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Abstract 

 

The main purpose of this thesis is to develop a better understanding of the interfaces 

between materials in spatial and time domains via 2D and 3D visualization and quantitative 

parameter measurement using Electrical Resistance Tomography (ERT). Some advantages of 

ERT have been reported as being a high temporal resolution, low-cost and non-radiation 

emitting. The ERT modality is generally used to visualize the interior of a region by mapping 

the conductivity distribution using potential difference that is measured by electrodes that 

are attached to the medium. The main algorithm for image reconstruction that has been 

used is total variation regularisation due to its potential for producing high-quality images 

with sharp boundaries. In this work, a series of simulation studies and lab-based phantom 

experimental tests were conducted. 

Contributions of this thesis are generally categorized into three aspects. First of all, a spatial-

temporal total variation based on the Split Bregman method has been proposed for 

analyzing dynamical movement of a target in a circular tank based on 2D ERT, where spatial 

and temporal gradients were employed for exploring performance in the space and time 

domains, and time response of dynamical ERT images has been proposed for the 

comparison and illustration of advantages of sharp dynamical images. Furthermore, the 

proposed STTV has extended to 3D ERT visualization, where a tank with the shape of a 

vertical pipe has been designed with a dual-plane aiming at representing interior 

information by producing dynamical images of a moving target inside the pipe. Velocity 

measurements are feasible based on 2D/3D ERT and the cross-correlation method, and the 

accuracy of these was discussed. Moreover, a planar array for 3D ERT visualization was used 

to overcome the issue that 3D ERT visualizations based on traditional electrode-ring sensors 

would suffer from the low resolution on the axis-direction along the pipe, especially the 

region between rings where electrode-ring gaps lead to missing data. Results showed that 

ERT planar array can extract additional information in its detectable region with a higher 3D 

spatial resolution, and a combination of planar array and ring-electrode ERT can potentially 

be made for the purpose of exploring more information in a pipeline.  
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In general, this thesis represents the research works on improving the performance of 

static/dynamical ERT visualization and quantitative parameter measurements. These works 

have potential applications in flow imaging and tomography-based measurement or control 

systems in the future. Detailed applications and further work are suggested. Although ERT is 

a new imaging technique and lots of issues are still preserved to be solved, it is believed that 

such research would have contributions to the future development of electrical impedance 

tomography research.   
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Chapter 1   Introduction 
 

Tomography is a technique for mapping the cross-section of an object of interest, this has 

been utilized in various aspects of science, for example, in scanning or imaging techniques in 

the medical field for clinical detection in patients; in the monitoring of industrial process and 

components analysis in geophysical or materials science are also important for humans to 

explore the knowledge of objects of interest. Two categories of tomographic methods are 

usually employed: Hard-field tomography and soft-field tomography. Some of the mature 

and well-known imaging techniques, like X-ray, CT, γ − ray are classified as hard-field 

tomography, where the signal or Electromagnetic waves generated from the radiator source 

propagate along straight lines, and materials of the medium would affect the transmitting 

path or strength. Hard-field tomography is high image-quality and has been widely used in 

different areas, however, the equipment is normally high-cost and the radiation can be 

harmful to targets, such as the human body. Soft-field tomography can also be used in 

different applications, especially electrical tomographic methods, such as, Electrical 

Resistance Tomography (ERT), Electrical Capacitance Tomography (ECT), and 

Electromagnetic Tomography (EMT). Generated signals are commonly transmitted as 

electrical or magnetic fields, and the complicated features of the Electromagnetic field can 

cause difficulties for image reconstruction, however, they do benefit from being low-cost, 

non-invasive, and of high speed. Generally, in soft-field tomography, admittivity is combined 

with conductivity and permittivity. ERT conducts current density via attached electrodes, 

which requires a conductive medium, and its imaging utilizes conductivity distribution. ECT 

imaging is based on the permittivity distribution of the medium by measuring the 

conductance via capacitive plates, without making contact with the region. For process 

tomography of two-phase flow imaging, ERT works for a water-dominated flow, but it is not 

valid for an oil-dominated flow, and ECT is commonly used instead for cases of detection in 

oil-phase dominated two-phase flows. 
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Table 1.1 Electrical tomographic techniques 

Technique Sensors Measurements Distribution 

EIT Electrodes Impedance Conductivity  

ECT Capacitive plates Capacitance  Permittivity  

ERT Electrodes  Resistance  Conductivity  

EMT(MIT) Inductive coils Mutual inductance Admittivity 

 

1.1 Electrical Resistance Tomography  

 

Electrical impedance tomography (EIT) is one of the electrical tomographic methods that 

maps the conductivity distribution throughout the domain of interest. The domain should 

normally be a conductive medium to conduct an injected current density over the region, 

the resulting potentials are taken via electrodes to map the internal conductivity. Such 

mediums are present in a variety of areas, such as, human tissue, flow pipelines, and fabrics 

[1]. The implementation of EIT requires the measured current/potential by attached 

electrodes, placed on the boundary of the conductive domain, which makes it simple and 

high-speed when compared with mature hard-field tomographic methods. The current 

source is utilized to produce current density and generate an electric field, whilst high-cost 

and complicated radiation generators are required for methods such as CT, x − ray, 𝛾 −

𝑟𝑎𝑦, although these techniques are relatively mature and have been widely used in daily life. 

Electrical resistance tomographic techniques in this case have great potential in the future. 

However, ERT is suffering from low spatial resolution and a poor signal-to-noise-ratio (SNR) 

as the number of electrodes cannot be infinitely increased in practise, which leads to the 

problem of missing data. The Ill-posed ERT inverse problem is also an issue that leads to 

uncertainty in the image reconstruction results. Although the image quality of ERT visualised 

results is incomparable with conventional matured tomographic modalities, it has still 

triggered much attention in solving many engineering problems due to its advantages of 

being non-invasive, non-radiation emitting, having a high time resolution, and being low-
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cost. A conventional EIT system is composed of a hardware system, sensor, software, and a 

PC. Hardware is one of the most important and complicated components that drives the 

current generated via a constant current or voltage source, where low-frequency and 

constant-amplitude current or voltage is produced. A set of volt/current meters on 

corresponded electrodes are applied for data measurement. The sensor is where the region 

to be tested and acquire data from is, which contains a conductive medium and target. In 

addition, the PC is another important component that provides the functions of modelling 

for solving the forward problem, making effective calculations, as well as creating the 

visualization via a variety of algorithms.  

The early idea of mapping the resistivity distribution can be traced back to the early 20th 

century when people started to detect geological structure information for the demands of 

planning natural resources and dealing with the rising pressures on the environment [2]. 

More than a hundred years ago, the computer had not yet been invented, which meant 

many works, such as data measurement had to be done manually. People were using a few 

electrodes to engage in their prospecting works in geophysical detection, a pair of 

electrodes were used to generate a DC signal via the ground and employing other 

electrodes to get potential data. To acquire more effective information, they had to move 

the electrodes by hand for more data measurements. In addition, the works were also 

restricted by the time-consuming calculations without the assistance of PC. With the birth 

and great development of computers a few decades later, the process of imaging 

techniques was developed too, and this was coupled with a rapid improvement in the data 

analyzing process. Systems with more electrodes were starting to be zutilized from 1981 

due to the improvement in computational speed, and PC-controlled switching was produced 

for electrodes shifting instead of manually controlled ones from 1989.     

In the early 1980s, the ideas of EIT research were focusing a lot on clinical applications. 

Ideas of measuring different tissues in the human body were proposed, such as the thorax 

[3], lungs [4], breasts [5], new-borns [6], however, most of those works were only in the 

theoretical stage. Since vivo imaging methods were produced in 1984 [7], more researchers 

proposed their works in medical applications, aiming at detecting various diseases, such as, 

in human brain function [8], pulmonary function [9], gastric function [10], breast cancer [11], 

and also thermal monitoring of hyperthermia treatment [12].  
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Nowadays, EIT as a new emerging modality contributes to many technology fields [13]. In 

material engineering, EIT is employed to map the structure of materials. For example, 

Tsung-Chin Hou and their groups used EIT to detect the response of carbon nanotube thin 

films in different pH environments [14]. In Biotechnology, literature has shown that EIT can 

suggest some cell information, such as, cell viability, distribution, cell size and cell activity, 

by measuring the spatial distribution of electric properties. Meir proposed a feasibility study 

in 2014 [15] aiming at developing a new method of monitoring the electroporation process 

of cells, and results showing that EIT would potentially be useful in such an application of 

imaging spatial and temporal distributions of dynamical processes. In [16], the authors 

explored cell distributions within a hydrogel and a microporous scaffold using frequency-

difference EIT. For more literature one can also refer to [17] [18] [19] [20]. 

The EIT technique also contributes to industrial applications, and can be used in process 

assessment, and the visualization tomographic method also benefits from the high time 

resolution of EIT technology making it capable of zvisualizing long-term industrial processes. 

Flow is commonly encountered in many industrial processes, and the ERT technique appears 

in many applications of flow measurement and process visualizations. Many fields started to 

develop ERT as a new measurement method, and much literature of different applications 

has been proposed, for example, it was applied to non-uniform foaming density detection in 

1999 by a Manchester group [21], and M Henningson proposed their works to determine 

the velocity profile of yogurt flow using ERT with the assistance of cross-correlation [22].  In 

the petroleum industry, the management of oil production is always required, and 

measurements of oil-water two-phase flow is often a topic that attracts much attention. 

Quantitative parameters, such as, flow rate, and void fraction, are important factors for 

justifying oil production, water disposal or reinjection [23]. ERT can be applied to oil-in-

water flows, where the oil-phase is acting as a disperse phase. In [24], authors show their 

works of ERT-based flow measurement methods, where they proposed their method of 

measuring flow rate using raw data collected from an ERT system. More recently, in [25], Y. 

Faraj et al presented their work about measuring oil-in-water flow rate in a vertical pipe 

with a combination of ERT and Electromagnetic Flowmeter (EMF). The method of flow 

pattern analysis is proposed in [26], where dynamical information is extracted via time-

series from 16 electrodes of ERT, and flow pattern separation is conducted whilst jointly 
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utilizing the correlation dimension of the multivariate time-series. For the scenarios of high 

conductive oil, where water is a continuous-phase, ERT is appropriate to be applied for 

analyzing such types of two-phase flow. In the past few decades, much proposed research 

has shown the feasibility of doing analyses or measurements based on the ERT modality. In 

[23], J Jia et al investigated oil-water two-phase flow with different void fractions using ERT 

and proved that visualizations on both directions are available, and the measurement of 

high conductive oil using ERT is experimentally validated. In water in industrial processes, 

ERT is also applied to gas-liquid flow, such as, gas-phase flow rate measuring [27], flow 

regime identification [28], void fraction estimation [29] [30], gas hold-up [31], and bubble 

behavior analysis [32].   

 

1.2 Thesis motivation 
 

The main objective of research works of this Ph.D. Thesis is to develop a better 

understanding of phase interface by visualizing dynamical movement of a target for 

potential flow measurements using 2D/3D ERT as a modality of process tomography. ERT is 

a new emerging tomographic method and has been investigated for a few decades. 

Although ERT suffers from low spatial resolution, and few flow measurements are based on 

reconstructed images, TV regularisation can produce a sharp interface between materials 

and hopefully can enhance the image quality. In addition, high temporal resolution is one of 

the advantages of ERT, but most algorithms are based on frame-by-frame reconstructions, 

which cannot make use of temporal information. Moreover, most previous works have been 

done in 2D, however, 2D ERT reconstructs images based on a cross-section of the region of 

interest that is located on the plane of electrode sensor, which neglects information outside 

the cross-section. To visualize volumetric information of a target may bring a worse 

situation of solving an ill-posed ERT inverse problem, but it still worth the effort. To solve 

these problems, the following ideas are utilize various combinations. Above all, 2D/3D ERT 

imaging is investigated. Furthermore, regarding the monitoring of dynamical processes of 

industrial applications, the target being tested is non-static, which also brings about 

difficulties in visualizations. Conventional frame-by-frame algorithms suffer from noise 

introduced by inter-frame data, and a high enough data collection rate of the ERT devices is 
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also required. To solve such problems, the temporal information can be given more 

attention by regularising over a time series with redundant information on neighboring 

frames. Since TV can produce high-quality images, it is expected to further develop the TV 

regularisation algorithm in both the spatial and time domains due to the high temporal 

resolution of ERT. In addition, to further improve the spatial resolution, an ERT planar array 

sensor is employed, and combinations of both types of ERT sensors are supposed to exploit 

information from flow pipelines together. A list of targets has been conducted for smoothly 

meeting the motivation: 

 Review literature on ERT background, mathematical models of basic working 

principles, and previous related works. 

 Establish ERT forward modeling. 

 Analyze and compare different algorithms for the ERT inverse problem. 

 Understand the dynamical process of ERT imaging. 

 Enhance the algorithm for image-quality improvement.  

 Evaluate the Temporal TV algorithm, and investigate the potential applications. 

 Carry out a feasibility study, and experimental validations of dynamical ERT imaging 

aiming at flow measurement applications using circular ERT sensor. 

 Evaluate the performance of ERT Planar array sensors, and investigate the 

feasibility of the method by simulation and experiments. 

 

1.3 Contributions 
 

The main contributions of this work are the dynamical ERT applied with STTV, which is the 

first time that STTV has been used with ERT. Two pieces of this work have been published 

successfully in peer-reviewed journals. The first one evaluates the performance of STTV by 

comparing it with TOS, and shows the advantages of using a piecewise constant TV function 

in the time domain. The second work focuses on velocity measurement of a moving object 

via 2D/3D ERT and the cross correlation technique based on image reconstructions using the 

proposed STTV regularisation method. 
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The last piece of work is aimed at the subsurface ERT problem, which has not been 

developed upon much in previous works. It is a challenging topic as it is deals with the 

problem of OEIT, and also suffering from missing data, which results in a degradation of 

image quality more than in conventional close-domain 2D/3D ERT image reconstructions. 

SBTV is applied to solve this problem as a TV-based method potentially contributes to a 

better image quality. This work suggests that the performance of detecting target depth 

based on OEIT, and optimized reconstruction results are analysis based on suggested 

parameter selection method. This work is submitted to the IEEE sensor journal.  

Contributions can be listed as below： 

 Developing STTV algorithm for dynamical ERT imaging 

 investigating the performance of STTV  

 proposing a velocity profile measurement method based on STTV 

 Evaluating the performance of planar array ERT for depth detection 

 

1.4 Thesis organization 
 

The chapter arrangement of this thesis is organized with the following contents: 

Chapter 2 introduces the basic theory of ERT, starting with the basic principles of Maxwell’s 

Equations that are employed in ERT as basic functions for further descriptions and 

derivations of ERT mathematical models. In addition, different electrode models, the finite 

element method, and sensitivity distribution are briefly introduced. Moreover, the inverse 

problem of ERT is illustrated, where some algorithms for image reconstructions are 

reviewed. Quantitative index for image quality evaluation is demonstrated in the last 

section.  

Chapter 3 is presented as a literature review chapter about multiphase flow. The 

background is introduced from a few angles, including definition, way of production, and 

specific situation in the practical industries regarding multiphase flow. In section 3.1, flow 

regimes of air-water flow and oil-water flow are summarised, and 3.2 presents some 

common flow parameters that are encountered in flow measurements. In addition, some 

proposed flow models are concluded, and each flow model that is frequently encountered 
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in literatures is demonstrated. The last section reviews literatures of flow measurement 

using ERT techniques in previous works and summarises it from several perspectives.  

Chapter 4 proposes the spatial-temporal total variation (STTV) algorithm based on the Split 

Bregman method, which is designed to make contributions to improve the performance of 

dynamical visualization results of a moving target for 2D ERT. To evaluate the performance 

of STTV regularisation method, another temporal algorithm is employed for making 

comparisons. Spatial and temporal distributions and gradients of temporal imaging from 

both algorithms are defined and compared. For further illustration, the time response of 

dynamical imaging is proposed, and it is found that results using STTV response faster than 

TOS since STTV preserves the sharp edge of the object. This work was published in [33].  

Chapter 5 extends the STTV algorithm into 3D. An experimental phantom is designed with 2 

electrode rings for 3D ERT sensing. The purpose of this research is for the quantitative 

monitoring of a moving object by reconstructing 2D/3D dynamical images. By using cross-

correlation between planes on the top and bottom rings, the average moving velocity of 

objects based on 2D/3D temporal ERT imaging is calculated and discussed. This work was 

published in [34]. 

Chapter 6 investigates the performance of volumetric ERT using planar array, aiming at 

exploring the interior information of a pipeline to solve the problem of poor spatial 

resolution on the axis-direction of 3D ERT using electrode rings. Split Bregman TV is been 

used for image reconstruction for improving the image quality, and the detected depth of 

the target was discussed. Results show that 3D ERT using planar array can improve spatial 

resolution within the detectable region. Although visualizations using planar array have 

limitations in distance, it can potentially be combined with ring-electrode model ERT and 

reflect more information of the pipeline. 

Chapter 7 is a conclusion chapter with two sections. Section 1 summarises the contents 

involved in each chapter, including the conclusions of novel ideas, what has been conducted, 

results, and novel finding of the research. Based on these discoveries, potential applications 

are suggested, and future development, as well as further works using these findings, are 

proposed.   
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Chapter 2 EIT Principles 
 

EIT is a newly emerging technique aimed at mapping cross-sectional images. In some 

literature, especially in industrial applications, the name of EIT has sometimes termed 

Electrical Resistance Tomography (ERT) if the reactive capacitive component of the 

impedance is negligible, and only the real-part is used as measured data. Due to the 

complexity of ‘soft field’, ERT is definitely a difficult technique. David S Holder stated the 

main difficulties of EIT in Chapter 1 of his book ‘Electrical Impedance Tomography Methods, 

History and Applications’ [35]. Above all, numerous equations relating to all pixels/voxels 

and measurements in an EIT system are required to be solved. In addition, the EIT inverse 

problem is an ill-posed problem that requires the development of a variety of regularisation 

algorithms, where well-posed means that it must satisfy that a unique solution exists 

regarding all admissible data, and the solution should vary with different data.  

