(1957, p. 280) argued that in many natural phenomena, where the variables 

change due to additive effects of a huge number of independently varying 

factors, a Gaussian – normal - distribution should be expected. However, 

rates of publication show the normal distribution not in the variable itself, 

but rather in the logarithm of this rate of publication. Shockley believed that 

the explanation of these large variations - this statistical peculiarity- is 

determined by some idiosyncratic characteristics of the creative scientific 

process and that the lognormal distribution seems a consequence of the 

way in which the research activities are conducted in a large, modern 

laboratory (Shockley, 1957). Hence, he proposed the lognormal distribution 

to explain the complex creative process for scientific research papers and 

he also developed some models to explain it. The main feature of his 

models was that a large number of factors are involved in publishing, so 

very small changes in each of these factors, may result in a very large 

variation in the creative output. In order to publish a scientific paper in a 

given period of time, a series of factors and abilities are needed and they 

require implementation, for example: 

 

1) Ability to consider a good problem or question. 

2) Ability to work on this problem or question. 

3) Ability to recognize an interesting result. 
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4) Ability to know and to make the decision of stopping and write up 

the results. 

5) Ability to write properly. 

6) Ability to learn from other’s criticism. 

7) Determination to submit to a journal. 

8) Willingness to answer the peer reviewers’ objections. 

 

Thus, similarly to the example of the income distribution described 

above, in this example, each of these paper publishing factor (Fn) have an 

associate probability, and the total productivity is defined by the product of 

the probabilities of each factor. The probability that a scientist publishes a 

paper in a given period of time will approximately be the product of the 

associate probabilities of the mentioned set of factors, F1, F2, etc. related to 

his/her personal attributes. The total, final publishing productivity of this 

scientist would then be given by a formula such as 

  

P = F1 * F2 * F3 * F4 * F5 * F6 * F7 * F8  

 

If this model is correct, a small variation in one of these publishing 

factors (Fn) can produce a large variation in the total publishing productivity 

of a researcher (Shockley, 1957, p. 286). 

To prove his theory, Shockley used data from the staff at the 

Brookhaven National Laboratory and he could demonstrate that indeed the 

rate of publication of research papers in physics seems to follow a 

lognormal distribution. 
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FIGURE 16 - FIG. 7- FROM SHOCKLEY, 1957, P. 283: CUMULATIVE DISTRIBUTION OF LOGARITHM 

OF RATE OF PUBLICATION AT BROOKHAVEN NATIONAL LABORATORY. 

 

Generally, in multiplicative processes, the total probability of the 

phenomenon is given by the product of each of the probabilities of the 

subtasks or factors involved in the process, P = p1 * p2 * … * pn. 

Mathematically, this means that small variations in the probabilities of the 

factors can have an enormous impact in the total probability of the event. 

Likewise, if the probability of a certain subtask is 0, the multiplicative 

process will stop altogether. That is, in a multiplicative process, the loss 

of a single subtask causes the entire process to fail. Multiplicative 

relationship of interdependent events leads to lognormal distributions (West 

and Deering 1995). This implicit interdependence of the multiplicative 

processes explains the long tail of their lognormal distributions. The 

multiplicative nature of the process that shows lognormal distribution is 

related to what it has been called “the law of proportionate effect” (West 

and Deering 1995). 
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5.1.3. THE GENERATIVE MECHANISM OF LOGNORMAL DISTRIBUTIONS 

IN NASCENT ENTREPRENEURSHIP: THEORETICAL AND PRACTICAL 

IMPLICATIONS 
 

Proportionate differentiation has been identified as the generative 

mechanism of a lognormal distribution (Gibrat, 1931; Mitzenmacher, 2004). 

Applying this generative mechanism to nascent entrepreneurship, it can 

take the following formulation. Proportionate differentiation processes have 

two main components: the initial value and the accumulation rate. Initial 

value is the amount of a variable that an entrepreneur has at the beginning 

of the entrepreneurial process, what in the entrepreneurial literature has 

been described as the initial capital (human capital, financial capital, strong 

and weak networks, etc.). Accumulation rate here should be considered as 

the “entrepreneurial performance rate”: the rate at which an entrepreneur 

can increase the amount of an outcome variable in a period of time, such 

as number of entrepreneurial activities, investment capital, number of 

clients, number of employees, revenues, business partners, etc. Therefore, 

according the proportionate differentiation, nascent entrepreneurs differ in 

outcomes because of both their difference in their inputs at the beginning of 

the entrepreneurial process (initial entrepreneurial capital) and also their 

differences in the rate at which they can perform the entrepreneurial 

activities and aims (entrepreneurial performance rate). 
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TABLE 4 - PROPORTIONATE DIFFERENTIATION IN NASCENT ENTREPRENEURSHIP 

 

 

Proportionate differentiation in nascent entrepreneurship 

Initial value Entrepreneur’s inicial capital 

(human, financial, etc.) 

Accumulation rate Entrepreneurial performance rate 

(rate at which the entrepreneur can 

increase an outcome variable 

(number of clients, investment 

capital, revenues, employees, etc.) 

 

Given that this is a multiplicative process, the initial value of the input 

variables (entrepreneurs’ initial capital) and their entrepreneurial 

performance rate interact in a multiplicative way. Future amounts of the 

outcome (revenues, number of employees, etc.) will depend of both the 

initial entrepreneur’s capital and the entrepreneurs’ performance. 

 

This process can be explained with an example: Entrepreneur A, 

because of his/her family origin, has a remarkable initial entrepreneurial 

capital: family money, good industry networks, a good team of employees, 

etc. Entrepreneur B, of a modest family origin, has not those high initial 

resources, but he/she shows a remarkable entrepreneurial performance 

(ability to search for business opportunities, market insights, motivation, 

commitment, etc.). Given that the two components are playing a role in the 

nascent venture, they may later lead to large differences – heavy tailed 

distribution - in the entrepreneurial outcomes of both entrepreneurial 

projects. Entrepreneur A may fail or may have lesser outcomes because 

of less entrepreneurial performance rate than Entrepreneur B. Or just the 
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opposite, Entrepreneur B may fail or have lesser outcomes than 

Entrepreneur A because of not having enough initial resources. Because 

entrepreneurs diverge not only on the initial amount of resources (financial, 

human, etc.) but also on the accumulation rate (here denominated 

“entrepreneurial performance”), future amounts of outcomes (revenues, 

number of employees, etc.) would increase greatly for some entrepreneurs, 

creating a heavy right tail in the distribution. Or, at the contrary, for many 

other entrepreneurs, future amounts of outcomes would remain at low level, 

possibly creating a bell-shape head in the distribution (Gabaix, 1999). 

 

This type of interaction between the initial entrepreneurial capital and 

the entrepreneurial performance is not obvious or trivial. We will see later 

that there are many organizational processes in which only one of these 

parameters plays the relevant role in the emergence of the distribution. 

 

Let us consider that, regarding nascent venture outcomes, instead of 

having the proportionate differentiation as the generative mechanism, we 

are dealing with pure power law distributions, and, therefore, the generative 

mechanism may be self-organized criticality (Newman, 2005; Andriani and 

McKelvey, 2009; Boisot and McKelvey, 2011). In this case, entrepreneurs 

differ on the value on an outcome because, after some entrepreneurs reach 

a critical state, some specific events trigger the increase of their 

entrepreneurial outcomes (revenues, etc.) ranging from small to very large. 

So, a small event in the entrepreneurial process may produce an 

“avalanche” that may change completely the ranges of the outcomes (Bak, 

1996). In self-organized criticality processes, in order to have large 

differences in the outcomes, it is required to reach a “critical state”. 

However, this is not necessary in a proportionate differentiation process. 

Outcome values are a function of the products of probabilities between 

the initial entrepreneurs’ capital (human, financial, etc.) and their 

entrepreneurial performance, as in multiplicative phenomena (see above 

section “Multiplicative processes”), as it was described above in the 
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examples of income distribution and research papers production (see 

previous section). High and extreme values in a pure power law distribution 

in an entrepreneur’s outcomes after reaching a critical state would be 

unpredictable, or nondeterministic (Bak, 1996; Boisot and McKelvey, 2011; 

Sornette and Ouillon, 2012), whereas, in a log-normal distribution, these 

outcomes would be predicted as long as we know the components values, 

the initial inputs (entrepreneur’s initial capital) and the entrepreneur’s 

performance, and their approximate probabilities. 

 

Proportionate differentiation allows the possibility that even if an 

entrepreneur has high initial resources because of luck or family origins - or 

any other reason -, the entrepreneurial outcomes may be eventually 

surpassed by another entrepreneur with a superior entrepreneurial 

performance. Random differences among entrepreneurs at the beginning of 

the nascent entrepreneurial process in terms of resources not always lead 

to eventually long-term differences in nascent venture outcomes (Mankiw, 

2013). But proportionate differentiation also allows the opposite: that is, the 

possibility that an entrepreneur, with superior entrepreneurial performance, 

may not be never able to catch up the entrepreneur with very large initial 

resources over time, depending of the probabilities of the different factors 

that influence the nascent entrepreneurial process. 

 

From a practical point of view, proportionate differentiation also 

offers us some clues about the way that institutions – governments, 

business incubators, venture capital, etc. - should allocate the resources in 

order to promote and foster entrepreneurship and to retain the best 

entrepreneurial projects. The future of a nascent entrepreneurial project 

depends on the product between the entrepreneurial performance and the 

initial entrepreneurial resources (Boolean operator “AND”). Therefore, the 

allocation of resources across different nascent entrepreneurial projects 

should prioritize those with both higher initial resources and higher 

entrepreneurial performance. Although this recommendation seems 
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obvious prima facie, the analysis of other generative mechanisms will show 

below that if the nascent entrepreneurial processes do not follow a 

lognormal distribution, the allocation of resources should focus only in one 

of these two elements,  initial entrepreneur’s resources or entrepreneur’s 

performance (Boolean operator “OR”). 

 

The next implication for the allocation of resources among nascent 

entrepreneurial projects - because of the mechanism of proportionate 

differentiation - is not only to keep large disparity in the allocation of those 

resources between the best entrepreneurial projects and the ordinary ones, 

but also among the best performers. The lognormal distribution allows very 

large entrepreneurial outcomes differences (Joo, Aguinis and Bradkey, 

2017). 

 

5.2. EXPONENTIAL TAIL DISTRIBUTIONS 
 

The second plausible distribution in entrepreneurial outcomes 

worldwide may be the exponential tail distribution. It can take two forms: a 

pure exponential distribution, or a power law distribution with an exponential 

cut-off. Both distributions, with positively skewed tails, decay at an 

exponential rate. 

 

According to our analysis of the international entrepreneurial data 

sets, these exponential tail distributions may take the form of a power law 

with an exponential cut-off, consisting in an initial long and heavy head, and 

then increasingly a falling right tail. It has two parameters, alpha (α) (>1) 

and lambda (λ) (>0), both rates of decay, that indicate the rate of falling of 

the right tail. The heaviness of the right tail is determined by the value of the 

two parameters: α closer to 1, and λ closer to 0 will generate a heavier right 

tail. Thus, changing the two parameters we can generate a heavy tail such 
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as one of a lognormal distribution or a very light tail such as an exponential 

distribution. 

 

FIGURE 17  - FIGURE FROM JOO, AGUINIS 2017, P. 1024. EXPONENTIAL TAIL DISTRIBUTIONS: 

EXPONENTIAL (Λ = 0.5), POWER LAW WITH AN EXPONENTIAL CUTOFF (Α = 1.5, Λ = 0.01). 

[exponential (λ = 0.5), power law with an exponential cut-off (α = 1.5, λ = 0.01)] 

 

Incremental differentiation is the generative mechanism of 

exponential tail distributions (Amitrano, 2012; Joo, Aguinis and Bradkey, 

2017). According to this generative mechanism, the difference among 

entrepreneurs in terms of outcomes would be based on their differences 

with respect to their entrepreneurial performance and only on the 

entrepreneurs’ performance (“accumulation rate on the outcome”). This 

“entrepreneurial performance” refers to the amount of the outcome variable 

(revenues, number of employees, number of entrepreneurial activities, etc.) 

that an entrepreneur is able to generate in a time period (revenues per 

year, number of new clients, venture capital rounds, etc.). 

 

Incremental differentiation is different from proportionate 

differentiation (the lognormal distribution’s generative mechanism). In 

proportionate differentiation (lognormality) the entrepreneurial outcome 

variables are explained by both entrepreneur’s initial resources and 

entrepreneurial performance. However, in incremental differentiation 

(exponentiality) the value of the outcome is a function only of the 
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entrepreneur’s performance, and only of this, without having to take into 

account the initial entrepreneur’s resources. 

 

The second difference with proportionate differentiation 

(lognormality) is that incremental differentiation allows the introduction of 

the “diminishing returns effect” in those entrepreneurs with high 

entrepreneurial performance through the “exponential cut-off”. 

Entrepreneurs with superior entrepreneurial performance, ultimately, will 

face steep difficulties as they reach their full capacity. Those entrepreneurs 

who accrue outcomes more quickly than others would eventually have to 

face diminishing returns, opening the possibility of generating a distribution 

of cumulative outcomes that follows a power law with an exponential cut-off 

(Joo, Aguinis and Bradley, 2017, p. 1032). This process does not require 

declining entrepreneurial performance over time, but rather the increasing 

difficulty of getting additional outcomes when the highest levels have been 

reached (“diminishing returns”). This situation generates a power law with 

an exponential cut-off (Amaral et al., 2000). 

 

Incremental differentiation as a generative mechanism suggests that 

entrepreneurs differ in the outcomes because of their entrepreneurial 

performance, which produces linear increases in outcomes, and tend to 

have linear effects on their entrepreneurial outcomes rather than 

multiplicative effects. The differences in the amount of outcome among 

entrepreneurs exist because some entrepreneurs, compared to others, 

generate larger increments in outcomes, and, furthermore, entrepreneurs 

with the highest entrepreneurial performance may have to face diminishing 

returns. 

 

From a theoretical point of view, if nascent entrepreneurial outcomes 

are defined by this generative mechanism - incremental differentiation -, we 

can describe each entrepreneur just in terms of his/her idiosyncratic 
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entrepreneurial performance. The value of a future outcome value is 

dependent on the entrepreneurial performance but not on the 

entrepreneur’s initial resources. 

 

From a practical perspective, to generate greater overall 

entrepreneurial outcomes (increasing revenues, number of employees, 

etc.) this framework would implement a heavy investment on entrepreneurs 

with higher entrepreneurial performance than others. Incremental 

differentiation would recommend allocating resources (venture capital, 

business incubators, grants, etc.) variably across entrepreneurs - rather 

than similarly - based on entrepreneurial performance: the nature of past 

outcomes of an entrepreneur in terms on his/her entrepreneurial 

performance will determine future outcomes. 

 

5.3. CONCLUSIONS 
 

This research was done in the context of the on-going dialog and 

debate regarding the search for the generative processes in nascent 

entrepreneurship, and more broadly, in the discovery of heavy-tail 

distributions in inputs and outcomes variables across different nascent 

entrepreneurial panel studies performed in different countries and 

continents (Andriani & McKelvey, 2009; Reynolds and Curtin, 2011; 

Crawford and McKelvey, 2012; Crawford et al., 2014; Crawford et al., 2015; 

Reynolds, 2017,b). 

 

Studying the variables of the American panel (PSED II), Shim (2016) 

proposed that the lognormal distribution may be one of the best plausible 

models to describe the long-tail distributions in entrepreneurship and he 

suggested the multiplicative process as the generative mechanism. Our 

results deepen and continue his research showing that the lognormal 
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distribution may be the best fit for American entrepreneurial datasets and 

probably also for other panels worldwide, and that its generative 

mechanism, proportionate differentiation, can explain the shape of the 

distributions. 

 

From a theoretical point of view, our research suggests the 

confirmation of the presence of a prevalent generative mechanism in the 

observed outcomes distributions in nascent entrepreneurship: that is, 

proportionate differentiation. However, our results were not conclusive, and 

the study of other international panels may be required to confirm our 

results. With several of the analysed variables, the high p value does not 

allow us to reject the null hypothesis, when comparing lognormal 

distributions with power law distribution with an exponential cut-off (both 

type of distributions may be a good fit). Until what extent we need not to 

consider other generative mechanisms, such as incremental differentiation, 

will depend on the analysis of other international outcomes datasets. 

Unfortunately, only four longitudinal panels are now in the public domain 

(Australia, Sweden, and U.S. PSED I & II), and the harmonized dataset 

among some of the rest of the projects do not include the outcomes 

variables studied here (Reynolds et al., 2016; Reynolds, 2017b). 

 

However, from the results, we can infer that, probably, given the 

outcome differences among nascent ventures, the generative mechanisms 

based on homogenization (Normal, Poisson, Weibull) are not adequate. On 

the other hand, datasets do not show an increase at an explosive 

(nonlinear) rate, and, therefore, we can also discard generative 

mechanisms such as self-organized criticality – pure power law distributions 

- (Andriani and McKelvey, 2009). The disregard of mechanisms such as 

incremental differentiation – power law with an exponential cut-off - will 

require further empirical research on other countries datasets. The results 

of this research also suggest that the emergence of a nascent venture is 

not merely  
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“like entering into a lottery (…) with high death rates, skewed returns with 
most players losing out, random growth, little or no entrepreneurial learning 
(…), no influence of education on performance, little control over 
outcomes” (Nightingale and Coad, 2014, p. 130). 

 

Indeed, the different probabilities of the factors that make successful 

a nascent venture play a major role, but it works following a determined 

generative mechanism, not simply by rolling a dice (Nightingale and Coad, 

2014, p. 130). 

 

Although previous research pointed out to power law distributions as 

the prevalent in nascent entrepreneurship, at that time, there were less 

sophisticated statistical packages to implement accurate distribution pitting. 

This would have led to certain uncertainty about the better fit among heavy-

tailed non-normal distribution (Crawford et al., 2015; 2016). At this point, 

our results (and of Shim’s, 2017) suggest that the pure power law 

distribution and its generative mechanism, self-organized criticality, might 

not be completely suitable for explaining nascent entrepreneurial outcomes 

distributions - or at least, major sections of the complete empirical datasets 

- although it may be needed to explain other aspects of the entrepreneurial 

process (Andriani and McKelvey, 2009; Crawford et al., 2015; Joo, Aguinis 

& Bradley, 2017). 

 

As mentioned above, the empirical datasets on nascent 

entrepreneurship shows distributions in which it is difficult to conclude if 

they should considered as lognormal or power laws. Also, there are certain 

parts of the distributions that are better fitted by lognormal, and another 

parts of the distributions that are better fitted by a power law distribution.  

 

Initially, Crawford and McKelvey (2012) identified the outcomes of 

the longitudinal panels as power laws; subsequently, using more powerful 

and precise software, Shim (2016) was able to identify the lognormal 
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distribution as a better fit for the entrepreneurial data. However, this should 

not come out as a surprise because there is a robust relationship between 

these two distributions, between lognormality and inverse power law 

distributions (West and Deering 1995, p. 156). As a system, functioning in 

lognormal mode, become more and more complex, its distributions become 

broader, increasing the value of the variance, and it starts to take 

characteristics related to a system that show power law distribution 

patterns, such as scale-invariance or fractality (West and Deering 1995, p. 

156). 

 

FIGURE 18  - FIGURE TAKEN FROM WEST AND DEERING (1995, P. 157) BASED ON KOLMOGOROV 

CLASSICAL ARTICLE (1941). AS A LOGNORMAL DISTRIBUTION BECOME BROADER, WITH A HIGHER 

VARIANCE, CORRESPONDING TO AN INCREASE IN THE COMPLEXITY OF THE SYSTEM, THE 

DISTRIBUTION RESEMBLANCES AN INVERSE POWER LAW (THE STRAIGHT LINE IN THE FIGURE). A 

VERY COMPLEX LOGNORMAL PROCESS TAKES ON MORE THE CHARACTERISTICS OF AN INVERSE 

POWER LAW DISTRIBUTION. 

 

The more subtasks have to be realized to implement the process, 

the greater is the range of values of the variable, and the lognormal and 

power law distributions become indistinguishable. That is, if the lognormal 
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distribution has a large variance, which corresponds to a process with a 

large number of subtasks, and we take a sample in the region of the higher 

values of the variable, it will be very difficult to discriminate between a 

lognormal distribution and a power law distribution (West and Deering 

1995, p. 160; Fig. 17). If the number of required subtasks to complete the 

process increases, the distribution changes from a lognormal to a power 

law distribution. 

 

Similarly, as the complexity of the process increases along with large 

number of subtasks, the slope of the distribution decreases: smaller slopes 

point out to more complex processes. As the slope of the distributions 

increases, the complexity decreases - smaller number of subtasks - (West 

and Deering, 1995, p. 179 and ff.). The increment in the slope of the 

distribution points out to a reduction in the complexity of the process. 

Therefore, applying this to nascent entrepreneurship, the outcome variables 

distributions of a country that requires many subtasks to start-up a new 

venture – such as bureaucracy, venture capital sector poorly developed, 

etc. - should show a distribution resembling a power law and a smaller 

slope (higher complexity) rather than a log normal approximation (West and 

Deering, 1995). 
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FIGURE 19  - FIGURE 3.21 TAKEN FROM WEST AND DEERING (1995, P. 160): EXAMPLE 

(BREATHING RATE IN FETAL MATURATION) OF A PROCESS IN WHICH THE DECREASE IN 

COMPLEXITY GOES TOGETHER WITH AN INCREMENT IN THE SLOPE OF THE SPECTRUM 

(THE SLOPE CHANGES FROM -0.36 TO -0.80). 

 

If the lognormal distribution and its generative mechanism -

proportionate differentiation - is indeed relevant for explaining nascent 

entrepreneurial outcomes distributions, then, we can conclude the presence 

of positive feedbacks between past and future entrepreneurial initial 

resources and outcomes. Proportionate differentiation implies that both 

initial resources and the entrepreneurial performance will determine the 

future outcomes of the nascent venture, and that both aspects will affect 

them. Proportionate differentiation may allow “outcome loops”: some 

entrepreneurs can receive larger outcomes increases because positive 

feedback between past and future outcomes. For example, an initial large 

number of clients would attract venture capital to initiate a new and/or 

bigger financial round. This may lead to some explosive, non-incremental 

increases in the new venture outcomes. By “amplification events”, the 

multiplicative nature of lognormal processes can go through a transitional 

period into a power law distribution (West and Deering, 1995). As 
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mentioned above, inverse power-law distributions are also observed as the 

result of multiplicative processes that show multiple amplification events. 

 

A classic example of this transition from lognormality to power law 

distribution through positive loops can be observed in the Pareto’s 

distributions of income. It is relevant to notice that the lognormal and the 

inverse power law distribution coincide for much of the dataset, and 

therefore, both distributions would be a valid fit for most of the data range. 

The lognormal distribution is the better fit for most of the dataset, except in 

the last percentiles, corresponding to those in the society with highest 

income, in which the distribution changes into an inverse power law. West 

and Deering (1995) suggested that this transition may help to understand 

the nature and the mechanisms that explain the distribution of population 

income. For the majority of the population, the generative mechanism of 

proportionate differentiation applies and the lognormal distribution holds. 

However, for the richest, the income, somehow, is amplified: the process of 

earning money shows a peculiar mode that allows the accumulation of 

extra wealth by some kind of amplification processes that lead to the 

emergence of a power law distribution, “the rich get richer” (Mathew effect) 

(West and Deering, 1995 p. 172). The creation of a new venture may be 

one of the modes of amplification, because the initial forms of capital can 

be amplified through the efforts of others – the employees, clients, 

suppliers, etc .-, value creation, financial leverages, investment returns, etc. 

(West and Deering, 1995). Similar amplifications with their positive loops 

effects may also occur among different nascent entrepreneurial projects. 

For most of them, the lognormal distribution may hold, but for the super-

entrepreneurs, at the extreme of the heavy tail of the distribution, explosive 

growth in outcomes may also happen, becoming power law distributions. 

 

Concluding: the nascent entrepreneurial process is therefore 

different than many of the individual output samples analysed by Joo, 

Aguinis and Bradley (2017), which shows incremental differentiation as 
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generative mechanism. In those cases, future individual outputs are 

determined only by the accumulation rate (the “performance”), and not by 

initial outputs. In nascent entrepreneurship, however, the initial 

entrepreneur’s resources will also affect profoundly future outcomes of the 

nascent venture. 

 

On the other hand, if our conclusions are correct, high variability 

among nascent ventures outcomes would produce even higher variability 

among them in those outcomes in the future. In a process ruled by 

homogenization generative mechanisms (that is, showing symmetric 

distributions such as the normal) higher variability in the past will be 

followed by lower variability among the outcomes in the future. In a process 

ruled by incremental differentiation high variability across individuals will 

produce higher variability in individual outputs in the future but only in terms 

of output accumulation rate differences among individuals. Whereas, if the 

process is proportionate differentiation, such as nascent entrepreneurship, 

the future variability in new ventures outcomes will also increase, although 

depending not only on entrepreneurial performance but also on 

entrepreneur’s initial resources. 
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6. AGENT-BASED MODELLING AND SIMULATION 
(ABMS) IN ENTREPRENEURSHIP 

 

 

6.1. ABMS SOFTWARE AND TOOLKITS  
 

Repast Symphony (Repast, 2017), NetLogo (Wilensky, 1999), or 

MASON (2016) are examples of special-purpose agent tools, “Dedicated 

Agent-based Prototyping Environments” that provide the user with special 

features focused on ABMS. This research uses NetLogo, which is a free 

ABMS environment developed at Northwestern University’s Center for 

Connected Learning and Computer-Based Modelling (Wilensky, 1999) 

[http://ccl.northwestern.edu/netlogo/resources.shtml]. 

 

NetLogo uses a modified version of the Logo programming language 

and it consists in a graphical environment with mobile agents - called 

“turtles” - that reside in a world of “patches” - as square grid cells -. The 

environment and agents are observed and monitored by an “observer.” 

“Primitives” are the Netlogo programming language’s built-in commands. 

NetLogo also includes a participatory “HubNet”, in which users can upload 

share and discuss the models. 

 

General-purpose desktop computational mathematics system such 

as MATLAB or Mathematica can also be used to develop agent-based 

models (North and Macal, 2007). In this research, the statistical software R 

(R Core Team, 2018) has been used, in conjunction with NetLogo, to 

investigate the heavy-tailed distributions in the datasets produced by our 

model by NetLogo simulations. Stochastic agent-based simulations can 

generate such amount of data that large-scale softwares for data analysis 

http://ccl.northwestern.edu/netlogo/resources.shtml
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are required to process that information (Thiele et al, 2014; ten Broeke et 

al, 2016). 

 

Our “Nascent Entrepreneurial Agent-based model” is coded in 

Netlogo, one the most common software platform for ABMS. Two of the 

most relevant and standard textbook on ABMS (Railsback and Grimm,  

2012, new ed. 2019; Wilensky and Rand, 2015) use Netlogo as toolkit. 

Netlogo has a professional design, comprehensive documentation, high-

level programming language, with many built-in commands (“primitives”), 

integrated graphical user interface, integrated tool for performing simulation 

experiments (“BehaviourSpace”), and a very active user community. In The 

CoMSES Net Computational Model Library the main global repository of 

ABMS, the majority of the models are implemented in Netlogo (Railsback et 

al., 2017) (http://www.openabm.org/models). 

 

For the development of the Agent-based model, Railsback and 

Grimm (2012) propose an iterating “modelling cycle”, where iteration is 

established as a method of continuous improvement of the model. 

Railsback and Grimm’s modelling cycle has the following steps: 

 

1. Formulate the research question. 

2. Assemble hypotheses for essential processes and 

structures, starting just with the minimum number of 

the model factors. 

3. Choose scales, entities, state variables, processes, 

and parameters. 

4. Implement the model. 

5. Analyse, test, and revise the model. 

 

 

http://www.openabm.org/models
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FIGURE 20 - RAILSBACK AND GRIMM’S MODELLING CYCLE  (FROM RAILSBACK AND GRIMM, 2012, P. 7-
9.) 

 

One of the most important tasks in developing an agent-based 

model is the identification of the agent types and the definition of their 

attributes. Secondly, the agent behaviour has to be specified using a theory 

of agent behaviour or a behavioural heuristic. And third, the ways of 

interaction among the agents is added – which, when and how they interact 

- (Macal and North, 2009). Marcal and North have already explored some 

of the special characteristics of these agents, their behaviour and 

interactions in the business and management domain (North and Macal, 

2007). 

 

A key figure of agent-based modelling is how to model agent 

relationships and the dynamics that governs those interactions. Marcal and 

North (2009) have described some of the most common topologies used in 

ABMS for representing social interactions (see figure 21 below): 
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-a. The aspatial model, in which agents do not have location and the 

model is not associated with a particular space representation 

or area. 

-b. Cellular automata, in which agent interactions are patterned 

based on a grid or lattice. 