Different types of EIT/ERT reconstruction modalities have been used, including time-

difference imaging, frequency-difference imaging [36] [37], and absolute imaging, or 2D and 

3D EIT [38] [39] [40] imaging, depending on the dimensions of the image. Time-difference 

imaging produces images using the voltage difference ∆𝑣 between the time interval t1 and 

t2. Normally, a frame of data would be used as a reference, or called background data, and 

another frame of data that made difference on conductivity distribution over ∆𝑣. Time-

difference EIT imaging is widely used, for instance, in industrial applications, as a process 

tomographic method. In some of the medical or clinical applications, the background data is 

not available, so, frequency-difference methods are suitable for such cases. Tissue shows 

high resistivity and low capacitive. The frequency-difference imaging can represent the 

electric properties of tissues or cells, where difference-data is measured under different 

frequencies. Research demonstrates that EIT measurements for biological tissue can be 

made between 20Hz to 1MHz, and membranes of tissues impede current flow at low 

frequencies while high-frequency measurement is dependent on the liquids around cells 

[41].  Time-difference and frequency-difference imaging produce conductivity differences 

for visualization while the absolute EIT imaging solves the absolute conductivity distribution. 

Theoretically, absolute imaging is possible with an accurate enough forward modelling 

calculation as well as a reliable and precise measurement system [42]. However, initial 
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values of data, contact impedance, and physical factors can have a large influence and make 

it very difficult. Small errors in modelling lead to degrading image quality, and even losing 

valuable information. 

Based on the requirements of various applications, image reconstruction approaches could 

also be classified as static imaging and dynamic imaging. It is obvious that that static imaging 

is for cases that the object remains still, and has been widely researched. Dynamic imaging 

is sometimes referred to as temporal imaging and is required in process tomography (PT). 

However, more unstable factors can be introduced when compared with static imaging, 

which can lead to blurring of the reconstructed results. There are some works that 

contribute to dynamic sense using temporal algorithms, which led to some improvements in 

the results [33] [43] [44] [33] [45] [46].   

2.1 EIT hardware system  

 

A hardware system may consist of a current source (one or more), voltage meters, a 

controller, and a switching network. Many EIT hardware systems have been developed for 

either researching purposes or commercial use, and vary in complexity of connection. In this 

section, some of these previous systems are reviewed.   

Several versions of the Sheffield EIT system were developed from 1987 to 2000 [47] [48] 

[49]. All versions were designed with a single current source. The first version was produced 

in 1987, and called the Sheffield MK1 EIT system, which employed 16-electrode channels 

and a single option of operational frequency. Although an upgraded version appeared after 

two years, it only had a lighter weight and smaller body size, its function was relatively less 

interesting. The Sheffield MK2 system was invented in 1990, it had a lower frequency and 

was designed with digital technology instead of the analogue technique in older versions. In 

the following decade, the MK3 and MK3.5 systems were developed, and for both versions, 

more choices of frequency were allowed. MK3 has 8 frequencies varying from 9.6 KHz to 1.2 

MHz, and 30 operation frequencies between 2 KHz and 1.6 MHz.  
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Table 2.1: Sheffield EIT system specifications 

Sheffield EIT 
system versions 

Time Number of 
electrodes 

data 
acquisition 
protocol 

Frequency Technique Current 
source 

MK1 EIT system 1987 16 adjacent 

drive/receive 

50 KHz Analogue  single 

Space/portable 1989 16 adjacent 

drive/receive 

50 KHz Analogue single 

MK2 EIT system 1990 16 adjacent 

drive/receive 

< 50KHz Digital single 

MK3 EIT system 1993 16 Interlaced 8:9.6KHz-

1.2MHz 

Analogue single 

MK3.5 EIT 

system 

2000 8 adjacent 

drive/receive 

30:2KHz-

1.6MHz 

Digital single 

 

The Oxford Group designed several systems with multiple-sources, including OXPACT-II [50], 

OXBACT-III [51], where simultaneous current excitation is operated via multiple current 

sources. OXPACT- II was developed with 32 driving electrodes and 32 measuring electrodes 

under the control of a microcomputer. The collection speed was unsatisfactory for 

applications as it was designed for ‘vitro studies’, and phantom tests showed that images 

could only be produced by small conductivity contrast targets. OXBACT- III is designed as a 

real-time multiple-drive adaptive system, with a real-time rate of 25 frames/s. The upgraded 

system was developed for clinical purposes, and the multi-frequency is another 

improvement over the OXPACT-II. 
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Table 2.2: Oxford EIT system development 

Oxford EIT system 

versions  

Time Number of 

electrodes 

Frequency Current source 

OXPACT-II 1991 64 9.6KHz Multiple current 

source 

OXPACT-III 1994 64 10-

160KHz 

Multiple current 

source 

 

Kyung Hee University created a 16-channel multi-frequency EIT system called KHU Mark I 

system in 2007 [52], designed with a single current source and multiple voltage 

measurement devices. The operational frequency could be chosen between 10 KHz and 500 

KHz. Experiments have been carried out with a 2-D phantom to produce time-difference 

images under different chosen frequencies. An upgraded new system KHU Mark II was 

proposed after a few years, which was designed as a fully-parallel multi-frequency system, 

based on its Impedance Measurement Module (IMM) [53] [54]. This new system improved 

the data acquisition rate to satisfy the requirements of a faster speed in practice, in addition, 

flexible electrode configurations and multiple independent operation sources were also 

included in the new system features.   

Table 2.3: KHU EIT system development 

Kyung Hee EIT system versions  Number of electrodes Frequency 

KHU Mark I   16/32/64 10HKz-500HKz 

KHU Mark II 16/32/40 10Hz-1MHz 

 

 

 

 



13 | P a g e  
 

2.2 EIT data acquisition   

 

In ERT, the boundary voltage data measurement is required in order to recover the 

conductivity map of the test target in the medium. The data measurement strategy of ERT 

includes current driving and data acquisition via the ERT hardware system. Driving patterns 

can be classified into two types depending on the type of sources [55]. Multi-source systems 

are termed Optimal Patterns, and ones using single-source are known as Bipolar Patterns. 

Multiple current sources are working simultaneously for current driving, and the resulting 

voltages are measured via all the remaining electrodes, whilst a single-current source is 

applied to a pair of current-driving electrodes in Bipolar Patterns, and the resulting 

potentials are taken from all electrodes. Optimal patterns require too many current sources 

that are not possible in practice for a large electrode-number ERT system. In comparison, 

single-source patterns are more commonly used, and some conventional methods have 

been suggested, such as, the neighboring method (adjacent method), opposite method, and 

cross method.  

 

2.2.1 Adjacent method 

 

The most common measurement method is the adjacent method, where the data is 

collected on neighboring pairs of electrodes. In terms of a 16-electrode sensor, the current 

is injected into an adjacent pair of electrodes, and the voltage could be measured via the 

remaining adjacent electrode pairs. For example, the first current is applied to (1, 2), then 

the resultant voltages are measured on (3, 4), (4, 5)… (15, 16). The following current 

injection is addressed on the ’ neighbor’ (2, 3), and the way of data collection is identical. A 

whole image corresponds to a cycle of the data collection process, where the current is 

applied to (1, 2), (2, 3)… (16, 1). The measured data via the driving-electrode are normally 

ignored and would be removed if the data collection system cannot skip them. For a 16-

electrode sensor, 208 independent measurements (16×(16-3)) are taken to reconstruct an 

image.   
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(a)                                                                         (b) 

Figure 2.1: Illustration of the adjacent method on a 2D circular sensor with a 16-electrode 

ring. (a) Measurements with current injected via 1-2. (b) Measurements with current 

injected via 2-3. 

 

2.2.2 Opposite method 

 

The approach using opposite-placed electrode pairs, such as, (1, 9), (2, 10), (3, 11), etc., for 

current driving is named the opposite method. A reference electrode is chosen for voltage 

measurement during data acquisition. For a current injected via (1, 9), electrode no.2 

becomes the reference electrode, and voltages between (2, 3), (2, 4), (2, 5)… (2, 16) are 

collected as measurement data, where voltages between the reference electrode and 

current driving electrodes, (2, 1) and (2, 9), are removed. For each current excitation, 13 

voltages are measured and collected, and 108 individual measurements from 8 sets of 

current driving (half of the data from 16 current injections are identical).    
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(a)                                                                                    (b) 

Figure 2.2: Figure of the opposite current pattern for a 2D circular sensor with a 16-

electrode ring. (a) Measurements with current injected via 1-9. (b) Measurements with 

current injected via 2-10. 

 

2.2.3 Cross method 

 

Two adjacent electrodes are selected to be reference electrodes for current driving and 

voltage measuring respectively. The figure below shows the situation of data collection for a 

16-electrode ERT model using electrode 1 as the current injection, and electrode 2 for 

measurement. Thirteen voltages via (2, 4), (2, 5), (2, 6) … (2, 16) are recorded when current 

is driving from (1, 3). In addition, further current excitations are engaged via (1, 5), (1, 7), (1, 

9), (1, 11), (1, 13) and (1, 15), and procedure of voltage measurement is identical. In total, 

91 individual measurements are taken from 7 sets of current driving.  
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(a)                                                                      (b) 

Figure 2.3: Figure of the cross method current pattern for a 2D circular sensor with a 16-

electrode ring. (a) Measurements with current injected via 16-2. (b) Measurements with 

current injected via 16-4. 

 

N J Avis and D C Barber represents their works of comparing driving configurations of 

adjacent pattern, opposite pattern and cross pattern, and confirmed that the adjacent 

pattern performs the best [56]. Researchers argue that the adjacent patterns provide the 

best spatial resolution on reconstructed images, but also yields a poor signal-to-noise-ratio 

(SNR) on data [57].  Some literature regarding the performance of different single-source 

driving patterns is also proposed [58], [59]. For 3D ERT imaging, different data acquisition 

methods on multiple rings with various connections, such as, Zigzag, Square, are also 

proposed [60], where J. Wagenaar and A. Adler proposed literature for evaluating the 

performance of volumetric ERT with two planes, by comparing several electrode placement 

patterns. Note that these suggested methods of connections for circular twin-plane sensor 

would only affect the electrode numbering arrangement, and the neighboring method is 

utilized for all the different electrode connection methods. 
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2.3 Maxwell’s Equations  

 

The starting point of ERT Theory should begin with Maxwell’s Equations [61]. Electric field �⃑�  

and magnetic field �⃑⃑�  are involved in the ERT system as a ‘soft field’. Above all, Faraday’s law 

suggests the variation of magnetic flux generates the electric field. In the static field of a 

conventional ERT system, the induced electric field in an enclosed path depends on the 

change of magnetic induction �⃑� , which is given by the equation: 

∇ × �⃑� = −
𝜕�⃑� 

𝜕𝑡
                                                              （2.1）   

Coulomb’s law is also called the Total Current Law in some books, as it states the 

relationship between total current and magnetic field, which is expanded from Ampere’s 

circuital Law. The total electric current is composed of conducting current density 𝐽𝑐  and 

displacement current density, given by 𝐽𝐷 =
𝜕�⃑⃑� 

𝜕𝑡
 (�⃑⃑�  donates to the electric displacement 

field). The conducting current is the general current going through the wire or other 

conductor. For the case of time-varying field presented in dielectric materials, the 

displacement current is taken into account in the total electric current relating to the 

polarisation effect. The current is the integral of current density on an enclosed surface S, so 

we have: 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∯𝐽𝑐 ∙ 𝑑𝑆 + ∬𝐽𝐷 ∙ 𝑑𝑆                                                 （2.2） 

Mathematically, Coulomb’s law is described by the following equation: 

 

∮ �⃑⃑� ∙ 𝑑𝑙 =  𝐼𝑡𝑜𝑡𝑎𝑙                                                                      (2.3) 

In differential form: 

∇ × �⃑⃑� = 𝐽𝑐 +
𝜕�⃑⃑� 

𝜕𝑡
                                                                      (2.4) 



18 | P a g e  
 

In an electromagnetic field, the following equations are also valid, where 휀 and 𝜇 contribute 

to permittivity and the permeability of space: 

�⃑⃑� = 휀�⃑�                                                                                 (2.5) 

�⃑� = 𝜇�⃑⃑�                                                                                (2.6) 

𝐽𝑐 = 𝜎�⃑�                                                                               (2.7) 

Time-harmonic Maxwell’s equations introduce time and frequency in equations, where 

electric field and magnetic field in time can be written as: 

𝐸 = 𝐸𝑒𝑗2𝜋𝑓𝑡                                                                       (2.8) 

𝐵 = 𝐵𝑒𝑗2𝜋𝑓𝑡                                                                       (2.9) 

Maxwell’s equations in time are rewritten as:  

∇ × �⃑� = −𝑗𝜔𝜇�⃑⃑�                                                                  (2.10) 

∇ × �⃑⃑� = 𝐽𝑠 + (𝜎 + 𝑗𝜔휀)�⃑�                                                        (2.11) 

2.4 Forward problem 

 

The main questions of ERT are solving the Forward Problem and Inverse Problem. The 

Forward Problem is the process looking for potential distributions with an assumed 

conductivity distribution. Jacobian calculation also results from this step based on FEM 

solver. This is usually implemented by conducting simulation modelling with PC, and EIDORS 

software has been applied for solving the Forward Problem of ERT.  The Inverse Problem is 

reconstructing the image by working out the conductivity distribution based on the 

potential distributions and Jacobian matrix, and regularisation methods are usually required 

for optimizing such an ill-posed problem. The flow chart of ERT is shown below: 
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Figure 2.4: Forward problem and inverse problem of ERT 

2.4.1 Mathematically setting-up of ERT 

 

The Forward Problem of ERT is solving the electric potential with an assumed conductivity 

distribution σ. For most EIT problems, moderate frequencies are applied to the conductive 

region, and in this thesis, experiments are around frequencies of 10 KHz to 200 KHz, which 

can be considered as low-frequency ERT.  For such quasi-static electromagnetic fields, the 

terms multiplied by 𝑗𝜔𝜇 or 𝑗𝜔휀 can be seen as 0 and neglected as such frequencies would 

have a very small influence. Such situations mean it is under a nearly constant field, and the 

DC case is usually considered as a simplification of the mathematical setup. 

In ERT, equations are formed with:  

∇ × �⃑� = 0                                                                     (2.12) 

∇ ∙ 𝐽 = 0                                                                     (2.13) 

�⃑� = −∇𝜑                                                                    (2.14) 

∇ × �⃑⃑� = 𝐽𝑠 + (𝜎 + 𝑗𝜔휀)�⃑�                                                (2.15) 

In equation (2.15), (𝜎 + 𝑗𝜔휀)�⃑�  is donating the conducting current density and 

approximated to be σE⃑⃑  due to low-frequency. The interior region typically has no current 

source, which brings 𝐽𝑠 to 0. Hence, the equation (2.15) can be rewritten as: 

 

∇ × �⃑⃑� = 𝐽 = 𝜎�⃑�                                                            (2.16) 
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A combination of the above equations gives a dominating equation of ERT [7]: 

∇ ∙ σ∇φ = 0                                                               (2.17) 

Boundary conditions of ERT are introduced on the boundary of the region by an outward 

normal vector 𝑛⃑⃑⃑  . Assuming current density 𝑗 on the boundary 𝜕Ω:  

𝑗 =  σ∇φ ∙ n⃑ = 𝜎
𝜕𝜑

𝜕�⃑� 
                                                    (2.18) 

 

2.4.2 Electrode model 

 

Various electrode models have been investigated in previous research, including the 

continuum model, gap model, shunt model, and complete electrode model [62]. The 

primary assumption has been made on the electrode model is Continuum model, where a 

continuous current function was suggested, and that means no gap between electrodes. 

Obviously, this assumption is far from the case in practice. The Gap model considers the 

electrode gap, and the current density remains 0 in the gap. The mathematical expression of 

the Gap model with electrode area A is given by: 

𝑗 = {

𝐼𝑁
𝐴

,  x ∈ 𝑒𝑙

0    ,    𝑥 ∈ 𝜕Ω and 𝑥 ∉ 𝑒𝑙                              
      (2.19) 

However, it is not comprehensive that the ‘shunting effect’ of metal electrodes is neglected, 

and would lead to an overestimation of the resistivity. 

The shunt model made some improvements, and the constant potential on metal electrodes 

has been assumed as a constraint.   

The current on electrodes is composed of current density over electrode area: 

𝐼𝑙 = ∫𝜎
𝜕𝜑

𝜕�⃑� 
∙ 𝑑𝑆    x ∈ 𝑒𝑙,   𝑙 = 1, 2, … ,𝑁                                 (2.20) 

𝑉𝑙 = u = constant                                                      (2.21) 

Since electrodes have to be in contact with the medium in ERT, effects caused by contact 

impedance have to be considered in an electrode model. The contact-impedance effect is 
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especially critical in absolute image reconstruction, however, it is normally considered as 

constant in difference imaging, and measurement data is only related to conductivity re-

distribution over the ERT conductive domain.  Such considerations are under ideal 

conditions, however, the conditions of metal electrodes can change over time [63]. The 

Complete Electrode Model accounts for the shunting effect and generation of contact 

impedance, which was introduced in [64] and is commonly utilized in the ERT forward 

model. Voltage drop would produce on contact impedance 𝑧𝑙 between the 𝑙𝑡ℎ electrode and 

the region:  

u + 𝑧𝑙 . 𝜎
𝜕𝑢

𝜕�⃑� 
= 𝑉𝑙    x ∈ 𝑒𝑙, 𝑙 = 1, 2, … ,𝑁                        (2.22)   

Zero current density would be applied to that area that off electrodes on the boundary:  

𝜎
𝜕𝑢

𝜕�⃑� 
= 0   , 𝑥 ∈ 𝜕Ω, and 𝑥 ∉ 𝑒𝑙                                                   (2.23) 

In addition, conservation of charge, as well as Kirchhoff’s law on the electrode-ring, must 

hold, where we have: 

∑𝐼𝑙 = 0

𝑁

𝑙=1

   𝑙 = 1, 2, … , 𝑁                                                             (2.24) 

∑𝑉𝑙 = 0

𝑁

𝑙=1

   𝑙 = 1, 2, … ,𝑁                                                            (2.25) 

Experimental measurements have been made on the complete electrode model for 

predicting, and existence and uniqueness have been proved in [62].  

 

2.4.3 Finite element method 

 

The Forward problem is solving the potential distribution inside the ERT region based on 

known conductivity. Practical mediums of ERT are continuous, and doing element 

subdivision is a conventional method such that the region is composed with lots of small 

elements and potential distribution is solved on these elements.  The finite element method 

(FEM) is commonly employed as a forward solver for regional discretion, and is applicable 
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for inhomogeneous distribution. FEM 2D mesh is usually produced with lots of connecting 

triangles/rectangles, while 3D mesh uses tetrahedrons as elements. Elements are connected 

via nodes, where electric potential on joint nodes must be equivalent. EIDORS is a useful 

software for solving the forward problem, where it computes the potentials based on the 

FEM solver by simply defining the geometry/size of the medium, size/number of electrodes, 

and assumed conductivity values on the background and the target. The Jacobian matrix can 

be calculated with output potential distributions from FEM. Figure 2.5 displays a 2D FEM 

mesh generated by EIDORS, where a circular model with 16 plate electrodes was applied for 

forward-modelling. In this thesis, all of the forward modelling is based on EIDORS software.    