-c. The Euclidean space models, in which agents wander in two or 

more dimensional spaces. 

-d. Geographic Information System (GIS) topology, in which the 

agents move on a realistic geo-spatial landscape. 

-e. Network topology, a collection of nodes connected by links, that 

can be static or dynamic. 

 

 

FIGURE 20  - TOPOLOGIES FOR AGENT RELATIONSHIPS AND SOCIAL INTERACTION, FROM MACAL AND 

NORTH (2009, P.94). 

 

In any of these topologies, there are local interactions and local 

information transfers between agents, with a limited connectivity and in 

which information is confined to local exchanges. Here “local” does not 

have to be spatial proximity: for example, network topology allows that the 
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agents to be linked by relationships rather than by physical proximity. On 

the other hand, there is neither a global controller, nor access to global 

information by the agents (Macal and North, 2009). 

 

 

 

6.2. DESCRIPTION OF THE MODEL 

 

6.2.1. THE ODD (OVERVIEW, DESIGN CONCEPTS, DETAILS) PROTOCOL 
 

In order to describe the model, this project will follow the protocol 

ODD developed by Grimm et al. (2006, 2010) (The protocol ODD is part of 

the document “TRACE”, see section below). This protocol creates a 

standard structure and a generic format to document ABMS, facilitating the 

completeness of the model description and an easier way to replicate them 

(Railsback and Grimm, 2012). It also reassures that the theoretical 

background and assumptions of the model is clearly stated (Grimm, 2010). 

Grimm’s protocol (2010) is defined by seven elements, with the following 

sequence (Grimm et al., 2010, Table 1, p. 2763): 

 

1. Purpose. 

2. Entities, state variables, and scales. 

3. Process overview and scheduling. 

4. Design concepts: 

a. Basic principles. 

b. Emergence. 

c. Adaptation. 

d. Objectives. 

e. Learning. 

f. Prediction. 

g. Sensing. 
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h. Interaction. 

i. Stochasticity. 

j. Collectives. 

k. Observation. 

5. Initialization. 

6. Input data. 

7. Submodels. 

 

 

A detailed description of the elements of protocol can be 

downloaded from Railsback and Grimm’s (2012) web companion here: 

  

http://www.railsback-grimm-abm-

book.com/Chapter03/GrimmEtAl2010_ODD-Update-1.pdf 

 

The protocol template, here:  

GrimmEtAl2010_App2_ODD-template.docx 

 

 

 

6.2.2. CONCEPTS FOR THE EVALUATION OF AGENT-BASED MODELS 
 

A computer model, especially an agent-based model, should be able 

to answer questions related to the system that we are studying: it must 

provide outputs relevant to the model user (Wilensky and Rand, 2015). The 

accuracy of a model is traditionally evaluated through three processes: 

validation, verification, and replication. 

 

 

http://www.railsback-grimm-abm-book.com/Chapter03/GrimmEtAl2010_ODD-Update-1.pdf
http://www.railsback-grimm-abm-book.com/Chapter03/GrimmEtAl2010_ODD-Update-1.pdf
http://www.railsback-grimm-abm-book.com/Chapter03/GrimmEtAl2010_App2_ODD-template.docx
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Wilensky and Rand (2015) define these processes in the following 

way: 

 

 “Model validation is the process of determining whether the 

implemented model corresponds to, and explains, some 

phenomenon in the real world.” 

 “Model verification is the process of determining whether an 

implemented model corresponds to the target conceptual 

model”. 

 “Model replication is the implementation by one researcher 

or group of researchers of a conceptual model previously 

implemented by someone else”. (Wilensky and Rand, 2015, 

p. 311-2). 

 

However, many agent-based models have a stochastic nature, such 

as the one we are introducing here, and, therefore, the methodologies of 

verification, validation, and replication have to rely in statistical methods, 

through multiples runs, in order to confirm the accuracy of a model. On the 

other hand, across disciplines, terminology is ambiguous and it is difficult to 

elucidate the processes of evaluation of a model and the clear definition of 

these accuracy terms (Augusiak et al., 2014). That is why many scholar 

modellers have made a call for reviewing the terminology and to unify the 

criteria for the evaluation of agent-based models (Grimm et al., 2014; 

Augusiak et al., 2014). This research will follow the latest trend in model 

evaluation, called the “TRACE” documentation, but, first, we will define 

some of the major concepts for the evaluation of an agent-based model. 

 

VERIFICATION 

 

An agent-based model is incremental in nature. Progressively we 

add parts (and/or remove others), and, as the models grows in complexity, 
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it become more difficult just looking at its code to figure out if it is 

performing its function and to understand the conceptual model behind the 

code. It is a process in which, incrementally, we verify the alignment 

between the conceptual model and the code. 

 

One way to describe the conceptual model underlying our model is 

to use flowcharts. Our nascent entrepreneurial agent-based model 

flowchart is depicted below in the “description of the model” section, and it 

describes the flow of decisions happening during the operation of the 

software code. The flowchart diagram is also rewritten in pseudo-code. 

“Pseudo-code” is as a “midway” point between natural language and formal 

programming language that can be read for anyone, regardless the 

reader’s knowledge of Netlogo programming language, facilitating the 

verification process (Wilensky and Rand, 2015). In this document, pseudo-

code has also been used in some descriptions of the ODD (Overview, 

Design concepts, Details) protocol (see below). 

 

The process of verification also focuses in the elimination of “bugs” 

from the code in order to guarantee that it follows the conceptual model. 

Sometimes, what it seems a “bug” is not, but rather an oblivious 

characteristic of the system. For example, in our tests at the limit, we 

analysed the model having the global variable “Social dynamism” at 0. With 

parameter social dynamism = 0, some “entrepreneur-opportunities” entities 

appeared in the world in some runs, when, theoretically, they should not. 

However, in this case it was not a bug. Given the geographical conceptual 

framework of the model and the random location set-up, some of the 

opportunities may coincide in the same spatial patch with an entrepreneur 

at the very beginning of the run, and, therefore, if their state variables 

match, they become an entrepreneur-opportunities entity. 
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In complex agent-based model, such as this one, verification can be 

very difficult to achieve. A strange result may be the product of a bug in the 

code, an error in the translation of the conceptual model into programming 

code, or an unexpected outcome that emerge from the nature of the agents’ 

interactions. Therefore, a model is not either verified or unverified: it exists 

along a continuum of verification. It is always possible to check more in 

detail the parameters space, or to write more component tests or to make 

more sensitivity analyses (Wilensky and Rand, 2015). 

 

SENSITIVITY, UNCERTAINTY AND ROBUSTNESS ANALYSIS 

 

In agent-based modelling, sensitivity analysis explorers how 

sensitive the model is to the set of initial conditions, how sensitive the 

outputs of the model are to changes in parameters values (Thiele, Kurth 

and Grimm, 2014). This procedure implies to vary the group of parameters 

of the model, or to add new parameters into the model and to study the 

variations in the results. Parameters are the constants in the Netlogo’s 

primitives, equations and algorithms that are used to represent the 

processes in an agent-based model. Parameterization is the task of 

selecting values for the parameters of a model to relate it to real system as 

much as possible (Railsback and Grimm, 2012). “Direct parameterization” 

is when parameter values are obtained directly from the literature or 

experts, and “inverse parameterization”, when we define parameter values 

inversely by calibrating the model to real data (Grimm et al., 2014). 

 

“Sensitive analysis is an examination of the impact of varying model 
parameters on model results” (Wilensky & Rand, 2015, p. 23).   

 

Thus, we analyse the effect that initial conditions and agent 

mechanisms have on model results. We can distinguish between “local 

sensitivity analysis”, which is performed one parameter at a time, sweeping 
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parameters and collecting multiple runs, and “global sensitivity analysis” – 

much more complicated computationally -, in which several or all 

parameters are varied over their whole ranges (Grimm et al., 2014). The 

amount of data generated by this parameter sweeping can be so large that 

requires specific big data tools to study the results. In our case, we have 

used R (R project, 2018), a common current software in statistics and data 

sciences (Thiele et al, 2014; ten Broeke et al., 2016). 

 

However, sensitivity in the quantitative results does not necessary 

mean there will be sensitivity in the qualitative results. As we will see below, 

this is the case of our nascent entrepreneurial model, in which, although the 

distributions at the end of the run may be different if we change the range of 

parameters, they are mostly heavy-tailed distributions (power laws, log-

normal, Weibull), and scarcely Gaussian (normal ones). This behaviour is 

probably due to the multiplicative processes that undergone the agents 

throughout the run. It may also be relevant to study the environmental 

parameters in which the model operates. Our model uses a two-

dimensional torus grid of a certain dimension. The area of this grid and the 

global environmental variables (“social-dynamism”) affect greatly the 

wandering of the agents in this world and the model results. 

 

Uncertainty analysis explores how uncertainty in parameter values 

affects the reliability of the results of the model (Railsback and Grimm, 

2012). Although it uses similar techniques of those of sensitivity analysis, 

the objective is different. It aims to understand how the uncertainty in 

parameter values and the model’s sensitivity to parameters interact to 

cause uncertainty in the results of the model (Railsback and Grimm, 2012). 

In many occasions, the value of several parameters in the agent-based 

model  are uncertain for different reasons, for example, because it is a 

simplification of a process that is not so simple or constant, or its value has 

not been measured precisely, or – simply - we do not have all the 

parameters of a real system. However, although parameter uncertainty may 
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cause high uncertainty in absolute terms, other important results – such as 

relevant patterns - can be much less affected by parameter uncertainty. 

Thus, although a simulation model may have uncertain parameter values, it 

still can be very useful when we use them for relative predictions. 

 

Robustness analysis explores the robustness of results and 

conclusions of a model to changes in its structure (Railsback and Grimm, 

2012). Sensitivity analysis often focuses on the response of the model to 

small changes in the values of the parameters. In contrast, robustness 

analysis focuses more on the response of the model to drastic, radical 

changes in the structure of the model. Robustness testing explores the 

limits of the model such as setting the parameters to the minimum – or 

maximum - (extreme values), and forcing the model (“stress tests”, “limit 

tests”). Underlying this technique is the idea that if the ability of a model to 

reproduce a pattern of the real system is very sensitive to its details, it 

means that it is not robust and that probably is not able to capture the real 

mechanisms driving the real system (Railsback and Grimm, 2012). 

 

Robustness analysis is a systematic deconstruction of a model by 

forcefully changing the model parameters, structure of submodels (simple 

vs. complex, on/off), and representation of processes (Grimm and Berger, 

2016). 

 

VALIDATION 

 

Validation is the process of guaranteeing that there is 

correspondence between the agent-based model and the real world 

(Wilensky & Rand, 2015). However, by definition, a model is a simplification 

of reality. It cannot reflect all of the same features and patterns that exist in 

the real world. The objective of implementing a model is to incorporate 

those aspects of the real world that are relevant to our questions. According 
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to Wilensky and Rand (2015, p. 326), validation has to be considered in two 

dimensions: 

 

Level of the validation process: 

 

 Micro-validation: the behaviour and mechanism encoded into the 

agents match up with the real world. Micro-validation informs if the 

model has captured the important parts of the agent’s individual 

behaviour. 

 Macro-validation: the aggregate, emergent properties of the model 

correspond to aggregate properties in reality. Macro-validation 

informs if the model has captured the important parts of the system 

as a whole. 

 

In other forms of modelling, such as equation-based modelling, only 

macro-validation is performed. The aggregate results of the equation-based 

model are compared to the aggregate results of the real system under 

study. However, agent-based modelling produces results at all level of 

aggregation. 

 

Level of detail of the validation process: 

 

 Face validation: the mechanism and properties of the model look like 

mechanisms and properties of reality. Prima facie (without detailed 

analysis) the model can convince that it contains elements and 

components that correspond to agents and mechanisms of the real 

world. Face validity can exist at both the micro-levels and at the 

macro-levels of the model. 

 Empirical validation: the model generates data that correspond to 

similar patterns of data in the real world. Data produced by the 
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model must correspond to empirical data of the studied system. 

Empirical validation, therefore, often implies statistical tests and 

comparison between data sets. One of the problematic aspects of 

this type of validation is that real data is frequently with “noise”, 

difficult to obtain, and partial. On the other hand, reality is not a 

computational machine with precise and well-defined results, but 

rather it yields messy results and it is very challenging to isolate and 

measure the parameters of the real world. Again, empirical validation 

can be performed at both the micro and macro-levels. In this context, 

calibration is the process of finding the parameters and initial 

conditions that makes the model to match up as close as possible to 

the real, empirical datasets. 

 

Calibration is, thus, a special kind of parameterization in which we try 

to find the best parameters to reproduce patterns observed in the real 

system (Railsback and Grimm, 2012). Calibration has three purposes: 

 

 To force the model to match empirical results as well as possible. 

 

 To estimate the value of parameters that we cannot evaluate 

directly. In many real complex systems, there are variables’ values 

that we cannot know. When we do not know those values, we 

estimate them “inversely” by adjusting them until the model best 

matches some observations. This type of calibration is called 

“inverse modelling” or “inverse calibration”. For several parameters 

of the real process that we do not have access in our “Nascent 

entrepreneurial agent-based model” we have made use of this 

method of “inverse modelling” to define the value - or range of 

values-. 
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 To test a model’s structural realism. Is it possible to match the 

empirical results within a reasonable range? 

 

 

Validation refers to the certainty that the implemented model and agents 

are similar to reality in those aspects that are relevant for the research 

questions. Often, many equally good models can be implemented. The key 

factor is that there is a defensible, reasonable connection between the 

model and the real world. Railsback and Grimm (2012) have proposed the 

“pattern-oriented modelling” as another form of empirical validation. A more 

valid model is achieved when the model is able to match pattern of 

empirical data at multiple levels. Breig, Coblenz and Pelz (2018) have 

recently proposed a method to compare simulation outputs of 

entrepreneurial simulations with the empirical data – “possible simulation 

parameter range” (PSPR) - in order to improve the validation process. 

 

Thus, these five types of validation (micro-face, macro-face, micro-

empirical, macro-empirical and pattern-oriented) define the majority of the 

validation processes. However, an agent-based model will be never a 

perfect correspondence to reality. The objective of model building is to 

answer a research question and to explain some results, not to simulate all 

the aspect of a system (Wilensky and Rand, 2015). Similar to verification, a 

model is not either valid or invalid. A model is said to be more valid based 

on how close it is in comparison to the real system. The validation process 

has also challenging epistemological issues: it assumes that some features 

in the model correspond to some features in reality. However, are we sure 

that these features belong to reality? As we established in the first part of 

this thesis, nascent entrepreneurial empirical data show heavy-tailed 

distributions in their output. But with current statistical techniques and 

computational capabilities, we can only determine until certain degree of 

accuracy which type of distribution they can be. Statistically, one or more 

distributions can be good fit for the real dataset. Thus, the model has to 
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mimic – simulate - a blurry, messy and noisy real dataset, which seems, 

somehow, a puzzling mission. 

 

Agent-based model are frequently stochastic, therefore, they do not 

produce the same results even given the same initial parameters. This 

stochastic nature makes more challenging the process of validation and it 

makes compulsory statistical tools and tests to determine if the model is 

producing a distribution consistent with that produced in the real system. In 

our case, for the “nascent entrepreneurial agent-based model”, we will use 

the R distribution pitting package “Dpit” ( ‘Dpit’ version 1.0: Joo, Aguinis 

and Bradley, 2017, based in the Kolmogorov-Smirnov test) and the 

distribution testing R package “goft” (package ‘goft’ version 1.3.4: 

Gonzalez-Estrada and Villasenor-Alva, 2017). 

 

The outputs of the different run can be classified into two types: 

invariant results and variant results (Brown et al., 2005). Invariant results 

occur no matter how many times we run the model. Variant results change 

depending on how the model evolves. In our “nascent entrepreneurial 

model”, the invariant feature is the statistical persistence of the heavy-tailed 

distribution at the end of the runs. However, the parameters of these heavy-

tailed distributions are different in every run. When the variant results are 

quite prominent, it may be caused by a path dependent process in the 

model. A path dependent process is one where the history of the process 

greatly affects its final state (Wilensky and Rand, 2015). Our model also 

shows path dependence: some runs, even with the same parameters, may 

produces very different results. 
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REPLICATION 

 

As part of any scientific process, replication in computational models 

has the same relevance than in the subject of physical experimentation. It is 

defined as: 

 

 “the implementation by one scientist or group of scientists of a conceptual 

model (replicated model) described and already implemented (original 

model) by a scientist or group of scientists at a previous time” (Wilensky & 

Rand, 2015, p. 337). 

 

Replication helps to prove that the results are not due to mistakes or 

omissions, and it increases the model verification since a new 

implementation of the conceptual model yields the same results than the 

original. The original model and an associated replicated model may differ 

across these dimensions such as hardware platform, computer language 

(Java, Fortran, etc.), toolkits for building the agent-base model (Repast, 

Ascape, MASON, Netlogo), or algorithms. In any case, besides those 

differences, a successful replication has to be able to produce outputs 

sufficiently similar to those of the replicated original.  Axtell et al. (1996) 

have explored the different criterion that should be considered a standard 

able to judge the level of success of a replication: “numerical identity”, 

“distributional equivalence” and “relational alignment”. 

 

 

6.2.3. THE TRACE DOCUMENTATION (“TRANSPARENT AND COMPREHENSIVE MODEL 

EVALUDATION”) 
 

The development of an agent-based model is an iterative process 

that requires multiples rounds of testing, analysis, and application (Grimm 

and Railsback, 2005; Schmolke et al., 2010; Grimm et al., 2014; Augusiak 
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et al., 2014). During this iterative process, several alternative submodes or 

designs are tested, improved or discarded, as they were introduced in the 

model at different stages of the model development (Grimm et al., 2014). 

 

The TRACE documentation provides a standard framework for the 

transparent and comprehensive documentation of models and the 

underlying modelling process, and it is increasingly adopted in biological 

and ecological research, for example, in chemical risk assessments of 

ecosystems (the EU’s founded “CREAM project” - http://cream-itn.eu/trace) 

(Grimm et al., 2009). 

This standard protocol (“TRACE”) allows: 

 The gathering of the whole modelling process: model 

development, testing and analysis, and application. 

 The template for day-to-day documentation of the iterative 

process and changes and variation of the model/s. 

 The facilitation of the organization of the modelling process by 

modellers. 

 The facilitation of the assessment of model quality and 

suitability by other scholars or decision makers. 

 

The TRACE protocol includes the full model description in the 

standard format ODD (Grimm et al., 2006, 2010) mentioned in the previous 

section. It also incorporate the new term ‘evaludation’ referred to this type 

of comprehensive quality assessment performed during the TRACE 

document development (Augusiak et al., 2014). The “evaludation” concept 

somehow encompass previous terms such as ‘validation’, ‘verification’, and 

‘evaluation’, that try to assess if the model is good enough for its intended 

purpose (Grimm et al., 2014). However, these terms - ‘validation’, 

‘verification’, ‘evaluation’, “testing” - can be used in different contexts, they 

have been interpreted in very different ways through model quality 

http://cream-itn.eu/trace
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assessment literature and they do not always capture the iterative nature of 

agent-based modelling development (Augusiak et al., 2014). 

 

FIGURE 21  - AUGUSIAK’S ET (AL., 2014, P. 5) REPRESENTATION OF THE MODELLING CYCLE. IT 

HAS FOUR STEPS OF MODEL DEVELOPMENT AND THEIR CORRESPONDING ELEMENTS OF 

“EVALUDATION”. 

 

“Evaludation” -as a methodology- has six elements: 

 

1) ) ‘data evaluation’, that assess the quality of numerical 

and qualitative data used for model development and 

testing. 

2)  ‘conceptual model evaluation’, that analyses the 

assumptions underlying the design of the model. 

3) ‘implementation verification’, that checks the 

implementation of the model (equations and software). 

4)  ‘model output verification’, that compares the output of 

the model to the empirical data and patterns that led 

the design of the model and its calibration. 



166 
 

5)  ‘model analysis’, that examines the sensitivity of the 

model to changes in parameters and formulation, in 

order to understand the key behaviours of the model 

and the description and justification of the simulation 

experiments. 

6)  ‘model output corroboration’, that compares the output 

of the model to data and patterns that were not used 

for the development and parameterization of the model 

(Grimm et al., 2014). 

 

The following table describes the structure of the proposed standard 

for agent-based model descriptions: 
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FIGURE 22  - STRUCTURE, TERMINOLOGY, AND CONTENTS OF TRACE DOCUMENTS BASED IN GRIMM ET AL. (2014). 
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7. THE TRACE DOCUMENT OF “A NASCENT 
ENTREPRENEURIAL AGENT-BASED MODEL” 

 

7.1. BASIC INITIAL INFORMATION ON THE MODEL 
 

LOCATION  
 

The model will be located at: 

 CoMSES Computational Model Library maintained by the 

OpenABM consortium: (http://www.openabm.org/models) 

 Modeling Commons:  (http://modelingcommons.org/) 

 

Currently, the model can be download from Modeling Commons, at: 

 Link: http://modelingcommons.org/browse/one_model/5715 

 Access: To be provided. The repository requires the e-mails of the 

people who is going to access to this model (“share”). 

 [The model is not publicly available yet: please, keep the access and 

password safely.] 

 

 

 
 

 

http://www.openabm.org/models
http://modelingcommons.org/
http://modelingcommons.org/browse/one_model/5715
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APPEARANCE OF THE GRAPHICAL INTERFACE 
 

 

 

 

 

FLOW CHART 
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Entrepreneur 

Variables: 

 entrepreneur-

financial-

resources 

 capacity-to-

achieve 

 

Business Opportunity 

Variables: 

 opportunity-size 

 opportunity-

lifespan 

 opportunity-

complexity 

Is entrepreneur’s 

capacity-to-

achieve ≥ 

opportunity-

complexity of 

opportunity? 

Entrepreneurs 

and 

opportunities 

keep moving 

around 

NO 

Hatch 

entrepreneurs-opportunities 

Variables: 

 entrepreneur-financial-resources 

 capacity-to-achieve 

 opportunity-size 

 opportunity-lifespan 

 opportunity-complexity 

YES 

look-for-financial-institutions 

Entrepreneur 

and Business 

Opportunity 

meet 

randomly 
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IS 

 capacity-to-achieve > 

[required-capacity-to-achieve] 

of target-financial-institution 

 opportunity-size > [min-

capital-per-opportunity] of 

target-financial-institution 

 opportunity-size < [max-

capital-per-opportunity] of 

target-financial-institution 

 opportunity-complexity < 

[maximum-opportunity-

complexity] of target-financial-

institution? 

 

entrepreneurs-

opportunities 

keep 

looking-for-

financial-

institutions 

NO 

YES 

look-for-financial-institutions 
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Hatch 

Proto-firms 

Variables: 

 entrepreneur-

financial-resources 

 capacity-to-achieve 

 opportunity-size 

 opportunity-lifespan 

 opportunity-

complexity 

 new-firm-capital 

 

Does 

Proto-firm 

get 

employees

? 

Proto firms 

look-for-employees 

Proto firms 

keep looking-

for-employees 

 

NO 

YES 
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Hatch 

New-firms 

Variables: 

 entrepreneur-financial-

resources 

 capacity-to-achieve 

 opportunity-size 

 opportunity-lifespan 

 opportunity-complexity 

 number-of-employees 

 cash-flow 

look-for-clients 

Does the 

new-firm 

find a new 

client? 

New-firm 

increases 

cash-flow 

NO 

YES 
New-firm keeps  

looking-for-

clients 

New firms keep 

looking for new 

clients 
END 
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7.2. TRACE DOCUMENT 
 

This is a TRACE document (“TRAnsparent and Comprehensive model 

Evaludation”) which provides supporting evidence of initial testing of our model 

presented in the PhD thesis titled: 

 

“Exploring log-normal distributions in nascent entrepreneurship 

outcomes: International comparisons and agent-based modelling” 

 

The rationale of this document follows:  

Schmolke A, Thorbek P, DeAngelis DL, Grimm V., 2010. Ecological 

modelling supporting environmental decision making: a strategy for the 

future. Trends in Ecology and Evolution, 25, pp. 479-486. 

 

and uses the updated standard terminology and document structure in: 

 

Grimm V, Augusiak J, Focks A, Frank B, Gabsi F, Johnston ASA, 

Kułakowska K, Liu C, Martin BT, Meli M, Radchuk V, Schmolke A, 

Thorbek P, Railsback SF., 2014. Towards better modelling and decision 

support: documenting model development, testing, and analysis using 

TRACE. Ecological Modelling, vol. 280, pp. 129-139.   

 

And 

 

Augusiak J, Van den Brink PJ, Grimm V., 2014. Merging validation and 

evaluation of ecological models to ‘evaludation’: a review of terminology 

and a practical approach. Ecological Modelling, vol. 280, pp. 117-128. 
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We have also kept the simple formatting of the author’s template (including 

the letter font type and size) in order that TRACE documents produced by different 

authors keep the same structure and terminology - as in any standard format -. 

 

Regarding the use of this protocol in the scientific community (especially in 

the EU funded research), see also:  

http://cream-itn.eu/trace  

http://cream-itn.eu/creamwp/wp-content/uploads/Trace-Guidance-11-03-04.pdf 

 

The TRACE document, as a protocol, is self-contained: it is designed to be 

attached to the agent-based computer file as a complete explanation of the 

objectives and mechanisms of the model. Therefore, some repetitions of previous 

themes of this thesis have to appear.  

http://cream-itn.eu/trace
http://cream-itn.eu/creamwp/wp-content/uploads/Trace-Guidance-11-03-04.pdf
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PROBLEM FORMULATION 

 

Relatively recent analyses of longitudinal nascent entrepreneurial panels 

have revealed the pervasiveness of the presence of heavy tailed distributions in 

their inputs and outputs (Crawford et al., 2015, Shim, 2016; Shim et al., 2017).  In 

many datasets, lognormal distributions or power law distributions with an 

exponential cut-off can be plausible fit. However, the mechanisms that generate 

these heavy-tailed distribution patterns remain still poorly understood. Researchers 

have proposed a combination of multiplicative processes and/or preferential 

attachment to explain the results (Breig, Coblenz and Pelz, 2018). 

 

This agent-based model is a research tool that has been designed to allow 

entrepreneurial researches to test their theories about nascent entrepreneurial 

processes and their heavy-tailed distribution patterns using the empirical datasets of 
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the current 14 different ongoing longitudinal panel projects worldwide, and to 

adapt, parametrize and calibrate their own models. 

 

 

The generality of our baseline model enables future simulations with 

different parameters depending on the country/region under study. Our model is 

complex enough to integrate the diversity of parameters and conditions of the 

different countries in which the empirical longitudinal panel are implemented. It 

also allows easy changes in code to explore different assumptions. Our conceptual 

model is flexible permitting changes in conceptual framework, procedures, 

schedules, values ranges, and in the set-up state variables and behavior of the 

agents. 

 

The baseline model – and further developments of it - will be openly 

available at the two main public agent-based model repositories to the 

entrepreneurship research community and nascent entrepreneurial stakeholders. 

The background material and code will be made available on permanent 

repositories such as the CoMSES Compu-tational Model Library maintained by the 

OpenABM consortium (http://www.openabm.org/models) and on the Modeling 

Commons (http://modelingcommons.org/), a Web-based collaboration system for 

NetLogo modelers. 

  

http://www.openabm.org/models
http://modelingcommons.org/
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MODEL DESCRIPTION  

 

The model description follows the ODD (Overview, Design concepts, 

Details) protocol for describing individual-based models (Grimm et al., 2006; 

Grimm et al., 2010). The model was implemented in NetLogo 6.0.4 (Wilensky, 

1999), a free software platform for implementing agent-based models. The 

NetLogo code will be made available on the permanent repositories CoMSES 

Computational Model Library, maintained by the OpenABM consortium 

(http://www.openabm.org/models) and on “Modeling Commons”, a public space 

for online modeling in NetLogo, developed by the Center for Connected Learning 

and Computer-Based Modeling ("CCL") at Northwestern University. 

 CoMSES Computational Model Library maintained by the 

OpenABM consortium: (http://www.openabm.org/models) 

 Modeling Commons:  (http://modelingcommons.org/) 

 

  

http://www.openabm.org/models
http://www.openabm.org/models
http://modelingcommons.org/


TRACE document: Ivan Rodriguez-Hernandez, 2019,  
A NASCENT ENTREPRENEURIAL AGENT-BASED MODEL 

179 
 

 

ODD PROTOCOL OF “A NASCENT ENTREPRENEURIAL AGENT-BASED 

MODEL” 

 

1. PURPOSE OF THIS MODEL 

 

Crawford et al. published in the Journal of Business Venturing (Volume 30,  

Issue 5, September 2015, pages 696-713) a paper titled:  “Power law distributions 

in entrepreneurship: Implications for theory and research”. Their study analyzed 

three datasets in the United States, the Panel Study of Entrepreneurial Dynamics 

(PSED II), The Kauffman Firm Survey  (KFS), the Inc. Magazine 5000 list, and 

one Australian data set (CAUSEE, The Comprehensive Australian Study of 

Entrepreneurial Emergence). They examined the distribution of key variables in 

nascent entrepreneurship, such as revenues, number of employees, number of 

owners, resources, etc., and they found that the majority of the variables showed a 

heavy-tailed distribution, specifically power law distributions, according to the 

distribution pitting techniques available at that time. 

 

As part of the first section of this PhD research, I have also conducted an 

analogous study on the Swedish dataset of nascent entrepreneurs (by Mikael 

Samuelsson). Results show similar heavy-tailed distribution patterns and 

parameters to those founded in the United States and Australia datasets, although 

our statistical distribution pitting analysis showed that both power law and 

lognormal distributions can be reasonable fit for the different national datasets 

available to date. 

 

One of the most recent attempts of the simulation of entrepreneurial 

outcomes distributions was initially developed by Shim (2016) using R software. 

He performed a simulation to determine if heavy-tailed distributions can be 

obtained through multiplicative processes in entrepreneurship. Shim (2016) was 

able to show that the distributions of the simulated outcomes were quite similar to 
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the empirical datasets and that lognormal models have better fit than other heavy-

tailed distributions in most of the nascent venture early stages (activities) results. 

However, Shim (2016) suggested that more sophisticated agent-based modelling 

and simulations were needed, given that a simple random multiplicative process 

was not enough to explain the complexity of the empirical and simulated patterns. 

 

Based on a bibliometric method and on the behavioural rules inferred from 

the entrepreneurship literature, Shim, Bliemel and Choi (2017) proposed a basic 

agent-based model that was able to reproduce the emergence of heavy-tailed 

distributions in nascent venture outcomes and that was consistent with the 

empirical datasets. Their model consists only in two agents (“entrepreneur” and 

“investor”) and two objects (“opportunity” and “resources”), being the amount of 

resources modelled as state variables of entrepreneurs and investor. Breig, Coblenz 

and Pelz (2018) has recently proposed another agent-based model used as an 

illustrative example of statistical validation for the entrepreneurial variable 

“venture debt” with the empirical data extracted from the second Panel Study of 

Entrepreneurial Dynamic (PSED II).  

 

However, in order to explore more complex phenomena in nascent 

entrepreneurship or to introduce other important elements of this nascent 

entrepreneurial process, a more complex agent-based model is required. Although 

complexity science researchers have identified several causal processes that yield 

heavy-tailed distributions in natural and social phenomena, the explanation for 

these distributions in nascent entrepreneurial processes requires further exploration 

(Breig, Coblenz and Pelz, 2018). 

 

This model is designed to explore questions regarding the emergence of 

new ventures and their nascent entrepreneurial processes, and to identify the 

mechanisms that produce the emergence of heavy-tailed distributed outcomes 

(“patterns”, Grimm, 2005) in nascent entrepreneurs’ longitudinal data panels 

(PSED and similar empirical datasets). Although this model adopts most of the 

basic features and conceptual framework used in previous models (especially the 
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conceptual model of Gartner, 1985, and the roadmap  proposed by Yang and 

Chandra, 2013), it introduces new levels of complexity in comparison to previous 

ones (Shim, 2016; Shim, Bliemel and Choi, 2017; Breig, Coblenz and Pelz, 2018). 

 

There are new features, more internal state variables for agents, new forms 

of interactions among them, new rules of behavior, and types of agents, global 

environmental variables (Martinez, Yang and Aldrich, 2011), that allow the 

possibility of further research in relationship with the empirical data: calibration, 

parametrization, verification, etc. One of the purposes of this model is to expand 

previous “stylized fact” type of agent-based modeling - based on basic principles - 

to richer representation of real-world scenarios based on empirical datasets. A more 

complex model also allows deeper theory development from simulation (Davis et 

al., 2007). Our model starts with the discovery of the heavy tailed distribution 

patterns at the macro level – the “stylized fact” -, and it tries to simulate the 

underlying processes and behaviors of individual entrepreneurs at the micro level 

that produce that “stylized fact” (the pattern, the heavy tailed distribution) (Shim, 

Bliemel and Choi, 2017). 

 

The conceptual model (inspired by Gartner, 1985; Yang and Chandra, 2013) 

is the following: 

 

 There are two types of initial mobile agents in the Netlogo’s world: 

entrepreneurs and opportunities. Both agents operate in a torus-like square 

grid. 

 Entrepreneurs “search” opportunities through serendipitous discovery. In 

further developments of the model, entrepreneurs “sniff” opportunities 

(opportunities leave “tracks”, like “pheromones” in biology). 

 An entrepreneur encounters a business opportunity in the Netlogo’s world. 

The theoretical framework is Shane and Venkataraman's (2000) opportunity 

“discovery‐evaluation‐exploitation”. 
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 If their characteristics match, the entrepreneur tries to exploit the 

opportunity. They both become a dual entity “entrepreneur-opportunity” 

and this duet begins the start-up activities: 

  

 First, they look for financial institution to get money to 

implement the opportunity. 

 Second, the look for employees. 

 Third, the look for clients to increase their cash-flow. 

 

 The run stops when only new firms remain in the “world”, and the rest of 

the mobile agents have “died”. 
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2. ENTITIES, STATE VARIABLES, AND SCALES 

 

INITIAL MOBILE AGENTS 

At the very beginning, the model has only two mobile agents: Entrepreneurs and 

Business Opportunities. 

 

ENTREPRENEURS 

Number of entrepreneurs:  

Defined by a slider in the interface of the model “population-of-

entrepreneurs” (for validation and calibration purposes, subsequent models 

will use real, empirical datasets (PSED, CAUSEE, etc.)). 

 

Entrepreneurs´ state variables: 

entrepreneur-financial-resources: 

 The personal investment capital owned by the entrepreneur him/herself or 

his/her proxies (family, friends, etc.). 

 Heuristically, in the first baseline model, it goes from 0 to 3,000,000 

monetary units (originally 100,000). It follows the real empirical ranges 

described in PSED II, under the variable “individual investment” (Crawford 

et al, 2015, Table 1, p. 703). 

 The amount is assigned to each entrepreneur randomly in the first baseline 

model. 

 A preliminary sensitivity analysis showed that this amount is able to change 

the dynamics of the process greatly. Further analysis is required. 

 A further development of the model will allocate entrepreneur's financial 

resources according to a lognormal distribution, instead of random 

distribution. To give each agent a number from a log-normal distribution, 
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we will use this code from Hamill and Gilbert (2016, documentation 

Chapter 7): 

o set entrepreneur-financial-resources precision ( e ^ random-normal 

mean standard-deviation)  0 ) 

Where function “precision number places” reports number 

rounded to places decimal places. Example:  

show precision 1.23456789 3 

=> 1.235 

And, according to Crawford et al. (2015, Table 1, p. 703), 

variable “individual investment” has a mean = 23 and a 

standard-deviation = 110 (Curtin, 2012). 

 For validation and calibration purposes, subsequent models will use real, 

empirical datasets (PSED, CAUSEE, etc.). The model has already 

incorporated the code to introduce the individual valued of this variable into 

the state variables of the agents (file name: "entrepreneur-financial-

resources-EmpiricalData.txt") (see procedure “to setup-entrepreneurs”). 

 It could be also possible to generate a random value using different 

distributions (for example, a power law, as Crawford et al. (2015) 

suggested). 

 

capacity-to-achieve: 

 It represents the entrepreneur´s social and human capital, strong and weak 

tie networks (Granovetter, 1973; Gordon and Jack, 2010), “small world 

networks” (Watts and Strogats, 1998; Watts, 1999; Uzzi et al., 2007), 

acquaintance with investment capital, opportunity recognition capabilities, 

entrepreneur’s education, previous experience in industry or venture 

founded, genetic factors (Nicolaou and Shane, 2009), etc. 

 This property will affect the next step of contacting and matching with 

opportunities, venture capital institutions and banks.  
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 Numerally, it goes from 0 to 100, being 100 the highest capacity to achieve 

(a percentage scale). A high value increases the possibility of getting 

investments from others. 

 The amount is assigned randomly to each entrepreneur in the first baseline 

model. Further developments of the model may assign this amount 

following a different distribution (lognormal or power law). 

 For validation and calibration purposes, subsequent models may use real, 

empirical datasets (it may require the development of scales similar to those 

designed by  Crawford et al. (2015, Appendix 1, “Construct, variables, and 

items”, p. 710). 

 

 

BUSINESS OPPORTUNITIES 

 

The integration of the entity “business opportunities” into the model is one 

of the more challenging aspect of the development of this research tool because 

their elusive nature (Dimov, 2011). This agent requires further both theoretical 

development and practical implementation (state variables). Different options have 

been considered, such as, for example, to create an opportunity-generator "entity" 

in the model that would mimic industrial clusters, universities incubators, etc., and  

that would produce opportunities during the run using a distribution function (such 

as a random Poisson distribution). We have decided to keep things simple in the 

first baseline model which already has high level of complexity. In the baseline 

model, opportunities appear initially located physically and randomly in the world 

(in “clouds” shapes). Further refinement is needed. 

 

 

Number of “Business opportunities”: 

Heuristically, it is defined by a slider with “number-of-opportunities” in that world.  
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Business Opportunities state variables: 

opportunity-size: 

 Investment capital (money) that is initially needed – individual 

entrepreneur’s investment plus venture debt - to be successful in 

implementing the opportunity. 

 Value: monetary units (depending on the country to be modelled, Euros, US 

dollars, Australian AUD, etc.). 

 Heuristically, the amount is assigned randomly to each opportunity with a 

minimum of 100,000 monetary units and maximum of 5,100,000 approx. 

(originally, with a minimum of 100,000 monetary units and maximum 

1,100,000). The range takes into consideration the empirical data of PSED 

II on the maximum value of the variable “Venture Debt” (Crawford et al., 

2015, Table 1, p. 703). 

 A preliminary sensitivity analysis showed that this amount is able to change 

the dynamics of the process greatly. Further analysis is required. 

 

opportunity-lifespan: 

 Time during which the opportunity is available, without being 

implemented. 

 Units in times steps (“clicks”). After certain number of clicks, the 

opportunity is outdated and dies. 

 The empirical panels (i.e. PSED) consider a span of 5 years as maximum. 

In the baseline model, each tick is a month (5 years * 12 months = 60 

months).                                                  

 

 opportunity-complexity: 

 It is the counter-part of entrepreneur-own "capacity-to-achieve". A high 

"opportunity-complexity" value requires a high entrepreneur´s "capacity-to-

achieve" in order to match. It reflects the need of many different resources 

(technological, financial, human, etc.) for implementing the opportunity. 
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For example, it is not the same to market a small plastic children toy than to 

market a new development for airplane wings. 

 Numerally, it goes from 0 to 100, being 100 the highest “opportunity 

complexity” (a percentage scale). 

 The amount is assigned randomly to each opportunity in the first baseline 

model. 

 

Alternative model 1: 

The model starts running with a defined numbers of entrepreneurs and 

opportunities (sliders) randomly located in the space and with both types of 

agents moving randomly around. 

 

Alternative model 2 (not in this baseline version): 

Entrepreneurs and Opportunities are generated from determined patches 

during the run following a determined probability function (like an 

“Opportunity generator”). 

 

 

 

STATIONARY AGENTS 

Organizations (referred as “patches” in NetLogo). In the baseline model, there are 

three kinds of special patches. 

 

 

FINANCIAL INSTITUTIONS: patches where entrepreneurs can obtain financial 

resources. They represent institutions such as banks, venture capital offices, 

investors, etc. 
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Number of financial institutions:  

The number of financial institutions is defined by a slider in the interface. 

They are randomly located in the world. 

 

Financial institutions state variables: 

financial-institution-resources: 

 Amount of money ready to be invested. Total monetary units that the 

financial institution is able to lend. 

 Heuristically, it goes from 100,000 to 10,100,000 monetary units 

approximately. It follows the real empirical ranges described in 

PSED II (see Curtis 2012, Codebook) (Crawford et al, 2015, Table 

1, p. 703). 

 It decreases every time the institution invests on a project, in the 

invested amount. 

 Randomly assigned. 

 

max-capital-per-opportunity: 

 It sets the superior, maximum limit of investment in an opportunity 

(defined by "opportunity-size") of this concrete financial institution. 

 Maximum 1,100,000 monetary units, approximately (minimum 

100,000). 

 Randomly assigned. 

 

min-capital-per-opportunity: 

 It sets the minimum limit of investment in an opportunity (defined 

by "opportunity-size"). 

 Minimum to invest: 50,000 monetary units (until 100,000). Heuristic 

(inverse calibration). 
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required-capacity-to-achieve: 

 The financial institutions (investors, banks, venture capital, etc.) 

require a minimum of capacity-to-achieve in the entrepreneur, that 

is, his or her social and human capital, strong and weak networking, 

acquaintance with investment capital procedures, education, 

capacity of opportunity analysis, attitudes, knowledge of the sector, 

etc. 

 Minimum 10 out of 100. Maximum 90 out of 100. Randomly 

assigned. 

 maximum-opportunity-complexity: 

 Some investors may prefer big challenges, or the opposite. 

 This is the maximum opportunity-complexity tolerated by the 

investors. 

 Maximum 100 out of 100. 

 Randomly assigned. 

 

 

 

 

WORKFORCE AGENCIES: patches where employees can be hired. They 

represent employment offices (private or public), head-hunters, etc. 

 

Number of workforce agencies:  

The number of workforce agencies is defined by a slider in the interface. 

They are randomly located in the world. 
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Workforce agencies state variables: 

target-workforce-agency 

 This version uses the solution of the Netlogo library example "Move 

towards Target Example" to resolve the problem related to the 

decision on which workforce agency should the new agent go, after 

being hatched. 

 Randomly, a workforce agency is chosen by the new hatched agent 

to get employees. 

 

 

CLIENTS: patches where the entities can obtain cash-flow. 

 

Number of clients in the world: 

The number of clients is defined by a slider in the interface. 

They are randomly located in the world. 

 

Clients state variables: 

 client-revenues: 

 Amount of money that can be transferred to a new-firm from this 

client. 

 Maximum 15,000 monetary units, minimum 5,000 monetary units, 

per commercial transaction (Heuristic amount, inverse 

parametrization). 
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Further developments of the model regarding organizations. 

Two different organizations can be added: 

 Opportunities generators: patches from where opportunities hatch. These 

patches represent universities, business schools, business incubators, 

industrial clusters, etc. They may generate opportunities following certain 

probability function (random Poisson, lognormal, etc.). 

 Gathering patches: patches in which the probabilities of being linked to 

other agents or resources increase. They represent places such as business 

incubators, where entrepreneurs can meet other entrepreneurs, investors, 

opportunities, etc. 

 

Geographically, the current conceptual framework of the model locates 

organizations distributed randomly in the plane – strictly from a topological point 

of view, in a torus - (XY patches, the plane of the “world”, organizations with 

physical locations in the real world, “patches” in Netlogo language), such as banks, 

business incubators, universities, business schools, industrial clusters, manufacture 

plants of suppliers, clients, employment offices, workforce companies, head-

hunters, etc. However, given the possibility of creation a three-dimensional world 

in Netlogo, organizations can also be in the space (XYZ patches, organizations that 

can be accessed through virtual links – internet, etc. -). The third dimension can be 

used to explore “weak” entrepreneurial networks, such as webpages of venture 

capital, crowdfunding websites, social networks of entrepreneurs, business 

networks (LinkedIn), etc. 
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SUBSEQUENT MOBILE AGENTS 

 

ENTREPRENEUR-OPPORTUNITY 

 If an entrepreneur encounters an opportunity and their variables 

match, a new agent is formed (“hatched”), the “ENTREPRENEUR-

OPPORTUNITY” new entity. 

 It gathers the properties of the parents’ entrepreneur and the 

opportunity. When the new agent Entrepreneur-Opportunity is 

hatched, its parents die (the agent entrepreneur and the agent 

opportunity). 

 

Entrepreneur-Opportunity state variables: 

 

entrepreneur-financial-resources: 

 This new agent has its parents’ entrepreneur´s financial resources or 

what it is left, because the entrepreneur spends money in his/her 

wanderings. 

 

capacity-to-achieve: 

 The new agent has its parents’ entrepreneur capacity-to-achieve. 

 This property will determine the next step of contacting and 

matching with financial institutions (venture capital institutions and 

banks). 

 The higher, the more possibilities of getting investments from 

others. 

 Numerally, from 1 to 100, being 100 the higher capacity to achieve. 
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opportunity-size: 

 It retains the variable value from the original parent’s opportunity. 

 

opportunity-lifespan: 

 Only the ticks that are left from the parent’s opportunity will pass 

onto this new agent. 

 

opportunity-complexity: 

 It retains the variable value from the original parent’s opportunity. 

 This property will affect the next step of contacting and matching 

with venture capital institutions and banks. Some investor may 

prefer big challenges or the opposite. 

  

target-financial-institution 

 Randomly, a financial institution is chosen to get financial resources. 

 

 

 

 

PROTO-FIRM 

 

 When an "entrepreneur-opportunity" meets and matches a financial-

institution, there is a probability of becoming a proto-firm (being 

hatched) and of receiving the needed capital to implement the 

business opportunity (stochastic process, following Simon´s 

approach). A new agent (breed “proto-firm”) is hatched from their 
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parents, the entrepreneur-opportunity and the contribution of the 

financial institution. 

 The first baseline model does not introduce the probability function 

of becoming a proto-firm in order to avoid the increase of 

complexity at the beginning of the development of this 

entrepreneurial model. 

 Proto-firms have capital from the financial institutions but they do 

not have workers yet, therefore, they are not fully operational and 

they cannot attend clients. Proto-firms will have to look for workers, 

first. 

 

Proto-firms state variables: 

 

entrepreneur-financial-resources: 

 This agent has the entrepreneur´s financial resources or what it is 

left, because the parent entrepreneur-opportunity spends money in 

his/her wanderings. 

 

opportunity-size: 

 It retains the value from the parent’s entrepreneur-opportunity. 

 

opportunity-lifespan 

 Only the time steps (ticks) that are left from its parent’s 

entrepreneur-opportunity pass onto this new breed. 

 

opportunity-complexity: 

 It retains the variable value from the original parent’s entrepreneur-

opportunity. 
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new-firm-capital: 

 The value of this variable is the sum of the entrepreneur-financial-

resources of the parent’s "entrepreneur-opportunity" plus 

"opportunity size". 

 The amount of money "opportunity-size" (defined as the needed 

capital – money - to be successful implementing the opportunity) 

comes from the financial institution. 

 This capital decreases as the new hatched agent is looking for 

employees. 

 

target-workforce-agency 

 Randomly, a workforce agency is chosen to get employees. 

 

  capacity-to-achieve: 

 The new agent has its parent entrepreneur-opportunity’s capacity-to-

achieve. 

 At this point, the value of this variable is not necessary, but it will be 

kept for tracking and research purposes. 
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NEW FIRM 

 When a proto-firm gets employees it becomes a new-firm. It is hatched 

from the encounter between a proto-firm and a workforce agency, being the 

parent the proto-firm. 

 New firms look for clients and get revenues. 

 

New firms state variables: 

new-firm-capital: 

 It retains the variable value of the parent’s proto-firm (It is the sum 

of the “entrepreneur-financial-resources” of the parent 

"entrepreneur-opportunity" plus "opportunity size"). 

 This capital decreases as the agent goes around looking for 

employees, and moving around searching for the initial client. 

 

cash-flow 

 This variable is made of the sum of the variables new-firm-capital 

(from the proto-firm parent) and client-revenues (in the encounter 

with clients). 

 It decreases at every time step (“tick”) due to the cost of searching 

for clients. 

 It also decreases at every time step (“tick”) due to the cost of 

employees´ salaries. The baseline model does not include this 

feature yet. 

 If it is negative, the new firm is broke, and it dies. 
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number-of-employees. 

 The initial number of employees has a relationship with the "new-

firm-capital". 

 The bigger the initial capital, the more the initial number of 

employees. 

 Calculation: number-of-employees = 0.00001 * new-firm-capital. 

The concept “revenues per employee” (RPE) is an operating 

performance ratio, and it is recorded in the annual reports - or form 

10-K in USA -. It indicates productivity levels and effective use of 

the firm’s resources. The range goes from smaller firms that average 

around $100,000 per employee versus almost $300,000 for a 

Fortune 500 company. For example, WalMart averages $170,000 

revenue per employee; GE is around at $436,000 per employee; 

Microsoft averages $646,000 per employee; and the oil industry 

generates over $2 million per employee. This performance ratio can 

be obtained in standard business databases (in USA, for example, 

D&B Hoovers). The empirical longitudinal panels will provide the 

percentages for each country and new venture. This parameter is the 

inverse of this value: 1/(revenue/number of employees) = 1/ RPE 

(“revenues per employee”- RPE). It depends of the industry and of 

the “intensive in labor” nature of the firm (Microsoft versus 

Wallmart). Heuristically, we assume a “revenues per employee” 

average of a small company: around $100,000 per employee 

(1/100,000 = 0.00001). 

 In further developments of the model, the numbers of employees 

should increase as the revenues increase. 
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target-client 

 This version uses the solution of the Netlogo library example "Move 

towards Target Example" to resolve the problem of to which clients 

should the new-firm go, after becoming a firm. 

 In this baseline model, the client is going to be chosen randomly. So, 

it can repeat the same client again and again (depending on a 

random function, and, therefore, there is low probability of this 

event). 

 

  capacity-to-achieve: 

 The new firm has its parent’s capacity-to-achieve. 

 At this point, the value of this variable is not necessary, but it will be 

kept for tracking and research purposes. 

 

 

 

Spatial context: 

 

The initial baseline model will consist in a “city”, or a “region” or a 

“country”, depending of the level of geographical detail provided by the empirical 

micro-data from the panels (PSED, CAUSEE, etc.). The size of the grid cells 

would be calculated accordingly (for example, 1 grid cell = 10 km
2
, so on and so 

forth). 

 

The base model uses Sweden as example for further parametrization and 

calibration. Sweden has a populated area of around 200,000 km2 (40% of its land; 

the North has a very low population). Our grid is 500 km
2
 x 500 km

2
, with 50 

patches per square side with value of 10 km
2
 per patch. (√200,000 km

2
 ~ 500 km

2
). 



TRACE document: Ivan Rodriguez-Hernandez, 2019,  
A NASCENT ENTREPRENEURIAL AGENT-BASED MODEL 

199 
 

 

In 2D -coordinates X and Y, the plane where the “world” is- some grid cells 

are agents: some patches of land represent the geographical locations of physical 

entities involved in the nascent entrepreneurial dynamics such as banks, business 

incubators, universities, business schools, industrial clusters, manufacture plants of 

suppliers, major clients, employment offices, workforce companies, head-hunters, 

etc. 

In the current version of the code of the model, only three types of patch 

agents are represented by the grid cells: financial institutions, workforce agencies 

and clients. Overlap of roles occurs: a grid cell is a static agent with its own 

variables, but also it functions as a location in the “world”. 

 

Temporal scale: 

 

The temporal step value (the “tick”) depends on the system under study. For 

example, in US PSED, one temporal step (“tick”) represents one day, and 

simulations run for 5 years (60 months, 21900 days). Empirical longitudinal panel 

datasets also include the date in which each activity was performed by the nascent 

entrepreneur. The panel empirical data sets (PSED, CAUSEE, etc.) will serve as 

method of calibration for the model in future developments. Each empirical agent 

data recorded by the longitudinal panel can be introduce into the model with code 

for importing files similar to the one indicated in the code section relative to the 

setup of entrepreneur’s state variables. 

 

Current baseline model - based on PSED - consider a span of 5 years in 

which each tick is a month (5 years * 12 months = 60 months). 
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Environmental variables  

 

The baseline model has global variables that influence the “world” and that 

affect to all agents. These global variables represent aspects described in reports 

such as those by the Global Entrepreneurship Monitor (GEM), “Doing Business” 

(World Bank Group), etc., related to the business environment and entrepreneurial 

enhancers. The variables associated to business environment included in the panels 

(PSED, etc.) can also be taken into account (Martinez, Yang and Aldrich, 2011). 

 

The global variables can be set with sliders in NetLogo interface in each 

run. 

 

Currently, two environmental global variables have been coded in the initial 

interface of the baseline model: 

 search-cost: 

 Money spent in each of the entrepreneurial actions: discovery and 

development of opportunities, transactions, preparation of business 

plans, travelling, networking, etc. ““Search” is costly and may 

influence the success/failure of entrepreneurs” (Yang and Chandra, 

2013, p. 214). 

 Each tick has a defined temporal value depending on the 

longitudinal panel data set (a day, a month, etc.). The slider defines 

the cost of actions during that day/month/etc. It includes the 

entrepreneur´s salary (or cost of living). 

 

social-dynamism: 

 The slider defines the number of steps in the two-dimensional grid 

made by the agents in the “word” in every tick: dynamic business 

environment versus slow environment. 
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  “In most social and business phenomena, space, or distance plays a 

crucial role which will determine the emergence of an event or not 

and how/why it occurs” (Yang and Chandra, 2013, p. 213). 

 

These other potential environmental variables can also be introduced in the 

model, in future versions: 

 

 Entrepreneurial Public Policies: this global variable encompasses aspects 

such as regulations, taxes, registration conditions, administrative constrain, 

etc. A favourable entrepreneurial public policy would increase the 

possibility of exploiting opportunities, becoming a firm, etc. 

 Entrepreneurial Business Environment: this global variable encompasses 

aspects such as the degree of entrepreneurial activity, numbers of industrial 

clusters, social approval of entrepreneurial activity, active R&D institutions, 

availability of financial resources etc. A favourable Entrepreneurial 

Business Environment increases the number of opportunities that hatch, the 

number of entrepreneurs in the simulated “world”, etc. 

 Tendency of entrepreneurs to cooperate and to become teams. It increases 

the probability of becoming a team when one or more entrepreneurs meet 

which, in turn, it increases the probability that a team of entrepreneurs can 

exploit bigger opportunities, etc. 

 Capital growth: the capital in the financial institutions grows every year a 

certain percentage. To be added as a slider. Also it can be coded as a process 

“regrow-resources”. 

 

2. PROCESS OVERVIEW AND SCHEDULING 

 

The following flow chart shows the summary of the process and scheduling: 
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Entrepreneur 

Variables: 

 entrepreneur-

financial-

resources 

 capacity-to-

achieve 

 

Business Opportunity 

Variables: 

 opportunity-size 

 opportunity-

lifespan 

 opportunity-

complexity 

Is entrepreneur’s 

capacity-to-

achieve ≥ 

opportunity-

complexity of 

opportunity? 

Entrepreneur

and 

opportunities 

keep moving 

around 

NO 

Hatch 

entrepreneurs-opportunities 

Variables: 

 entrepreneur-financial-resources 

 capacity-to-achieve 

 opportunity-size 

 opportunity-lifespan 

 opportunity-complexity 

YES 

look-for-financial-institutions 

Entrepreneur 

and Business 

Opportunity 

meet 

randomly 
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IS 

 capacity-to-achieve > 

[required-capacity-to-achieve] 

of target-financial-institution 

 opportunity-size > [min-

capital-per-opportunity] of 

target-financial-institution 

 opportunity-size < [max-

capital-per-opportunity] of 

target-financial-institution 

 opportunity-complexity < 

[maximum-opportunity-

complexity] of target-financial-

institution? 

 

entrepreneurs-

opportunities 

keep 

looking-for-

financial-

institutions 

NO 

YES 

look-for-financial-institutions 
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Hatch 

proto-firms 

Variables: 

 entrepreneur-

financial-resources 

 capacity-to-achieve 

 opportunity-size 

 opportunity-lifespan 

 opportunity-

complexity 

 new-firm-capital 

 

Does 

Proto-firm 

get 

employees

? 

Proto firms 

look-for-employees 

Proto firms 

keep looking-

for-employees 

 

NO 

YES 
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Hatch 

new-firms 

Variables: 

 entrepreneur-financial-

resources 

 capacity-to-achieve 

 opportunity-size 

 opportunity-lifespan 

 opportunity-complexity 

 number-of-employees 

 cash-flow 

look-for-clients 

Does the 

new-firm 

find a new 

client? 

New-firm 

increases 

cash-flow 

NO 

YES 
New-firm keeps  

looking-for-

clients 

New firms keep 

looking for new 

clients END 
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The following section describes what entity does, and in what order, using 

pseudo-code to describe the schedule of the process. A state variable is 

immediately assigned a new value as soon as that value is calculated by a process; 

therefore, the model follows an asynchronous updating. 