 

Figure 2.5: 2D mesh generated using EIDORS [65] 

 

 

Figure 2.6: triangle element from 2D FEM mesh 
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Assuming a triangle element in figure 2.6 is one of the FEM elements taken from a 2D FEM 

mesh with nodes numbered node 1, node 2 and node 3. A typical way is introducing a linear 

interpolation function [61] [65]. Giving (x1, y1), (x2, y2) and (x3, y3) to each node with 

corresponding potentials  𝜑1 , 𝜑2 and  𝜑3 . The potentials can be given by the linear 

approximated function:  

𝜑(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦                                                            (2.26) 

Regarding 3 triangle nodes,  

[

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

] [
𝑎
𝑏
𝑐
] =  [

𝜑1

𝜑2

𝜑3

]                                                                 (2.27) 

Now we expect to solve three coefficients a, b, c in the equation above, and take an 

inversion: 

[
𝑎
𝑏
𝑐
] = [

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

]

−1

[

𝜑1

𝜑2

𝜑3

]                                                                (2.28) 

The potential function 𝜑(𝑥, 𝑦) could be reproduced on the left-hand side of the equation by 

multiplying back  [1 𝑥 𝑦] to both sides:  

𝜑(𝑥, 𝑦) = [1 𝑥 𝑦] [

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

]

−1

[

𝜑1

𝜑2

𝜑3

]                                              (2.29) 

Let [𝑁𝑖] = [1 𝑥 𝑦] [

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

]

−1

and [𝜑𝑖] = [

𝜑1

𝜑2

𝜑3

] 

𝜑(𝑥, 𝑦) = ∑𝑁𝑖 ∙ 𝜑𝑖

3

𝑖=1

                                                               (2.30) 

[𝑁𝑖] could also be expanded to be related to spatial coordinates (x, y) by introducing the 

inversed matrix. Rename the inversed matrix to a 3-by-3 matrix [Q𝑖𝑗] for description, where 

each element of [Q𝑖𝑗] are composed with coordinates of nodes:  

[𝑁𝑖] = 𝑄1𝑖 + 𝑥𝑄2𝑖 + 𝑦𝑄3𝑖                                                           (2.31) 

𝜑(𝑥, 𝑦) = 𝜑𝑖 ∙ (𝑄1𝑖 + 𝑥𝑄2𝑖 + 𝑦𝑄3𝑖)                                               (2.32) 



24 | P a g e  
 

It obvious to observe that the equation represents the expression relating nodal potentials 

𝜑𝑖 with interior potentials 𝜑(𝑥, 𝑦) of a FEM element.  

φ(𝑥𝑖, 𝑦𝑖) = 𝜑𝑖 = 𝑁𝑖(𝑥𝑖, 𝑦𝑖)𝜑𝑖 + 𝑁𝑗(𝑥𝑗 , 𝑦𝑗)𝜑𝑗 + 𝑁𝑘(𝑥𝑘, 𝑦𝑘)𝜑𝑘                 (2.33) 

Indicating that 

 𝑁𝑖(𝑥𝑖 , 𝑦𝑖) = 1, 𝑁𝑗(𝑥𝑗 , 𝑦𝑗) = 0, 𝑁𝑘(𝑥𝑘, 𝑦𝑘) = 0 

Based on such derivation, it can be concluded that 

 𝑁𝑖(𝑥𝑗 , 𝑦𝑗) = {
1,              if i = j
0,             if i ≠ j

                                               (2.34) 

For 3D, the FEM is composed of tetrahedral elements, and the approximated 2D linear 

equation (2.26) can be extended to 3D, where  

  

𝜑(𝑥, 𝑦, 𝑧) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧                                                  (2.35) 

Derivation of the linear interpolation function has a similar procedure as 2D, and the shape 

function combined potentials of 4 vertexes of a single tetrahedral element in 3D FEM takes 

the form: 

𝜑(𝑥, 𝑦, 𝑧) = ∑𝑁𝑖 ∙ 𝜑𝑖

4

𝑖=1

                                                               (2.36) 

Where the equation (2.34) is valid for four vertices. 

Approximation of the potential over the whole medium is a collection of FEM elements. 

Assuming that in ERT medium Ω, we have N nodes composed with a vertex of elements, the 

approximation can be represented by: 

ϕ𝐹𝐸𝑀 = ∑ϕ𝑖 𝑁𝑖

N

𝑖=1

                                                                  (2.37) 
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A non-differential function ϕ𝑖  cannot satisfy the formulation of  𝜎∇2ϕ = 0 . Instead, a 

function 𝐴 is involved by multiplying this formulation and integral over the medium to make 

a weak form: 

∫𝐴 ∙ ∇ ∙ (𝜎∇ϕ𝐹𝐸𝑀) = 0                                                          (2.38) 

Applying Vector Identities, the equation is equivalent to: 

∫∇(𝐴 ∙ 𝜎∇ϕ𝐹𝐸𝑀) 𝑑Ω − ∫𝜎∇𝐴 ∙ ∇ϕ𝐹𝐸𝑀 𝑑Ω = 0                                 (2.39) 

Introducing function 𝐴 = ∑ ϕ𝑗 𝑁𝑗
N
𝑗=1  to the first term and applying divergence theorem, 

∫∇(𝐴 ∙ 𝜎∇ϕ𝐹𝐸𝑀) 𝑑Ω = ∑ϕ𝑖 ∑ϕ𝑗 ∫𝜎∇𝑁𝑖 ∙ ∇𝑁𝑖

N

𝑗=1

N

𝑖=1

dΩ                         (2.40) 

And the second term is combined with CEM, 

∫(𝜎∇𝐴 ∙ ∇ϕ𝐹𝐸𝑀)𝑑𝛺 = ∫𝐴 ∙ 𝜎∇ϕ𝐹𝐸𝑀 ∙ �⃑� 𝑑𝑆                                  (2.41) 

𝜎∇ϕ𝐹𝐸𝑀 ∙ �⃑� = 𝜎
𝜕ϕ𝐹𝐸𝑀

𝜕�⃑� 
                                                        (2.42) 

𝜎
𝜕ϕ𝐹𝐸𝑀

𝜕�⃑� 
=

1

𝑍𝑒𝑙𝑒𝑐

(𝑉𝑙 − ϕ𝐹𝐸𝑀)                                           (2.43) 

The total current on electrodes is written as integrals of current density over electrodes. For 

current on the 𝑙𝑡ℎ electrode with an area of contact impedance 𝐸𝑙, 

𝐼𝑙 = ∫
1

𝑍𝑒𝑙𝑒𝑐

(𝑉𝑙 − ϕ𝐹𝐸𝑀) 𝑑𝐸𝑙                                                  (2.44) 

=
𝐸𝑙

𝑍𝑒𝑙𝑒𝑐
∙ 𝑉𝑙 −

1

𝑍𝑒𝑙𝑒𝑐
∙ ∑𝑁𝑖

N

i=1

∙ ∫ϕ𝑖𝑑𝐸𝑙                                (2.45) 

The entire FEM system equation is formed by combining the equations above 

[
𝛼 𝛽

𝛽′ 𝛾
] ∙ [

ϕ
𝑉𝑙

] = [
0
𝐼
]                                                         (2.46) 

Where in a FEM system matrix,  
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𝛼𝑖𝑗 = ∫𝜎 ∙ ∇N𝑖 ∙ ∇N𝑗𝑑𝛺 + ∫
1

𝑍𝑒𝑙𝑒𝑐
(N𝑖 ∙ N𝑗)𝑑𝑆                          (2.47) 

𝛽𝑖𝑗 = −∫
1

𝑍𝑒𝑙𝑒𝑐
ϕ𝑗𝑑𝑆                                                        (2.48) 

𝛽𝑖𝑗
′ = −∫N𝑗𝑑𝑆                                                            (2.49) 

γ =

[
 
 
 
 

El

Zelec
⋯ 0

⋮ ⋱ ⋮

0 ⋯
El

Zelec]
 
 
 
 

                                                  (2.50) 

And in the system equation, 

[ϕ] = [
ϕ1

⋮
ϕN

]         [𝑉𝑙] = [
𝑉1

⋮
𝑉𝐿

]         [𝐼] = [
I1
⋮
I𝐿

]         [0] = [
0
⋮
0
] 

 

2.4.4 Jacobian matrix 

 

The Jacobian matrix is widely used for solving optimization problems, and is introduced in 

various algorithms. Some of the ERT related literature also called it a sensitivity matrix. The 

Jacobian matrix is a sparse matrix where lots of zero elements are enrolled, which is 

combined with first-order derivatives, the Jacobian matrix is calculated by partial derivatives 

of voltages with respect to conductivity. A common Jacobian calculation is the perturbation 

method, where a perturbation on the conductivity is taken with  𝜎 + 𝛿𝜎 , yielding 

perturbations on potentials ϕ + δϕ and measurements of voltage 𝑉𝑙 + 𝛿𝑉𝑙. Literatures [66] 

and [67] presented derivations of the Jacobian based on perturbations in power. 

For the 𝑘𝑡ℎ element with a fixed current injected, assuming a potential of 𝑑𝑡ℎ driving 

pattern and 𝑚𝑡ℎ measurement patterns are ϕ(𝐼𝑑) and ϕ(𝐼𝑚). The expression of the 

Jacobian is given by: 

𝐽𝑘𝑑𝑚 =
𝜕𝑉𝑑𝑚

𝜕𝜎𝑘
= −∫∇ϕ(𝐼𝑑) ∙ ∇ϕ(𝐼𝑚)𝑑𝑉            on pixel/voxel 𝑘                      (2.51) 
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In ERT, the conductivity change ∆𝜎 can be determined based on measurements using the 

Jacobian matrix, and the calculation of the Jacobian is normally implemented in forward 

modelling using simulated data.  

2.5 Inverse problem 

 

The Inverse problem of ERT is aimed at image reconstruction based on the Jacobian matrix, 

where conductivity distribution is expected to be determined using measured boundary 

data, solving 𝑥 for a given 𝐴 ∙ 𝑥 = 𝑏. For the case of ERT, A and b are Jacobian matrix and 

measurement data, and we wish to determine conductivity distribution x. The least-square 

method is commonly conducted to optimize, so that the difference 𝐴 ∙ 𝑥 and 𝑏 are to be as 

close as possible, however this solution is unstable, and even non-unique or non-existent. 

For solving the conductivity distribution, the worst case is that the Jacobian matrix is a 

singular matrix resulting non-invisible. The ill-posed inverse problem results in small 

perturbations in voltage measurements leading to a large error in results. To overcome such 

a situation, people use regularisations to impose additional information or constrain for 

stabilization. Linear back projection (LBP) is an early-proposed algorithm [68], where the 

inversed Jacobian 𝐽−1  is approximated by its transpose 𝐽𝑇  to make the calculation, 

consequently, poor image-quality visualizations were created. However, priori information 

can be introduced as ‘smoothness’ for regularising this problem. Regularisation of ERT is an 

optimisation problem, and many algorithms, including Newton One Step Error 

Reconstruction (NOSER) [69], Tikhonov regularisation [70], Laplacian regularisation [71], the 

Landweber Iteration method [72], and Total variation methods [73] [74] [75], have been 

developed to be utilized in tomographic techniques.  

Regularisation methods are classified as l2-norm or l1-norm methods. Most traditional 

algorithms, such as Tikhonov, are minimizing l2-norm, also known as the least square 

method. L2-norm is presented mathematically by a sum of squares. A general form of an 

underdetermined problem of ERT inverse problem is solving optimised residual error, and a 

penalty term is added as additional information. Conventional algorithms impose a penalty 

term with an l2-norm, where a smoothness factor is introduced for linearizing the ill-posed 

problem. TV regularisations are known as l1-norm methods, where l1-norm means the sum 
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of absolute values. Penalty terms of TV algorithms use the l1-norm for optimizations 

without smoothing aiming at discontinuous profiling via non-linear regularisation [76], 

which places more effort into preserving the sharp boundary of the reconstructed object.    

In this thesis, the main contributions are conducted using total variation regularisations. 

Traditional regularisation methods introduce a differential regularisation term in the l2-

norm as imposed prior information, and regularisation parameters can adjust solutions of 

the ERT inverse problem. Another type of regularisation function known as total variation is 

very popular since it was first introduced in [77] by Rudin et al. Earlier literature has shown 

that TV can contribute to good image quality with noise removal and image restoration [78]. 

TV has been applied to various imaging techniques for solving the inverse problem due to its 

capability of preserving the edge of the monitored target [79] [80]. In practical situations, 

most emerged case is that there are discontinuities in conductivity. Such an ability is 

especially useful for cases when the boundary information is important, and imposing 

smoothness may lead to bias in the true solution. For multiphase flow visualizations, TV 

contributes to the display and identifies the sharp change between different phases, i.e. 

interfaces between a continuous phase and dispersed phase can be monitored properly, if 

TV regularization can be applied to industries successfully. Above all, sharp images mean 

less position error and blurs, hence resulting in high-quality reconstructions, which will 

benefit detection purposes where the target is required to be localized. In addition, a sharp 

change of phases can also help in achieving other measurement purposes. One example is 

cases where flow regime identification is critical, and a sharp interface between phases can 

improve the image quality of flow visualization processes. For the cases of measuring phase 

concentration based on an image, a sharp boundary of the dispersed phase can allow an 

upgrade in the accuracy of the measurement of phase fraction. However, L2-norm based 

regularisations suffer from blurring since they are introduced prior to the information 

leading to smoothness, which makes it difficult for estimations of interface or boundary of 

the targets to be imaged. Blurred images cannot satisfy the precision required for image-

based quantitative parameter measurements. Various methods have been proposed to 

solve TV formulations [75] [81], e.g. the primal and dual interior point method (PDIPM) [82], 

the linearized alternating direction method of multipliers (LADMM), and spatially adaptive 

total variation [73]. In particular, Split Bregman (SB) TV was proposed in 2009 [74] and is 
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capable of solving non-differentiable problems efficiently with a fast convergence rate, 

therefore it has received much attention. Comparison works suggest LADMM suffers from 

low resolution but has a fast computational time since it avoids second-order derivative 

calculations, and PDIPM introduces a smoothness parameter hence it has lower contrast. SB 

is recommended due to its high spatial resolution and faster convergence rate.   

In this section, some regularisation methods regarding ERT static and dynamical imaging are 

introduced, where Tikhonov and Split Bregman TV (SBTV) are presented as spatial 

regularisation algorithms, while spatial-temporal TV (STTV) and Temporal one-step (TOS) 

algorithms are introduced as temporal regularisations dealing with dynamical imaging. 

Results from these algorithms are presented and discussed in the following few chapters. 

 

2.5.1 Tikhonov regularization 

Tikhonov regularisation is a popular method for solving the ill-posed inverse problem by 

introducing additional information. In the ERT Inverse problem, we wish to solve 

conductivity based on potentials, where it is approximated as a linear problem. The linear 

system of ERT is given by 

𝐽 ∙ 𝜎 + 𝑒𝑟𝑟𝑜𝑟 = 𝑢                                                               (2.52) 

Note that this is difference imaging, and the conductivity σ is given by σ = σ1 − σ𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑. 

This equation cannot be solved directly as it is ill-posed, and the noise or error of images is 

unavoidable as it can be imposed via many aspects, but it expected to make both sides of 

the equation to be as close as possible using optimizations. The residual error is minimized 

in order to make the solution as close as possible to the true value. In the ERT inverse 

problem,   

𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎‖𝐽𝜎 − 𝑢‖2
2                                                   (2.53) 

Tikhonov regularization imposes additional information for solving the ill-posed ERT inverse 

problem [70]. A penalty term with an l2-norm 𝛼‖∆𝜎‖2 is introduced for minimisation and 

solving optimization together. The general form of the standard Tikhonov formulation can 

be written as,  

argmin
𝜎

{‖𝐽𝜎 − 𝑢‖2
2 + 𝛼‖∆𝜎‖2}                                                      (2.54)                  
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For solving a minimization equation, let the first-order derivative of the Tikhonov function 

with respect to 𝜎 equal zero, and the solution of conductivity change is derived by the 

following steps. 

𝜕

𝜕(𝜎)
((𝐽 ∙ 𝜎 − 𝑢) ∙ (𝐽 ∙ 𝜎 − 𝑢)𝑇 + 𝛼𝜎 ∙ 𝜎𝑇) = 0                      (2.55) 

2𝐽 ∙ 𝐽𝑇 − 2𝐽𝑢 + 2𝛼𝜎 = 0                                                  (2.56) 

σ = (𝐽𝑇𝐽 + 𝛼I)−1. 𝐽𝑇 𝑢                                                                (2.57)               

Where J is Jacobian matrix, and σ and 𝑢 are conductivity difference and potential difference 

respectively. 𝛼 denotes the regularisation parameter, and it is referred to as an identity 

matrix.  

 

2.5.2 Split Bregman Total variation  

 

Total variation (TV) regularisation employs functions based on 𝑙1 − 𝑛𝑜𝑟𝑚. Literature reports 

that the utilization of TV can contribute to a good image quality when solving the inverse 

problem. Traditional regularisation methods that impose ‘smoothing’ would result in 

blurring, whilst the TV function preserves discontinuity and reconstructs images with a non-

smoothing reconstruction technique. TV is implemented by carrying out minimizations 

based on l1-norm, which calculates the total amplitude change on an objective function. The 

TV function with ERT imaging is defined as: 

TV(σ) = ∫|∇σ| 𝑑Ω                                                 (2.58) 

In the ERT inverse problem, TV is imposed as a penalty term and is formulated to solve: 

𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎‖Jσ − 𝑢‖2
2 + 𝛼TV(σ)                             (2.59) 

Compared with L2-norm regularisations, a TV solution is relatively hard to implement while 

the former benefits from a differentiable function. Several approaches have been proposed 

for solving TV. Z Zhou and their group reported comparison works among PDIPM, SB and 

LADMM TV functions with Tikhonov regularisation. They suggested that TV regularisations 

lead to greater improvements in reconstruction results over l2-regularisation, and SBTV 
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shows a good performance in accuracy and convergence rate [75]. The Split Bergman 

method was first proposed by Osher [74], the constrained optimization problem of ERT is: 

𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎‖∇𝜎‖1  𝑠. 𝑡. ‖𝐽𝜎 − 𝑢‖2
2 < 𝛿                                (2.60)  

TV function ‖∇𝜎‖1  is non-differentiable, and using traditional approaches would be 

computationally expensive. Therefore, TV function was replaced using Bregman distance. 