 

Entrepreneurs processes: 

 

Entrepreneurs meet opportunities by chance, randomly, by wandering 

around the "world" (human behavioral ecology approach). [This process implies a 

complex “foraging” theory approach to entrepreneurship and it has yet to be 

justified. It would introduce another complementary biological perspective on 

entrepreneurship - human behavioral ecology - in addition to genetics, physiology 

and neuroscience (Shane, 2009; Nofal, Nicolaou, Symeonidou and Shane, 2018). 

Also related with to organizational ecology approach: Hannan and Freeman, 1977; 

Freeman et al., 1983; Freeman and Hannan, 1983).] 

 

 Wiggle: first turn a little bit randomly. 

 move-entrepreneurs: then, step forward. This movement implies 

spending resources (as "search-cost"). 

 check-if-broke: check to see if entrepreneurs has already spent their 

own "entrepreneur-financial-resources", because the step forward 

implies consumption of resources, as it is defined in the interface 

slider "search-cost". 

 get-opportunity: entrepreneurs that look for opportunities. If the 

characteristics of both match, they may become new breed: 

“entrepreneur-opportunity”. 

 [meet-other-entrepreneurs: in the first baseline model, this process 

has not been coded yet. It implies the formation of team of 

entrepreneurs. For future model developments]. 
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Opportunities processes: 

 

They move around randomly. In the initial baseline model, they exist at the 

beginning of the run and they are located randomly in the “world”. Future model 

development will simulate “opportunities generators” at locations such as 

universities, business cluster, etc. 

 Wiggle. 

 move-opportunity. 

 check-if-outdated: every opportunity has randomly assigned a different 

lifespan of a number of ticks. Opportunities get old and outdated. 

 

 

“entrepreneurs-opportunities” breed processes. 

 

 look-for-financial-institutions: entrepreneurs-opportunities look for money 

to implement the project. 

 check-if-outdated: opportunities are out of date after a certain amounts of 

ticks.  

 [check-for-becoming-a-new-firm: it may happen that the entrepreneurs´ 

owns financial-resources are enough to become a new firm. The conditions 

will be: entrepreneur-financial-resources >= opportunity-size. Not coded 

yet for simplification purposes]. 
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Proto-firms processes: 

 look-for-employees: proto-firms look for a workforces agency to get 

employees. 

 check-capital-level: the search for employees consumes resources, the 

defined “search costs”. If new-firm-capital is below a certain threshold, the 

proto-firm is brought to an end. If the “new-firm-capital” variable is less or 

equal to zero, the proto-firm dies. 

 

 

New-firms processes: 

 

 look-for-clients: New-firm entities look for clients to increase cash-

flow. 

 check-for-liquidation: if new-firm-revenues are below a certain 

threshold, involving variables such as "cash-flow" and "new-firm-

capital", the new-firm is dissolved ("bankruptcy"). 

 

 

my-update-plot: 

 Update the different plots of the interface. In the first baseline 

model, the update after the “tick” is done directly in the interface for 

practical reasons. Future models will update from the code section 

(good coding practices, Railsback and Grimm, 2011). 
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Stop the run 

 

 The run stop when the agents have reached the new-firm status or the 

intermediate agents have already disappeared. 

 If the number of entrepreneurs is zero and the number of entrepreneurs-

opportunities is zero, and the number of proto-firms is zero, the run stops. 

 

 

4. DESIGN CONCEPTS 

 

Basic Principles.  

 

The main hypothesis of the model is that the individual behavior of the 

agents and the multiplicative nature of their interactions in nascent 

entrepreneurship processes may explain the emergence of heavy tailed distributions 

(power laws or lognormal) in the observed empirical data. The theoretical 

framework for agent traits, from which system dynamics emerge, have been 

described in the different subsections of this document. 

 

The “rules of engagement” of the agents follow Gartner’s theoretical 

framework (1985) for describing new venture creation. This theory is particularly 

suitable for this research that tries to develop a model of venture emergence (it is 

described above). This model also assumes a “foraging theory”, taking a behavioral 

ecology approach regarding the entrepreneurs encountering business opportunities: 

these two agents are “wanderers” in the model’s “world”. 
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The basis of the conceptual framework of the model is the following: 

 

 An entrepreneur encounters a business opportunity in the Netlogo’s world. 

 If their characteristics match, they begin the start-up activities (the temporal 

order of these activity can easily be changed in the code if theory testing is 

desired): 

o First, they look for financial institution to get money to implement 

the opportunity. 

o Second, the look for employees. 

o Third, the look for clients to increase their cash-flow. 

 At every start-up activity, the state variables of agents have to match in 

order to have a successful result (money, employees). The run stops when 

only “new firms” remain in the “world”, and the rest of the mobile agents 

have “died”. 

 

The empirical datasets of the different entrepreneurial longitudinal panels 

across the world will be used to calibrate de model. 

 

Emergence.  

 

The objective of the model is to reproduce the emergence of heavy tailed 

distributions observed in the experimental datasets of different longitudinal panels 

of nascent entrepreneurship. The emergence of these heavy tailed distributions is 

not obvious or trivial. The model will experiment with different mechanisms and 

parameters that generate these types of distributions to identify the ones that better 

match the empirical results. 

 

The baseline model uses stochasticity in the assignation of variable values. 

In the first baseline model, a random generator is used (Netlogo primitive called 
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“random”). However, the model results show that, even with a random variable 

value generation, heavy-tailed distributions emerge after undergoing the nascent 

entrepreneurial processes modelled: power laws, log-normal and even Weibull 

distributions can be obtained varying the parameters. Surprising, the experiments 

conducted were not able to reproduce Gaussian distributions easily. The normality 

tests normally failed when analyzing the results of the model runs. Future models 

should experiment with the implementation of a random lognormal generator. 

Stochastic processes may yield heavy-tailed distributions under certain conditions. 

 

 

Adaptation.  

 

The agents of the model have different adaptive traits depending on the 

entrepreneurial phase in which they are: 

 

 An entrepreneur seeks a suitable opportunity.  

 An entity [Entrepreneur-Opportunity] seeks a financial resource.  

 A Proto-firm seeks a workforce agency. 

 A new-firm looks for clients to get revenues. 

 

The hierarchy of start-up activities to be implemented by the entities in each 

period is based on the prevalence of the activities that has been determined by 

empirical data of the panels (for example, the PSED start-up activities prevalence 

in Reynolds, 2017b). 

 

In the current coded baseline model, these searches of the agents (for 

opportunities, financial institutions, workforce agency, or clients) are purely 

stochastic. Further developments in the models should experiment introducing 
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some selection, looking for the most suitable match, and observing how this may 

change the distributions of the state variables and outputs. 

 

 

Objectives.  

 

The objective of the entities is to become a firm, with clients, employees, 

and a positive cash flow. Entities prioritize certain start-up actions depending on 

the step they are in the process of emerging venture (see “Adaptation” section 

above). 

 

 

Learning.  

 

In the initial baseline model, changes in adaptive behavior as a consequence 

of experience (learning) has not been considered for sake of simplicity. However, 

among entrepreneurs’ state variables, entrepreneurial experience is included as part 

of the human capital, increasing the frequency of gestation activities over time. 

 

 

Prediction.  

 

The purpose of this entrepreneurial model is to explain the heavy tailed 

distributions of entrepreneurial variables (revenues, number of employees, etc.) 

observed in empirical datasets. The baseline agent-based model uses randomness as 

the mechanism of making the decisions of agents. For example, a proto-firm selects 

randomly one of the workforce agencies to get employees; an agent entrepreneur-

opportunity also picks up one of the financial institutions randomly. 
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However, although this randomness in the processes may be founded in 

empirical evidence in entrepreneurship (Coad 2009; Coad, 2013; Frankish et al., 

2013, p. 77; Lotti et al., 2009), it also may impose an assumption that may lead to 

the predicted heavy tailed distribution. Different mechanisms may be playing an 

important role in the emergence of heavy tailed distributions that can be hidden by 

this random, stochastic approach, such as the Yule process (preferential 

attachment), or the critical phenomena and the associated concept of self-organized 

criticality (Newman, 2005, p. 348-349). 

  

 

Sensing.  

 

In this model, agents can “sense” the state variables of the other agents and 

of the patches - where organizations are located - once they are in them. An 

entrepreneur may sense if an opportunity is suitable for her/him or not when he/she 

encounters it. For example, an entrepreneur’s capacity-to-achieve has to be bigger 

or equal to the state variable “opportunity-complexity” of the target-opportunity to 

be able to implement the sub-model “to get-opportunity”. Likewise, a financial 

institution may “sense” and reject an “Entrepreneur-Opportunity” entity that does 

not fit with its investment portfolio criteria. 

 

The baseline model makes the agents to choose a target randomly (a 

financial institution, a workforce agent, a client) to keep things as simple as 

possible. A further development of the model may use the model principle of 

diffusion, similarly to the one use in the NetLogo Ants model (Wilensky, 1997). 

Using the Netlogo primitive “diffuse”, it is possible for the institutional patches to 

send information about their own resources around. This modeling technique 

would allow the introduction of the "money-smell" and to give the capacity of the 

agents to “sniff” (sense) the state variables of the organizations that they are most 

interested. These trails generates by the Netlogo primitive “diffuse” also provide 
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information to the agents regarding of the source of these trails. For example, a trail 

to a venture capital patch informs the agent of the amount of financial resource 

potentially available if this trail is followed. 

 

 

Interaction.  

 

The baseline model has direct interactions, in which agents encounter 

others, and, if some conditions are met, they are able to hatch a new agent (“breed”,  

in Netlogo terminology). In further developments of the model, an indirect 

interaction will be implemented through competition, for the revenues of the 

clients, or for the financial resources of the financial institutions (venture capital). 

 

 

Stochasticity.  

 

Stochasticity has been the major source of variability in the Simon’s 

tradition on firms’ size distribution. The basic mechanism for generating power 

laws, for example, has been proportional random growth (Gabaix, 2009; Gabaix, 

2014; see subsection above in this document). 

 

The baseline model uses the Netlogo primitive “random” that produces 

what is called in computer programming a “pseudo-random” number, through a 

deterministic process (by the generator known as the Mersenne Twister). In 

scientific modeling, pseudo-random numbers are better because if the model start 

with the same random “seed” is possible to get the same results every time, and, 

therefore, to develop experiments that can be reproduced by other researchers. The 

code to implement the random seed is already in the coding section, before the set-

up procedure. This feature makes the model run reproducible (see Replication 

section above). 
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An improvement of the initial model would also use random processes to 

cause events or behaviors to occur with a specified frequency such as the hatching 

of the opportunities and their characteristics, the frequency of an entity proto-firm 

of becoming a firm, etc. [still to be coded]. 

 

Besides the uniformly distributed random integers generated by the 

primitive “random”, NetLogo also offers several other random distributions such as 

random-normal, random-poisson, or it is able to generate other random 

distributions through code (see code for random-lognormal above). Future 

developments of this model should include these other types of distributions to 

analysis the impact in the model (as suggested in the previous section). 

 

 

Collectives.  

 

In this model, collectives are merely a definition of the types of agents 

(breeds), characterized by their own state variables. Organizations such as clients, 

financial institutions or workforce agencies have their own state variables assigned 

randomly in the set-up. 

 

Emergent collectives out of the individuals’ behavior are not expected. 

 

Further developments of the model will include the possibility to create 

entrepreneurs’ teams (not coded yet, for simplification purposes). 
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Observation.  

 

The main outcomes collected from the model for analysis are: 

 

 Start-up survival (time to be born and time to die) (not coded yet). 

 Number of established firms after the runs. 

 Number of employees. 

 Cash flows. 

 

The model is inspired by several empirical longitudinal panels developed in 

different countries. These panels selected a significant sample of entrepreneurs in a 

country, and follow them through a number of years registering their 

entrepreneurial activity. The model tries to capture and understand the main output 

of those empirical longitudinal datasets. The model has already implemented the 

code to export data in CSV (Comma Separated Value) files for statistical study, in 

this case, for distribution pitting with R (for example with package ‘Dpit’ version 

1.0: Joo, Aguinis and Bradley, 2017 or “fitdistriplus”), or other distribution testing 

packages (such as ‘goft’ version 1.3.4: Gonzalez-Estrada, & Villasenor-Alva, 

2017). Detailed data on every step of the model can also be obtained through the 

Netlogo BehaviourSpace software tool. 

 

There are two possible options for the implementation of this observational 

principle: 1) all the output data are used, or 2) only certain data sample is used, 

replicating the methodology of the longitudinal panels. Further calibration tests are 

required to decide the better approach. 
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5. INITIALIZATION 

 

There will be two main versions of the model is the initial state (at time t = 0 of 

a simulation run: 

 

1) An artificial “world”, as an initial test for the baseline model. 

a. Initially, there will be only two initial mobile agents, entrepreneurs 

and opportunities. 

b. The variables of the different agents will be set stochastically from a 

defined range (see table with parameters ranges). 

c. The initial conditions are also established by sliders, with the 

number of agents and global variables values (such as “search-cost”, 

etc.). 

 

2) A “world” based on the one of the empirical datasets provided by the 

longitudinal panels (parametrization - calibration). The empirical datasets of 

PSED cover five years. At the initial state of the model world (time t=0 of a 

simulation run), the numbers of entities and the values of their state 

variables will be set based on the panels empirical data at year 0. The model 

has already a mute code for initialization data introduction in the set-up 

procedure (“file-read” primitive) [not implemented in the baseline version] 

 

6. INPUT DATA 

 

The initial baseline model does not use input data to represent time-varying 

processes (time series) such as the environmental variables changes related to 

business environment (changes in legal frameworks, financial crisis, financial 

bubbles, etc.). However, further developments of the model would introduce inputs 

related to the environmental, global variables relative to business environment, 

public policies, regulations, etc. such as the ones described in the Global 



TRACE document: Ivan Rodriguez-Hernandez, 2019,  
A NASCENT ENTREPRENEURIAL AGENT-BASED MODEL 

218 
 

Entrepreneurship Monitor Reports (GEM), “Doing Business Report Series” (World 

Bank Group), etc. 

 

 

7. SUBMODELS 

 

This section described in detail the submodels that represent the processes 

listed in ‘Process overview and scheduling’. The description includes Netlogo’s 

code (computer language) or pseudo-code to make possible a replication. 

 

Please notice that, in Netlogo,  the semicolon (;) mutes code and text. It is 

used to make programming comments, explanations, or to mute code that can 

be activated later. The semicolons in this section mean that the text after this 

syntax symbol is muted code or comments/explanations. 

 

Submodel “moving around the world”: to wiggle.  

 

to wiggle: entrepreneur and opportunity procedure. 

 The initial process of finding the right opportunity by the entrepreneur is 

random, stochastic, just "good luck". 

 This is an assumption based on some results from bibliography (Coad, 

2009; Coad, 2013; Frankish et al., 2013, p. 77; Lotti et al., 2009). It should 

be taken with a "grain of salt". Further theoretical development is needed to 

justify it. 

 Code: 

o right random 90                 ;; turn randomly right 

o left random 90                  ;; turn randomly left 

o if not can-move? social-dynamism [right 180]: It does not leave the 

"world". To avoid a violation of topology. 
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Submodel “to move entrepreneurs” 

  

to move-entrepreneurs: entrepreneur procedure.  

 Step forward the number of steps defined by a slider at the interface called 

“forward social-dynamism”. It was defined as the number of steps in every 

tick: dynamic business environment versus slow business environment. 

However, preliminary extreme tests proved that there is something 

problematic with this global variable “social-dynamism”. The problem may 

be related to the topology and the way agent’s search each other in the 

model. It affects the performance of the model greatly, but not as it was 

initially thought. This variable remains in the baseline model for further 

testing. 

 This movement implies spending resources (as "search-cost"). Set 

entrepreneur-financial-resources (entrepreneur-financial-resources - search-

cost). Moving has a financial cost. 

 

 

Submodel “check-if-broke” 

 

to check-if-broke: entrepreneur procedure. 

 If entrepreneurs-financial-resources are too low, he or she gets out of the 

game. 

 Code: 

if (entrepreneur-financial-resources <= search-cost) [die] 
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Submodel “to get an opportunity”. 

 

to get-opportunity: entrepreneur procedure (based on code from “Wolf Sheep 

Predation” in Netlogo model library (Wilensky, 1997): 

 

 If an entrepreneur meets an opportunity, and this opportunity matches the 

required conditions, a new breed is hatched (an “entrepreneur-opportunity” 

entity), with the properties of its parents. Afterwards, the parent 

entrepreneur dies, as well as the opportunity that was found. 

 Code: 

 let target-opportunity one-of opportunities-here ;; procedure from the 

entrepreneur agent perspective. 

  if target-opportunity != nobody  ;; there is an opportunity in this patch with 

me (entrepreneur agent perspective). 

  [ 

    if (entrepreneur-financial-resources >= search-cost ) and 

(capacity-to-achieve >= [opportunity-complexity] of target-

opportunity) 

  [ 

    hatch-entrepreneurs-opportunities 1.  This is a new breed. [Further 

development: Can we introduce a probability function such as hatch 

entrepreneur-opportunity random-poisson or random-normal? How 

different the model would behave? To be explored.] 

 

    The variables of the new breed entrepreneur-opportunity are made of a 

combination of the opportunity and entrepreneur´s variables. 

The new breed variables are calculated in the following form: 
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Variables values coming from the entrepreneur: 

 set entrepreneur-financial-resources (entrepreneur-financial-resources - 

search-cost) ;; to accept an opportunity has a cost (time to analyze it, 

decisions, etc.). 

 set capacity-to-achieve (capacity-to-achieve) 

 This property will affect the next step of contacting and matching 

with venture capital institutions and banks. 

 The higher, the more possibilities of getting investments from 

institutions. 

 

Variables values coming from the opportunity: 

 set opportunity-size ([opportunity-size] of target-opportunity): it retains this 

property from the original target-opportunity. 

 set opportunity-lifespan ([opportunity-lifespan] of target-opportunity): only 

the ticks that are left pass onto this new breed. 

 set opportunity-complexity ([opportunity-complexity] of target-

opportunity): 

o This property will affect the next step of contacting and matching 

with venture capital institutions and banks. 

o Some investor may prefer big challenges or the opposite. 

 

New aspects of the new breed “entrepreneur-opportunity” are added such as size 

and where to go next through random “target” approach (primitive “one-of”): 

Code: 

 set size 2 (easier to see in the interface). 

 set target-financial-institution one-of financial-institutions: set the financial 

institution target randomly to which it is going forward next. 
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 face target-financial-institution: point in the direction of the target, to go 

forward in the next step. 

After taking its variables to become the new breed, the opportunity dies. The parent 

entrepreneur also dies. 

 

Submodel “move-opportunity” 

 

to move-opportunity: opportunity procedure:  step forward. 

 This movement decreases opportunity-lifespan. Opportunity-lifespan is 

measured in “ticks” units. 

 forward social-dynamism ;; it defines the number of steps in every tick: 

dynamic business environment versus slow business environment. It is 

defined in a slider at the interface (See comments above). 

 set opportunity-lifespan (opportunity-lifespan - social-dynamism): to exist 

implies a decrease of opportunity-lifespan until it get old and outdated. 

“Social-dynamism ticks” are subtracted in each tick in order to reflect that 

in very dynamic societies opportunities get older faster. Further study is 

required to analysis the impact of “social-dynamism” global variable in the 

whole model. 

 

 

Submodel “check-if-outdated” 

 

to check-if-outdated ;;  opportunity procedure. 

 Opportunities have an opportunity-lifespan: it is the time for the 

opportunity to remain available, without being implemented. Business 

opportunities get old, and eventually, they die (they are removed from the 

“world”). 
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 Code: 

if (opportunity-lifespan <= social-dynamism), the opportunity dies 

(it is outdated). 

 

 

Submodel “look-for-financial-institutions” 

 

to look-for-financial-institutions: “entrepreneurs-opportunities” breed procedure.  

This breed goes to financial institutions to get money. 

The financial institutions set conditions to accept an “entrepreneur-

opportunity” breed. These are the conditions to get the money: 

 

  (capacity-to-achieve > [required-capacity-to-achieve] of target-financial-

institution), 

       and (opportunity-size > [min-capital-per-opportunity] of target-

financial-institution),          

       and (opportunity-size < [max-capital-per-opportunity] of target-

financial-institution), 

       and (opportunity-complexity < [maximum-opportunity-complexity] of 

target-financial-institution)) . 

 

        When an entrepreneur-opportunity meets and matches with a financial-

institution, they may become a proto-firm (hatch-proto-firms 1), but it has not 

workers/employees yet (not fully operational). [Further development: Can we 

introduce a probability function such as hatch-proto-firms random-poisson or 

random-normal? How different the model would behave? To be explored.] 
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The new proto-firm states variables comes from the parent‘s “entrepreneur-

opportunity”: 

 set entrepreneur-financial-resources (entrepreneur-financial-resources): this 

agent has the entrepreneur´s financial resources or what it is left, because 

the entrepreneur spends money in her/his wanderings. 

 set capacity-to-achieve (capacity-to-achieve): The higher, the more 

possibilities of getting investments. 

 set opportunity-size (opportunity-size): it retains this property from the 

original opportunity. 

 set opportunity-lifespan (opportunity-lifespan): only the ticks that are left 

pass onto this new breed proto-firm. 

 set opportunity-complexity (opportunity-complexity). 

 set new-firm-capital (entrepreneur-financial-resources + opportunity-size): 

it is the sum of the entrepreneur-financial-resources of the parent 

"entrepreneur-opportunity" plus the "opportunity size" amount. The 

“opportunity size” amount is provided by the financial institution, if the 

“entrepreneur-opportunity” state variables fulfill the profile of the financial 

institution portfolio. 

 

A workforce agency is then randomly targeted to which it is going forward next. It 

points to the direction of the target, to go forward in the next step. 

 

The resources of the financial institution decrease in the amount invested: 

Code: 

 set financial-institution-resources ([financial-institution-resources] of target-

financial-institution - ([opportunity-size] of entrepreneur-opportunity))  
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The “entrepreneur-opportunity” entity is removed (it dies) in order to let it 

become a new breed “proto-firm”. 

If the “entrepreneur-opportunity” breed does not match the conditions of 

the financial institution, it targets another financial institution randomly (as long as 

it has resources to go around – search-cost -). 

 

Further developments of submodel “look-for-financial-institutions”: once 

the new-firm reach certain amount of cash-flow, it can return to financial 

institutions for more money (subsequent rounds of investing) and to the workforce 

agencies to get more employees [not implemented yet in the baseline model]. 

 

Submodel “look-for-employees” 

 

to look-for-employees: proto-firms procedure. 

 

When the proto-firm meets a workforce agency gets employees and it 

becomes a functional new-firm (hatch-new-firms 1); it can also be done 

with a probability function such as random-poisson or random normal (To 

be explored to understand the impact in the model). 

 

Code of how to define the new variables of the new breed “new-firms”: 

 

 set new-firm-capital (new-firm-capital - search-cost): the costs of the 

transaction of getting the employees from the agency. 

 set number-of-employees (0.00001 * new-firm-capital): The concept 

“revenues per employee” (RPE) is an operating performance ratio, and it is 

recorded in the annual reports - or form 10-K in USA -. It indicates 

productivity levels and effective use of the firm’s resources. The range goes 

from smaller firms that average around $100,000 per employee versus 
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almost $300,000 for a Fortune 500 company. For example, WalMart 

averages $170,000 revenue per employee; GE is around at $436,000 per 

employee; Microsoft averages $646,000 per employee; and the oil industry 

generates over $2 million per employee. This performance ratio can be 

obtained in standard business databases (in USA, for example, D&B 

Hoovers). The empirical longitudinal panels will provide the percentages 

for each country and new venture. 

 This parameter is the inverse of this value: 1/(revenue/number of 

employees) = 1/ RPE (“revenues per employee”- RPE). It depends of the 

industry and of the “intensive in labor” nature of the firm (Microsoft versus 

Wallmart). Heuristically, we assume a “revenues per employee” average of 

a small company: around $100,000 per employee (1/100,000 = 0.00001). 

 set cash-flow (new-firm-capital) 

 

The new firm sets the next client randomly to which it is going forward next 

(“target”). 

The parent proto-firm dies and it transfers its variable values to the new firm. 

 

Further developments of this submodel ““look-for-employees”: once the new-

firm has reached a certain amount of cash-flow, it can return to the workforce 

agencies to get more employees. 

 

 

Submodel “look-for-clients” 

 

to look-for-client: new-firms procedure. 

 

If a new-firm encounters a client, it gets client-revenues and the revenues are 

added to the cash-flow of the new-firm: 
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 set cash-flow (cash-flow + [client-revenues] of target-client - search-cost) 

 

Afterwards, look (target) for another client (set target-client one-of clients). It is 

done randomly (Netlogo primitive “one-of” targets a new client randomly). 

 

 set cash-flow (cash-flow - search-cost): there is a cost for searching new 

clients. 

 

 

Submodel “check-capital-level” 

 

to check-capital-level: proto-firm procedure. It checks if the amount of new firm 

capital is enough to look for clients. If not, it dies. 

 if new-firm-capital <= 0 [die] 

 

 

 

Submodel “check-for-liquidation” 

 

to check-for-liquidation ;; new-firm procedure. 

 

If cash-flow is negative, and this amount, in absolute value, is bigger than 

the capital of the firm, then, the new firm is dissolved ("bankruptcy"). 

Code: 

if ((cash-flow <= 0) and (abs cash-flow >= new-firm-capital))  

or new-firm-capital <= 0 [ die] 
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Submodel “to R analysis” 

 

The R-analysis button located in the interface of the model generates two 

output files: 

 

1) cash-flow of new-firms at the end of the run. 

2) number-of-employees at the end of the run. 

 

The end of the run is defined when in the model there are only “new-firms” 

agents, and the entrepreneurs, “entrepreneurs-opportunities”, and “proto-firms” 

have died. 

Code: 

 if (count entrepreneurs = 0) and (count entrepreneurs-opportunities = 0) 

and (count proto-firms = 0) [stop] 

 

The model generates these two CVS files, "distributioncashflow.cvs" and 

"distributionofemployees.cvs" that can be easily imported into R for further 

statistical testing and analysis. Please notice that these two files are saved in the 

same folder where the Netlogo model is located in your system. 
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Submodel “R extension in Netlogo” 

 

The processing of the data can also be done sending the data directly to R, 

using the R extension of Netlogo (Thiele & Grimm, 2010). Code can be found in 

this repository: 

 

 https://github.com/NetLogo/NetLogo). 

 

Currently, the code for this extension is muted (using ; ) because the 

implementation of the R extension in Netlogo requires further additional 

configuration depending on the operating system (Linux, Mac OS, Windows). In 

the muted coding, we have initially integrated the package Dpit and the “goft tests” 

(described above). It has also be coded some very useful visualization of the 

histograms and density function of the distribution (such as the Filled Kernel 

Density, in the R package “stats”) relevant for further statistical analysis and 

comparisons (now muted in the code; they can be implanted just deleting the 

semicolon (;)). 

  

https://github.com/NetLogo/NetLogo
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DATA EVALUATION 

 

Reminder - Relevant evaluation concepts in agent-based modelling 

addressed in this TRACE element: 

 

 Parameters are the constants in the Netlogo’s primitives, 

equations and algorithms that are used to represent the processes in an 

agent-based model. 

 Parameterization is the task of selecting values for the 

parameters of a model to relate it to real system as much as possible 

(Railsback and Grimm, 2012, p. 255).  

o “Direct parameterization” is when parameter values 

are obtained directly from the literature or experts. 

o “Inverse parameterization”, is when we define 

parameter values inversely by calibrating the model to reflect the 

real, empirical distribution, in this case, the heavy-tailed 

distributions (Grimm et al., 2014, p.4). 

 

 

This baseline nascent entrepreneurial model is designed as a research tool, 

in which the parameters can be modified to tailor and to calibrate the model with 

the corresponding empirical longitudinal dataset at study. Most of the current 

parameters of the baseline model have been taken directly from the recorded 

empirical dataset of USA PSED or Sweden PSED. Therefore, although most of the 

parameters are direct, that is, taken from the empirical datasets, this baseline model 

is not fully calibrated yet: some parameter have been left open or flexible to adapt 

them to other datasets. The table below defines the ranges, values, units and 

references of the different parameters on our baseline model inspired on real data -

but not fully parametrized -. 
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Some parameters are heuristic: they are reasonable assumptions out of 

experience. 

 

Other heuristic values come from industry reports (for example, the value 

of the operating performance ratio “revenues per employee” (RPE)). 

 

Some parameters and ranges that are very difficult to know in the real 

scenario have been assigned also heuristically by inverse calibration, trying to 

simulate the heavy-tailed pattern distributions of the real datasets (‘pattern-oriented 

modelling’; Grimm et al., 2005; Grimm and Railsback, 2012). The reliability of the 

parameters depends on the data gathering quality of each of the entrepreneurial 

longitudinal panel. The follow-up of hundreds of entrepreneurs during several 

years is a Titanic task. Many times, datasets are incomplete and/or not coherent. 