Based on literatures [79] [83] [80], mathematical derivations of SBTV start by defining a 

Bregman distance. Imaging that with each step, the solution is closer to the expected 𝜎 

using a minimisation of such a ‘distance’. The unconstrained optimising problem is rewritten 

as: 

𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎,𝑑𝐷(𝜎, 𝜎𝑘) +
𝛽

2
‖𝐽𝜎 − 𝑢‖2

2                             (2.61) 

𝐷(𝜎, 𝜎𝑘) = 𝜎 − 𝜎𝑘−< 𝑠𝑘, 𝜎 − 𝜎𝑘 >                           (2.62) 

The term 𝐷(𝜎, 𝜎𝑘) indicates the Bregman distance between optimal conductivity difference 

𝜎  and 𝑘𝑡ℎ solution 𝜎𝑘, where in the equation (2.62) <,> means the scalar product, and s 

denotes the sub-gradient of TV functional at k. Then the equation is modified to:   

𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎‖∇∆𝜎‖1−< 𝑠𝑘 , 𝜎 − 𝜎𝑘 > +
𝛽

2
‖𝐽𝜎 − 𝑢‖2

2               (2.63) 

𝑠𝑘+1 = 𝑠𝑘 − 𝛽𝐽𝑇(𝐽𝜎𝑘+1 − 𝑢)                                          (2.64) 

Osher suggested that since J is linear, the equations above could be simplified to: 

𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎‖∇𝜎‖1 +
𝛽

2
‖𝐽𝜎 − 𝑢𝑘‖2

2                          (2.65) 

𝑢𝑘+1 = 𝑢𝑘 + 𝑢 − 𝐽𝜎𝑘                                               (2.66) 

The Split Bregman method introduces an auxiliary variable 𝑑 such that 𝑙1 and 𝑙2 are 

decoupled. The constrained problem is framed as: 

𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎,𝑑 {
𝜇

2
‖𝐽𝜎 − 𝑢‖2

2 + 𝛼‖𝑑‖1}         𝑠. 𝑡.   𝑑 = ∇𝜎                 (2.67) 

And using constrain as a penalty term, the unconstrained problem given by the equation: 

∆𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎,𝑑{
𝜇

2
‖𝐽𝜎 − 𝑢‖2

2 + 𝛼‖𝑑‖1 +
𝛽

2
‖𝑑 − ∇𝜎‖2 

2 }                  (2.68) 
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To solve this equation, Bregman iteration technique could be applied [74], referring to 

equations (2.63) and (2.64), the iterative equations of Split Bregman can be simplified as:  

(𝜎𝑘+1, 𝑑𝑘+1) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎,𝑑{
𝜇

2
‖𝐽𝜎 − 𝑢‖2

2 + 𝛼‖𝑑‖1 +
𝜆

2
‖𝑑 − ∇𝜎 − 𝑏𝑘‖2 

2 }          (2.69) 

𝑏𝑘+1 = 𝑏𝑘 + ∇𝜎𝑘+1 − 𝑑𝑘+1                                                             (2.70) 

Optimization equation of (2.69) can be separated based on the first-order derivative with 

respect to 𝜎 and 𝑑: 

𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎{
𝜇

2
‖𝐽𝜎 − 𝑢‖2

2 +
𝜆

2
‖𝑑𝑘 − ∇𝜎 − 𝑏𝑘‖2 

2 }                        (2.71)                          

𝑑𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑 {𝛼‖𝑑‖1 +
𝜆

2
‖𝑑 − ∇𝜎𝑘+1 − 𝑏𝑘‖2 

2 }                                    (2.72) 

 

2.5.3 Spatiotemporal Total Variation Algorithm 

 

In this thesis, a spatiotemporal reconstruction framework is proposed that exploits 

regularisation [33] [34]. Spatiotemporal total variation was chosen, as ERT images can be 

well approximated by a piecewise constant function and consecutive frames are expected to 

be similar. This allows the exploitation of redundant information across consecutive frames. 

The spatiotemporal total variation problem can be written as follows:  

𝑎𝑟𝑔min
∆σ

‖∇𝑥,𝑦,𝑧σ‖
1
+ ‖∇𝑡σ‖1    s. t.     ‖J̃σ − u‖

2

2
≤ δ                           (2.73) 

Where the first and second terms correspond to isotropic spatial TV and temporal TV 

functions, respectively, and where σ represents a 4D conductivity distribution and J̃ is an 

augmented Jacobian operating on acts in a frame-by-frame basis.  

 

The constrained optimization problem (2.73) can be solved using the split Bregman 

formulation, which efficiently handles constrained optimization and L1-regularisation. Using 

the Bregman iteration, the constrained problem (2.73) is converted into an iterative 

scheme: 

σ𝑘+1 = 𝑎𝑟𝑔min
σ

‖∇𝑥,𝑦,𝑧σ‖
1
+ ‖∇𝑡σ‖1 + ∑

𝜇

2
‖J̃σ − u𝑘‖

2

2
𝐼

𝑖=1

                 (2.74) 
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u𝑘+1 = u𝑘 − J̃σ𝑘+1 + u,                                                                               (2.75) 

Where (2.74) is an unconstrained optimization problem and (2.75) is a Bregman iteration 

that imposes the constraint iteratively. The cost function in (2.74) is still hard to minimize 

given the non-differentiability of the TV functional, but this can be easily done with a 

splitting technique. Including auxiliary variables allows splitting L1- and L2-function in such a 

way that they can be solved in separate steps in an easy manner. Images σ are given 

analytically by solving a linear system and L1-functions are solved using shrinkage formulae. 

To perform the split, we include d𝑥 = ∇𝑥σ, d𝑦 = ∇𝑦σ, d𝑧 = ∇𝑧σ, d𝑡 = ∇𝑡σ, so equation 

(2.74) becomes  

(σ𝑘+1, d𝑥 , d𝑦, d𝑧 , d𝑡)

= 𝑎𝑟𝑔 min
∆σ,d𝑥,d𝑦,d𝑧,d𝑡

‖(d𝑥, d𝑦, d𝑧)‖1
+ ‖d𝑡‖1

+
𝜇

2
‖J̃σ − u𝑘‖

2

2
       st.    d𝑖 = ∇𝑖σ          (2.76) 

                                                                                                           

Constraints in equation (2.76) are handled using the Bregman iteration as above, which 

leads to the following iterative scheme [84] 

(𝜇J̃𝑇 J̃ + 𝜆 ∑ ∇𝑖
𝑇∇𝑖𝑖=𝑥,𝑦,𝑧,𝑡 )𝜎𝑘+1 = 𝜇J̃𝑇𝑢𝑘 + 𝜆∑ ∇𝑖

𝑇(𝑏𝑖
𝑘 − 𝑑𝑖

𝑘)𝑖=𝑥,𝑦,𝑧,𝑡                      (2.77)                       

𝑝𝑘 = √∑ |∇𝑖𝜎𝑘+1 + 𝑏𝑖
𝑘|

2
𝑖=𝑥,𝑦,𝑧                                      (2.78)  

 𝑑𝑖
𝑘+1 = max (𝑝𝑘 −

1

𝜆
, 0)

∇𝑖𝜎
𝑘+1+𝑏𝑖

𝑘

𝑝𝑘    for 𝑖 = 𝑥, 𝑦, 𝑧                           (2.79)                                     

𝑑𝑡
𝑘+1 = max (|∇𝑡𝜎

𝑘+1 + 𝑏𝑡
𝑘| −

1

𝜆
, 0)

∇𝑡𝜎
𝑘+1+𝑏𝑡

𝑘

|∇𝑡𝜎𝑘+1+𝑏𝑡
𝑘|
                                 (2.80)          

𝑏𝑖
𝑘+1 = 𝑏𝑖

𝑘 + ∇𝑖𝜎
𝑘+1 − 𝑑𝑖

𝑘+1    for 𝑖 = 𝑥, 𝑦, 𝑧, 𝑡                                      (2.81)     

𝑢𝑘+1 = 𝑢𝑘 + 𝑢 − 𝐽𝜎𝑘+1                                                    (2.82) 

Equation (2.77) is given by the first-order derivative with respect to 𝜎, and (2.78)-(2.80) use 

the shrinkage technique to minimize the auxiliary variable d in space and time domains 

respectively. Equations (2.81)-(2.82) denote the Bregman iterative scheme for updating, and 

it will stop when it meets convergence condition.  
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2.5.4 Temporal one-step solver 

 

Another temporal algorithm known as a temporal one-step solver (TOS) was proposed in 

[43] in 2007, which was based on the Gauss-Newton one-step algorithm. Instead of 

reconstructing images frame by frame, TOS uses a data set that is combined with the data of 

nearby frames, where the data set and the conductivity change are given by: 

𝑢�̃� = [𝑢𝑛−𝑑, ⋯ , 𝑢𝑛 , … , 𝑢𝑛+𝑑]
𝑇                                                        (2.83) 

𝜎�̃� = [𝜎𝑛−𝑑, ⋯ , 𝜎𝑛 , … , 𝜎𝑛+𝑑]
𝑇                                                         (2.84) 

The idea of TOS is that it correlates temporal information of consecutive frames in a time 

window, while STTV chases piecewise constants in time. For the case of monitoring the 

disappearing process of a target, STTV will cut it off instantly with its sharpness in time, 

whereas TOS correlates the whole process, which introduces smoothness for a temporal 

process. In (2.83) and (2.84), it takes d frames of data before and after frame n, in this case, 

the length of the data set would be (2d+1), and d is an integer and must be smaller than n.  

The forward problem is modified into: 

𝑢�̃� = 𝑗̃𝜎�̃� + 𝑛𝑜𝑖𝑠𝑒                                                                       (2.85) 

The Jacobian is considered constant, and the augmented matrix augmented 𝑗̃ = I ⊗ J. Using 

GN One-step method, the inverse problem is formulated as: 

‖𝑢�̃� − 𝑗̃𝜎𝑛‖
2 + 𝜆2‖𝜎�̃�‖

2                                                                 (2.86) 

By solving (2.86), as stated in [43], the formulation is written as: 

𝜎�̃� = [𝛤 ⊗ (𝑃𝐽𝑇)][𝛤 ⊗ (𝐽𝑃𝐽𝑇) + 𝜆2(𝐼 ⊗ 𝑉)]−1 ∙ 𝑢�̃�                               (2.87) 

 

In (2.87), 𝑉 is an identical matrix, 𝑉 = 𝑒𝑦𝑒(𝑠𝑖𝑧𝑒(𝐽, 1).  𝑃 = 𝑅−1 where 𝑅 = 𝛼𝑅1 + 𝛽𝑅2 +

𝛾𝑅3. 𝑅1 contributes to a NOSER prior, 𝑅1 = 𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝐽𝑇 ∗ 𝐽)), a diagonal matrix with 

diagonal elements of 𝐽 ∙ 𝐽𝑇.  𝑅2 denotes the Tikhonov regularization matrix, an identity 

matrix with a size of  𝑅1. 𝑅3 is a Laplacian regularisation matrix.  𝛤 is a time-weighted matrix 

defined on the time window (−d, d) with a constant time weight 𝛾, 

𝛤𝑥𝑦 = 𝛾|𝑥−𝑦|                                       𝑥, 𝑦 = −𝑑,… , 𝑑      (2.88) 

Computational time can be reduced with pre-calculation of  𝐵 = [𝛤 ⊗ (𝑃𝐽𝑇)][𝛤 ⊗

(𝐽𝑃𝐽𝑇) + 𝜆2(𝐼 ⊗ 𝑉)]−1 
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2.6 Study of image quality 

 

Evaluation of the reconstructed images is always demanded when judging the accuracy 

when compared with the true situation. In [85] , the authors suggest several parameters 

that quantitatively evaluate the image quality, and these parameters have been widely used 

in the research of image reconstruction problems.  Note that all of the computation of these 

parameters are based on a Thresholding image, where the image is black-and-white and 

composed of binary numbers.   

2.6.1 Position Error (PE) 

 

PE represents the error between the true position and the position in the reconstructed 

image. Numerical Position is described by the Centre of Gravity (CoG) of the target, and PE 

has been defined as: 

𝑃𝐸 = 𝐷𝑅 − 𝐷𝑇𝑅𝑈𝐸                                                              (2.89) 

Where 𝐷𝑅 denotes the position in the reconstructed image given by the COG of the imaged 

target, and 𝐷𝑇𝑅𝑈𝐸 is the true position (CoG) of the target, where Thresholding of the whole 

reconstructed image will be required before calculating where the CoG of the target is 

located. CoG is computed based on the size and the shape of the target that is represented 

by a binary-number image. PE represents the accuracy of the target position that the 

reconstructed image makes, hence, it is treated as one of the standards when image quality 

is being evaluated. Obviously, less error is always optimal, so the PE expected to be small 

and stable with various locations of the target.   

2.6.2 Resolution (RES) 

 

RES is given by the ratio of the number of pixels in an object to the total number of pixels in 

the entire region of the reconstructed image. A uniform and small RES means it is more 

likely to be a reliable result since instabilities may lead to a non-uniform RES, and low-

quality images also suffer from larger fractions.  A uniform RES is one of the important 

criteria for evaluating image quality. In terms of previous work, RES is calculated by: 
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𝑅𝐸𝑆 = √
𝐴𝑞

𝐴0
                                                               (2.90) 

Where 𝐴𝑞 and 𝐴0 are given by the number of pixels of the target and the whole medium 

respectively. 

2.6.3 Amplitude response (AR) 

 

The amplitude response (AR) is defined by the ratio of the amplitudes of the image pixel to 

that of the total image pixel. AR is desired to be constant. It can be expressed as below: 

𝐴𝑅 =
∑ [𝑋]̂𝑘𝑘

𝑉𝑡
∆𝜎

𝜎𝑟

                                                            (2.91)  

Where, 

𝑉𝑡 is the volume of the image target 

𝜎𝑟 is the reference conductivity of a homogeneous medium 

∆𝜎 is the difference between target conductivity and reference conductivity, ∆𝜎 = 𝜎𝑡 − 𝜎𝑟 

 

2.6.4 Shape deformation (SD) 

 

Shape deformation represents the difference in object shape between the reconstructed 

image and the true shape of the tested target. Calculation of SD is conducted by working out 

the ratio of the unfitted area of the object on the image to the area of the entire image. 

𝑆𝐷 =
∑ [𝑋𝑞 ]̂𝑘𝑘∉𝐶

∑ [𝑋𝑞 ]̂𝑘𝑘

                                                                (2.92) 

Where C is the domain of the true shape, and K is the entire domain of the image. The area 

is measured by the number of pixels/voxels of each. A small SD index is desired since the 

recovered object is expected to be a shape that is close to the true shape of the target to be 

visualized.  
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2.7 Conclusion 
 

This chapter introduces the details of ERT, with basic background information, including ERT 

devices and data measurement strategy, being introduced in the first part. Furthermore, the 

theory is discussed by imposing Maxwell’s equations since ERT is a technique regarding the 

problem of electromagnetic fields. In addition, the forward problem of ERT is introduced by 

defining a mathematical model and the complete electrode model (CEM), and the FEM 

equations and sensitivity matrix are derived in detail. Moreover, several regularisation 

algorithms are introduced, where Tikhonov and SBTV are represented as methods for static 

imaging, and STTV and TOS are used for solving dynamical imaging. Finally, quantitative 

parameters are introduced for evaluating image quality. In general, this chapter covers basic 

theory, and all of the simulation and experimental studies discussed in the following 

chapters are based on the contents introduced in this chapter. 
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Chapter 3 Multiphase Flow 
 

Liquid, gas, and solid are three forms of substances in nature, known as phases. Multiphase 

obviously refers to more than a single phase emerging simultaneously. For flows that 

involve two or more phases, they can be termed multiphase flow. Classification of 

multiphase flow depends on various combinations of phases, given by single-phase flow, 

two-phase flow, and three-phase flow. Single phase flow is difficult to produce in the 

industry as phase mixture is encountered. Many two-phase flows are encountered in flow 

pipelines, such as, gas-liquid flow, solid-liquid flow, liquid-liquid flow. Although the liquid is 

the only phase present in liquid-liquid flow, examples, such as, oil-water, show different 

chemical characteristics produce a separation between materials, therefore, it also 

considered as two-phase flow. Three-phase flow is more complicated as more materials are 

involved, which also pose challenges to visualization for electrical tomography as a single 

tomographic modality may not work for recognizing two non-conductive phases. In 

industrial process, a few types of multi-phase flows are present, such as, air-water two-

phase flow, oil-water two-phase flow, and solid-water two-phase flow and air-oil-water 

three-phase flow. Generally, depending on the proportions of phase ratio or motion, one of 

the phases in the flow dominate it, this is called the continuous phase, while the other is 

termed the disperse phase.  For example, water can be a continuous phase in many types of 

air-water flow. For the case of oil-water flow, it can be divided into oil-in-water and water-

in-oil, and the dominating one will be the continuous phase. Multiphase flow involved fluid 

mechanics, heat transfer, and a combination of phase and pressure change, these varying 

concepts lead to its complexity [86].  

 

3.1 Background and applications 
 

There are many examples of multiphase flow present in a variety of applications. First, the 

multiphase flow may appear by phase transferring phenomenon between water and steam, 

which generates gas-water two-phase flow in some industrial system and daily life 

production processes, for example, inside a boiler by a steam generator or water condenser 
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of modern large systems. In modern power generation systems, shown in Figure 3.1, 

multiphase flow occurs in steam cycles, which is produced by heating high-pressure water 

and then liquefying it in a cooling tower or condenser.  In a carbon capture and storage 

cycle system (Figure 3.2), reduction of carbon from the fuel is demanded prior to burning to 

help reduce environmental pollution, the multiphase flow appears in the process of water 

cooling or gasification for the requirement of condensed water or steam in the cycle. 

Moreover, oil-water two-phase flow occurs due to the mixture of phases during the 

extraction of crude oil (Figure 3.3) this also produces multiphase flow, where crude oil, hot 

steam/ gas, and driving water are mixed during the steam injection applied to the oil field. 

The circumstances of the multiphase flow in a pipeline can suggest the operational 

conditions of an industrial processing system. In the process of solid material transportation, 

where materials carried by liquid material produces a solid-liquid flow. Parameter control, 

such as, flow velocity, percentage of gas/oil, is always demanding in industrial applications. 