 

The major potential sources of uncertainty in the model parameters 

correspond to the following elements: 

 

 

 The real, empirical datasets themselves: they are full of statistical noise; 

incomplete, missing data, wrong/incoherent data, pitfalls of the 

interviewing process (operational mistakes, lies, data gathering mistakes, 

etc.). 

 

 number-of-opportunities. To know the real number of business 

opportunities in a real context (a city, a country) is impossible, given the 

own nature of this concept (they are “elusive”: Dimov, 2011). 
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 Number of clients in the real world. The entrepreneurs have activities in 

different sectors of the economy. Some look for industrial clients, other 

for consumers, others for both. This baseline version of the model does 

not classify types of industry and sectors, for sake of simplicity. Further 

developments of the model can include those (with an “input file” coding 

– see example in the code) specifying the characteristics of each client in 

the Netlogo’s world. 

 

 

State variables of the financial institutions are still uncertain in this baseline 

model, such as 

 financial-institution-resources 

 max-capital-per-opportunity 

 min-capital-per-opportunity 

 maximum-opportunity-complexity 

 required-capacity-to-achieve 

 

Financial institutions can be very heterogeneous: it is not the same a 

venture capital specialized in software or technological start-ups, that the local 

branch of a commercial bank giving a loan to open a new butchery in town. On the 

other hand, the criteria for investment may change along time depending on 

resources or peculiarities of the investors/business angels. However, many of these 

variables of the financial institutions can be inferred doing some calculations of the 

variables measured in the longitudinal panel datasets. For example, the PSED 

includes several variables that ask about venture debt, bank loans, investors, etc. 

(Curtis 2012, Codebook). With some empirical data processing, the uncertainty of 

these variables can be substantially reduced. 

 

Spatial context. This baseline model proposes a two-dimensional 

geographical grid (torus). It may work for a new small high street business. But 
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with the irruption of technology, this framework may be obsolete. A team of 

entrepreneurs in Bordeaux (France) may get investors located in Amsterdam (NL) 

thanks to internet and cheap flights or train tickets. 

 

On the other hand, the grid reproduces a country such as Sweden or 

Australia, in which the population is concentrate in small portions of the territory. 

In Sweden most of the population is in the South (barely 40% of the territory; the 

North is almost unpopulated) and in Australia, the population in concentrated in 

only 27% of the country (the rest is also mostly unpopulated). The demographic 

distributions of other countries may be difficult to simulate regarding the spatial 

framework (for example, USA). 

 

Temporal scale. Current baseline model is based on PSED temporal 

framework: it considers a span of 5 years in which each tick is a month (5 years * 

12 months = 60 months). However, the Australian CAUSEE and the Sweden PSED 

use different time spans and different time intervals to interview the entrepreneurs’ 

sample. 
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TABLE 5 - KEY PARAMETERS, VALUES AND REFERENCES – BASELINE: “A NASCENT ENTREPRENEURIAL AGENT-BASED MODEL” 

Agent Parameters 

State Variables 

Values – Range-

Distributions 

Units References Further developments 

Initial set-up population-of-

entrepreneurs 

Number set by a 

slider in the interface 

Entrepreneur For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) 

For calibration purposes: It 

will depend of the 

empirical dataset at study 

(currently there are 14 

ongoing longitudinal 

panels similar to US 

PSED, Australian 

CAUSEE and Swedish 

PSED. 

Initial set-up number-of-

opportunities 

Number set by a 

slider in the interface 

Opportunity For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) 

For calibration purposes: It 

will depend of the 

empirical dataset at study 

(currently there are 14 

ongoing longitudinal 

panels similar to US 

PSED, Australian 

CAUSEE and Swedish 

PSED. 

Initial set-up number-

financial-

institutions 

Number set by a 

slider in the interface 

Financial 

institution 

For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) 

For calibration purposes: It 

will depend of the 

empirical dataset at study 

(currently there are 14 

ongoing longitudinal 

panels similar to US 

PSED, Australian 

CAUSEE and Swedish 

PSED. 

Initial set-up number-of-

workforce-

agencies 

Number set by a 

slider in the interface 

Workforce 

Agency 

For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) 

For calibration purposes: It 

will depend of the 

empirical dataset at study 

(currently there are 14 
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ongoing longitudinal 

panels similar to US 

PSED, Australian 

CAUSEE and Swedish 

PSED. 

Initial set-up number-of-

clients 

Number set by a 

slider in the interface 

Client For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) 

For calibration purposes: It 

will depend of the 

empirical dataset at study 

(currently there are 14 

ongoing longitudinal 

panels similar to US 

PSED, Australian 

CAUSEE and Swedish 

PSED. 

Entrepreneur entrepreneur-

financial-

resources 

Random assignment 

from 0 – 100,000 

(Here 100,000, by 

inverse calibration.  

Standard deviation 

real PSED = 

110,000) 

Monetary 

unit 

It follows the real empirical ranges, for example those 

described in PSED II, under the variable “individual 

investment” (Crawford et al, 2015, Table 1, p. 703). 

University of Michigan (2018). 

For calibration purposes: It depends of the real data set 

at study (CAUSEE, Sweden PSED, etc). 

Currently it is random. 

Other assignment 

distribution may be used. 

Entrepreneur capacity-to-

achieve 

Random assignment 

from 0% - 100% 

Percentage For validation and calibration purposes, subsequent 

models may use real, empirical datasets (it may require 

the development of scales similar to those designed by 

Crawford et al. (2015, Appendix 1, “Construct, 

variables, and items”, p. 710). 

The amount is assigned 

randomly to each 

entrepreneur in the first 

baseline model. Further 

developments of the model 

may assign this amount 

following a different 

distribution (log-normal or 

power law). 

Opportunity opportunity-

size 

Randomly assigned: 

minimum of 100,000 

monetary units and 

maximum 1,100,000 

aprox. 

Monetary 

units 

The amount is assigned randomly to each opportunity 

with a minimum of 100,000 monetary units and 

maximum of 5,100,000 approx (heuristically, currently, 

with a minimum of 100,000 monetary units and 

maximum 1,100,000 because of inverse calibration). 

The range takes into consideration the empirical data of 
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(inverse calibration) PSED II on the maximum value of the variable “Venture 

Debt” (Crawford et al., 2015, Table 1, p. 703; University 

of Michigan, 2018). 

Opportunity opportunity-

lifespan 

Randomly assigned: 

From 12 to 60 

months. 

Month For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) and their interviews schedules. 

For example, the empirical panel USA PSED consider a 

span of 5 years as maximum. In the baseline model, 

each tick is a month (5 years * 12 months = 60 months). 

 

Opportunity opportunity-

complexity 

Randomly assigned: 

From 0% - 100% 

Percentage For validation and calibration purposes, subsequent 

models may use real, empirical datasets (it may require 

the development of scales similar to those designed by 

Crawford et al. (2015, Appendix 1, “Construct, 

variables, and items”, p. 710). 

 

Financial 

Institution 

financial-

institution-

resources 

Randomly assigned: 

from 100,000 to 

10,100,000 

(by inverse 

calibration) 

Monetary 

unit 

Heuristically, it goes from 100,000 to 10,100,000 

monetary units approximately.  

For validation and calibration purposes, subsequent 

models may use real, empirical ranges described in 

PSED II ( Curtis 2012, Codebook) (Crawford et al, 

2015, Table 1, p. 703). 

 

Financial 

Institution 

max-capital-

per-opportunity 

Maximum 1,100,000 

monetary units, 

(minimum 100,000). 

Randomly assigned. 

Monetary 

unit 

Heuristic. 

(Inverse calibration) 

 

Financial 

Institution 

min-capital-

per-opportunity 

Minimum to invest: 

50,000 monetary 

units (until 100,000). 

Monetary 

unit 

Heuristic 

(Inverse calibration) 

 

Financial 

Institution 

required-

capacity-to-

achieve 

Minimum 10 out of 

100. Maximum 90 

out of 100. 

Randomly assigned. 

Percentage For validation and calibration purposes, subsequent 

models may use real, empirical datasets (it may require 

the development of scales similar to those designed by 

Crawford et al. (2015, Appendix 1, “Construct, 

variables, and items”, p. 710). 

 

Financial maximum- Maximum 100 out of Percentage For validation and calibration purposes, subsequent  



TRACE document: Ivan Rodriguez-Hernandez, 2019,  
A NASCENT ENTREPRENEURIAL AGENT-BASED MODEL 

237 
 

Institution opportunity-

complexity 

100. Randomly, 

assigned. 

models may use real, empirical datasets (it may require 

the development of scales similar to those designed by 

Crawford et al. (2015, Appendix 1, “Construct, 

variables, and items”, p. 710). 

Workforce 

agency 

number-of-

employees  

0.00001 * new-firm-

capital 

Employee The concept “revenues per employee” (RPE) is an 

operating performance ratio, and it is recorded in the 

annual reports -or form 10-K in USA-. It indicates 

productivity levels and effective use of the firm’s 

resources. The range goes from smaller firms that 

average around $100,000 per employee versus almost 

$300,000 for a Fortune 500 company. For example, 

WalMart averages $170,000 revenue per employee; GE 

is around at $436,000 per employee; Microsoft averages 

$646,000 per employee; and the oil industry generates 

over $2 million. This performance ratio can be obtained 

in standard business databases (in USA, for example, 

D&B Hoovers).The empirical longitudinal panels will 

provide the percentages for each country and new 

ventures. 

This parameter is the inverse of this value: 

1/(revenue/number of employees) = 1/ RPE (“revenues 

per employee”- RPE). It depends of the industry and of 

the “intensive in labor” nature of the firm (Microsoft 

versus Wallmart). 

Heuristically, we assume a “revenues per employee” 

average of a small company: around $100,000 per 

employee (1/100,000 = 0.00001). 

 

Client client-revenues Maximum 15,000; 

Minimum 5,000 

monetary units per 

commercial 

transaction. 

Monetary 

unit 

Heuristic in the baseline model. 

For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) 

 

Global social-

dynamism 

Number set by a 

slider in the interface 

Step in the 

grid 

Baseline: heuristic. 

 

 

Global Search-costs Number set by a Monetary For calibration purposes: It depends of the empirical  
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slider in the interface unit dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) 

The baseline model uses Swedish statistics. 

Average salary in Sweden: 3,000 GBP/month 

Average monthly cost of living in Sweden: 2,000 

GBP/month 

Source: Swedish National Statistics: 

https://sweden.se/society/meet-the-average-anderssons/ 

 

Global Spatial context: 

two-

dimensional 

grid (torus) 

Baseline (example 

Sweden): 500 km
2
 x 

500 km
2
, with 50 

patches per square 

side with value of 10 

km
2
 per patch. 

Km
2
 For calibration purposes, it depends on the country 

characteristics. 

For example, Sweden has a populated area of around 

200,000 km
2
 (40% of its land; the North has a very low 

population). Our grid is 500 km
2
 x 500 km

2
, with 50 

patches per square side with value of 10 km2 per patch. 

(√200,000 km
2
 ~ 500 km

2
). 

 

Global Temporal scale Current baseline 

model -based on 

PSED- consider a 

span of 5 years in 

which each tick is a 

month (5 years * 12 

months = 60 

months).    

month For calibration purposes: It depends of the empirical 

dataset at study (US PSED, Australian CAUSEE, 

Swedish PSED, etc.) and their interviews schedules. 

For example, the empirical panel USA PSED consider a 

span of 5 years as maximum. In the baseline model, 

each tick is a month (5 years * 12 months = 60 months). 

 

 

 

https://sweden.se/society/meet-the-average-anderssons/


 

239 
 

 

 

CONCEPTUAL MODEL EVALUATION 

 

The conceptual model (based by Gartner, 1985; Yang and Chandra, 2013) is the 

following: 

 

 There are two types of initial mobile agents in the Netlogo’s world: 

entrepreneurs and opportunities. Both agents operate in a torus-like square 

grid. 

 Entrepreneurs “search” opportunities through serendipitous discovery 

(random wandering throughout the world). In further developments of the 

model, entrepreneurs “sniff” opportunities –opportunities leave “tracks”, 

like “pheromones” in biology. This is Gartner’s “The entrepreneur locates a 

business opportunity” (1985). 

 An entrepreneur encounters a business opportunity in the Netlogo’s world. 

The theoretical framework is based on Shane and Venkataraman's (2000) 

opportunity “discovery‐evaluation‐exploitation”. 

 If their characteristics match - Shane and Venkataraman's (2000) 

“evaluation” -, the entrepreneur tries to exploit the opportunity. They both 

become a dual entity “entrepreneur-opportunity” and this duet begins the 

start-up activities: 

o First, they look for financial institution to get money to implement 

the opportunity (This is Gartner’s “The entrepreneur accumulates 

resources” (1985)). 

o Second, the look for employees (These are Gartner’s “The 

entrepreneur builds an organization “ and “The entrepreneur 

produces the product” (1985)) 

o Third, the look for clients to increase their cash-flow. (This is 

Gatner’s “The entrepreneur markets products and services” (1985)). 
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 The run stops when only new firms remain in the “world”, and the rest of 

the mobile agents have “died”. 

 

The flow chart and process overview and schedule is shown in the section 2.3 

above. 

 

Previous entrepreneurial agent model attempts already included two agents 

(“entrepreneurs” and “investors”) and two objects (“opportunities” and 

“resources”) (Shim, Bliemel and Choi, 2017). New agents and processes have been 

introduced introducing new levels of complexity in order to be able to simulate the 

nascent entrepreneurial processes in the different empirical longitudinal datasets. 

 

The deep underlying theoretical framework of this PhD research is based in 

Behavioral Ecology (Aldrich, 2011; Davies, Krebs and West, 2012; Roundy, 

Bradshaw and Brockman, 2018). The encounter of the entrepreneur and the 

opportunity is a kind of complex “human foraging”. 
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IMPLEMENTATION VERIFICATION 

 

The baseline model has been tested according to the guidelines suggested 

by Railsback and Grimm (2012) (new ed. 2019), Wilensky and Rand (2015), and 

Augusiak et al. (2014). 

 

There are several pieces of defensive programming included throughout the 

model coding in order to avoid run-time errors or any other programming-related 

malfunction.  

 

Specifically, the baseline model has been tested for: 

 

 Typographical errors. 

 Syntax error. 

 Run-time errors. 

Notice that the plots in the interface with the histograms of the value of 

variables cash-flow and number of employees have some defensive coding 

to avoid run-time errors. The code is inside the plots themselves. To access 

it, “click” and “edit” on the plots. For example: 

if not any? new-firms [stop] 

let max-number-of-employees max [number-of-employees] of new-

firms 

plot-pen-reset  ;; erase what we plotted before 

set-plot-x-range 0 (int (max-number-of-employees + 1)) 

histogram [number-of-employees] of new-firms 

 

 Logic errors. 
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 Formulation errors. We have detected negative cash-flows in some runs. 

Further checks are required. 

 Stress Test or “extreme” testing: running the model with parameters and 

data outside the normal ranges in order to uncover errors that may be 

hidden under standard parametrization. For example, with parameter “social 

dynamism” at 0, some entrepreneur-opportunities “rockets” entities may 

appear in the world. It is not a bug: it is due that some of the opportunities 

may coincide in the same spatial patch with an entrepreneur, and, therefore, 

if their state variables match, they become an entrepreneur-opportunities 

“rockets” entity “on the spot”. 

 

However, the baseline code has not yet been peer-reviewed by other Netlogo 

modelers (except the supervisory team). 

 

Graphical interface: 
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The interface has a set-up area, with slides, in which researchers can easily 

introduce the number of entrepreneurs, opportunities, financial institutions, 

workforce agencies, and clients for the parametrization and calibration of their 

empirical dataset under study. The ranges of the current baseline model can be 

change just clicking on the slide, and “Edit”. 

 

The second set-up area consists in two slides with global parameters that 

affect all mobile agents, “search-cost” and “social-dynamism”. 

 

The third set-up area has three buttons: “Set-up”, “Go once”, “Go”. 

 

There are two plots with the histograms of the value of variables cash-flow 

and number of employees. Their code can be accessed right clicking and “Edit”. 

These two histograms show the heavy tailed distribution patterns in the majority of 

the runs (for the statistical analysis, see section “Model analysis” below). 

 

There is also a plot called “populations” with the number of mobile agents 

and total number of employees. The exact numbers are counted in the monitors on 

the left of this plot. 

 

In the interface, there is an “R-analysis” button that generates two CVS files 

with the distributions of cash-flows and number of employees at the end of the run, 

that can be easily imported into the statistical software R (or other mathematical 

software such as Matlab, Mathematica, etc.). We offered detailed software scripts 

and procedures below to analyze the distributions generated by the model. 

 

  



 

244 
 

 

MODEL OUTPUT VERIFICATION 

 

The development of a model tries to reproduce some patterns of the real 

system, in this case, the emergence of heavy tailed distributions in nascent 

entrepreneurial outcomes, such as in the nascent firms’ cash-flows or number of 

employees. In this TRACE section, we will offer detailed procedures and software 

packages in R to quantitatively analyse and decide if the obtained model outcome 

is a good enough representation of the heavy tailed distribution founded in the real 

longitudinal panels. The more observed patterns a model can reproduce at the same 

time, the more probability that it has captured the mechanisms of the real process 

satisfactorily well (‘pattern-oriented modelling’; Grimm et al., 2005; Grimm and 

Railsback, 2012).  

This section, output verification, is associated to what we previously 

defined as “face validation”. Face validity illustrates that the processes and 

outcomes of the model are reasonable and plausible within its theoretical 

framework and the current knowledge in the research community. 

 

Here a reminder of face validation concepts already described above: 

 

 Face validation: the mechanism and properties of the model look like 

mechanisms and properties of reality. Prima facie (without detailed 

analysis) the model can convince that it contains elements and components 

that correspond to agents and mechanisms of the real world.  

 Empirical validation: the model generates data that correspond to similar 

patterns of data in the real world. Data produced by the model must 

correspond to empirical data of the studied system. Empirical validation, 

therefore, often implies statistical tests and comparison between data sets. 

One of the problematic aspects of this type of validation is that real data is 

frequently with “noise”, difficult to obtain, and partial. On the other hand, 

reality is not a computational machine with precise and well-defined results, 

but rather it yields messy results and it is very challenging to isolate and 
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measure the parameters of the real world. In this context, calibration is the 

process of finding the parameters and initial conditions that makes the 

model to match up as close as possible to the real, empirical datasets. 

 

Regarding face validation, the “nascent entrepreneurial agent-based model” 

tries to simulate the entrepreneur’s steps according to the conceptual framework 

currently accepted in the field (specifically Gartner, 1985, and Yang and Chandra, 

2013). 

 

Regarding the empirical validation, we will propose several formal tests that 

are based on multiple quantitative standards for a model matching a dataset 

(Railsback and Grimm, 2012, Chapter 20.4.2). However, we should notice that this 

model is purely stochastic, and that its results are conditioned by a multiplicative 

process: a small change in a certain value, in just one step, may vary the final 

results completely (path dependency). Therefore, we cannot expect similar patterns 

to those to the empirical datasets in each and every run. Because of the stochastic 

nature of the model and its multiplicative design some runs may not even generate 

results at all, especially when using extreme parameter values or swapping the 

conditions radically. The point of this section is to demonstrate that the model is 

able to generate distributions similar to reality - using parameters inspired on the 

real systems - and how to verify statistically this fact. 

 

 

Next, we will describe an example of the procedure to analyse one random 

distribution generated by our model. As it has been said before, The “Nascent 

Entrepreneurial Agent-based model” is purely stochastically designed. Not every 

run, under every conditions or parameter, can match exactly with a determined and 

well-defined heavy tailed distribution. Many times, the obtained dataset can be 

plausibly fitted with several candidates (or log-normal or Pareto or Weibull, or all 

three). Real, empirical datasets are “messy” – difficult to identify -. The same 

happens with the results of the simulations. 
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Many runs of our model generate distributions that can be fitted as 

lognormal or power law with an exponential cut-off without any distribution 

identification problem. However, many other model distributions are in a statistical 

“twilight zone”, in which two or more heavy tailed distributions can be considered 

a good fit. For this section, we have chosen two examples of “twilight” 

distributions, initially very difficult to identify, to show the reader the procedure for 

pitting using R statistical and fitting packages. 

 

The first step is to check for an initial visual recognition (face validation) of 

heavy tailed distributions in the histograms located in the Netlogo interface, similar 

to those founded in empirical nascent entrepreneurial datasets. We may need to run 

the model several times because the model is stochastic. To analyses several runs, 

we will use the Netlogo tool “BehaviorSpace” (see below). 

 

 

 

 

 



 

247 
 

Once we have identified a good candidate run, we send the data to analysis 

pressing the button on the interface “R-analysis”. The button initiates a procedure 

that generates two CVS files with the last results of the run for the variables “cash-

flow” and “number of employees” of the nascent firms. 

 

 

The dataset files (in CVS) are located in the same folder where Netlogo is 

saved. Therefore, we need to establish the absolute path to the folder where the 

NetLogo in installed, starting from the root. On Windows, for example, something 

like “C:/Users/Ivan/Dropbox/PhD Thesis - final folder/Experiments FINAL- R - 

Netlogo/distributioncashflow.cvs”. 

 

Here an example of R script for the testing procedure of the cash-flow distribution: 

 

 

 

Import the CVS file into R: 

 

R>library(readr) 

 

R>distributioncashflow <- read_csv("C:/Users/Ivan/Dropbox/PhD Thesis - 

final folder/Experiments FINAL- R - Netlogo/distributioncashflow.cvs", 

col_names = FALSE, na = "empty") 

 

R>View(distributioncashflow) 

 

Initial tests using package ‘goft’ version 1.3.4 

 

R>install.packages(goft) 

 

R>library(goft) 

 

R>lnorm_test(distributioncashflow$X1[distributioncashflow$X1>=0]) 
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(Notice that we have to take only positive values because zeros or negative 

values may produce mathematical indetermination for some script 

calculations. Also notice that some tests for these positive heavy tailed 

distributions cannot even deal with 0 values in the variable set). 

 

Test for the lognormal distribution based on a transformation to normality 

 

data:  distributioncashflow$X1[distributioncashflow$X1 >= 0] 

p-value = 0.03536 

 

 

R>gp_test(distributioncashflow$X1[distributioncashflow$X1 >= 0]) 

 

Bootstrap test of fit for the generalized Pareto distribution 

 

data:  distributioncashflow$X1[distributioncashflow$X1 >= 0] 

p-value = 0.5275 

 

 

 

 

 

R>weibull_test(distributioncashflow$X1[distributioncashflow$X1 >= 0]) 

 

Test for the Weibull distribution 

 

data:  distributioncashflow$X1[distributioncashflow$X1 >= 0] 

p-value = 0.98 

 

 

 

R>gamma_test(distributioncashflow$X1[distributioncashflow$X1 >= 0]) 

 

Test of fit for the Gamma distribution 

 

data:  distributioncashflow$X1[distributioncashflow$X1 >= 0] 
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V = -1.1805, p-value = 0.4038 

 

 

normal_test(distributioncashflow$X1[distributioncashflow$X1 >= 0]) 

 

Correlation test for normality 

 

data:  distributioncashflow$X1[distributioncashflow$X1 >= 0] 

R = 0.99369, p-value = 0.1051 

Alternative hypothesis: 

distributioncashflow$X1[distributioncashflow$X1 >= 0] does not 

follow a normal distribution. 

 

 

Tests run by package ‘goft’ point out to the Weibull as the best fit (p-value = 0.98) 

 

 

 

 

Tests with package ‘fitdistrplus’ version 1.0-9 

 

R>install.packages(fitdistrplus) 

R> library("fitdistrplus") 

 

To fit a distribution to a dataset is normally needed to choose good 

distribution candidates among the plausible ones. We choose these candidates 

based of the knowledge of the processes governing the variable to be modeled – 

multiplicative processes in our model - or by the observation of its plot – like we 

did looking at the histograms of the interface -. 

Package “fitdistrplus” offers another tool to help this initial choice, the function 

“plotdist” that plots the distribution and its density, and the cumulative distribution 

function (CDF). 
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R>plotdist(distributioncashflow$X1[distributioncashflow$X1 >= 0], histo = 

TRUE, demp = TRUE) 

 

 

 

FIGURE 23  - HISTOGRAM AND CDF PLOTS OF THE CASH-FLOW DISTRIBUTION AS 

PROVIDED BY THE PLOTDIST FUNCTION. 

 

Another useful function in “fitdistrplus” is descdist, which provide an 

indicative skewness-kurtosis plot that can help to identify the best candidates. 

 

R>descdist(distributioncashflow$X1[distributioncashflow$X1 >= 0], boot = 1000) 
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FIGURE 24  - EXAMPLES OF SKEWNESS-KURTOSIS PLOTS FOR AS PROVIDED BY THE 

DESCDIST FUNCTION. THE FIRST FIGURE IS FROM THE R PACKAGE (DELIGNETTE-

MULLER AND DUTANG, 2015). THE SECOND FIGURE IS ONE EXAMPLE OF CASH-

FLOW DISTRIBUTION GENERATED BY OUR MODEL. 

 

 

Looking at the plots of these examples with a positive skewness and a kurtosis 

close to 3, the fit of the three more common right-skewed distributions can be 

considered, that is, Weibull, gamma and lognormal distributions. 

 

The next step is to generate the goodness-of-fit plots. This procedure is performed 

by the function fitdist and it offers four goodness-of-fit plots (Cullen and Frey, 

1999; Delignette-Muller and Dutang, 2015): 

 

 A density plot with the density function of distribution and its histogram. 

 

 A CDF plot of both the distribution under study and the fit of the candidate 

distribution (Weibull, log-normal, Pareto, etc.). 
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 A Q-Q plot representing the distribution quantiles (y-axis) against the fitted 

quantiles (x-axis). 

 

 A P-P plot with distribution function evaluated at each data point (y-axis) 

against the candidate distribution function (x-axis). 

 

 

Fitting Weibull 

 

R> fw <- fitdist(distributioncashflow$X1[distributioncashflow$X1 >= 0], 

"weibull") 

 

R>plot(fw) 

 

 

FIGURE 25 – FITTING WEIBULL OF OUR SAMPLE 
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R>summary(fw) 

Fitting of the distribution ' weibull ' by maximum likelihood  

Parameters :  

          estimate     Std. Error 

shape 1.658111e+00     0.2077179 

scale 3.937846e+05   8407.7671280 

Loglikelihood:  -503.6075    AIC:  1011.215    BIC:  1014.437  

 

 

Correlation matrix: 

           shape       scale 

shape 1.00000000  0.06747066 

scale 0.06747066  1.00000000 

 

Fitting a gamma distribution 

 

R>fg <- fitdist(distributioncashflow$X1[distributioncashflow$X1 >= 0], "gamma") 

 

Although this distribution is considered a potential candidate, the 

characteristics of our distribution dataset do not allow the algorithms to 

generate the gamma fitting. The R script produces an error message. 

 

 

Fitting a lognormal distribution. 

 

R>fln <- fitdist(distributioncashflow$X1[distributioncashflow$X1 >= 0], "lnorm") 

 

R>plot(fln) 
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FIGURE 26  – FITTING A LOGNORMAL DISTRIBUTION 

 

Fiting a beta distribution. 

 

R>flb <- fitdist(distributioncashflow$X1[distributioncashflow$X1 >= 0], "beta") 

 

Although this distribution is considered a potential candidate, the 

characteristics of our distribution dataset do not allow the algorithms to 

generate the beta fitting. The R script produces an error message. 

 

 

 

 

 

Comparison between lognormal and Weibull candidate distributions and their plots 

(defined above): 

 

R>par(mfrow = c(2, 2)) 

R>plot.legend <- c("Weibull", "lognormal") 

R>denscomp(list(fw, fln), legendtext = plot.legend)  

R>qqcomp(list(fw, fln), legendtext = plot.legend) 

R>cdfcomp(list(fw, fln), legendtext = plot.legend) 
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R>ppcomp(list(fw, fln), legendtext = plot.legend) 

 

 

 

FIGURE 27  - COMPARISON BETWEEN LOGNORMAL AND WEIBULL CANDIDATE DISTRIBUTIONS AND THEIR 

PLOTS 

 

Goodness-of-fit 

 

The fitdistrplus R package computes different goodness-of-fit statistics in 

order to compare among the candidate fitted distributions. These goodness-of-fit 

statistics measure the distance between the proposed fitted distribution and our 

model distribution, that is, the distance between the fitted cumulative distributions 

of the candidate distribution with the cumulative distribution of our dataset. 