Proper speed control on materials transported in pipelines can not only reduce the damage 

of the pipeline inner-wall and save costs and energy, but it can also help avoid the 

occurrence of pipeline blockages or more serious dangerous accidents, and real-time 

measurements of multiphase flow can suggest daily yields of oil/gas production. Therefore, 

control of entire industrial systems can be implemented by monitoring and controlling the 

numerical parameters from the multiphase flow. However, flow must be visualized or 

quantitatively evaluated for people estimating the interior information to reach control 

purposes. Hence, it is necessary to develop methods that can effectively image such a 

dynamic process and make measurement of quantitative parameters that can be 

implemented by an image-based method if good-quality images are guaranteed. ERT is one 

of the electrical tomographic methods for visualizing and can potentially suggest 

measurements based on reconstructed images and has great potential as an imaging 

technique of high time resolution, which is also easy to operate and low cost.  

In this chapter, some of the backgrounds of multiphase flow is reviewed and introduced. In 

section 3.1, flow regimes in different pipelines are presented, in addition, some common 

numerical parameters regarding multiphase flow are introduced. Moreover, literature about 

multiphase imaging and measuring using ERT are reviewed.  
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Figure 3.1: Diagram of power generation with steam cycle [87] 

 

Figure 3.2: Diagram of pre-combustion capture system for carbon capture [88] 
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Figure 3.3: Diagram of crude oil extraction by applying flood injection [89] 

3.2 Flow regime 
 

In flow pipelines during industrial processes, classification of multiphase flows depends on 

the flow direction, resulting in flows in horizontal pipes, vertical pipes and inclined pipes (of 

different angles). Each of these is also divided into a few flow patterns, also known as flow 

regime. The behaviour of phases in multiphase flow is affected by many factors which are 

unpredictable, and situations even fluctuate under the same conditions. Visualization of 

flow allows people to gain fluid interior information, such as, phase distribution, state of 

phase interface, void fraction, and velocity profile. Different reasons, such as, types of 

materials, the flow velocity of phases, geometry (such as pipeline diameter or the angle of 

pipe), pressure, affect the behavior of flow configurations. Determination of flow patterns 

can help access knowledge of the flow internal situation. In this section, flow regimes of air-

water flow and oil-water flow in horizontal and vertical orientations are investigated.  

3.2.1 Air-water two-phase flow pattern 

 

 Air-water flow in a horizontal pipe 

 

The most commonly occurring flow configurations of air-water two-phase flow have the 

following types, shown in Figure (3.4), these are dispersed bubble flow (bubbly flow), 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiPo8aZnP_gAhUMkhQKHcCiBNUQjRx6BAgBEAU&url=https://uogcorp.com/de/united-oil-amp-gas-corp-acquires-5-new-oil-leases&psig=AOvVaw1CgoBnQj0yWzivK2WGiSOB&ust=1552570013650628
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annular flow, elongated bubble flow, and slug flow [90]. Stratified flow and wavy flow can 

also emerge for cases with a lack of water.  Mostly, the relative phase volume and flow rate 

affect the flow patterns in horizontal pipes. Dispersed bubble flow features many small 

bubbles with a relatively uniform distribution within the liquid phase. Its formation requires 

a low flow rate with a sufficient quantity of water. Increasing the air volume and gas-phase 

velocity, the size of bubbles becomes bigger, which produces elongated flow. In such a flow 

pattern, the liquid phase is partially separated by large bubbles. These large bubbles can 

even block the pipe and break the pipeline into a few sections, which bring on slug flow. If 

the air quantity is further increased, the flow in the pipe cannot reach the top due to a lack 

of liquid, and the space inside the pipe will be separated into gas and water completely. 

Stratified flow can be produced under such a situation with a low velocity and this results in 

a smooth interface, whilst wavy flow appears with higher flow rates. Annular flow is 

characterized with liquid attached to the wall and the air phase flowing through the core 

with some water droplets.   

 

Figure 3.4: Flow regime of air-water two-phase flow in the horizontal pipe [90] 

 

 Air-water flow in a vertical pipe  

 

In vertical pipes, the phase distribution is relatively simple due to the symmetrical feature of 

flow patterns. Based on the literature [91], classification of air-water two-phase flow has 5 

different configurations: 

(1) Bubbly flow: Tiny bubbles are dispersed in the liquid phase, and phase velocities are 

fairly uniform. 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwikuqaVr_3gAhVxThUIHT4HABUQjRx6BAgBEAU&url=http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=2529083&psig=AOvVaw2UsAheDJ6Xjmh7TyM5h51Z&ust=1552506360269499
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(2) Cap-bubble flow: The quantity of bubbles is increased, and some bubbles combine 

into cap-shaped bubbles of a bigger size. 

(3) Slug flow: Bullet-shape bubbles are formed with the further increase of air quantity. 

These big bubbles move upwards in the pipe core and break by liquid phases with 

some small bubbles in between. Slug flow is unstable.   

(4) Churn-turbulent flow: Instability of the flow pattern lead to the breakdown of the 

slug flow structure and form a flow regime pushing the liquid upwards. For a pipe 

with a small diameter, the flow regime is characterized with a gas path in the core, 

which requires a high gas-phase velocity.  

(5) Annular flow: liquid attached to the pipe wall moving upwards. Gas-phase in the 

core and moving upwards with tiny liquid droplets.   

 

Figure 3.5: Flow regime of air-water two-phase flow in a vertical pipe 

3.2.2 Oil-water flow pattern 

 

Flow regimes of oil-water two-phase flow occur in different situations to air-water flow due 

to the floating of the oil phase. Classification of oil-water flow is more complicated due to 

the diversity of oil characteristics. The viscosity ratio of oil and water can vary from below 

one to up to a million, which leads to a considerable variety of flow patterns [92]. In recent 

decades, many groups have carried out several experiments to observe the flow patterns of 

oil-water two-phase flow. Xu Summarised observed flow patterns in horizontal pipes in 

previous works from 1959 until 2006, and they made conclusions on the flow patterns of 

heavy oil and light oil, where flow patterns also have a difference between water dominated 

and oil dominated [93]. Ahmad reviewed current research into the state of oil-water two-
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phase flow and reviewed flow patterns in vertical pipes based on previous works [94]. 

Several main types of flow pattern are summarised below: 

(1) Stratified flow 

(2) Stratified flow with a mixture of oil and water on the interface 

(3) Dispersed flow (water dominated / oil-dominated): oil in water, water in oil, dual 

dispersion, oil in water and water 

(4) Churn flow (in the vertical pipe) 

 

Figure 3.6: oil-water flow pattern in the horizontal pipe [92] 

 

Figure 3.7: oil-water flow pattern in vertical pipe [94] 
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3.3 Quantitative parameters of two-phase flow 
 

3.3.1 Flow rate and flow quality 

 

The following parameters are commonly defined regarding flow rate. 

(1) Mass flow rate M: flowing mass (kg) of the fluid in unit time (s)，given by kg/s 

(2) Volumetric flow rate V: volume (m3) of the fluid in unit time (s), m3/s 

(3) Flow quality: the ratio of mass flow rate of phase (MG, ML) to total mass flow rate M 

In terms of a gas-liquid two-phase flow, these parameters are termed: total/gas-

phase/liquid-phase mass flow, total/gas-phase/liquid-phase volumetric flow, flow quality of 

gas/liquid. These parameters have the following relationships: 

M= MG + ML                                                                   (3.1) 

V= VG + VL                                                                    (3.2) 

𝜌𝑔 = 
𝑀𝐺

𝑉𝐺
            𝜌𝑙 = 

𝑀𝐿

𝑉𝐿
                                                         (3.3) 

 χ =
𝑀𝑔/𝑙

𝑀
         ,    𝜒 ∈ (0, 1)                                                   (3.4) 

3.3.2 Void fraction  

 

Void fraction is another important parameter to evaluate in multiphase flow. In terms of 

gas-liquid two-phase flow, void fraction is the ratio of gas phase to the fluid in the pipe, 

classified into Mass void fraction 𝛼𝑚, volumetric void fraction 𝛼𝑉, and cross-sectional void 

fraction 𝛼𝐴 [7]. Normally, void fraction is presented as a percentage, which is expressed 

below: 

 𝛼𝑚 =
𝑀𝐺

𝑀
                                                                          (3.5) 

 𝛼𝑉 =
𝑉𝐺

𝑉
=

𝑉𝐺

𝐴𝐿
                                                                     (3.6) 

A is the cross-sectional area of the pipe, L is the effective length 

 𝛼𝐴 =
𝐴𝐺

𝐴𝐺 + 𝐴𝐿
                                                                     (3.7) 
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𝐴𝐺  and 𝐴𝐿 are the cross-section occupied by the gas-phase and liquid-phase respectively 

The void fraction of the dispersed phase can be determined by Maxwell’s relationship 

equation if the conductivity distribution is already worked out. Conductivity can be 

calculated either by image reconstruction or a data processing method [95]. The dispersed 

phase fraction on each pixel can then be given by: 

𝛼𝑑 =
2𝜎𝑐 − 2𝜎𝑚𝑐

𝜎𝑚𝑐 + 2𝜎𝑐
                                                                (3.8) 

The overall dispersed phase fraction is determined by the average pixel void fraction. In 

equation 3.8, 𝛼𝑐 is the conductivity of continuous phase which is usually a constant, such as 

the conductivity of water, and 𝜎𝑚𝑐 is the local mixture conductivity given by the determined 

conductivity distribution from either images or a data processing method of ERT [96]. 

3.3.3 Velocity in two-phase flow 

 

Many studies defined superficial velocity to describe two-phase flow, and it also categorized 

flow rate flux. The superficial velocity is expressed as a volumetric flow rate per unit cross-

sectional area. Gas and liquid superficial velocity 𝑗𝑔 and 𝑗𝑙 are: 

 

𝑗𝑔 =
𝑉𝑔

𝐴
              𝑗𝑙 =

𝑉𝐿

𝐴
                                                          (3.9) 

The total velocity (total volumetric flux) 

j =
𝑉𝑔 + 𝑉𝑙

𝐴
= 𝑗𝑔 +  𝑗𝑙                                                        (3.10) 

 

In two-phase flow, the velocities of phases are different due to relative motion between the 

disperse phase and continuous.  The phase velocities are given separately by the volumetric 

flow rate that has been defined in subsection 3.2.1. For the velocity of the gas phase 𝜇𝑔and 

the liquid phase 𝜇𝑙: 

𝜇𝑔 =
𝑉𝑔

𝐴𝑔
          𝜇𝑙 =

𝑉𝑙

𝐴𝑙
                                                  (3.11) 



47 | P a g e  
 

And relative velocity 𝜇𝑟 and slip ratio S: 

 𝜇𝑟 = 𝜇𝑔 − 𝜇𝑙                                                          (3.12) 

S =
𝜇𝑔

𝜇𝑙
                                                                 (3.13) 

 

3.4 Flow models 
 

Flow measurement is a complicated subject in industrial processes and scientific research. 

Interaction between phases leads to complexity in prediction or measurement of flow 

movement modes and flow parameter changes. Mathematical modelling of multiphase flow 

is normally based on fluid mechanics and flow characteristic by writing conservation 

equations, then solving the problem with effective simplification. In addition, experiments 

based on multiphase flow can be conducted to discover the relationship of various 

parameters in a flow system. According to different flow patterns, various proposed flow 

models are reviewed [97] [98]:  

(1) Homogeneous flow model: Velocity of phases are considered to be identical, and 

the entire two-phase flow is treated as an integrated object. Such a flow model must 

satisfy the conditions of the slip ratio being equal to 1, and thermodynamic 

equilibrium. This flow model is suitable for dispersed bubbly flow or annular flow 

with a high gas-phase velocity.  

(2) Drift-flux model: Relative motion of two phases is considered, and the resulting drift 

velocity. In conservation equations, the relative velocity is replaced by drift velocity, 

and a mixture equation is taking place by momentum equation. Drift-flux is 

appropriate for slug flow.   

(3) Separated flow model:  For cases of stratified flow where the motion of gas and 

liquid phases are separated, the separated flow model can be used and treat each 

phase independently. The constant velocity of the two phases is assumed.  

(4) Two-fluid model: It is assumed the two phases are continuous, and exchanging mass, 

momentum, and energy on the interface. This flow model can describe two-phase 

flow more completely, but introduces a variety of variables and also corresponding 



48 | P a g e  
 

equations based on mass continuity, momentum conservation, and total enthalpy 

conservation, therefore, the two-fluid flow model is more difficult to solve. 

3.5 Multiphase flow with ERT 
 

Quantitative measurement and visualization of multiphase flow have been investigated for 

decades because of its importance in practical industrial applications. Multiphase flow is 

complicated since phase distribution and transferring are diverse, and transfers of heat, 

momentum, and energy are taking place dynamically. Benefiting from electrical resistance 

tomography that is capable of imaging spatial distribution without a high equipment cost or 

exposing materials to radiation, many previous works employed it as process tomography 

for purposes of visualizing or quantitative analysis attempting to figure out practical 

problems.      

 

3.5.1 Flow regime recognition  

 

In industrial processes, flow regime suggests the situations in flow systems, which is an 

important factor for reflecting actual conditions and solving practical problems. ERT is an 

appropriate technique to evaluate two-phase flows with a conductive medium as the 

continuous phase. Theoretically, the visualization capability of ERT can contribute to flow 

regime identifications by showing dynamically reconstructed images. However, image 

reconstruction may be time-consuming, and most algorithms are difficult to use for practical 

applications that require in-line observations. As a substitute, many works applied feature 

extraction on ERT raw data for identifying flow regimes. A group at Tianjin University 

identified gas-liquid flow regimes using ERT measurement data with accuracies over 80% 

[99], where a machine-learning algorithm known as SVM was applied with the extraction of 

fusion-feature vectors from ERT data. In 2009, this research was further studied with the 

combination of features using a V-cone meter for the recognition of different types of flow 

patterns [100].  In addition, Y. Zhang presented flow pattern recognition using SVM with 

principal component analysis (PCA) for feature extraction [101], and Neutral Network 

method with linear discriminant analysis (LDA) for feature extraction [102]. Moreover, B. 

Karki presented their research on horizontal-pipe flow pattern identification using ERT in 
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[103]. In their work, they used a method of information integrated from signal thresholds 

and frequency decomposition for the classification of flow regimes.   

 

3.5.2 Velocity profile 

 

Dual-plane ERT sensors were designed and investigated for calculating the velocity profile of 

two-phase flow, where people used cross-correlation, a method of signal processing, 

dealing with information from both electrode-planes aiming at determining the time delay. 

The velocity measurements can be determined for a constant distance between electrode 

planes. The reflected information from electrode planes can be either visualized 2D ERT 

images or raw data with feature extraction. The reconstruction-based method commonly 

termed the pixel-pixel cross-correlation method, where corresponded pixels are correlated 

to conduct point-to-point velocity profile calculations, while the other correlates extracted 

features from ERT measurement data on electrodes instead. In comparison, the feature-

value based method can be faster since it avoids the process of regularisation, but the 

image-based method can show a more detailed velocity distribution. Literatures [104] [105] 

[106] presented works of dual-plane ERT system design with velocity profile quantitative 

studies using the feature-extraction method. In addition, velocity measurement based on 

ERT image reconstruction is also proposed for determining rheological behavior [22] and 

velocity vector distributions [107].    

 

Figure 3.8: Dual-plane ERT for velocity measurement of two-phase flow [104] 
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3.5.3 Visualization  

 

In industrial applications, evaluation of the flow behavior is helpful for understanding, 

situation prediction and control of multiphase flow. Visualization of multiphase flow is 

useful in practical applications for the characterization of flow process, and flow imaging 

analysis can explore the information of phase distribution, phase interface, void/volume 

fraction, and flow patterns. ERT has great potential in showing spatial and temporal 

information of flow processes, previous works were aimed at reconstructing cross-sectional 

2D images with dual-plane sensors or using multi-plane sensors for 3D images. For example, 

swirling slurry flow has been investigated by ERT visualization for studies of phase 

distribution [108] [109]. Shang-Jie Ren simulated annular flow and evaluated phase 

distribution within an annulus tube with bubbles and liquid by visualizing ERT 2D images 

[110]. ERT visualization has also been applied in the milk processing industry for monitoring 

mixture dynamic processes using 3D reconstructions [111]. Moreover, different specific flow 

patterns are also investigated with ERT imaging, such as, stratified flow [112], slug flow 

[113], annular bubble flow [114], and swirling flow [115].  

 

 

3.5.4 Phase concentration 

 

Phase concentration (void/volume fraction) is one of the critical quantitative parameters of 

multiphase flow. In transportation processes, phase concentration influences flow quality. 

Moreover, phase fraction affects flow regimes, and its numerical determination also 

contributes to flow rate measurement in flow industries. In multiphase flow, the phase 

concentration accounts for the ratio of areas of a phase and the entire area. Tomographic 

methods are capable of determining phase fractions by 2D/3D flow imaging of cross 

sections or the entire medium, hence they have received much attention in the past few 

decades. ERT has been proven to be a feasible approach for measuring phase fractions [29] 

[95] [96]. Two ERT-based methods are commonly employed for the calculation of phase 

fractions. Obviously, image reconstruction of ERT is straightforward for achieving the 

proportion of dispersed phase. However, image-based phase concentration measurements 



51 | P a g e  
 

may suffer from low spatial resolution if regularisation is not optimal which can lead to 

errors. Therefore, image quality must be high enough to improve the accuracy to yield a 

qualified numerical phase fraction. Another type of ERT-based method uses measurement 

data, and the estimation of phase concentration is operated by deriving Maxwell’s 

relationship equation (equation 3.8) without image reconstructions.     

 

3.5.5 Dual-modality methods 

 

Multi-modality means multiple tomographic techniques are working together for either 

improvement of zvisualization or measurement, or for more complicated situations, for 

example, phase distribution of three-phase flow might not be distinguishable properly with 

ERT only, because ERT cannot zrecognize two different non-conductive phases (such as, oil 

and bubble). For the case of oil-water flow, the oil phase cannot conduct injected current 

from ERT electrodes if oil becomes the continuous phase. Utilization of one modality of ERT 

cannot satisfy the expectations for those types of situations. However, for three-phase flow, 

ECT is capable of distinguishing gas and two liquid phases by determining the ratio of water 

and the other two non-conductive phases, in addition, ECT can detect water-in-oil flow via 

conducting displacement current to the non-conductive medium. The dielectric property of 

the medium contains information that accounts for resistivity and permittivity, and ERT and 

ECT are literally using the real part and imaginary part of the measurement data as input. In 

addition, both ERT and ECT have the advantage of high temporal resolution and non-

radioactive exposure for the medium. Therefore, ERT-ECT dual modality has developed into 

a typical combination. Some literature have reported the state of research of such a method. 

In the past few decades, some ERT-ECT dual-modality systems were designed [116], and 

some works aiming at sensor integration have also been proposed [117] [118]. In particular, 

in [119], gas-oil-water flow with six different flow regimes in horizontal pipe is visualized 

based on data fusion of ERT/ECT. Q. Wang et al. evaluated the dual-modality method for 

gas-oil-water three-phase flow imaging. In their work, the capability of visualization is 

compared with ECT and ERT by conducting experiments with different water-liquid-ratio 

(WLR) on various flow patterns [120], and their results suggested the capability of each of 

the tomographic techniques against the percentage of water-phase (Figure 3.6).  
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Figure 3.9: Capability of different electrical tomographic techniques against water-liquid-

ratio [120].. 

3.5.6 ERT with flowmeter 

 

As demand grows from the many diverse industrial applications, the application of single 

detection technology is difficult to meet all the measurements needs. Emergence or fusion-

sensory methods can provide more complete information from more aspects, and as a 

result have received the attention of many scholars. Literature has shown that ERT can 

combine with Electromagnetic flowmeters (EMF). An ERT-EMF based oil-in-water flow 

measurement has been presented in [121], where estimated oil-phase concentration from 

ERT provides assistance for EMF to measure water flow rate. Such combinations have also 

been applied for the examination of counter-gravity slurry flow for the measurement of 

phase flow rate [122], where ERT provides the fraction and velocity of the dispersed phase. 

Another flow meter known as the Venturi flowmeter provides information based on 

differential pressure. Combination with ERT can provide supplement knowledge of flow 

pattern and phase fraction, resulting in more reliable measurements of mass flowrate [123].  

3.6 Conclusion 
 

Multiphase flow with different constituent substances is encountered in many applications. 

Diversity of flow patterns and complicated situations of multiphase flow including heat, 

momentum, and energy transferring impose challenges on solving practical problems in the 
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industry. Research works focusing on many industries such as petroleum, transportation 

processes, and chemical engineering have shown the importance and necessity.  

In this chapter, the background and situations of multiphase flow in real life are introduced, 

and related literature regarding ERT are reviewed. In general, this chapter includes four 

sections. Above all, flow patterns of two common two-phase flows, i.e. air-water, oil-water 

flow, are introduced, then some critical parameters of flow measurement are presented 

based on previous works in the first two sections. In addition, flow models that have been 

proposed in previous research are briefly concluded. Moreover, in section 3.4, applications 

of ERT related to flow visualization and quantitative measurement are reviewed from six 

aspects, which summarize and point out the status of current research stage.  

ERT has shown great potential in visualizing two-phase flow or providing quantitative 

parameter measurements in industrial processes, although ERT has not yet become a 

mature technology. In terms of flow visualization based on image reconstruction, 

improvements in optimizing image spatial resolution are necessary and precise flow 

parameter measurement also benefits from a high image-quality. Improvement in 

visualizations can be made by different aspects, where optimizing regularisation algorithms 

is one of the approaches that can contribute. In addition, in the following three chapters, 

some work on visualizing phase distribution aiming at two-phase flow are presented. 
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Chapter 4 Temporal TV for ERT dynamical imaging 

 

Electrical resistance tomography (ERT) is an imaging technique to recover the conductivity 

distribution with boundary measurements via attached electrodes. There is a wide range of 

applications using ERT for image reconstruction or parameter calculation due to high-speed 

data collection, low cost, and the advantages of being non-invasive and portable. In terms of 

process tomography of a two-phase flow, the object being detected is dynamical. ERT is 

considered a high temporal resolution method, a temporally regularized method can greatly 

enhance such a temporal resolution compared to frame-by-frame reconstruction. In some 

of the cases, especially in the industrial applications, dynamic movement of an object is 

critical. In practice, it is desirable for monitoring and controlling the dynamic process. ERT 

can determine the spatial conductivity distribution based on previous work, and ERT 

potentially shows good performance in exploiting temporal information as well. Many ERT 

algorithms reconstruct images frame by frame, which is not optimal and would assume that 

the target is static during collection of each data frame, which is inconsistent with the real 

case. Although spatiotemporal-based algorithms can account for the temporal effect of 

dynamic movement and can generate better results, there is not that much work aimed at 

analyzing the performance in the time domain. In this chapter, we discuss the performance 

of a novel STTV algorithm in both the spatial and temporal domain, and Temporal One-Step 

based on Gauss-Newton algorithms were also employed for comparison. The experimental 

results show that the STTV has a faster response time for temporal variation of the moving 

object. This robust time response can contribute to a much better control process which is 

the main aim of the new generation of process tomography systems. This chapter is based 

on the published journal paper [33].  

4.1 Introduction 

 

Considering ERT for dynamical cases, most of the traditional algorithms can reconstruct 

images using individual frames of data, such as, Tikhonov, Gauss-Newton one-step, etc. 

However, to reconstruct images with the regularization methods that working frame by 

frame may not be an optimal choice, as high temporal resolution is one of the advantages of 
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ERT system, and information of the correlation between individual frames might worth to 

be explored to contribute to the image quality. Traditional regularizations solving spatial 

distribution of the conductivity across a single frame, which regularized the spatial 

distribution in that frame only. However, the target is always dynamical including the time 

during collecting each frame data, which lead to noisy data. For the purpose of process 

tomography, it requires an ERT system with very high speed such that such effect minimized 

since these types of algorithms cannot make effort on correlating between neighboring 

frames. Temporal algorithms can regularize it to optimize visualizations along with time 

series. There were few methods tracking the moving object using the spatiotemporal 

information. First of all, Kalman filtering has been used in different tomographic techniques. 

For example, in 1998, M. Vauhkonen proposed Kalman filter method to track fast changes in 

electrical impedance tomography (EIT) [44]. Following that, P. J. Vauhkonen and M. 

Vauhkonen evaluated the Kalman filter and smoother approach and compared it with 

traditional algorithms using phantom experiments data [46]. In [124], M. Soleimani and M. 

Vauhkonen were using Kalman filter on electrical capacitance tomography (ECT) and 

electromagnetic induction tomography (EMT), and demonstrated Kalman filtering approach 

could improve the spatiotemporal resolution. In addition, another algorithm is known as 

temporal one-step solver (TOS), which is based on GN one-step method has been proposed 

by A. Adler and T. Dai in [43], and has been investigated by comparing with other 

approaches, such as, Kalman filter and conventional GN one-step method. A 4D 

regularization was proposed afterwards, which combined both spatial (3D) and temporal 

priori, and using simulation method based on EIDORS [125]. Temporally correlated 

algorithms such as the ones shown in above are providing an opportunity for faster speed 

and less averaging in ERT data. A non-temporal regularization however will limit the time 

resolution. A temporal algorithm with TV regularization in time can overcome this problem, 

providing both high speed and sharp temporal responses. 

 

In practice, ERT could potentially be combined with a tomography-based control system. To 

reach the requirement of controlling application, high-quality images from ERT would be 

needed, and useful information is supposed to be extracted based on these reconstructed 

results for the proposes of, for example, implementation of emergency operation to avoid 

undesirable condition, velocity control of two-phase flow to avoid damage of pipeline 
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caused by over fast mean flow speed . In this chapter, we particularly interested in the 

temporal and spatial performance of spatiotemporal total variation (STTV) method that has 

been proposed in [45]. By comparing it with TOS algorithm, which has been used in [43], we 

want to explore spatiotemporal information along with the time domain. The results of this 

chapter are based on 2D phantom experimental tests with the dynamical movement of 

inclusion. For each set of the results, STTV and TOS are employed using the same measured 

data set to ensure the consistence. 

 

4.2 Method 
 

In this chapter, we test the performance of dynamic cases. Time difference ERT imaging is 

used in this chapter. Considering dynamic case over static imaging, the object keeps moving 

its position, which makes the electric field change distribution at the same time, where the 

effects of magnetic fields are not considered in order to simplify this physical model. 

Because the process of current injection, as well as the conductive field, remain, both cases 

would have the same forward model. However, the time step of data collection cannot be 

neglected in practical dynamic cases as the dynamic electric field would affect the data 

measurement although this could be very fast. The condition of experiments is under low 

excitation frequency, which creates the assumption for the physical model that the effect of 

magnetic induction could be neglected for such a pure resistive model in a quasi-static 

electric field.  

In the static ERT, the electrical conductivity can be described by σ(x,y), whilst a time-varying 

conductivity in dynamical ERT means that the conductivity can be described by σ(x,y,t). In 

the actual ERT experiments, we are dealing with a discrete number of spatial and time steps, 

which can be described by spatial and time resolutions. In dynamic ERT, with moving 

inclusions, the assumptions of forward modeling described in chapter 2 are still valid, and 

conductivity changes from σ(x,y) to σ(x,y,t). Further extension of static inversion to temporal 

inversion is described in the following section. Temporal algorithms have been used in this 

chapter are STTV and TOS, detailed information of the calculation scheme is demonstrated 

in section 2.3.3 and 2.3.4.  
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4.3 Experiments and results 
 

4.3.1 Experimental setting up 

 

Data collection of experiments in this chapter would require a complete ERT system, which 

composed with an ERT Hardware system, PC (with software) and a sensor.   

The hardware system has been used in this chapter is known as EIT Swisstom Pioneer 

system [126] with 32 channels, which has following main components: 

 16 double-channel EIT chips to control 32 electrode 

 Smart Sensor Belt Connector that integrated with AC current injection (1-

7mA, 50KHz-250KHz ), voltage signal demodulating, high-speed data 

collection (up to 80 frames/second) 

  Interface module: Frame synchronization input and output, synchronization 

signal, power management between Sensor-Belt and Sensor-Belt-Connector 

 Power supply  

 

The data collection software is running with the Swisstom EIT Pioneer to collect data, where 

the excitation frequency, current peak value, data collection speed, and current pattern are 

available to be adjusted. In addition, the connection with the electrode could easily be 

checked via Sensor Quality panel, and the real-time dynamical image is also available.  

 Sensor 

The 2D sensor has been used in experiments is a cylinder-shape PMMA container, with 

diameter of 19cm and height of 25 cm. On the side wall of the sensor, 16 electrodes (2cm x 

4cm) are evenly fixed along the surface as an electrode-plane. A heavy circular metal board 

is sitting on the top of the container, connected by three long screws with the base board, in 

order to avoid leaking of any liquid. 
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(a)                                       (b) 

Figure 4.1: Experimental devices and sensor. (a) Swisstom EIT Pioneer system (b) 

experimental tank 

 

4.3.2 Experimental tests 

 

In this section, we are showing reconstructed images of different tests. Tap water 

and a plastic bar (3.1 cm diameter) were used as background and the moving object 

under tested respectively. Cross movement and circular movement were considered 

as two types of movement in the dynamical test. In all of the experimental tests, the 

peak value of exciting current has been used is 7mA, and operation frequency is 270 

KHz. To well compare two algorithms, lots of data has been collected under various 

data collection rate on various dynamic cases for image reconstruction. In this 

section, we only displayed some typical results here in each part. Different 

dynamical movement type has been setting up, and results from each type of 

dynamical movement using both algorithms are displayed. Regarding the image 

reconstruction, there are 6 images are extracted from the generated dynamical image 

of each movement type to demonstrate the performance of both algorithms. 

 

Dynamical test is divided into two types of movement in this chapter: cross movement and 

circular movement. Cross movement is the case that the inclusion moving crosses the 

domain through the center along the diameter from one side to the other, and the circular 

movement is the type of the movement that the object moving along a circle near the 
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boundary of the domain. The illustration of the dynamical movement can be seen in the 

figure below. 

 

 

Figure 4.2: Illustration of the dynamical movement type. The cross movement is showing in 

(a), and (b) illustrates the circular movement.  

 

 Test 1 Cross movement 

 

In the first dynamical test, it was setting up that the plastic bar was driving manually to 

move from bottom to the top, then from left to right cross the domain respectively. As 

showing in figure 4.2 (a), the inclusion movement cross the domain from 1 to 3 via position 

2 in the center, then it moves from 4 to 5. The excitation current was using 7mA with 

frequency of 270 KHz, and the data collection rate has been used is 24 frames/second. On 

both tests of the cross movement, 850 and 950 frames of measurement data has been 

collected with background data included. The measurement data that taken from the 

background (with tap water only) is more than 100 frames when we keep more than 5 

seconds before we start to put the plastic bar into the tank, so the average background data 

of the first hundred frames would be used for the propose of removing some noise.  By 

using STTV and TOS algorithms respectively, reconstructed images are produced, as 

displayed in the Table below, where the second column of the Table showing the images of 

TOS algorithm, and results from STTV are placed in third column. Images produced by using 

frame-by-frame based SBTV algorithm are also represented here. There are 6 slices of 

images has been included in the Table to demonstrate the recovery images of the 

movement process using both algorithms.  
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Table 4.1: Reconstructed images of cross-movement in Test 1, where the inclusion is moving 

from the bottom to the top.  

No. TOS STTV SBTV 

1 

   

2 

   

3 

   

4 

   

5 
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6 

   

 

Table 4.2: Reconstructed images of cross movement in Test 1, where the inclusion is moving 

from left hand side to the right-hand side  

No. TOS STTV SBTV 

1 

   

2 

   

3 

   



57 | P a g e  
 

4 

   

 

5 

   

 

 

6 

   

 

 

From the results that displayed on both Tables, it could be found that the moving process is 

monitored successfully with three different algorithms, and results are keeping consistent 

with the movement of the plastic bar within the tank. Regarding the quality of 

reconstructed images, images from using STTV have sharp object boundary and very smooth 

inside the object or on the background area, while images of using TOS have blurred object 

edge. In terms of reconstructed images of SBTV, images that near the boundary of the 

region are quite sharp, but degraded in the center area where the sensitivity is low. In terms 

of the performance of the temporal domain, many previous work using the methods to 

produce dynamical images with individual frames of data. However, what can be seen from 
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the Table is the object is keeping consistent on its shape with both algorithms without any 

streching along the movement direction.  

 

 Test 2 Circular movement 

 

The implementation of the circular movement is similar to the Test 1, where same 

excitation current value, frequency are employed. Data collection speed of 50 

frames/second has been used for the boundary data measurement. The bar was moving 

clockwise along the circle that close to the boundary and start with the location at the 

bottom that showing in figure 4.2 (b). There are 530 frames of boundary collected with 

about 150 frames of background data. In terms of the implementation of using STTV 

algorithm, only effective data can be used as it is not a frame-by-frame anymore. 

Reconstructed images from STTV and TOS are compared in the Table below. Reconstructed 

images by using SBTV is displayed here for making a reference. The reconstructed images in 

this type of movement are quite stable compare with the result from cross movement test. 

From these pictures, STTV still shows a better sharpness and a more smooth background 

than TOS. 

 

In conclusion, all algorithms show good performance on dynamical test regarding the 

visualizations. In comparison, images of using temporal-based algorithms are showing 

consistence, and images reconstructed using STTV indicates better quality due to its 

sharpness and less noisy of the images. However, the discussions in this chapter are based 

on visualizations only. To further support the good performance of STTV, some parameters 

about exploiting spatial and temporal information will be calculated, and some quantitative 

analysis based on these calculation will be carried out.   
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Table 4.3: Reconstructed images from circular movement test 

NO. TOS STTV SBTV 

1 

   

2 

   

3 

   

4 

   

5 
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6 

   

 

4.4 Analysis and Discussion 
 

As what has been shown in the last section, images generated from TOS algorithm are 

slightly suffering from the blurred boundary of the recovered object, but STTV could 

produce higher-quality images, as those image benefit from its sharpness and less noisy. To 

analyze the advantages and drawback of both algorithms, in this section, some quantitative 

information would be extracted and displayed to compare two algorithms. The analysis 

would base on calculated results of the gradient, where spatial and temporal gradients are 

discussed separately. The time response is proposed and worked out for results from using 

both methods in order to further demonstrate how both contribute to the performance on 

time domain. Since frame-by-frame based SBTV algorithm does not consider any temporal 

information, temporal-based algorithms, STTV and TOS algorithms, are compared in the 

following sections.  

 

4.4.1 Definition of Gradients and time response 

 

 Spatial Gradient 

 

In this chapter, the 2D image produced by temporal algorithms has a dimension of (x, y, t). 

The spatial gradient of an image means how the conductivity is changing in space, which 

would normally be calculated along a direction (x, or y) of each frame. The x/y-gradient 

could also be understood as the change of the slope value of the spatial distribution along 

x/y direction. For image u, the gradient of x and y-direction could be calculated by: 

 ∇xu ≈
∆u

∆x
                                                                       (4.1) 
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∇yu ≈
∆u

∆y
                                                                        (4.2) 

Where ∇xu and ∇yu are spatial gradient of 𝑥 and 𝑦 direction, and ∆u is the conductivity 

step-change between 2 pixels.  𝑢 is a slice of the image with 51 by 51 pixels, and 𝑝 = 51. In 

this chapter, the magnitude of the gradient was calculated, which is given by: 

∇xyu = √(∇xu)2 + (∇yu)2                                                 (4.3) 

 Temporal Gradient 

 

Temporal imaging is defined as dynamical image reconstructions along with the time series. 

Time gradient is describing the conductivity change along with the time series of a pixel, 

which is useful for evaluating the dynamical performance as it describes the step changes of 

the whole variation process. The time gradient of dynamical image could also be explained 

as the variation of the variations of conductivity in a pixel in the time domain. The dynamical 

process of the object could react to the temporal change in pixel values. 

 

If we extract pixel values along time sequence, the conductivity change on this pixel would 

be plotted as a 1-D line graph, where the pixel value variation could illustrate the 

circumstance of the object movement. The temporal gradient could be defined as how 

much variation has been made on each time step with the time sequence, which is also a 

discrete gradient as data set is combined with individual frames of data, although they are 

time correlated. The gradient on time could be calculated by: 

∇tu ≈
∆u

∆t
                                                            (4.4) 

 Time Response  

 

Time Response is defined by how fast it is capable of reacting to temporal change, which 

could be used to determine the dynamical performance of the result quantitatively. 

Regarding the temporal change in a pixel that the inclusion has experienced during the 

moving process, the algorithm that shows faster response would be an optimal choice. The 
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expression of Time Response could be given by a time interval that corresponds to where 

the conductivity decay from the background value to the peak value.  

 

4.4.2 Spatial and temporal gradients 

 

 Spatial imaging 

 

In the Tables 4.4-4.6, there are few items are displaying here: images of the spatial gradient, 

1-D plots of spatial distribution and the corresponding plots of the spatial gradient. There 

are 3 Tables in this part, where 3 slices are extracted for the analysis. 

 

For an ideal case, the boundary of the object is supposed to be clear, so the spatial 

distribution on the object boundary is expected to be sharp, and the whole object area and 

also the background should remain at its corresponding conductivity values. A 1-D Plot of 

Spatial distribution of a perfect ideal case would show a square-shape wave, which results 

that only two sharp changes would be seen between the object and background. Some 

comparisons have been made between STTV and TOS algorithms, as displayed in the Tables 

4.4-4.6.         