Fitdistrplus considers three classic statistics (D'Agostino and Stephens, 1986; 

Delignette-Muller & Dutang, 2015): 

 

 Cramer-von Mises statistics 

 Kolmogorov-Smirnov statistics 

 Anderson-Darling statistics 
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This comparison procedure is performed by the function gofstat, as developed 

by Stephens (D'Agostino and Stephens, 1986; Delignette-Muller & Dutang, 2015): 

 

 

R>gofstat(list(fw, fln), fitnames = c("weibull", "lnorm")) 

 

Goodness-of-fit statistics 

                                   weibull        lnorm 

Kolmogorov-Smirnov statistic  0.10418304    0.1328885 

Cramer-von Mises statistic     0.05339458   0.1181312 

Anderson-Darling statistic     0.38414190    0.7467988 

 

Goodness-of-fit criteria 

                                    weibull      lnorm 

Akaike's Information Criterion (AIC)  1011.215   1016.197 

Bayesian Information Criterion (BIC) 1014.437   1019.418 

 

 

Although we cannot reject the candidacy of the lognormal distribution, the 

smaller distance in all goodness-of-fit correspond to the Weibull distribution, and, 

therefore, we should consider the Weibull distribution a better fit. 

 

Similarly, we can follow the same procedure to analyze the distribution of 

the variable “number of employees” at the end of the run. Again, given the 

stochastic nature of the model, within the same run, the distribution of one variable 

may not coincide with the best fit of other variables of the model. For example, the 

cash-flow distribution can be clearly identified as a type of a heavy tailed 

distribution, and, however, even in the same run, another variable, for example, 

“number of employees” may fit another distribution better or it may not follow any 

defined pattern at all. We show an example of this type of behavior in the following 

procedure. Data were collected for the same run. We analyzed cash-flow above 

(Weibull and log-normal were good fit). Below we follow the same procedure for 
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the variable “number of employees” of the same run. Again, we have chosen a 

“problematic” simulation distribution to illustrate how we can find the best fit. 

 

 

R>library(goft) 

R>library(fitdistrplus) 

 

R>library(readr) 

R>distributionofemployees <- read_csv("absolute path to cvs file",  

    col_names = FALSE, na = "empty") 

R>View(distributionofemployees) 

 

Goft package analysis 

 

R>lnorm_test(distributionofemployees$X1[distributionofemployees>0]) 

(Notice that we have to remove the zeros because they produce 

mathematical indetermination in the script calculation. Many tests for these 

positive heavy tailed distributions cannot deal with 0 values in the variable 

set). 

 

Test for the lognormal distribution based on a transformation to normality 

 

data:  distributionofemployees$X1[distributionofemployees > 0] 

p-value = 0.0008227 

 

 

R>gp_test(distributionofemployees$X1[distributionofemployees>0]) 

 

Bootstrap test of fit for the generalized Pareto distribution 

 

data:  distributionofemployees$X1[distributionofemployees > 0] 

p-value = 0.3023 
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R>weibull_test(distributionofemployees$X1[distributionofemployees>0]) 

 

 Test for the Weibull distribution 

 

data:  distributionofemployees$X1[distributionofemployees > 0] 

p-value = 0.678 

 

 

R>gamma_test(distributionofemployees$X1[distributionofemployees>0]) 

 

Test of fit for the Gamma distribution 

 

data:  distributionofemployees$X1[distributionofemployees > 0] 

V = -1.3892, p-value = 0.326 

 

 

 

R>normal_test(distributionofemployees$X1[distributionofemployees>0]) 

 

Correlation test for normality 

 

data:  distributionofemployees$X1[distributionofemployees > 0] 

R = 0.99548, p-value = 0.2141 

 

Alternative hypothesis:  

distributionofemployees$X1[distributionofemployees > 0] does not 

follow a normal distribution. 

 

 

Tests with the R package “fitdistriplus” 

 

R>plotdist(distributionofemployees$X1[distributionofemployees>0], histo = 

TRUE, demp = TRUE) 
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FIGURE 28  – PLOTDISC OF “NUMBER OF EMPLOYEES” SIMULATION: HISTOGRAM AND DENSITY 

FUNCTION 

 

From the plotdist histogram and density function, we can clearly foresee 

the challenge of finding a good fit. 

 

R>descdist(distributionofemployees$X1[distributionofemployees>0], boot = 1000) 

summary statistics 

------ 

min:  1   max:  6  

median:  3  

mean:  3.205882  

estimated sd:  1.552699  

estimated skewness:  0.0994631  

estimated kurtosis:  1.602816 
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FIGURE 29  – CULLEN AND FREY GRAPH OF “NUMBER OF EMPLOYEES” SAMPLE 

 

 

 

Fitting a Weibull distribution: 

 

R>fw <- fitdist(distributionofemployees$X1[distributionofemployees>0]], 

"weibull") 

 

R>plot(fw) 
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FIGURE 30  - FITTING A WEIBULL DISTRIBUTION 

 

R>summary(fw) 

Fitting of the distribution ' weibull ' by maximum likelihood  

Parameters :  

       estimate   Std. Error 

shape 2.264646    0.3176993 

scale 3.630203    0.2894863 

Loglikelihood:  -61.37971    AIC:  126.7594    BIC:  129.8121  

Correlation matrix: 

          shape       scale 

shape 1.0000000   0.3135553 

scale 0.3135553   1.0000000 

 

 

Fitting a gamma distribution: 

 

R>fg <- fitdist(distributionofemployees$X1[distributionofemployees>0], 

"gamma") 

 

R>plot(fg) 
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FIGURE 31  - FITTING A GAMMA DISTRIBUTION 

 

 

R>Summary(fg) 

 

Fitting of the distribution ' gamma ' by maximum likelihood  

 

Parameters :  

       estimate   Std. Error 

shape  3.749289    0.8719036 

rate   1.169623    0.2910570 

Loglikelihood:  -62.15744     AIC:  128.3149     BIC:  131.3676  

 

Correlation matrix: 

           shape       rate 

shape  1.0000000  0.9345161 

rate   0.9345161  1.0000000 
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Fitting a lognormal distribution: 

 

R>fln <- fitdist(distributionofemployees$X1[distributionofemployees>0], "lnorm") 

 

R>plot (fln) 

 

 

FIGURE 32  - FITTING A LOGNORMAL DISTRIBUTION 

 

R>summary(fln) 

 

Fitting of the distribution ' lnorm ' by maximum likelihood  

 

Parameters :  

           estimate     Std. Error 

meanlog  1.0257359     0.09608222 

sdlog     0.5602508     0.06793942 
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Loglikelihood:  -63.42033    AIC:  130.8407     BIC:  133.8934  

 

Correlation matrix: 

          meanlog  sdlog 

meanlog        1      0 

sdlog          0       1 

 

 

Beta Fitting 

 

flb <- fitdist(distributionofemployees$X1[distributionofemployees>0], "beta") 

(Although this distribution is considered a potential candidate, the 

characteristics of our distribution dataset do not allow the algorithms to 

generate the beta fitting. The R script produces an error message). 

 

 

 

Comparison between Weibull, gamma and lognormal distributions: 

 

R>par(mfrow = c(2, 2)) 

R>plot.legend <- c("Weibull", “gamma”, "lognormal") 

R>denscomp(list(fw, fg, fln), legendtext = plot.legend)  

R>qqcomp(list(fw, fg, fln), legendtext = plot.legend) 

R>cdfcomp(list(fw, fg, fln), legendtext = plot.legend) 

R>ppcomp(list(fw, fg, fln), legendtext = plot.legend) 
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FIGURE 33  - COMPARISON BETWEEN WEIBULL, GAMMA AND LOGNORMAL DISTRIBUTIONS 

 

 

 

R>gofstat(list(fw,fg, fln), fitnames = c("weibull", "gamma", "lnorm")) 

 

Goodness-of-fit statistics 

                                  weibull      gamma      lnorm 

Kolmogorov-Smirnov statistic  0.1966836  0.186984  0.1747907 

Cramer-von Mises statistic    0.2245667     0.2118663  0.2229274 

Anderson-Darling statistic   1.5239191     1.4793666  1.5990575 

 

Goodness-of-fit criteria 

                                   weibull     gamma     lnorm 

Akaike's Information Criterion  126.7594  128.3149  130.8407 

Bayesian Information Criterion  129.8121  131.3676  133.8934 

 

The best fit tests are not conclusive given the divergence of the different 

goodness-of-fit statistics and criteria; however, if we take into consideration the 



 

267 
 

goft test, the Weibull distribution would be a good candidate with a higher p value 

(p-value = 0.678). 

 

This example shows the difficulties and challenges to find the best fit 

distribution for a dataset, either from a real system or from a simulation with a high 

level of stochasticity. 

 

To generate multiple runs, Netlogo provides a useful tool that allows to 

export the outcomes called BehaviorSpace. The script is already coded and 

implemented in the model (go to the “Tools” label → BehaviorSpace → 

experiment “Behavior Space Output Verification”). 

 

As before, we have considered parameters resembling Swedish conditions. 

However, this should not be considered a “calibration” of the model. As a research 

tool, the “nascent entrepreneurial agent-based model” has been designed to allow 

more detailed parametrization and calibration with the different longitudinal panel 

worldwide. It is, therefore, generic and flexible at this point of development. 

 

["number-of-opportunities" 1500] 

["social-dynamism" 1] 

["number-of-workforce-agencies" 100] 

["population-of-entrepreneurs" 600] 

["number-of-clients" 500] 

["search-cost" 2000] 

["number-of-financial-institutions" 10] 

 

We have coded a “Final Command” script that put together in a CVS file 

the results of the multiple runs: 

Netlogo code: 

 

;;File with cash-flows of new firms;;;;;; 
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file-open "behaviourspacecashflow.cvs" 

  ask new-firms 

  [ 

    file-print (last [cash-flow] of new-firms) 

    ] 

    

file-print "end of the run" ;; to know when the run ends 

   

 file-close 

 

 

 

 ;;;Now [number-of-employees] of new-firms;;;;;;;;;;;;;;;;; 

 

file-open "behaviourspaceemployees.cvs" 

  ask new-firms 

  [ 

      file-print ( last [number-of-employees] of new-firms) 

    ] 

  

file-print "end of the run" ;; to know when the run ends 

   

file-close 
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MODEL ANALYSIS 

 

 

This section of the TRACE document is related to the question: Can we still 

verify the results of the model if we introduce small changes in one or two 

parameters? We can study the model deeper by performing controlled simulation 

experiments keeping some parameters constant and changing one or more over a 

wider range. Then, we can explore the consequences of these variations in the 

distribution of the output variables. Local sensitivity analysis help us to understand 

and evaluate how sensitive are the outputs - the variables distributions - to small 

changes in one parameter at a time. 

 

The model analysis should also include experiments with simplified 

versions of the model, in which the “world” in which the agents behave is more 

homogenous and constant, with reduce system size, and in which certain processes 

are deactivated. Our model is currently in this stage. Although complex features 

have been coded, presently, many of them have been muted - with the muting sign 

in Netlogo “ ; “ - for simplification purposes such as the “opportunities-

generators”, the entrepreneurs’ teams formation, the entrepreneur-financial-

resources assignment (currently randomly assigned instead of through a defined 

distribution), more complex environmental variables (time series), etc. 

 

Sensitivity analysis should also be performed on initial conditions and input 

data. For example, when the model is calibrated, the input data will correspond to 

the information provided by the panels on each of the entrepreneurs (capital 

resources, etc.). The input data code has also been implemented in the “Nascent 

Entrepreneurial agent-based model”, in the procedure “to setup-entrepreneurs”, 

although now it is muted (input file “entrepreneur-financial-resources-

EmpiricalData.txt”). 
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Although currently the model is in the simplified version, the parameter 

space is so huge that, at this point, is not feasible to offer - under the scope of this 

PhD research - a comprehensive sensitivity analysis due to the relatively high 

computation times. For example, the study of the sensitivity analysis of just the 

parameters located in the interface would generate this number of possible states:  

 

Parame- 

ter 

Population 

Of 

Entrepre-

neurs 

Number 

of 

Opportu

-nities 

Number of 

Financial 

institutions 

Number 

of 

Workforce 

Agencies 

Number 

of 

clients 

Search 

cost 

Social 

Dyna

mism 

Total 

Range 0-1500 0-2000 0-10 0-100 500 
0-

5000 
0-5  

Parame-

ter 

Space 

1500 2000 10 100 500 5000 5 3.75*1016 

  

 

 

Obviously, we do not need to explore the complete set of 3.75*10
16

 

possibilities: only few areas of this parameter space are able to generate heavy 

tailed distributions. In complex models like the “Nascent Entrepreneurial Agent-

based model”, computational run time, complexity and stochasticity will limit 

global sensitivity analysis, and only a subset of parameters could be realistically 

analyzed. 

 

The sensitivity analysis should focus on those parameters more uncertain 

(such as the number of opportunities), or some of the parameters included in the 

code that were heuristic or that are very difficult to know their value in the real 

system (financial institution criteria for investment, characteristics of the business 

opportunities, etc.). Thus, the sensitivity analysis would also offer conclusions 

regarding the model uncertainty. If the model is very sensitive to the parameters 

that are more uncertain, then, the entire model should be considered quite 

uncertain. At the contrary, if the model is less sensitive to the most uncertain 

parameters, the model will have more possibility to pass the uncertainty analysis 
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tests. In any case, only the researchers working with the empirical results of the 

PSED-like longitudinal panel are in the position to know and to decide which the 

more uncertain parameters are. These uncertain parameters may be different in 

each case and for very diverse reasons (wrong design of the panel or questions, 

interviewers’ mistakes, database errors or “crashes”, missing values, “non-

disclosure” of the participants, etc.). 

 

On the other hand, the sensitivity analysis would only make sense when the 

model is fully parametrized and calibrated for a specific, concrete longitudinal 

panel dataset. Each country has its own specificities and the impact of the variation 

of one parameter may be different depending on the country under study. The 

sensitivity analysis will indicate which processes are the most important for 

obtaining the heavy tailed distributions observed in the empirical datasets. 

 

We should notice that parameters are not mere numbers obtained from the 

empirical datasets of the longitudinal panels. Often, they represent entire processes 

that we, as modelers, decided not to represent explicitly. For example, our 

entrepreneur’s variable “capacity-to-achieve”, expressed by a percentage, is a 

numeric representation of the entrepreneur´s social and human capital, strong and 

weak tie networks, acquaintance with investment capital, opportunity recognition 

capabilities, entrepreneur’s education, previous experience in industry or venture 

founded, genetic factors, etc. The complexity of this variable is so huge that we 

have decided to agglomerate all the factors in just a percentage. 

 

Similarly, submodels also represent processes that are represented explicitly 

in more details, but that still are a coarse simplification of reality. Therefore, 

submodels should also be analyzed by contrasting alternative submodels, or even, 

changing the order of the procedures. For example, in our model, how would the 

results change if the entrepreneur first search for employees (building the team 

first) instead of searching first for financial institutions (money)? 
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Making the submodels more complex or simpler may provide relevant 

insights into our model design. For example, a sensitivity analysis of our 

submodels should study the impact of generating some of the state variable of the 

agents following a specific distribution function (Poisson, lognormal, etc.) instead 

of the current exclusive random generation. 

 

Taking again a practical approach, we propose here to the reader the better 

tools regarding how to implement a sensitivity analysis for the “nascent 

entrepreneurial agent-based model” once it has been adapted the parameters to a 

specific empirical longitudinal panel dataset. Those procedures also would help to 

calibrate properly the model. 

 

The main reference to address a sensitivity analysis with a Netlogo model using R 

is the work of Thiele (2010, 2012, 2014): 

 

 

Thiele, J.C., Kurth, W. and Grimm, V., 2014, Facilitating Parameter 

Estimation and Sensitivity Analysis of Agent-Based Models: A Cookbook 

Using NetLogo and 'R'. Journal of Artificial Societies and Social 

Simulation, vol. 17, no. 3. 

http://jasss.soc.surrey.ac.uk/17/3/11.html 

 

They offer a quite comprehensive “cookbook” to perform the calibration 

and sensitivity analysis. The complete set of scripts is in the “Supplementary 

Materials” located in this repository: 

http://sourceforge.net/projects/calibrationsensitivityanalysis/ 

 

The scripts are quite straightforward for each method: we only have to 

change the variables names and some values and tests, and to understand the 

procedure. A warning: the analytical procedures require a solid background in R 

programming and advance statistics: sequential Monte Carlo (SMC) method, 

Evolutionary algorithms (EA), Bayesian methods, etc. 

http://jasss.soc.surrey.ac.uk/17/3/11.html
http://sourceforge.net/projects/calibrationsensitivityanalysis/
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It will also require to install the interface package between Netlogo and R, 

mentioned in the previous section, RNetlogo. The best introductions and tutorials 

to learn this package are these: 

 

Thiele, J.C., 2014. R Marries NetLogo: Introduction to the RNetLogo 

Package. Journal of Statistical Software, vol. 58, no. 1, pp. 1-41. 

http://www.jstatsoft.org/v58/i02/ 

 

Thiele, J., Kurth, W., and Grimm, V., 2012. RNetLogo: An R package for 

running and exploring individual-based models implemented in NetLogo. 

Methods in Ecology and Evolution, 3(3), 480–483. 

 

Thiele, J.C. and Grimm, V., 2010. NetLogo meets R: Linking agent-based 

models with a toolbox for their analysis. Environmental Modelling and 

Software, vol. 25, no. 8, pp. 972-974. 

 

  

http://www.jstatsoft.org/v58/i02/
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MODEL OUTPUT CORROBORATION  

 

 

The “nascent entrepreneurial agent-based model” was designed for 

understanding the processes that occur in the emergence of nascent firms. As said 

above, the baseline model has not been parametrize and calibrate to any specific 

empirical longitudinal panel dataset yet. The parameters used in the baseline model 

code resemble the Swedish conditions, but many are still heuristic. The purpose 

was to show that the complex multiplicative processes related to the constitution of 

a nascent firm can be simulated by a complex agent-based model and that we can 

obtain heavy tailed distributions very similar to the empirical outcomes. 

 

This section refer to the potential predictive possibilities of the model, that 

is, the capacity of the model to make predictions that can be confirm subsequently 

in the empirical setting. At this stage of the model development, we are not there 

yet. Once the model is parametrize and calibrate, we can identify the variables and 

parameters that are relevant for policy making. Indeed, two of the major objectives 

of entrepreneurial research are 1) to be able to build theory that help us to 

understand the birth of new firms and 2) to design policies and strategies for the 

foundations of solid entrepreneurial ecosystems. 

 

Further developments, modifications and refinements of this model would 

help us to know which the key factors that may increase the number of new firms, 

their survival rates and the number of employees are. However, the model should 

be previously customized to each of the system under study because these factors 

can be different in each country or region. On the other hand, the complexity of the 

entrepreneurial process makes impossible that an agent-based model - or any other 

model technique - really captures the actual dynamics of the nascent 

entrepreneurial emergence sufficiently well. Prediction in complex system is still 

challenging and limited (weather forecast – meteorology -, earthquake forecast – 

geology -, financial crisis forecast – economics -, etc.). Agent-based modeling may 
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have good predictive capabilities in other fields, but its potential in 

entrepreneurship research still has to be elucidated. The purpose of our 

investigation is to open this line of research. 

 

Model output verification consists in tuning the model parameters, 

environmental conditions and submodel designs to reproduce the empirical 

observations, that is, the outcome distributions. This is necessary because 

modelling requires compulsorily some kind of simplification of reality. Often we 

have to compensate for processes to complex to model, lack of sufficient 

information on the system under study, or the need of keeping the model simple 

enough to understand it and communicate it. However, the real good indicator of 

structural realism of the model is only achieved when the model is able to 

predict phenomena that were not conceived during the development of the 

model and its testing. This is what it is called “Model output corroboration”. This 

standard is very difficult to obtain in many disciplines, for example, in climate 

change or ecology: experimentation is not always feasible or ethical. In 

entrepreneurship, it would require the involvement of not only the entrepreneurship 

research community but also of the rest of the stakeholders such as policy makers, 

institutions involved, entrepreneurs, etc. 
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8. CONCLUSIONS AND FUTURE RESEARCH 
 

This research was done in the context of the on-going dialog and 

debate regarding the search for the generative processes in nascent 

entrepreneurship, and, more broadly, in the discovery of heavy-tail 

distributions in inputs and outcomes variables across different nascent 

entrepreneurial panel studies performed in different countries and 

continents (Andriani & McKelvey, 2009; Reynolds and Curtin, 2011; 

Crawford and McKelvey, 2012; Crawford et al., 2014; Crawford et al., 2015; 

Reynolds, 2017,b). 

 

Joo, Aguinis and Bradley (2017) proposed a new distribution pitting 

methodology for the assessment of the types of non-normal distributions 

(Joo, Aguinis and Bradley, 2017). In the first section of this research, we 

followed their methodology for the analysis of the empirical nascent 

entrepreneurial outcomes in those countries in which the datasets are in the 

public domain: Australia, Sweden, US PSED I & II (Reynolds, 2017b). The 

implementation of the distribution pitting was through a new R statistical 

package, called Dpit.  

 

After applying the Dpit statistical package to the outcomes variables 

of nascent entrepreneurial datasets, we found that the results mostly 

suggested two types of distributions for these entrepreneurial samples: 

power law with an exponential cut-off and lognormal distributions 

(occasionally, Weibull distributions would also be a good fit). However, the 

results were not completely conclusive. Which of these two distributions 

may be the better fit will require the analysis of the rest of 14 still ongoing 

longitudinal projects around the world. The pervasiveness of lognormality 

offers relevant clues to understand nascent entrepreneurial processes, their 



 

277 
 

generative mechanism, and it will offer strategies to allocate resources to 

foster and promote new entrepreneurial ventures. 

 

The second objective of this research was the design and 

implementation (coding) of an agent-based model with enough complexity 

to be able to simulate the heavy tailed distributions patterns in the different 

international empirical longitudinal studies. It was conceived and intended 

as a research tool - openly available to the research community - to test 

and explore new theories and empirical datasets in nascent entrepreneurial 

processes. 

 

Our “nascent entrepreneurial agent-based model”, inspired by 

previous simpler entrepreneurial models, introduces new layers of 

complexity, making possible parametrization and calibration (not possible in 

the previous seminal entrepreneurial agent-based model attempts). This 

baseline model, initially with parameters similar to the public available panel 

datasets --Australia, Sweden, US PSED --, is able to generate the 

patterns that were found in the empirical results: the heavy-tailed 

distributions. 

 

This baseline model has a flexible design in order to be easily 

adapted to each of the empirical dataset under study. The model, at this 

initial stage, has not been fully parametrized and calibrated for any specific 

country. The baseline model takes the main parameters from the datasets 

available heuristically, in order to show that multiplicative processes --as 

main generative mechanism-- are able to simulate the empirical patterns. 

 

 The baseline model was designed as a research tool to experiment 

and to help entrepreneurship researchers to test their theories, and for 

exploring in more detail the mechanisms involved in the emergence of new 

ventures. The baseline model and its background documentation will be 
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openly available to the research community in two major agent-based 

repositories. Taking this baseline model as a “backbone”, researchers can 

change parameters, agents, behaviours, schedules or global variables for 

their own theory building or calibration of their specific country’s simulation. 

 

8.1 NEXT RESEARCH STEPS: THE PIPELINE 
 

 Publication of the results of the first section of this thesis: the statistical 

analysis of the currently available empirical datasets. 

 

 Extension of the empirical datasets analysis to other international 

longitudinal panels and exploration of their distribution patterns when 

they are released. 

 

 Parametrization and calibration of our model with the datasets already 

available (USA, Australia, and Sweden). Model analysis. Publication of 

the model and its analysis. 

 

 Development of the underlying theoretical framework of this PhD 

research based in Human Behavioural Ecology (Aldrich, 2011; Davies, 

Krebs and West, 2012; Roundy, Bradshaw and Brockman, 2018). 

Entrepreneurship as a complex “human foraging”, and the relationship 

with non-human “entrepreneurial” behaviour (especially in the family 

Hominidae ( - the great apes -). 

 

 

 

 



 

279 
 

8.2 A NEXT WORKING PAPER: ENTREPRENEURSHIP AS A FORM OF 
“COMPLEX HUMAN FORAGING” AND ITS ANTECENDENTS IN THE 
HOMINIDAE FAMILY 

 

INTRODUCTION 
 

This new line of my research is still in an infant stage: I have 

gathered the main bibliography and I am now in the literature review 

process, framing the main themes of this paper. This working paper may 

have a title similar to:  

 

“Entrepreneurship as a Complex Human Foraging: A Human 

Behavioural Ecology Perspective to Human Entrepreneurship”.  

 

The main thesis is that entrepreneurship may be analysed as a 

complex type of “complex human foraging”. Thus, the encounter of the 

entrepreneur and the opportunity and the subsequent entrepreneurial tasks 

are part of this “complex foraging”. This line of research will address the 

nascent entrepreneurial processes from the Human Behavioural Ecology 

perspective -Biological Anthropology- as theoretical framework in order to 

explain heavy tail distributions patterns observed worldwide in 

entrepreneurial longitudinal studies as we analysed in the first section of 

this document. 

 

This approach will also provide the main concepts needed to explore 

and justify the use of agent-based modelling techniques in nascent 

entrepreneurship from a biological/ecological perspective. In ecology, 

agent-based modelling has served as a standard tool to study animal 

foraging in different ecosystems (Dumont and Hill, 2004; McLane et al., 

2011), or behaviour pattern in primates (Hemelrijk, 2002; Bryson, Ando and 
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Lehmann, 2007). Therefore, agent-based modelling can be also a useful 

method to address entrepreneurship as complex human foraging. 

 

THE BEHAVIOURAL ECOLOGY APPROACH TO ENTREPRENEURSHIP: ANTECEDENTS. 
 

Behavioural Ecology is a branch of ecology stablished in the last 40 

years based on concepts of ethology (Tinbergen, 1963), population 

genetics and ecology that research how animal behaviour adapts to the 

physical and social environment of individuals. It tries “to understand how 

animal behaviour evolves in relation to the different ecological conditions” 

(Davies, Krebs and West, 2012, p. 22). The basic assumption is that 

individuals develop a set of strategies of behaviour that increases their 

fitness in a specific context of ecological and social conditions. Behavioural 

patterns have evolved depending on the physical and social conditions in 

which animals have to survive (natural selection). Behavioural Ecology 

adopts different methods and tools from genetics, bioinformatics, 

developmental biology, physiology, primatology, neuroethology, etc. (Hager 

and Gini, 2012). 

 

Human Behavioural Ecology (HBE) applies the evolutionary 

approach by natural selection of Behavioural Ecology to the study of human 

behaviour. This field has noticed a great development over the last 30 

years, and it is closely related to disciplines such as “evolutionary 

anthropology”, “human evolutionary ecology”, “evolutionary biological 

anthropology”, “human ethology”, “socio-ecology”, “biosocial (or biocultural) 

anthropology” or “sociobiology” (Borgerhoff Mulder and Schacht, 2012). 

 

The underlying premise of Human Behavioural Ecology is the 

rejection of the need of different explanatory approaches for the study of 

human behaviour as opposed to that of any other animal. It does not imply 

that humans do not have distinctive cognitive and behavioural mechanisms 
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-- because they do -- but rather that the Behavioural Ecology scientific 

methodology for explaining behaviour in the animal realm remains similar to 

the one used for the human species behaviour, that is, to explore fitness 

cost and benefits given a specific ecological context, to make predictions 

based on fitness maximization, and test them empirically (Nettle, Gibson, 

Lawson, Sear, 2013, p. 1032). On the other hand, this approach is not very 

different than the ones used in microeconomic models also based on 

maximization. In fact, the current trend in Human Behavioural Ecology is to 

build bridges with social sciences and to introduce the adaptive 

evolutionary perspective in the social science literature corpus. Human 

Behavioural Ecology - with its broad scope and general empirical principles 

- claims to have the potential of being a common ground across social 

scientists in order to address the fragmentation of the study of human 

behaviour into many disciplinary areas (Nettle et al., 2013, p. 1036-7; 

Gibson and Lawson, 2015). 

 

Human Behavioural Ecology belongs, therefore, to the evolutionary 

perspective on the study of the set of behaviours of the Hominidae. The 

evolutionary approach in the study of entrepreneurship – and in 

organizational studies, in general -- has been widespread in the last years, 

especially under the influence of the works of Howard Aldrich (Shane, 

2004; Aldrich and Ruef, 2006; Aldrich, 2011). Aldrich stablished the 

evolutionary framework for studying entrepreneurship already in his book 

Organizations and Environment (Aldrich, 1979) but it was in his book 

Organizations Evolving (Aldrich, 1999; Aldrich and Ruef, 2nd ed., 2006) 

where he set the itinerary to consolidate entrepreneurship as an 

evolutionary field systematically (Shane, 2004). In similar way that in 

current evolutionary biology, the concepts of ecosystem and population 

have become paramount (Ridley, 2004, p. 2-3), there been also an 

analogous increase in the use of these evolutionary concepts such as 

ecosystems or populations in the study of organizations and 

entrepreneurship (Craig, 2013; Thomas and Autio, 2014; Roundy, 

Bradshaw and Brockman, 2018). 
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However, Aldrich’s initial evolutionary approach in Organizations 

Evolving is still too “sociological” from a natural science perspective (Aldrich 

& Ruef, 2006; Aldrich, 2011). It does not really “integrate” the biological 

nature of human organizations. Evolutionary thinking is applied to 

organizations without effective acknowledgement and further 

implementations of the biological substratum of human populations. It is still 

a “metaphorical” evolutionary approach (Breslin, 2008, p. 402). 

 

In 2004, McKelvey challenged the evolutionary research on 

entrepreneurship because, in his opinion, was too biased toward Darwinian 

determinism. He also proposed agent-based modelling to complement the 

evolutionary perspective with the complexity theory paradigm (McKelvey, 

2004), which is a more versatile approach able to examine the creation of 

pattern without imposing the limitations of the Darwinian theory. However, 

in the last 20 years evolutionary theory in biology has undergone major 

conceptual changes. New discoveries in population genetics and molecular 

biology, have lead the field towards a new theoretical framework called “the 

Extended Evolutionary Synthesis” (EES) that considers non-genetic 

inheritance modes, such as epigenetics, parental effects, ecological 

inheritance, cultural inheritance, and evolvability (Laland, et al., 2015). 

Therefore, the current evolutionary theory is much less deterministic 

nowadays than it was in 2004, and complexity theory has also influenced 

strongly the post-neo-Darwinism (Weber, 2011). 

 

If Aldrich – -as sociologist-- would talk of “organizational populations” 

of humans, this working paper will extent the “ecosystem” and “population” 

metaphor to the extreme: the “organizational populations” and 

“ecosystems” of an animal belonging to the genus Homo – us -- with the 

theoretical framework and methodological tools of Human Behavioural 

Ecology. Aldrich himself and many others were aware of the need of this 

step further, but the fragmentation between natural and social sciences has 
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delayed this interdisciplinary fertilization (Aldrich et al., 2008; Liguori et al., 

2018). 

 

ENTREPRENEURSHIP AS A “COMPLEX HUMAN FORAGING”. 
 

“Foraging” or “Optimal Foraging Theory” in one of the main concepts 

of Behavioural Ecology. Foraging theory is the study of the processes 

associated with resource acquisition. It studies the foraging behaviour in 

relation to the environment where the animal lives. Behavioural ecology 

mostly uses models based on optimization – or maximization – to 

understand foraging, that is, foraging theory analyse the set of behaviours 

in term of optimizing the payoff from foraging decisions – including 

optimization through game theory models - (Stephens and Krebs, 1986; 

Stephens, Brown and Ydenberg, 2007). 

 

There are several factors that influence greatly the ability to forage 

and acquire profitable resources, such as learning, genetics or the 

presence of predators. Learning, for example, is a major factor in non-

human primates, where the youngest learn by watching other group 

members forage and by copying their behaviours (Rapaport and Brown, 

2008). There are also several types of optimal foraging depending on the 

different foraging situations. Optimal theory models generally have these 

three main components (Stephens, Brown and Ydenberg, 2007): a) 

currency, as an objective function, to be maximized (energy over time, 

etc.); b) the set of behavioural choices that the animal can control or the 

decisions that the animal exhibits; and c) the animal’s behavioural 

constraints: such as genetics, physiology, neurology, morphology, etc. 

(Stephens, Brown and Ydenberg, 2007). 

 

Please notice that not all human foraging is a “complex foraging”. 

The initial applications of optimal foraging theory (OFT) in humans were in 
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the most ancient and “simpler” human foraging, closed related to those of 

the primates: the foraging (hunter-gatherer) subsistence behaviour 

(Winterhalder, 1981; Raichlen et al., 2014). In the last decades, Human 

Behavioural Ecology has also explored more recent human foraging 

behaviour, for example, the study of the emergence of the adoption of 

agriculture due to lower foraging encounter rates with higher-ranked food 

items, probably resulted from the late Pleistocene climatic change, in which 

human population increased (Richerson et al., 2001). Optimal Foraging 

Theory has also been extended to study patterns in modern fisheries and 

livestock domestication, converging closely with microeconomics models 

(Tucker, 2007). 

 

This paper will introduce the concepts of “proto-entrepreneurial 

activities” and seminal organizations of individuals (“proto-ventures”) in 

order to address some “entrepreneurial-like” set of behaviours observed in 

non-human primates (Alcock, 2013). We will also explore the field of 

primatology to show how indeed some forms of “primitive entrepreneurship” 

can be found in non-human primates (and in other social species), based 

on the works of de Waal and Tyack (2003). We will define “proto-

entrepreneurship” as these set of behaviours in non-human species in 

order to remark the differences with complex human entrepreneurship, 

entering therefore into Comparative Psychology and Ethology, in what we 

have called “Comparative Entrepreneurship” (differences between non-

human and human entrepreneurship). 

 

AIMS OF THIS RESEARCH 
 

This paper will propose to root entrepreneurship more deeply in the 

biological foundations of human behaviour. Entrepreneurship, thus, may be 

considered an adaptive set of behaviours for survival and human 

development. As such, it can be studied from the human behavioural 

ecology perspective. Can we address the implications of entrepreneurship 
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as evolutionary, adaptive set of human behaviours? Is human 

entrepreneurship a form of “complex” foraging, a more sophisticated and 

evolved form of pre-human foraging? Here, the entrepreneurial activities 

are regarded as an adaptive set of behaviours to obtain resources that 

have evolved from pre-human foraging to a complex form of human 

foraging. Is possible to use the Behavioural Ecology methodology and tools 

to explore more empirically data and entrepreneurial behavioural models? 
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Table 1: Distribution Pitting Statistics ( Dpit() Results) 

Exploring log-normal distributions in nascent entrepreneurship outcomes: International comparisons and agent-

based modelling. 

by Ivan Rodriguez Hernandez (following pitting procedure and layout of Joo, Aguinis & Bradley, 2017) 

Distribution Pitting Statistics Table for “Exploring log-normal distributions in nascent entrepreneurship outcomes: International comparisons and 

agent-based modelling.” 

The six columns of the table show the comparison results calculated by the software package Dpit() in R. For each comparison, it is shown the 

normalized log-likelihood ratio value followed by the normalized p-value (in parentheses). N is the sample. 

Abbreviations of distribution names: PL = Pure power law, LogN = Lognormal, Exp = Exponential, Cut = Power law with an exponential cutoff, 

Norm = Normal, Pois = Poisson, and Weib = Weibull. 

Abreviations of comparison between distributions: For example, NormvPL means Normal distribution versus power law distribution. A positive 

result of the normalized log-likelihood ratio value implies the first distribution indicates a superior fit in the comparison abbreviation name 

NormvPL. On the other hand, a negative result of the normalized log-likelihood ratio value implies that the second distribution is the superior fit. 

p = statistical significance for the normalized log-likelihood ratio value. 

 Poisson’s log-likelihood ratio and p-values are not available for continuous data. 

Variable N 

NormvL NormvCut NormvWeb NormvLoN NormvExp NormvPois 

 

PLvCut PLvWeib PLvLogN PLvExp PLvPois 

  
CutvWeib CutvLogN CutvExp CutvPois 

   
WiebvLoN WeibvExp WeibvPois 

    
LogNvExp LogNvPois 

          ExpvPois 

CAUSEE Australia - Outcome 

Variables 

Full-Time Employees 
       

1. Number of full-time Employees 205 -4.96 (0) -9.13 (0) -9.01 (0) -8.82 (0) -11.18 (0) 3.44 (0) 

Young Firms – Wave 1 (Year 1) 
  

-40.54 (0) -6.15 (0) -5.78 (0) 
-2.77 

(0.006) 
4.23 (0) 

Variable Name: W1: Q205# 
   

-1.26 (0.21) -0.58 (0.56) 2.03 (0.04) 4.93 (0) 
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-0.19 (0.85) 

2.24 

(0.025) 
4.93 (0) 

      
2.22 (0.03) 4.94 (0) 

 

 

 
      

5.04 (0) 

2. Number of full-time Employees 160 -6.19 (0) -8.63 (0) -8.60 (0) -8.53 (0) -11.51 (0) 2.94 (0.003) 

Young Firms – Wave 2 (Year 2) 
  

-20.40 (0) -4.31 (0) -4.11 (0) 0.05 (0.96) 3.76 (0.0002) 

Variable Name: W2_B16 
   

-1.02 (0.31) -0.63 (0.53) 
2.68 

(0.007) 
4.00 (0) 

     
-0.12 (0.90) 

2.86 

(0.004) 
4.01 (0) 

      

2.87 

(0.004) 
4.01 (0) 

       
4.04 (0) 

3. Number of full-time Employees 

Young Firms – Wave 3 (Year 3) 

Variable Name: W3_B16 

127 -6.36 (0) -8.21 (0) -8.19 (0) -8.22 (0) --10.89 (0) 2.97 (0.003) 

   
-14.46 (0) 

-3.85 

(0.0001) 
-3.62 (0) 1.04 (0.30) 3.50 (0) 

    
-1.33 (0.18) -1.01 (0.31) 

2.96 

(0.003) 
3.61 (0) 

     
-0.45 (0.65) 

3.19 

(0.001) 
3.62 (0) 

      
3.30 (0) 3.62 (0) 

       
3.61 (0) 

4. Number of full-time Employees 

Young Firms – Wave 4 (Year 4) 

Variable Name: W4_B16 

100 -5.93 (0) -6.73 (0) -6.87 (0) -7.01 (0) -26.34 (0) 1.18 (0.24) 

   
-6.35 (0) 

-2.83 

(0.005) 

-2.65 

(0.008) 
1.24 (0.21) 1.28 (0.20) 

    
-4.26 (0) 

-3.13 

(0.002) 
1.53 (0.13) 1.28 (0.20) 

     
-1.48 (0.14) 1.70 (0.09) 1.28 (0.20) 

      
1.77 (0.08) 1.28 (0.20) 

       
1.27 (0.20) 

5. Number of full-time Employees 

Young and Nascent Firms – Wave 5 (Year 5) 

Variable Name: W5: Q24 

8,33

2 
-18.06 (0) -18.59 (0) -18.64 (0) -18.54 (0) -19.95 (0) -22.72 (0) 

   
-46.04 (0) -3.15 (0) -5.76 (0) 6.47 (0) 8.79 (0) 

    
0.72 (0.47) -0.49 (0.62) 8.58 (0) 9.71 (0) 
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-1.68 (0.09) 9.12 (0) 9.92 (0) 

      
8.54 (0) 9.67 (0) 

       
10.23 (0) 

 

 

 

        

Distribution Pitting Statistics (continued)        

6. Number of full-time Employees 

Nascent Firms – Wave 1 (Year 1) 

Variable Name: W1: Q252# 

73 -4.87 (0) -5.59 (0) -5.70 (0) -5.82 (0) -10.31 (0) 1.07 (0.29) 

   
-3.86 (0) -1.88 (0.06) -1.74 (0.08) 0.97 (0.33) 1.54 (0.12) 

    
-2.19 (0.03) -1.65 (0.1) 1.42 (0.16) 1.57 (0.12) 

     
-0.69 (0.49) 1.59 (0.11) 1.58 (0.11) 

      
1.68 (0.09) 1.58 (0.11) 

       
1.57 (0.11) 

 

7. Number of full-time Employees 

Nascent Firms – Wave 2 (Year 2) 

Variable Name: W2_C79 

73 -4.08 (0) -5.49 (0) - -5.47 (0) -5.73 (0) -7.95 (0) 1.12 (0.26) 

   
 -8.36 (0) -2.96 (0) -2.64 (0) -0.06 (0.95) 1.71 (0.09) 

    
-2.77 (0.17) -2.07 (0.04) 1.15 (0.25) 1.85 (0.06) 

     
-1.34 (0.18) 1.41 (0.16) 1.86 (0.06) 

      
1.80 (0.07) 1.89 (0.06) 

       
1.88 (0.06) 

 

 

 

8. Number of full-time Employees 

Nascent Firms – Wave 3 (Year 3) 

Variable Name: W3_C79 

52 -3.94 (0) -6.08 (0) -6.05 (0) -6.30 (0) --8.17 (0) 105.7 (0.08) 

   
-8.16 (0) -3.38 (0) -2.99 (0) -0.52 (0.61) 2.23 (0.03) 

    
-2.05 (0.04) -1.58 (0.11) 1.36 (0.17) 2.40 (0.02) 

     
-1.17 (0.24) 1.66 (0.10) 2.42 (0.02) 

      
2.28 (0.02) 2.45 (0.01) 

       
2.44 (0.01) 

9. Number of full-time Employees 

Nascent Firms – Wave 4 (Year 4) 

 Variable Name: W4_C79 

48 -5.51 (0) -7.08 (0) -7.31 (0) --7.93 (0) -12.29 (0) 1.53 (0) 
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-4.70 

(0.002) 

-2.74 

(0.0062) 
-2.27 (0.02) 0.76 (0.45) 1.83 (0.07) 

    

-2.96 

(0.004) 
-1.79 (0.07) 1.54 (0.12) 1.88 (0.06) 

     
-1.02 (0.31) 1.88 (0.06) 1.89 (0.06) 

      
2.34 (0.02) 1.91 (0.06) 

       

1.89 (0.06) 

 

10. Number of full-time Employees 

Young and Nascent Firms – Wave 5 (Year 5) 

Variable Name: W5_Q24 [same variable than YF] 

155 -4.52 (0) -5.36 (0) -5.25 (0) -5.20 (0) -6.57 (0) - 2.12 (0.03) 

   
-16.02 (0) -3.56 (0) -3.53 (0) 1.13 (0.26) 2.44 (0.01) 

    
-0.73 (0.47) -0.46 (0.65) 2.51 (0.01) 2.51 (0.01) 

     
0.35 (0.72) 2.49 (0.01) 2.50 (0.01) 

      
2.42 (0.02) 2.50 (0.01) 

 

Total Sales 
      

2.50 (0.01) 

 

11. Sales in $ (Total) (Last 12 Months) 
589 -9.29 (0) -11.97 (0) -9.66 (0) -11.73 (0) -25.41 (0) 1.92 (0.05) 

Young Firms – Wave 1 (Year 1) 
  

-599.9 (0) -3.92 (0) -22.31 (0) 2.08 (0.04) 1.92 (0.05) 

Variable Name: W1 Q2027# 
   

54.16 (0.81) 5.52 (0) 4.65 (0) 1.92 (0.05) 

     
-19.13 (0) 2.36 (0.02) 1.92 (0.05) 

      
4.22 (0) 1.92 (0.05) 

       
1.91 (0.05) 

12. Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 2 (Year 2) 

Variable Name: W2_B18 

483 -8.47 (0) -14.08 (0) -11.29 (0) -13.18 (0) -18.22 (0) 4.54 (0) 

   
-492.7 (0) -10.98 (0) -19.11 (0) 0.17 (0.86) 4.53 (0) 

    
35.33 (0) 6.54 (0) 7.72 (0) 4.53 (0) 

     
-10.14 (0) 3.47 (0) 4.54 (0) 

      
6.58 (0) 4.54 (0) 

       
4.54 (0) 

13. Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 3 (Year 3) 

Variable Name: W3_B18 

385 -8.64 (0) -19.12 (0) -14.78 (0) -16.97 (0) -22.91 (0) 5.84 (0) 

   
-497.6 (0) -15.26 (0) -22.49 (0) -1.53 (0.12) 5.84 (0) 

    
-25.72 (0) 6.67 (0) 9.45 (0) 5.84 (0) 
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-8.36 (0) 4.15 (0) 5.84 (0) 

      
7.97 (0) 5.84 (0) 

       

5.84 (0) 

 

 

 

 

 

 

 

14. Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 4 (Year 4) 

Variable Name: W4_B18 

298 -8.09 (0) -14.67 (0) 11.14 (0) 13.10 (0) -17.97 (0) 4.14 (0) 

   
-362.88 (0) -9.18 (0) -16.56 (0) 0.21 (0.83) 4.14 (0) 

    
22.15 (0) 6.64 (0) 7.62 (0) 4.14 (0) 

     
-7.96 (0) 

3.11 

(0.002) 
4.14 (0) 

      
6.02 (0) 4.14 (0) 

       
4.14 (0) 

15. Sales in $ (Total) (Last 12 Months) 

Young Firms – Wave 5 (Year 5) 

Variable Name: W5_Q18 [ &R32] [note: same as NF] 

393 -9.64 (0) -13.76 (0) -10.42 (0) 12.65 (0) -20.32 (0) 2.79 (0.005) 

   
-458.2 (0) - 4.00 (0) -15.53 (0) 

2.78 

(0.005) 
2.79 (0.005) 

    
33.07 (0) 7.67 (0) 7.13 (0) 2.78 (0.005) 

     
-13.43 (0) 3.40 (0) 2.79 (0.005) 

      
5.91 (0.02) 2.79 (0.005) 

       
2.79 (0.005) 

16. Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 1 (Year 1) 

Variable Name: W1 Q2030# 

302 -6.59 (0) -8.94 (0) -7.24 (0) -8.57 (0) -12.59 (0) 2.41 (0.016) 

   
-138.8 (0) 

-3.70 

(0.0002) 
-14.27 (0) 1.82 (0.07) 2.41 (0.016) 

    
6.08 (0) 

-3.61 

(0.0003) 
4.47 (0) 2.41 (0.016) 

     
-11.09 (0) 2.56 (0.01) 2.41 (0.016) 

      
4.55 (0) 2.41 (0.016) 

       
2.41 (0.016) 

17. Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 2 (Year 2) 

Variable Name: W2_C85_consolidated 

291 -7.06 (0) -9.76 (0) -8.84 (0) -10.67 (0) -20.35 (0) 2.61 (0.009) 
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-224.2 (0) -9.92 (0) -17.15 (0) 0.67 (0.51) 2.61 (0.009) 

    
31.4 (0) -1.94 (0.05) 

3.73 

(0.0002) 
2.61 (0.009) 

     
-10.04 (0) 

2.46 

(0.014) 
2.61 (0.009) 

      
4.60 (0) 2.61 (0.009) 

       
2.61 (0.009) 

         

         

         

Distribution Pitting Statistics (continued)        

18. Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 3 (Year 3) 

Variable Name: W3_C85 

228 -7.52 (0) -11.82 (0) 10.43 (0) -12.18 (0) -17.05 (0) 3.87 (0) 

   
-181.7 (0) -7.55 (0) -13.6 (0) 0.91 (0.37) 3.87 (0.0001) 

    
30.38 (0) 0.89 (0.38) 5.43 (0) 3.87 (0.0001) 

     
-7.57 (0) 

3.47 

(0.0005) 
3.87 (0.0001) 

      
6.07 (0) 3.87 (0.0001) 

       
3.87 (0.0001) 

19. Sales in $ (Total) (Last 12 Months) 

Nascent Firms – Wave 4 (Year 4) 

Variable Name: W4_C85_consolidated 

159 -5.31 (0) -9.42 (0) -8.47 (0) -9.26 (0) -13.31 (0) 4.00 (0) 

   
-113.9 (0) -5.23 (0) -8.77 (0) -0.56 (0.58) 3.99 (0) 

    
14.40 (0) 2.64 (0.008) 4.20 (0) 4.00 (0) 

     
-4.04 (0) 2.27 (0.02) 3.99 (0) 

      
4.02 (0) 3.99 (0) 

       
3.99 (0) 

20. Sales in $ (Total) (Last 12 Months) 

Nascent and Young Firms – Wave 5 (Year 5) 

Variable Name: W5_Q18[& R32] Same variable than 

YF -15 

393 -12.98 (0) -13.29 (0) -13.57 (0) -13.35 (0) -15.39 (0) -21.66 (0) 

   
-7.43 (0) -0.56 (0.57) -2.11 (0.04) 4.35 (0) 5.35 (0) 

    
0.75 (0.45) -0.7 (0.48) 5.02 (0) 5.61 (0) 

     
-1.7 (0.09) 5.6 (0) 5.85 (0) 

      
5.17 (0) 5.67 (0) 

       
5.86 (0) 

SWEDISH PSED - Outcome 101 -6.66 (0) -7.63 (0) -7.78 (0) -7.93 (0) -10.99 (0) 2.13 (0.03) 
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Variables 

Full-Time Employees 
21. Number of full-time Employees – SWE PSED 1 

Wave 1 (Year 0) 

Variable Name: gw31nn00 

   

-7.05 

(0.0002) 

-3.17 

(0.002) 

-2.63 

(0.009) 
1.88 (0.06) 2.44 (0.01) 

    
-2.47 (0.01) -1.82 (0.07) 

2.63 

(0.009) 
2.47 (0.01) 

     
-0.81 (0.41) 

2.93 

(0.003) 
2.48 (0.01) 

      

3.16 

(0.002) 
2.49 (0.01) 

       
2.46 (0.01) 

 

 

 

22. Number of full-time Employees– SWE PSED 1 

Wave 2 (6 months) 

Variable Name: gw31nn06 

86 -5.25 (0) -7.14 (0) -7.20 (0) -7.69 (0) -11.34 (0) 1.47 (0.14) 

   
-9.86 (0) -3.41 (0) 

-2.96 

(0.003) 
0.10 (0.92) 2.07 (0.04) 

    
-3.71 (0) -2.44 (0.01) 1.41 (0.15) 2.19 (0.03) 

     
-1.54 (0.12) 1.76 (0.08) 2.21 (0.03) 

      
2.32 (0.02) 2.24 (0.02) 

       
2.23 (0.03) 

23. Number of full-time Employees – SWE PSED 1 

Wave 3 (12 months) 

Variable Name: gw31nn12 

61 -9.73 (0) -9.89 (0) -11.80 (0) -10.75 (0) -7.05 (0) 1.21 (0.23) 

   
-0.35 (0.40) 1.00 (0.32) -0.65 (0.52) 2.41 (0.02) 1.25 (0.21) 

    
4.96 (0) -0.58 (0.56) 2.44 (0.01) 1.25 (0.21) 

     
-0.58 (0.56) 1.46 (0.15) 1.24 (0.21) 

      
2.58 (0.01) 1.25 (0.21) 

       
1.24 (0.21) 

         

         

         

Distribution Pitting Statistics (continued)        
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24. Number of full-time Employees – SWE PSED 1 

Wave 4 (18 months) 

Variable Name: gw31nn18 

57 -11.75 (0) -11.95 (0) -9.65 (0) -13.38 (0) -6.01 (0) 1.30 (0.19) 

   
-0.44 (0.35) 6.65 (0) -0.76 (0.45) 

3.24 

(0.001) 
1.31 (0.19) 

    
- 6.85 (0.15) -0.66 (0.50) 

3.27 

(0.001) 
1.31 (0.19) 

     
-6.27 (0) 1.94 (0.05) 1.31 (0.19) 

      
3.54 (0) 1.31 (0.19) 

       
1.31 (0.19) 

25. Number of full-time Employees – SWE PSED 1 

Wave 5 (24 months) 

Variable Name: gw31nn24 

53 -6.50 (0) -8.09 (0) -8.43 (0) -8.39 (0) -12.63 (0) 2.11 (0.03) 

   

-4.00 

(0.005) 
-1.78 (0.08) -1.75 (0.08) 1.57 (0.12) 2.50 (0.01) 

    
-0.41 (0.68) -0.39 (0.70) 2.39 (0.02) 2.53 (0.01) 

     
-0.39 (0.70) -0.26 (0.79) 2.64 (0.01) 

      
2.54 (0.01) 2.62 (0.01) 

       
2.54 (0.01) 

26. Number of full-time Employees – SWE PSED 1 

Wave N75 (75 months) 

Variable Name: gw31n 

40 -10.45 (0) -10.79 (0) -9.31 (0) -13.21 (0) -5.73 (0) 1.27 (0.20) 

   
-0.51 (0.31) 4.46 (0) -0.82 (0.41) 2.50 (0.01) 1.30 (0.19) 

    
4.19 (0) -0.74 (0.46) 2.55 (0.01) 1.30 (0.19) 

     
-4.17 (0) 1.58 (0.11) 1.30 (0.19) 

      

2.95 

(0.003) 
1.31 (0.19) 

SWEDISH PSED - Outcome 

Variables 
      

1.30 (0.20) 

SALES TURNOVER (THOUSAND 

SEK) 
 

27. Sales Turnover (Thousands SEK) 

Last Year 

189 -7.43 (0) -10.34 (0) -7.76 (0) -9.58 (0) -17.1 (0) 1.52 (0.13) 

Variable Name: pt11nn18 
  

-81 (0) -1.33 (0.18) -10.66 (0) 1.73 (0.08) 1.52 (0.13) 

    
4.02 (0) 

-3.58 

(0.0003) 

3.05 

(0.002) 
1.51 (0.13) 

     
-11.26 (0) 1.87 (0.06) 1.52 (0.13) 
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3.23 

(0.001) 
1.52 (0.13) 

       
1.52 (0.13) 

 

 

 

28. Sales Turnover (Thousands SEK) 

First 3 Months 

154 -5.89 (0) -10.7 (0) -8.88 (0) -10.06 (0) -16.61 (0) 3.32 (0) 

Variable Name: pt12nn18 
  

-77.1 (0) -5.55 (0) -9.96 (0) -0.37 (0.71) 3.33 (0) 

    
2.42 (0.02) -2.97 (0) 3.51 (0) 3.33 (0) 

     
-4.76 (0) 2.00 (0.05) 3.33 (0) 

      
3.84 (0) 3.34 (0) 

       
3.33 (0) 

 

 

 

29. Sales Turnover (Thousands SEK) 

151 -4.67 (0) -8.67 (0) 6.98 (0) -7.91 (0) -13.04 (0) 2.82 (0.005) 

First 6 Months 
  

-88.2 (0) -6.29 (0) -10.9 (0) -0.65 (0.52) 2.83 (0) 

Variable Name: pt13nn18 
   

2.44 (0.01) -2.13 (0.03) 3.31 (0) 2.83 (0) 

     
-4.83 (0) 1.78 (0.08) 2.83 (0) 

      
3.30 (0) 2.83 (0.005) 

       
2.83 (0.005) 

         

         

         

Distribution Pitting Statistics (continued)        

30 Sales Turnover (Thousands SEK) 13 
-0.22 

(0.83) 
-3.08 (0) -3.05 (0) -2.58 (0.01) -5.63 (0) 1.73 (0.08) 

First 12 Months 
  

-11.56 (0) -2.08 (0.04) -1.91 (0.06) -1.36 (0.17) 1.73 (0.08) 

Variable Name: pt14nn18 
   

0.81 (0.42) 1.26 (0.21) 0.67 (0.50) 1.73 (0.08) 

     
0.51 (0.61) 0.22 (0.82) 1.73 (0.08) 

      
-0.02 (0.98) 1.73 (0.08) 

       
1.73 (0.08) 

31. Sales Turnover (Thousands SEK) 

Second year of operation (24 months) 

Variable Name: pt11nn24 (global dataset) 

163 -4.35 (0) -8.86 (0) -7.58 (0) -8.18 (0) -11.99 (0) 3.56 (0) 

   
-91.2 (0) -7.27 (0) -9.89 (0) -1.73 (0.08) 3.57 (0) 

    
1.69 (0.09) -2.07 (0.04) 3.16 (0) 3.57 (0) 
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-3.61 (0) 1.85 (0.06) 3.57 (0) 

      
3.35 (0) 3.57 (0) 

       
3.56 (0) 

32. Sales Turnover (Thousands SEK) 

Sales Turnover in 1997 

Variable Name: pt31nn24 (global dataset) 

14 
-2.03 

(0.04) 
-3.10 (0) -3.49 (0) -2.85 (0) -5.69 (0) 1.80 (0.07) 

   
-2.65 (0.02) 0.02 (0.99) -0.93 (0.35) 0.46 (0.65) 1.80 (0.07) 

    
1.16 (0.25) 1.91 (0.06) 1.25 (0.21) 1.80 (0.07) 

     
-0.71 (0.47) 0.77 (0.44) 1.80 (0.07) 

      
1.01 (0.31) 1.80 (0.07) 

       
1.80 (0.07) 

33. Sales Turnover (Thousands SEK) 

Sales Turnover in 1998 

Variable Name: pt21nn24 (global dataset) 

111 -3.79 (0) -6.46 (0) -5.63 (0) -5.91 (0) -8.29 (0) 
3.11 

(0.002) 

   
-45.30 (0) 

-45.30 

(0.003) 
-5.68 (0) -0.35 (0.73) 

3.11 

(0.002) 

    
2.53 (0.01) 0.18 (0.86) 2.91 (0.004) 

3.11 

(0.002) 

     
-2.47 (0.01) 1.61 (0.11) 

3.11 

(0.002) 

      
2.54 (0.01) 

3.11 

(0.002) 

       

3.11 

(0.002) 

34. Sales Turnover (Thousands SEK) 

Last Year Sales Turnover after 75 months. 