From the images of the spatial gradient on three different positions (the data has been used 

in this part are consistent with the tests in the last chapter) within the tank, regarding the 

results using TOS, the object area is unevenly distributed in the images of spatial gradient 

distribution, however the results from STTV are showing very clear object boundary. The 

comparison of the conductivity distribution is given by the 1-D plot in the third row of each 

table, where images have been normalized in order to  make contrast. The blue and red 

colored line in the plotted line graphs is indicating the result that recovered from STTV and 

TOS respectively about the spatial distribution and gradient changes. It could be seen from 

the conductivity distribution using TOS that the lowest value is always in the middle of the 

wave, and it is dropping down gradually and come back up slowly again, which indicates 

unclear boundary between the background and the object, as it would be hard to recognize 

where exactly corresponds to the boundary. The plots from STTV are given by nearly square-

shape waves. The plotted line is always keeping flat either in the background or the object  
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Table 4.4: Spatial gradients of the results produced from STTV and TOS algorithms  

 

area, and a very shape change is observed between the background and the target. 

The last graph is showing the comparison of the spatial gradient, in which the plots 

of STTV always display two sharp change which has the same wave shape of the 
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plot from the true image, but the gradient plot of TOS result are deforming due to its 

less sharpness of the recovered target. 

Table 4.5: Spatial gradients of the results produced from STTV and TOS algorithms, where 

the reconstructed object is coming to the second position. 
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 Table 4.6: Spatial gradients of the results produced from STTV and TOS algorithms, where 

the reconstructed object is coming to the edge of the domain. 
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 Temporal imaging 

 

Reconstructed results from the cross and circular movement tests (images has been shown 

in the last chapter) using TOS and STTV are displayed in this part for analyzing the 

spatiotemporal performance. First of all, the spatial and temporal gradient are displayed 

and compared. In addition, the temporal variation of both dynamical setting using two 

different algorithms has been taken into account for discussing the time response.  

In fact, the spatial gradient is the change between the current pixel value and the next 

neighboring pixel value along the defined direction, whilst the temporal gradient is the 

variation between two adjacent frames (variation along with the time series). The images of 

gradients in this section are based on a random frame N during the dynamical process, so 

the spatial gradient would be from the reconstructed image using frame N and the temporal 

gradient would be the difference between image numbers N and (N+1).  According to the 

results of gradients, on spatial, obvious change of the conductivity distribution along x, y 

directions could be observed with a clear boundary between the background and inclusion. 

On the background or inside the object area, the conductivity variation between 

consecutive pixels is very small as it could be seen that the spatial gradient in this area is 

tend to 0. By comparing with TOS, results showing that the object is observable and 

recognizable, however, the conductivity value keeps changing inside the object in both 

directions, and the less sharpness of the boundary indicates the graduate variation between 

the background and the inclusion.   

 

Regarding the temporal change between adjacent frames, relatively small variation 

between consecutive frames should be shown in the temporal domain due to a high data 

collection speed has been employed. In this case, it would be expected a very little shift on 

the object boundary, and almost zero change should be detected in the rest of the domain 

the consecutive frame data should be very similar. As shown in the figures of both 

dynamical movement type that STTV results are proved that it is more immunity to the 

noise, and its change in the time domain is more consistent compared with the results of 

TOS. In terms of the decay of the absolute spatial/temporal gradient that based on the 

gradient images in the second row of the table, the line graph of the result using STTV is 

showing faster decay than the one using TOS method. The plot of decay is actually 
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displaying the extent of the variation from the maximum value to 0, which numerically 

indicates the performance of spatial and temporal change between neighboring frames. 

This result is quantitatively demonstrating that STTV would potentially reconstruct high-

quality images of dynamical case. 

 

 Circular movement  

Table 4.7: The results of spatial and temporal gradients of circular movement test using 

STTV and TOS algorithms.  
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 Cross movement  

Table 4.8: The results of spatial and temporal gradients of cross-movement test using STTV 

and TOS algorithms.  
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4.4.3 Time response 

 

To further illustrate the performance in the time domain, the conductivity variation on 

pixels along the time series has been emphasized and taken into a further study about the 

time response. During the dynamical process, when the inclusion come to and then left a 

pixel, a dynamical change on such pixel would be generated. For a tomography-based 

control system, it will be quite important that whether an algorithm could well react to a 

moving inclusion or not, as a timely response is definitely required for making a decision and 

taking implementation in a proper time.  

 

Based on the results from two dynamical movements using both algorithms, conductivity 

changes along the time series from selected pixels as well as the corresponding temporal 

gradient are showing in the below two figures. From the time variation plots of both results, 

it is obvious that they are displaying how fast the conductivity is varying from maximum 

value (corresponding to the background conductivity) to nearly zero and back up again, 

where 0 indicates when the object went through the pixel. In comparison, STTV would take 

slightly shorter to meet its lowest. Numerical calculations of response time of both 

algorithms are worked out. In the cross movement, the displayed results are from using the 

data collection speed of 24 frames/second. The response time of both algorithms, in terms 

of the case that the object entering the pixel, is 2.12s and 3.21s, and in the other 
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movement, the frame speed of 50 frames/second has been used, and STTV shows a time of 

faster response than TOS. The results stated above indicates STTV got a faster response to 

the conductivity change in the time domain.  

 

 Cross movement 

 

Figure 4.3: Results of time variation and temporal gradient. (a) time variation of a pixel 

extracted from the results of the cross movement (b) the plot of the corresponding 

temporal gradient. The red line stands for the result from using TOS, and the blue line 

indicates the results of STTV. 

 

Table 4.9: time response of both algorithms from testing the cross movement 

Algorithm STTV TOS 

Time response 2.12s (49 frames) 3.21s (77 frames) 
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 Circular movement 

 

Figure 4.4: Results of time variation and temporal gradient. (a) time variation of a pixel 

extracted from the results of the circular movement (b) the plot of the corresponding 

temporal gradient. The red line stands for the result from using TOS, and the blue line 

indicates the results of STTV. 

 

Table 4.10: time response of both algorithms from testing the circular movement 

Algorithm STTV TOS 

Time response 0.26s (13 frames) 0.52 s (26 frames) 

 

4.5 Conclusion 
 

Dynamical imaging is a very important topic to be investigated due to the fact that there are 

many requirements regarding moving objects inside the bounded domain in real life for 

monitoring and systematic controlling purposes. ERT benefits from its high temporal 

resolution, and would potentially have temporal information to be exploited along with the 

time domain.  In terms of the reconstruction algorithms, the ones using individual frame 

data are not optimal, as it would ignore the dynamical change and the variation on each 

time steps. Although it is still capable of showing current positions, individual-image based 

results do not include any temporal information, in other words, it is showing lots of single 
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images instead of ‘movie’. Therefore, a temporal algorithm is a better choice as it 

regularizes ERT image with spatial and temporal information.  

 

In this chapter, we investigated the performance of 2D dynamical movement using 

laboratory-based experimental data. To evaluate both spatial and temporal performance of 

STTV algorithm, results from using both STTV and TOS regularization methods are displayed 

for making comparison. In spatial domain, both algorithms show good performance, but TV-

based temporal algorithm preserved the edge of the target. According to the analysis of 

dynamical experiments results, it could be concluded that STTV would generate sharper and 

less noisy images, but both algorithms showing the consistent result to the movement. 

However, the parameter selection is still required for STTV to be studied in future work, and 

it would have the potential to upgrade visualization results. Performance in the time domain 

of both methods was emphasized compared using temporal gradient and response time, 

where STTV shows a faster response time on the dynamical change of conductivity based on 

the quantitative calculation of time response of different dynamical movement. Time 

response would be an important parameter for evaluating a process tomography, and it can 

describe how fast the algorithm can react to the dynamical change of the target, which can 

provide a quantitative reference time to system. Sharp images would be preferred as it 

closer to the actual situation. This study can be extended to a real two-phase flow system 

for visualization and control purposes, and high-quality flow visualizations would potential 

contribute to more accurate flow measurements.  
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Chapter 5 ERT for velocity profile using STTV 
Algorithm 
 

Electrical resistance tomography (ERT) has been considered as a data collection and image 

reconstruction method in many multi-phase flow application areas due to its advantages of 

high speed, low-cost and being non-invasive. In order to improve the quality of the 

reconstructed images, the Total Variation algorithm attracts abundant attention due to its 

ability to solve large piecewise and discontinuous conductivity distributions. In industrial 

processing tomography (IPT), tomographic techniques have been used to extract important 

flow measurement information. For a moving object inside a pipe, velocity of the target can 

be calculated from the cross-correlation between with ERT sensors. Some previous 

proposed image-based method has used two sets of 2D ERT measurements and produce 

two images simultaneously from both electrode-plane, and velocity measurement is based 

on pixel-to-pixel cross-correlation. This method requires a double-channel ERT system 

working with dual-plane electrode patterns. In this chapter, a method for carrying out flow 

velocity measurement using a single-channel ERT system is proposed. A novel 

spatiotemporal total variation regularization approach is utilized to exploit sparsity both in 

space and time in 4D, and a voxel-voxel cross-correlation method is adopted for 

measurement of flow profile. The result shows that the velocity profile can be calculated 

with a single ERT system and movement can be monitored using the proposed method. This 

study is a laboratory-based phantom test. Both static simulation studies and semi-dynamic 

experiments conducted by tank verify the suitability of the proposed method. For in-plane 

velocity profile, a 3D image based on temporal 2D images produces velocity profile with an 

accuracy of less than 1% error and a 4D image for 3D velocity profiling shows an error of 4%. 

This work has been published in [45] 

5.1 Introduction 

 

In the process of production, transportation and distribution of fluids, in particular, in the 

petroleum industry, multiphase flow is commonly present. The measurement of velocities in 

different phases is an important factor and treated as quantitative controlling for cost 
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minimizing, risk reduction of the flow. The velocity profile measurement technique using 

electrical resistance tomography (ERT) and based on cross-correlation has been established 

for many years. ERT techniques are growing rapidly with the fast development of computing 

power. In particular 3D ERT, which is now feasible as a non-invasive detection method, 

where the interior distribution can be displayed with high-speed data collection. ERT could 

be applied to several fields that could benefit from its property of being non-invasive, low 

cost of the hardware system and good mobility.  

 

Electrical Tomography and cross-correlation based flowmeters are ideally suited for 

measuring multiphase flows and have been adopted in the past few years [127]. Many 

applications have been suggested, for example, B Gurau and P Vassallo [128] proposed the 

use of cross-correlation to calculate the phase velocity of air-water two-phase flow, from 

the output signals of hot-film probes, and A. Saoud, V. Mosorov [129] utilized cross-

correlation with ECT in velocity measurements of gas/solid swirl flow. Some of the previous 

research about velocity profile was based on 2D ERT with a dual-plane model, where a 

double-channel ERT system was applied and cross-correlation was used between outputs 

signals obtained from two electrode channels. X. Deng and F. Dong (2001) [104] designed a 

dual-plane system for the measurement of gas and liquid bubbly flow. With the extracted 

eigenvalue of the data from the gas/liquid flow in the vertical pipe, the dispersed phase 

velocity was measured accurately by F. Dong, Y.B. Xu [105] in 2005. Y Wu and H Li (2008) 

[106] compared the dynamic distribution and velocity among different flow regimes. 

However, the flow being measured is a 3D structured object, in other word, 2D modelling 

and measurement methods are apparently a simplification. Many contributions have also 

been made for 3D imaging with electrical tomography, such as, ECT [130] [131] and ERT 

[132], however, for many cases, especially ERT, 2D imaging technique are always considered 

for saving computational cost, and 3D ERT imaging may suffer from being more sensitive to 

error and high complexity. However, in some special cases, the information in the axis-

direction is quite important and the simplifications of the 2D method may not be enough to 

describe what we are expecting. Although 3D image reconstruction is still challenging, it 

worth to put more effort into a 3D image that allows a more complete visualization on 

target under estimated. 
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We are particularly interested in a two-phase flowing system with liquid and heavy oil. For 

oil-in-water flow, oil-phase is possible to attach the wall of the pipeline. The flow velocity 

can be slow down, and the pipe can even be blocked if the oil on the wall accumulated. It is 

expected that the location of such an occurrence inside the pipe will be found using the 

capability of ERT ‘to see inside’.  When the fluid is transported, an average flow speed can 

be reconstructed with the position of the inclusion. In the industrial process, the flow 

velocity is controlled within a reasonable range to ensure normal operating conditions of 

flow system. ERT can provide a numerical reference of mean speed with the measurement 

of the velocity profile, the situation could be recognized and amended promptly. In addition, 

the visualization capability of ERT can also provide information on the phase distribution 

interior of the pipe for monitoring the flowing process.  

 

In this chapter, we present a new method using a single-channel ERT system in temporal 2D 

imaging mode for 2D flow visualization and angular speed, and in temporal 3D ERT (4D) 

mode for axial velocity measurement. In the last chapter, good time response of STTV has 

been discussed. Therefore, the spatiotemporal TV algorithm is employed for dynamic flow 

visualization by ERT image reconstruction, and together with a cross-correlation for velocity 

profile calculation. Simulation was carried out for feasibility study, and experimental 

validations are conducted by detecting a moving sample in the laboratory phantom. Cross-

correlation was used based on reconstructed images for calculating the flow parameter. In 

order to analyze the cross-correlated result, the actual speed was measured experimentally, 

and the relative error was calculated and further discussed. 

 

5.2 Method 

 

Time difference ERT temporal imaging has been conducted in this chapter. The linear 

inverse problem in ERT can be defined as the recovery of a change in conductivity ∆σ from a 

change in measured boundary voltage ∆u, where ∆u =  J∆σ. The Jacobian J is computed by 

the Fréchet derivative of u with respect to σ as demonstrated in subsection 2.2.d. In this 

case, a reference boundary voltage 𝑢0 is available from measurement on background, and 
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data u𝑖  is given by the target with the background medium, where u0  =  𝑓(σ0), ∆u =  u𝑖 −

u0 and ∆σ =  σ𝑖 − σ0. 

In a 4D flow imaging situation, the unknown conductivity changes and data are 4D objects, 

where time-varying conductivity in 4D dynamical ERT can be described by σ(x, y, z, t). 

Redefining the conductivity and data, we have ∆σ = [∆σ1, … , ∆σ𝑛 ] and ∆u = [∆u1, … , ∆u𝑛 ] 

to allow ∆u =  J̃∆σ valid for a number of temporal frames of n. The temporal TV algorithm 

is capable of correlation the information with consecutive frames, and it regularizes the 

conductivity mapping in the spatial and temporal domain. Detailed information on STTV 

algorithms with ERT inverse problem is demonstrated in section 2.3.3.  

5.2.1 Cross Correlation for Velocity Profile 

 

A signal processing method termed cross-correlation can demonstrate the relationship of 

the time series by calculating the cross-correlation function and discover where they are 

best correlated where corresponds to a highest-similarity element. The most similar 

element can suggest the time lag of that two time series [27] [127]. In terms of time series 

𝑥(𝑡) and 𝑦(𝑡), the cross correlation function 𝐶𝑥𝑦 describes the similarity extent defined as: 

𝐶𝑥𝑦(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡).

𝑇

0

 𝑦(𝑡 + 𝜏)𝑑𝑡                                  (5.1) 

In practice, the time period cannot be infinite, and the equation can be modified without a 

limitation, and cross-correlation of both signals on time period of T is described with: 

𝐶𝑥𝑦(𝜏) =
1

𝑇
∫ 𝑥(𝑡).

𝑇

0

 𝑦(𝑡 + 𝜏)𝑑𝑡                                          (5.2) 

Such a technique has been adopted for flow metering, and quantitative velocity profile of 

two-phase flow has been developed applied to ERT with dual-plane electrode sensor. In 

terms of an image-based system, such characterization based on cross-correlating the time 

series from pixels or voxels termed pixel-pixel or voxel-voxel cross-correlation for 2D and 3D 

ERT imaging, which produces the velocity between pixels of a cross-section or voxels from 

different ‘layers’. The term pixel/voxel is distinct with pixels/voxels of images, but regions 

composed with image pixels/voxels. Cross-correlation is actually capable of determining the 

transit time that the moving object travels through the region. Movement is featured on 

temporal images and characterized on pixels/voxels, and the mean velocity is quantitatively 
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determined by known distance. In terms of the problem mentioned in this chapter, the 

discrete cross-correlation function of series 𝑥 and 𝑦 is defined as follows:  

𝐶𝑥𝑦(𝑚) =
1

𝑁
∑ 𝑥(𝑛∆𝑡)𝑦(𝑛∆𝑡 + 𝑚𝛥𝑡) 𝑁

𝑛=1                                      (5.3)                           

Signals 𝑥 and 𝑦  are corresponds to the time series of two elements composed with 

characteristic value from two images. N is the length of vectors equivalent to the time 

period, and ∆𝑡 gives time-step depending on data collection rate of ERT system. The transit 

time is determined by 𝑚𝛥𝑡. 

 

The procedure of cross-correlation that has been used in this chapter has the following 

steps: 

1. Image reconstructions of the entire dynamical process, resulting images of ∆𝜎(𝑥, 𝑦, 𝑡) 

or ∆𝜎(𝑥, 𝑦, 𝑧, 𝑡) 

2. Definition of each pixel or voxel region by domain separation, where the region of 2D 

images has segmented by 4 × 4 pixels and 3D images have been separated into voxels 

of 3 × 3 × 3 (see figure 5.2(a) and 5.10(b)).  

3. The characteristic value extracting from each pixel or voxel. (In this chapter, the 

characteristic value is given by the average value of σ within the area. In each frame, a 

characteristic value is calculated from each separated ‘pixel’, so a vector of length N is 

given by dynamical reconstructed images with N frames in each pixel.  

4. Characteristic value vectors are composed of pixels or voxels 

5. Pixel-to-pixel cross-correlation or voxel-to-voxel cross-correlation conducted by 

function (5.1) to find out the transit time from position 1 to position 2. Plot cross-

correlation equation between two output vectors and find out frame number m on the 

peak. The transit time is determined with 𝐦𝛥𝑡 

6. The experienced distance L is determined by the defined imaging region. In this chapter, 

the vertical distance experienced by the target is defined as 13cm. 

7. Velocity profile calculation  

 

The acquired transit time 𝜏  corresponds to the peak of the plotted cross-correlation 

function 𝑅𝑥𝑦(𝜏). For the case of 16 pixels (2D) and 27 voxels (3D), the velocity profile is 

given by 
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𝑣 = [
𝐿

𝜏1
,

𝐿

𝜏2
, ⋯ ,

𝐿

𝜏𝑘
]                                                              (5.4) 

𝑤ℎ𝑒𝑟𝑒 𝑘 = 16 (2𝐷)𝑜𝑟 27 (3𝐷). 