Variable Name: pt11n (N75 SPSS file) 

123 -4.80 (0) -8.29 (0) -5.87 (0) -7.13 (0) -25.22 (0) 1.41 (0.15) 

   
-71.4 (0) -5.34 (0.1) -9.93 (0) 0.19 (0.86) 1.41 (0.16) 

    
1.74 (0.08) -2.14 (0.03) 1.96 (0.05) 1.41 (0.16) 

     
-6.61 (0) 1.02 (0.31) 1.41 (0.16) 

      
2.07 (0.04) 1.41 (0.16) 

       
1.41 (0.16) 

 

 

35. Sales Turnover (Thousands SEK) 

Second year of operation (24 months) file SPSS erc-n24 

171 -4.35 (0) -8.83 (0) -7.56 (0) -8.15 (0) -11.85 (0) 3.60 (0) 

Variable Name: SWE_pt11nn24_erc-n24 
  

-95.7 (0) -7.47 (0) -10.2 (0) -1.80 (0.07) 3.60 (0) 

    
1.70 (0.09) -2.09 (0.04) 3.21 (0) 3.60 (0) 

     
-3.65 (0) 1.87 (0.06) 3.60 (0) 

      
3.38 (0) 3.60 (0) 
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3.60 (0) 

         

         

         

Distribution Pitting Statistics (continued)        

36. Sales Turnover (Thousands SEK) 

Sales Turnover in 1998 

Variable Name: pt21nn24_erc-n24 – see file SPSS erc-

n24 

113 -3.70 (0) -6.40 (0) -5.56 (0) -5.84 (0) -8.12 (0) 3.16 (0) 

SWE_pt21nn24_erc-n24 
  

-47.03 (0) -3.18 (0) -5.75 (0) -0.46 (0.65) 3.16 (0) 

    
2.52 (0.01) 0.24 (0.81) 2.92 (0) 3.16 (0) 

     
-2.40 (0.02) 1.63 (0.10) 3.16 (0) 

      
2.52 (0.01) 3.16 (0) 

       
3.16 (0) 

37. Number of full-time Employees – SWE PSED 1 

Wave 5 (24 months) 

Variable Name: gw31nn24 – Specific dataset erc-n24 

58 -7.65 (0) -9.54 (0) -10.0 (0) -10.1 (0) -12.5 (0) - 2.49 (0.01) 

   

-4.32 

(0.003) 
-1.99 (0.05) -1.89 (0.06) 1.94 (0.05) 2.91 (0.003) 

    
-0.66 (0.51) -0.54 (0.59) 

2.84 

(0.005) 
2.93 (0.003) 

     
-0.07 (0.94) 

3.21 

(0.001) 
2.95 (0.003) 

      

3.26 

(0.001) 
2.95 (0.003) 

       
2.91 (0.004) 

 

 

 

38. Sales Turnover (Thousands SEK) 

Sales Turnover in 1997 

Variable Name: pt31nn24_erc-n24 – see also file SPSS 

erc-n24 

16 
-1.96 

(0.05) 
-3.29 (0) -4.07 (0) -3.01 (0) -4.97 (0) 2.61 (0) 

   
-3.64 (0) -0.20 (0.84) -1.10 (0.27) 0.35 (0.73) 2.62 (0) 

    
1.20 (0.23) 2.03 (0.04) 1.41 (0.16) 2.62 (0) 

     
-0.67 (0.50) 0.96 (0.33) 2.62 (0) 

      
1.14 (0.25) 2.62 (0) 

       
2.62 (0) 

 119 -8.47 (0) -11.8 (0) -11.37 (0) -12.17 (0) -16.5 (0) -  (0) 
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39. PSED II USA Total Revenues BV2 

   
-31.7 (0) -6.39 (0) -6.57 (0) 1.63 (0.10) -  (0) 

    
2.93 (0.5) -4.64 (0) 3.11 (0) -  (0) 

     
-9.86 (0) 2.92 (0) -  (0) 

      
3.87 (0) -  (0) 

       
-  (0) 

 

 

 

 

40. PSED II USA Total Revenues CV2 

132 -5.26 (0) -6.76 (0) -6.00 (0) -7.18 (0) -16.24 (0) 1.69 (0.09) 

   
-81.6 (0) -2.84 (0) -8.03 (0) 0.77 (0.44) 1.69 (0.09) 

    
20.2 (0) 0.64 (0.52) 2.39 (0.02) 1.69 (0.09) 

     
-6.29 (0.55) 1.34 (0.18) 1.69 (0.09) 

      
2.58 (0) 1.69 (0.09) 

       
1.69 (0.09) 

 

 

 

41. PSED II USA Total Revenues DV2 

126 -9.11 (0) -10.6 (0) -9.44 (0) -12.0 (0) -15.25 (0) 2.08 (0.04) 

   
-50.7 (0) 1.31 (0.19) -5.45 (0) 2.19 (0.03) 2.08 (0.04) 

    
22.3 (0) 0.52 (0.61) 3.21 (0) 2.08 (0.04) 

     
-6.58 (0) 1.97 (0.05) 2.08 (0.04) 

      
3.65 (0) 2.08 (0.04) 

       
2.08 (0.04) 

         

         

         

Distribution Pitting Statistics (continued)        

42. PSED II USA Total Revenues EV2 142 -8.61 (0) -11.23 (0) -9.92 (0) -12.25 (0) 16.10 (0) 2.66 (0) 

   
-82.3 (0) -1.73 (0.08) -8.26 (0) 1.95 (0.05) 2.66 (0) 

    
29.08 (0.83) 0.70 (0.49) 3.96 (0) 2.66 (0) 

     
-6.75 (0.57) 2.44 (0.01) 2.66 (0) 

      
4.56 (0) 2.66 (0) 
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2.66 (0) 

 

 

 

43. PSED II USA Total Revenues FV2 

135 -6.49 (0) -8.54 (0) -8.01 (0) -9.26 (0) -17.22 (0) - 2.75 (0) 

   
-60.6 (0) -1.95 (0.05) -6.52 (0) 1.06 (0.29) 2.75 (0) 

    
10.26 (0) 0.60 (0.55) 3.07 (0) 2.75 (0) 

     
-5.17 (0) 1.91 (0.06) 2.75 (0) 

      
3.50 (0) 2.75 (0) 

       
2.75 (0) 

 

 

 

44. PSED II USA Number regular Employees BU2 

44 -1.53 (0) -3.99 (0) -3.99 (0) -3.80 (0) -4.43 (0) -0.18 (0.86) 

Variable: BU2 
  

-8.76 (0) 
-2.60 

(0.009) 
-2.44 (0.01) -2.16 (0.03) 0.94 (0.35) 

    

-0.004 

(0.99) 
0.49 (0.62) 0.34 (0.74) 1.99 (0.05) 

     
0.59 (0.55) 0.37 (0.71) 1.99 (0.05) 

      
-0.11 (0.91) 1.96 (0.05) 

       
2.07 (0.04) 

 

 

45. PSED II USA Number regular Employees CU2 

47 -3.11 (0) -4.26 (0) -4.24 (0) -4.11 (0) -6.43 (0) 1.08 (0.28) 

   
-6.20 (0) -2.25 (0.02) -2.13 (0.03) -0.03 (0.98) 1.40 (0.16) 

    
-1.55 (0.12) -1.12 (0.26) 0.99 (0.32) 1.49 (0.14) 

     
-0.61 (0.54) 1.13 (0.26) 1.49 (0.14) 

      
1.20 (0.23) 1.50 (0.13) 

       
1.50 (0.13) 

 

 

46. PSED II USA Number regular Employees DU2 

44 -7.04 (0) -8.16 (0) -8.65 (0) -9.09 (0) -11.52 (0) 1.66 (0.097) 

   
-2.47 (0.03) -2.10 (0.04) -1.67 (0.09) 

1.70 

(0.089) 
1.90 (0.06) 

    

-2.00 

(0.045) 
-1.19 (0.23) 2.12 (0.03) 1.91 (0.06) 

     
-0.17 (0.86) 2.45 (0.01) 1.92 (0.05) 

      
2.61 (0) 1.92 (0.05) 

       
1.90 (0.06) 
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47. PSED II USA Number regular Employees EU2 

50 -9.87 (0) -10.07 (0) -8.62 (0) -11.11 (0) -6.83 (0) 1.27 (0.20) 

   
-0.41 (0.36) 4.67 (0) -0.64 (0.52) 2.64 (0) 1.31 (0.19) 

    
4.97 (0) -0.55 (0.59) 2.67 (0) 1.31 (0.19) 

     
-4.65 (0) 1.55 (0.12) 1.30 (0.19) 

      

2.88 

(0.004) 
1.31 (0.19) 

       
1.30 (0.19) 

         

         

         

Distribution Pitting Statistics (continued)        

48. PSED II USA Number regular Employees FU2 52 -9.60 (0) -9.76 (0) -8.72 (0) -10.28 (0) -7.06 (0) 1.24 (0.21) 

   
-0.29 (0.45) 4.43 (0) -0.43 (0.67) 

2.62 

(0.009) 
1.30 (0.20) 

    
5.05 (0) -0.27 (0.78) 

2.65 

(0.008) 
1.30 (0.20) 

     

-5.17 (0) 

 
1.52 (0.13) 1.28 (0.20) 

      

2.75 

(0.006) 
1.30 (0.20) 

       
1.28 (0.20) 
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Table 2: Distribution Pitting Conclusions after Implementing the First, First Two, or All Three Decision Rules of Joo, Aguinis & Bradley 

(2017). 

The columns of the table show the conclusions after Implementing the First, First Two, or All Three Decision Rules of Joo, Aguinis & Bradley 

(2017), using the results calculated by the software package Dpit() in R. For each comparison, it is shown the normalized log-likelihood ratio value 

followed by the normalized p-value (in parentheses). 

Abbreviations of distribution names: PL = Pure power law, LogN = Lognormal, Exp = Exponential, Cut = Power law with an exponential cutoff, 

Norm = Normal, Pois = Poisson, and Weib = Weibull. 

Abreviations of comparison between distributions: For example, NormvPL means Normal distribution versus power law distribution. A positive 

result of the normalized log-likelihood ratio value implies the first distribution indicates a superior fit in the comparison abbreviation name 

NormvPL. On the other hand, a negative result of the normalized log-likelihood ratio value implies that the second distribution is the superior fit. 

p = statistical significance for the normalized log-likelihood ratio value. Hypothesis 0 is no statistical difference (p=1). The result is statistical 

significant with a low value (authors considered p<0.10; Joo, Aguinis & Bradley (2017). 

 Poisson’s log-likelihood ratio and p-values are not available for continuous data. 

  

ID Variable Distribution 
Pitting Decision  
After rule 1 
 

After decision 
Rule 1 and 2 

After all three 
Decision rules 
Rules 1, 2 & 3 

Comments on decisions 

1 CAUSEE Australia 
Number of full-time 
Employees 
Young Firms – Wave 1 
(Year 1) 
Variable Name: W1: 
Q205#  

Undetermined 
 
Lognormal  
 

Undetermined 
 
Lognormal 

Cut 
(forcing 
inflexible 
instead 
lognormal) 

CutvWeib: -1.258947 – p=0.2080495 
CutvLogN  -0.5771123 p = 0.5638636 
WiebvLogN -0.1936912 p = 0.8464177 
P values too high 
No rejection of three:  Cut, Weibull, LogN 
Rule #3 forces to inflexible distribution: Cut 

2 CAUSEE Australia 
Number of full-time 
Employees 

Undetermined 
 
Lognormal 

Undetermined Cut 
(forcing 
inflexible 

CutvWeib: -1.02 (0.31) 
CutvLogN: -0.63 (0.53) 
WiebvLogN : -0.12 (0.90) 
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Young Firms – Wave 2 
(Year 2) 
Variable Name: W2_B16 

 instead 
lognormal) 

P value too high 
No rejection of three Cut, Weibull, LogN: rule #3 
forces to inflexible distribution: Cut 

3 CAUSEE Australia 
Number of full-time 
Employees 
Young Firms – Wave 3 
(Year 3) 
Variable Name: W3_B16 

Undetermined 
 
 
Lognormal (p 
very high) 

Undetermined Cut 
(forcing 
inflexible 
instead of log-
normal) 

CutvWeib: -1.33 (0.18) 
CutvLogN: -0.63 (0.53) 
WiebvLogN: -0.12 (0.90) 
No rejection of three:  Cut, Weibull, LogN 
Rule #3 forces to inflexible distribution: Cut 

4 CAUSEE Australia 
Number of full-time 
Employees 
Young Firms – Wave 4 
(Year 4) 
Variable Name: W4_B16 

Undetermined 
 
Lognormal or 
Weib 

Undetermined 
 
Log or Weib 

Undetermined 
 
Weib or LogN 
Lognormal 

WeibvLogN: -1.48 (0.14) 
 

5 CAUSEE Australia 
Number of full-time 
Employees 
Young and Nascent Firms – 
Wave 5 (Year 5) 
Variable Name: W5: Q24 –  
[NOTE: Same variable 
than YF y NF – in row 10 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

 
Cut – because 
inflexible 
criterion 

CutvWeib: -0.73 (0.47) 
CutvLogN: -0.46 (0.65) 
WiebvLogN: 0.35 (0.72) 
No rejection of three:  Cut, Weibull, LogN 
Rule #3 forces to inflexible distribution: Cut 

6 CAUSEE Australia 
Number of full-time 
Employees 
Nascent Firms – Wave 1 
(Year 1) 
Variable Name: W1: 
Q252# 

Undetermined 
 
Lognormal 
(Between log or 
weib or Cut- 
To the limit in 
Cut 0.10) 

Undetermined Undetermined 
 
Log or Weib or 
even Cut 

It seems lognormal but  p value is high p=0.49 
between Wieb y log 
CutvWeib: -2.19 (0.03) 
CutvLogN: -1.65 (0.1) 
WiebvLogN: -0.69 (0.49) 

7 CAUSEE Australia 
Number of full-time 
Employees 

Undetermined 
 
Lognormal 

Undetermined 
 
Lognormal 

Undetermined 
 
Lognormal 

p=0.18 
CutvWeib: -2.77 (0.17) 
CutvLogN: -2.07 (0.04) 
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Nascent Firms – Wave 2 
(Year 2) 
Variable Name: W2_C79 

(and/or Weib) (and/or Weib) (and/or Weib) WiebvLogN: -1.34 (0.18) 

8 CAUSEE Australia 
Number of full-time 
Employees 
Nascent Firms – Wave 3 
(Year 3) 
Variable Name: W3_C79 

Undetermined 
 
Lognormal 
(and/or Weib) 

Undetermined 
 
Lognormal 
(and/or Weib) 

Undetermined 
 
Lognormal 
(and/or Weib) 

P=0.24 
CutvWeib: -2.05 (0.04) 
CutvLogN: -1.58 (0.11) 
WiebvLogN: -1.17 (0.24) 

9 CAUSEE Australia 
Number of full-time 
Employees 
Nascent Firms – Wave 4 
(Year 4) 
 Variable Name: W4_C79 

Undetermined 
 
Lognormal 
(and/or Weib) 

Undetermined 
 
Lognormal 
(and/or Weib) 

Undetermined 
 
Lognormal 
(and/or Weib) 

P=0.31 
Weibull v. lognormal: -1.0179 
P= 0.3087253 
CutvWeib: -2.96 (0.004) 
CutvLogN: -1.79 (0.07) 
WiebvLogN: -1.02 (0.31) 

10 CAUSEE Australia 
Number of full-time 
Employees 
Young and Nascent Firms – 
Wave 5 (Year 5) 
Variable Name: W5_Q24 
[NOTA MISMA VARIABLE 
QUE YF 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

 
Cut – because 
inflexible 
distribution 
 
Weib or Log or 
Cut 

CutvWeib: -0.73 (0.47) 
CutvLogN: -0.46 (0.65) 
WiebvLogN: 0.35 (0.72) 
No rejection of three:  Cut, Weibull, LogN 
Rule #3 forces to inflexible distribution: Cut 

11 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Young Firms – Wave 1 
(Year 1) 
Variable Name: W1 
Q2027# 

Undeterminded 
 
Weib or Log or 
Cut 

Undeterminded 
 
Weib or Log or 
Cut 

Cut – because 
inflexible 
 
Weib or Log or 
Cut 

CutvWeib: 54.16 (0.81) 
CutvLogN: 5.52 (0) 
WiebvLogN: -19.13 (0) 
No rejection of three:  Cut, Weibull, LogN 
Rule #3 forces to inflexible distribution: Cut 

12 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 

Cut Cut Cut  
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Young Firms – Wave 2 
(Year 2) 
Variable Name: W2_B18 

13 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Young Firms – Wave 3 
(Year 3) 
Variable Name: W3_B18 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

Cut – because 
inflexible 
 
Weib or Log or 
Cut 

No rejection of three:  Cut, Weibull, LogN 
Rule #3 forces to inflexible distribution: Cut 

14 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Young Firms – Wave 4 
(Year 4) 
Variable Name: W4_B18 

Cut Cut Cut  

15 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Young Firms – Wave 5 
(Year 5) 
Variable Name: W5_Q18 [ 
&R32] [note: same as NF] 

Cut Cut Cut  

16 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Nascent Firms – Wave 1 
(Year 1) 
Variable Name: W1 
Q2030# 

Lognormal  Lognormal Lognormal  Cut v Log,  p= 0.0003065919 

17 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Nascent Firms – Wave 2 

Lognormal Lognormal Lognormal Cut vs Log; p= 0.05205102 
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(Year 2) 
Variable Name: 
W2_C85_consolidated 

18 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Nascent Firms – Wave 3 
(Year 3) 
Variable Name: W3_C85 

Undetermined 
 
Cut or Log 
 
Cut (o log?) p 
muy alto 

Undetermined 
 
Cut or Log 

Cut – because 
inflexible 
 
Weib or Log or 
Cut 

Cut v Log norm LR: 0.8808874 
p= 0.3783787 
p value high 

19 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Nascent Firms – Wave 4 
(Year 4) 
Variable Name: 
W4_C85_consolidated 

Cut Cut Cut  

20 CAUSEE Australia 
Sales in $ (Total) (Last 12 
Months) 
Nascent and Young Firms – 
Wave 5 (Year 5) 
Variable Name: 
W5_Q18[& R32] Misma 
variable que YF - 15 

Cut Cut Cut  

21 SWEDISH PSED 
Number of full-time 
Employees – SWE PSED 1 
Wave 1 (Year 0) 
Variable Name: gw31nn00 

Undermined 
 
Lognormal or 
Weib 

Undermined 
 
Lognormal or 
Weib 

Undermined 
 
Lognormal or 
Weib 

CutvWeib: -2.47 (0.01) 
CutvLogN: -1.82 (0.07) 
WiebvLogN: -0.81 (0.41) 

22 SWEDISH PSED 
Number of full-time 
Employees– SWE PSED 1 
Wave 2 (6 months) 

Undermined 
 
Lognormal or 
Weib 

Undermined 
 
Lognormal or 
Weib 

Undermined 
 
Lognormal or 
Weib 

WiebvLogN -1.54 (0.12) 
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Variable Name: gw31nn06 

23 SWEDISH PSED 
Number of full-time 
Employees – SWE PSED 1 
Wave 3 (12 months) 
Variable Name: gw31nn12 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

Cut – because 
inflexible 
 
Weib or Log or 
Cut 

CutvWeib: 4.96 (0) 
CutvLogN: -0.58 (0.56) 
WiebvLogN: -0.58 (0.56) 

24 SWEDISH PSED 
Number of full-time 
Employees – SWE PSED 1 
Wave 4 (18 months) 
Variable Name: gw31nn18 

Undetermined 
 
Lognormal or cut 

Undetermined 
 
Lognormal or 
cut 

Cut – because 
inflexible 
 
Weib or Log or 
Cut 

PLvCut: -0.44 (0.35) 
PLvLogN: -0.76 (0.45) 
CutvWeib: - 6.85 (0.15) 
CutvLogN: -0.66 (0.50) 
WiebvLogN: -6.27 (0) 

25 SWEDISH PSED 
Number of full-time 
Employees – SWE PSED 1 
Wave 5 (24 months) 
Variable Name: gw31nn24 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

 
Cut – because 
inflexible 
 
Weib or Log or 
Cut 

P values too high 
CutvWeib: -0.41 (0.68) 
CutvLogN: -0.39 (0.70) 
WiebvLogN: -0.39 (0.70) 

26 SWEDISH PSED 
Number of full-time 
Employees – SWE PSED 1 
Wave N75 (75 months) 
Variable Name: gw31n 

Undetermined 
 
PL or Log or Cut 

Undetermined 
 
PL or Log 
 
PL because rule 
#2 

- inflexible 
distributions: 
the pure power 
law – rule #3 
 
[PL or Log] 
 

P values too high 
PLvCut: -0.51 (0.31) 
CutvWeib: 4.19 (0) 
PLvLogN: -0.82 (0.41) 
CutvLogN: -0.74 (0.46) 
WiebvLogN: -4.17 (0) 

27 SWEDISH PSED - Outcome 
Variables 
Sales Turnover (Thousands 
SEK) 
Last Year 
Variable Name: pt11nn18 

Lognormal Lognormal Lognormal  

28 SWEDISH PSED 
Sales Turnover (Thousands 
SEK) 

Lognormal Lognormal Lognormal  
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First 3 Months 
Variable Name: pt12nn18 

29 SWEDISH PSED 
Sales Turnover (Thousands 
SEK) 
First 6 Months 
Variable Name: pt13nn18 

Lognormal Lognormal Lognormal  

30 SWEDISH PSED 
Sales Turnover (Thousands 
SEK) 
First 12 Months 
Variable Name: pt14nn18 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

Cut – because 
inflexible 
 
Weib or Log or 
Cut 

CutvWeib: 0.81 (0.42) 
CutvLogN: 1.26 (0.21) 
WiebvLogN: 0.51 (0.61) 

31 SWEDISH PSED 
Sales Turnover (Thousands 
SEK) 
Second year of operation 
(24 months) 
Variable Name: pt11nn24 
(global dataset) 

Lognormal Lognormal Lognormal  

32 SWEDISH PSED 
Sales Turnover (Thousands 
SEK) 
Sales Turnover in 1997 
Variable Name: pt31nn24 
(global dataset) 

Undetermined 
 
Lognormal (or 
Weib) 

Undetermined 
 
Lognormal (or 
Weib) 

Undetermined 
 
Lognormal (or 
Weib) 

Small sample: 14 
p values to high 
PLvWeib: 0.02 (0.99) 
CutvWeib: 1.16 (0.25) 
PLvLogN: -0.93 (0.35) 
CutvLogN: 1.91 (0.06) 
WiebvLogN: -0.71 (0.47) 

33 SWEDISH PSED 
Sales Turnover (Thousands 
SEK) 
Sales Turnover in 1998 
Variable Name: pt21nn24 
(global dataset) 

Undetermined 
 
Lognormal or cut 

Undetermined 
 
Lognormal or 
cut 

Cut – because 
inflexible 
 
 Log or Cut 

P value too high 
CutvLogN : 0.18 (0.86) 

34 SWEDISH PSED Lognormal Lognormal Lognormal  
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Sales Turnover (Thousands 
SEK) 
Last Year Sales Turnover 
after 75 months. 
Variable Name: pt11n 
(N75 SPSS file) 

35 SWEDISH PSED 
35. Sales Turnover 
(Thousands SEK) 
Second year of operation 
(24 months) file SPSS erc-
n24 
Variable Name: 
SWE_pt11nn24_erc-n24 

Lognormal Lognormal Lognormal  

36 36. Sales Turnover 
(Thousands SEK) 
Sales Turnover in 1998 
Variable Name: 
pt21nn24_erc-n24 – ver 
otro file SPSS erc-n24 
SWE_pt21nn24_erc-n24 

Undetermined 
 
Lognormal or cut 

Undetermined 
 
Lognormal or 
cut 

Undetermined 
 
Cut – because 
inflexible 
 
Lognormal or 
cut 

P values too high  
CutvLogN : 0.24 (0.81) 

37 SWEDISH PSED 
Number of full-time 
Employees – SWE PSED 1 
Wave 5 (24 months) 
Variable Name: gw31nn24 
– Specific dataset SPSS 
erc-n24 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Cut – because 
inflexible 
 
Weib or Log or 
Cut 

P values too high 
CutvWeib: -0.66 (0.51) 
CutvLogN: -0.54 (0.59) 
WiebvLogN: -0.07 (0.94) 

38 SWEDISH PSED 
Sales Turnover (Thousands 
SEK) 
Sales Turnover in 1997 
Variable Name: 

Undetermined 
 
Lognormal (or 
Weib) 

Undetermined 
 
Lognormal (or 
Weib) 

Undetermined 
 
Lognormal (or 
Weib) 

Very small sample 
 
PLvWeib: -0.20 (0.84) 
CutvWeib: 1.20 (0.23) 
PLvLogN: -1.10 (0.27) 
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pt31nn24_erc-n24 – 
Specific dataset SPSS erc-
n24 

CutvLogN: 2.03 (0.04) 
WiebvLogN: -0.67 (0.50) 

39 39. PSED II USA  
Total Revenues BV2 

Lognormal Lognormal Lognormal  

40 40. PSED II USA  
Total Revenues CV2 

Undetermined 
 
Lognormal or cut 

Undetermined 
 
Lognormal or 
cut 

Undetermined 
 
Cut – because 
inflexible 
 
Log or Cut 

CutvLogN  0.64 (0.52) 
P value too high 
 
CutvWeib: 20.2 (0) 
CutvLogN: 0.64 (0.52) 
WiebvLogN: -6.29 (0.55) 
 

41  
PSED II USA 
41. PSED II USA Total 
Revenues DV2 

Undetermined 
 
Lognormal or cut 

Undetermined 
 
Lognormal or 
cut 

Undetermined 
 
Cut – because 
inflexible 
 
Log or Cut 

Cut vs Log 0.52 (0.61) 
P value too high 

42 42. PSED II USA  
Total Revenues EV2 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Cut – because 
inflexible 
 
Weib or Log or 
Cut 

CutvLogN  0.70 (0.49) 
P value too high 
 
CutvWeib: 29.08 (0.83) 
CutvLogN: 0.70 (0.49) 
WiebvLogN: -6.75 (0.57) 

43 43. PSED II USA  
Total Revenues FV2 

Undetermined 
 
Lognormal or cut 

Undetermined 
 
Lognormal or 
cut 

Undetermined 
 
Cut – because 
inflexible 
 
Log or Cut 

CutvLogN  0.60 (0.55) 
P value too high 

44 PSED II USA  
Number regular 

Undetermined 
 

Undetermined 
 

Undetermined 
 

P too high 
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Employees BU2 
Variable: BU2 

Weib or Log or 
Cut or Exp 

Weib or Log or 
Cut or Exp 
 
Rule #2: Exp 

Weib or Log or 
Cut or Exp 
 
Rule #3: Exp 

PLvWeib: -2.60 (0.009) 
CutvWeib: -0.004 (0.99) 
PLvLogN: -2.44 (0.01) 
CutvLogN: 0.49 (0.62) 
WiebvLogN: 0.59 (0.55) 
CutvExp: 0.34 (0.74) 

45 45. PSED II USA  
Number regular 
Employees CU2 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Cut – because 
inflexible 
 
Weib or Log or 
Cut 

P too high 
 
PLvWeib:  
CutvWeib: -1.55 (0.12) 
PLvLogN:  
CutvLogN: -1.12 (0.26) 
WiebvLogN: -0.61 (0.54) 
CutvExp:  

46 46. PSED II USA  
Number regular 
Employees DU2 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Weib or Log or 
Cut 

Undetermined 
 
Cut – because 
inflexible 
 
Weib or Log or 
Cut 

P high 
 
CutvWeib: -2.00 (0.045) 
CutvLogN: -1.19 (0.23) 
WiebvLogN: -0.17 (0.86) 

47 47. PSED II USA 
Number regular 
Employees EU2 

Undetermined 
 
PL or Log or Cut 

Undetermined 
 
PL or Log 
 
PL v Cut: rule #2 
PL nested 

Undetermined 
 
PL or Log 
 
PL because is 
inflexible 

P value high 
 
PLvCut: -0.41 (0.36) 
PLvLogN: -0.64 (0.52) 
CutvWeib:  
CutvLogN: -0.55 (0.59) 
WiebvLogN: -4.65 (0) 

48 48. PSED II USA 
Number regular 
Employees FU2 

Undetermined 
 
PL or Log or Cut 

Undetermined 
 
PL or Log 
 
PL v Cut: rule #2 

Undetermined 
 
PL or Log 
 
PL because is 

P value high 
 
PLvCut: -0.29 (0.45) 
PLvLogN: -0.43 (0.67) 
CutvWeib:  



 

 351 

PL nested inflexible CutvLogN: -0.27 (0.78) 
WiebvLogN: -5.17 (0) 

 

 