In this chapter, the average speed of the moving inclusion was calculated and made a 

comparison between different algorithms. In this case, the speed is given by: 

𝑣 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑡𝑖𝑚𝑒
=

𝐻𝑒𝑖𝑔ℎ𝑡

𝑚∆𝑡
                                                        (5.5) 

where Height is given by the size of the z-axis of the defined domain, as showing in figure 

5.1.  

 

Figure 5.1. The illustration of the ERT visualization domain within the cylinder tank 

5.3 Tests and results 

 

In this section, the setting up and procedure of simulation and experiment in both 2D and 

3D situation are demonstrated in details, and the results of each part, including 

reconstructed images and speed calculation, are displayed and will be further discussed in 

the following sections. The purposes of this section are feasibility analysis on dynamic model 

monitoring and velocity profile measurement. The proposed Temporal TV algorithm will be 

used for reconstruction with consecutive frames containing time-related information. In 

addition, pixels, and voxels, in both 2D and 3D case, will be defined as a specific area in each 

frame, where the output signal from each of them is composed with extracted characteristic 

values from every frame. Moreover, the pixel-pixel and voxel-voxel cross-correlation for 2D 

and 3D cases could be made with these characteristic value vectors in order to work out the 

speed.  
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Simulation process: 

 Setting up the shape and size of the domain, electrode (size, number, and 

locations),  

 Selection of excitation and measurement method 

 Set up the conductivity value of the background (𝜎0)and inclusion (𝜎𝑖) 

 Set up the movement of the inclusion 

 Solve a forward model based on FEM: 

Step1. (Forward_model.nodes, Forward_model.elements)=FEM_SOLVER(shape, 

electrode_position, electrode_shape, stim_pattern, meas_pattern); 

Step2. Vh=BOUNDARY_DATA(𝜎0, Forward_model); 

Step3. Vi= BOUNDARY_DATA(movement, 𝜎𝑖); 

Step4. Data=Vi-Vh;  

 Jacobian calculation 

 Image reconstruction based on the proposed algorithm 

 Using cross-correlation to find out the transit time (𝜏) 

 Feasibility analysis of Speed calculation (𝑣) 

Experimental procedure: 

 Phantom design according to the setting up 

 Data acquisition 

 Image reconstruction based on the proposed method 

 Using cross-correlation with thresholding data to find the transit time 

 Calculation of the speed of the moving inclusion with the transit time  

 Analysis  

 

5.3.1. Simulation in 2D 

 

The simulation 2D test was setting up that the inclusion was moving continuously along a 

circle with a constant angular speed within a 2D circular model, where a 16-electrode 

circular sensor was applied. The migration path was divided into many steps, where 200 

locations were selected homogenously along the path for image reconstruction on each 

location. The aim of this test is to investigate the performance of visualizations using STTV 
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algorithm, and the feasibility of speed determination. The forward model was constructed 

using EIDORS, where the injected current was setting at 1mA. The semi-diameter of the 

sensing field and the movement path are 7cm and 5cm respectively, and 1.5cm radius of the 

circular inclusion is simulated as a moving target. The conductivity of the background and 

object are 1 and 0 respectively. In order to calculate the velocity distribution through the 

pixel-pixel cross-correlation method, each frame of the image was divided into 16 pixels for 

characteristic value extracting. The distribution of the big pixels is shown in Figure 5.2(a). In 

Figures 5.2(b), the movement of the inclusion is demonstrated, and some reconstructed 

images using proposed algorithm are displayed in figure 5.3. Some plots of cross-correlation 

result and corresponding pixels are showing in figure 5.4, in which the first 4 plots on the 

top stand for the plot of cross-correlation results, and the ones below them are showing the 

plots of the corresponding pixels. These plots are showing the dynamic change of the object 

movement within each pixel. Satisfactory results are displayed in the top 4 plotted images 

and the frame number related with each peak value is consistent with the corresponding 

two pixel plots below them.  

 

(a)                                                                 (b)  

Figure 5.2. Illustration of pixels and movement. (a) The image of pixel unit (b) The 

movement of the object in the simulated domain 
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Figure 5.3 Reconstructed images of inclusion in the simulation test using Temporal TV 

 

The transit time could be reflected from the frame number of the peak, as shown in Figure 4, 

The transit time could be reflected from the frame number of the peak, where the time-step 

between adjacent frames is known from the hardware system, and angular speed 

calculation is attainable. As a result, it is verifying the feasibility of movement monitoring 
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and speed calculating with the proposed algorithm. In the following part, some results from 

real data will be discussed. 

 

Figure 5.4. Plots of cross-correlation results and the corresponding pixels in the 2D 

simulation test.  

 

5.3.2. Experiment in 2D 
 

In this part, a series of data were collected from the continuous movement of the inclusion. 

The phantom adopted (showing in Figure 5.6), is a cylinder-shaped transparent glass 

container with an inner diameter of 14 cm, and a height of 25 cm. Rectangular shaped 

stainless-steel sheets (4cm x 3cm) were used as electrodes. Screws were utilized for the 

purpose of connection and proper fixing on the phantom. An extra screw was installed on 

the wall above the electrode ring to connect with the ground wire with the data collection 

system. To be consistent with the simulation, the model is kept to be the same size and 

same way of circular movement. In the 2D experiment, a plastic bar was used as inclusion 

and it was moving continuously along the inner wall of the phantom anticlockwise with 

R=5cm until it came back to the origin. There were 70 frames collected from the ERT KHU 

Mark 2.5 data collection system with injected current of 1mA and 10 KHz, where 

neighboring excitation and measurement method were used and 208 individual voltages in 

total were collected for each frame. The current injection pattern and voltage measurement 

pattern are summarized in Table 5.1. In this case, 70 corresponding images are produced. As 
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mentioned in the 2D simulation, Temporal TV algorithm was used for reconstructing images 

for proposes of movement monitoring, and angular speed calculation was conducted by 

cross-correlation. 

 

Table 5.1. The illustration of current injection pattern and voltage measurement pattern 

 
EX

1 

EX

2 

EX

3 

EX

4 

EX

5 

EX

6 

EX

7 

EX

8 

EX

9 

EX1

0 

EX1

1 

EX1

2 

EX1

3  

EX1

4 

EX1

5 

EX1

6 

(1,2) I × - - - - - - - - - - - - - × 

(2,3) × I × - - - - - - - - - - - - - 

(3,4) - × I × - - - - - - - - - - - - 

(4,5) - - × I × - - - - - - - - - - - 

(5,6) - - - × I × - - - - - - - - - - 

(6,7) - - - - × I × - - - - - - - - - 

(7,8) - - - - - × I × - - - - - - - - 

(8,9) - - - - - - × I × - - - - - - - 

(9,10) - - - - - - - × I × - - - - - - 

(10,11

) 
- - - - - - - - × I × - - - - - 

(11,12

) 
- - - - - - - - - × I × - - - - 

(12,13

) 
- - - - - - - - - - × I × - - - 

(13,14

) 
- - - - - - - - - - - × I × - - 

(14,15

) 
- - - - - - - - - - - - × I × - 

(15,16

) 
- - - - - - - - - - - - - × I × 

(16,1) × - - - - - - - - - - - - - × I 

 

 

 

Figure 5.5: KHU Mark 2.5 Hardware system 
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Figure 5.6 The experimental set up with the tank of 2D ERT unit with tap water as a 

background 

 

  

  

  

Figure 5.7. Image reconstruction of the 2D experiment using temporal TV 
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Pictures in Figure 5.7 is showing the result of the reconstruction (only 6 frames are chosen 

to be displayed here for illustrating the performance of monitoring). The objects that 

displayed in images got slightly bigger and overlapping comparing with the case of 

simulation, which would be caused by the generation of inter-frame data from the 

dynamical moving inclusion. In terms of the plotted line graphs of 16 pixels (Figure 5.8), they 

are displaying that the inclusion is moving from a location within pixel 12, then experienced 

most of the pixels (can be found from the peak value) along the phantom edge sequentially 

until it comes back again at its origin, which demonstrates the monitoring purpose was 

achieved. The result of cross-correlation is showing in Figure 5.9, where the peak value is 

indicating that 51 frames were collected during the bar moving through the whole circle. 

The transit time is 10.71s, which could be given by the system data collection speed. 

Assuming the moving route was a proper circle, angular speed can be calculated using 360 

degrees and the corresponding transit time. The details of the speed calculation and error 

study are discussed furthermore in section 4.  

 

 

Figure 5.8. Plots of pixels of the result 2D experimental test with phantom inclusion in the 

ERT unit. 
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Figure 5.9. Plots of cross-correlated result between pixels 

5.3.3. Simulation in 3D 

 

In the 3D simulation test, a 16-electrode cylindrical 3D model with two rings of 8 electrodes 

was constructed, where the size of each electrode is 3cm×4cm. Two rings were located in a 

height of 9cm and 16 cm respectively. A neighboring data collecting method was selected 

for current excitation and voltage measurement. The forward model was built using EIDORS 

and 3D mesh was generated by NETGEN, where the injected current was setting at 1mA. 

The inclusion has been simulated is a sphere with a radius of 1cm, and the conductivity 

value was setting at 0 (non-conductive), while we set the conductivity value of the 

background at 1.  

 

In the vertical direction, 71 locations of the inclusion were chosen evenly between (5, 0, 16) 

and (5, 0, 9), where it was assumed that the sphere was dropping 0.1cm down each step, 

and a frame (208 independent measurements) of the image is produced split into 27 voxels 

(3×3×3). The drawing of the experimental phantom and voxels distribution are showing in 

Figure 5.10. The procedure of cross-correlation for 3D is similar to 2D. For all voxels, a vector 

of length 71 (number of frames) could be composed of 71 average values from each of the 

frames, and there were 27 vectors generated in total. Frames are time-relate with each 

other, and the data collection speed of the ERT system and the overall velocity of the 

movement are both constant. Hence, 27 signals are generated. With the cross-correlation 
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method, the transit time between two different voxels comes to be available from signals of 

the different voxel, and the overall flowing speed could be calculated with distance.  

 

    (a)                                                     (b) 

Figure 5.10. (a) The movement of the inclusion in the 3D phantom (b) Distribution of 27 

voxels within the domain 

 

The aim of this test is to find out the feasibility of monitoring and velocity measurement in a 

3D model. Based on the setting up of the simulation described above, 3D image 

reconstruction was conducted by Temporal TV algorithm. The reconstruction result is 

showing in Figure 5.11, where the overall situation of the sphere movement was being 

monitored as expected with the object moving down. We can see that the object is moving 

down gradually with the translocation of the inclusion, which demonstrates the good 

performance of temporal TV, although the objects in the middle seem weaker than the ones 

located on the top and the bottom. Comparing with 2D ERT reconstruction, it is obvious that 

the conductivity value of the object (refer to the color bar) was varying with the location of 

the inclusion going downwards, especially those that are located in the middle heights of 

the phantom, are especially suffering from low resolution. When the inclusion on the top 

and bottom of the domain, the color of the objects from images indicate more non-

conductive character of the inclusion, and the character weaken when it came to the middle 

area, although the inclusion was always the same. The reason for this appearance could be 

that the intensity of the electric field in the center area is relatively weaker than the area 

close to the electrodes where the current injected. Noise, would potentially be produced 

especially in the experimental test, and could also weaken the character of the movement, 

which may lead to inaccurate result of cross-correlation. To eliminate noise, thresholding is 
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needed before the cross-correlation, where binary numbers were used instead of decimal 

data. In this case, 0 and 1 will be the only two values to appear in the matrix of the 

reconstructed images.    

 

     

    

 

    

Figure 5.11. Image reconstruction of 3D simulation using Temporal TV 

In Figure 5.12, the output vectors of 27 voxels from 71 frames are plotted, which illustrates 

the moving process of the object within the simulated phantom. From the plot of vox18, 

vox28, and vox38, it could be seen that the characteristic value is fluctuating, which could be 

understood as the process that how the inclusion was entering and leaving the specific 

voxels. The plots of signals from other voxels are a parallel line and the value remains at 0, 

which indicate the sample did not go through them and it is consistent with the setting up of 

the simulation test. For cross-correlation of a 3D case, the distance in function (5.5) is a 

known constant and determined by the size of the height as we defined the sensitivity map 

(figure 5.1 and 5.10). Considering that the object is moving from vox18 to vox38, the 

experienced time length could be calculated from the peak value of cross-correlation plot 
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between this two voxels since the object is moving downwards from vox18 to vox38. Hence, 

the speed calculation would be achievable. Figure 5.13 is showing the result of the cross-

correlation. 

 

This 3D simulation test discussed the performance of sample movement monitoring via 3D 

image reconstruction of the simulated dynamic movement of the sphere. Speed calculation 

using the proposed method is also feasible. It is certified that temporal TV could meet the 

requirement of being discussed in this section. In the next part, some results from real data 

will be shown, and the calculated result of speed will be illustrated and analyzed in section 

5.4.         

Figure 5.12. Plots of 27 voxels with thresholding data 
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Figure 5.13. Plots of cross correlation between voxel 8 and 26 

5.3.4. Experiment in 3D 

 

The phantom used for the 3D experimental test is designed as a 16-electrode cylinder 

container with a height of 25 cm and a diameter of 14 cm and using the same material with 

all components as the 2D one. Two rings of 8 electrodes (3 cm x 4 cm rectangular-shaped) 

are fixed on the wall of the sensor at a height of 9 cm and 16 cm respectively, which is 

consistent with the situation of the simulation test. A small plastic bottle filled with sands 

was used to stand for dispersed phase and tap water was poured into the phantom as a 

continuous phase. To make a relative movement, the bottle was controlled to move up and 

down continuously using string that connected with the bottle. As shown in the pictures, the 

bottle was released down and pulled up vertically (starting from the water surface). During 

the movement, it was on the left-hand side and close to the inner wall of the sensor. The 

data collection system and method are identical as mentioned before, and the driving 

frequency was set to be 10 KHz. Figure 5.14 shows the 3D experimental phantom and 

inclusion. 
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Figure 5.14. Sensor and tested sample of 3D experiments. (a) Phantom of the 3D 

experimental test: 16 electrodes composed with 2 rings of 8 are utilized for excitation and 

measurement. The stainless-steel boards are applied to the tank as the main part for the 

pipe to sit on, which avoid the problem of leaking. (b) Non-conducting inclusion of 3D 

experiment test: a plastic bottle filled with sands to make sure the inclusion could sink down 

to the bottle, where tap water was chose as the background and continuous phase. 

    

    

    

     

Figure 5.15. Reconstructions of the movement using temporal TV 
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During the experiment, there were periods of the bottle movement conducted, and 200 

frames were collected. The pictures shown in figure 5.15 illustrate the whole movement 

process. Comparing with the reconstructed images of the simulation test, it seems that the 

experimental test got a slightly degraded result. However, during the simulation, a certain 

location of the object corresponds to the calculated boundary voltage data, which 

contribute to a frame of the image. For the 3D reconstruction of the experiment, the real 

boundary data is measured by the data collection system, and coming from the dynamic 

movement of the bottle. It is worth to emphasize that the time of measuring data of each 

frame could not be neglected, whereas simulation did. During this time interval, the bottle 

was still kept moving, which lead to inter-frame data produced.  

 

 

Figure 5.16. Plots of voxels after image thresholding 
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The plots of voxels are displayed in figure 5.16, which demonstrate how the movement of 

the inclusion affects individual voxels. The output signal from 27 voxels are plotted here 

based on thresholded dynamical experimental reconstructed images. The vertical dynamical 

movement of the target is monitored and reflected via extracted values. The horizontal lines 

mean the target does not come to the specific voxel during the whole process, otherwise, it 

suggests how the target emerges and disappears. The first few frames could be ignored as 

the bottle have not started to move, and it is actually the background data are plotted and 

would not affect the result of the velocity profile. Since the real data of the 3D experiment 

contains more unexpected noise, the results shown in Figure 5.15 are not as good as the 2D 

case. To eliminate the unwanted factors, as what was doing in the 3D simulation that 

thresholding was conducted.  

 

The voxels used for cross-correlation calculation in Figure 5.17 are from top voxels 

layer and bottom voxels layer which corresponds to the case that the object was 

moving through this space. The peak value of the function indicates the moment that 

two signals have maximum similarity, which gives the transit time of the object 

moving from the top to the bottom. For the case from Figure 5.17, the transit time 

corresponds to 86 frames. The average movement speed could be calculated with the 

know data collecting speed of the system and the distance that defined as a sensitive 

matrix. The result will be shown and analyzed in the next section.  
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Figure 5.17. The results of cross-correlation: x-axis indicates the frame number, and the y-

axis gives the value of cross-correlation result. The peak value on the x-axis in this case 

suggests the transit time of this movement.  

5.4 Discussion 
 

In this section, all of the results of both 2D and 3D experimental tests, including 

reconstructed images and results of velocity are concluded. The quality of the images are 

discussed and the cross-correlated results using proposed spatiotemporal TV algorithms are 

presented, where relative error of the speed is calculated, and further analysis is carried 

out. Table 5.2 shows the results of speed. The cross-correlated average angular speed is 

given by 360 °/ (Transit time×System speed). The speed in this section is angular speed due 

to the circular movement of the plastic bar, where the measured time of the whole process 

was given by a timer, which is 10.8s and stands for the length of time that the inclusion 

move through the whole circle (360 degrees), and the real average angular speed could then 

be calculated with 360 degrees/ (Measured time×System speed).   

 

Table 5.2. Calculated results of the 2D experiment 

Measured 

time (s) 

System 

speed 

(s/frame) 

Transit time 

from cross-

correlation 

(s) 

Angle (°) 
Measured 

speed (°/s) 

Cross-

correlated 

speed (°/s) 

Relative 

error (%) 

10.80 0.21 10.71 360 33.33 34.29 0.8% 
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In the 3D experiment, the distance used for calculations was the distance between the top 

voxel layer and the bottom voxel layer, which is defined as 13cm. It was calculated that the 

transit time was 17.85s from the number of frames given by the peak of the cross-

correlation plot. The cross-correlated speed and real speed are given by 0.76 and 0.73 

respectively, which gives a 4% relative error.  

 

Table 5.3. Calculated results of the 3D experiment 

Measured 

time (s) 

System 

speed 

(s/frame) 

Transit time 

from cross 

correlation 

(s) 

Distance 

(cm) 

Measured 

speed (cm/s) 

Cross 

correlated 

speed 

(cm/s) 

Relative 

error (%) 

33.0

7 
0.21 17.85 13.00 0.76 0.73 4 % 

 

The images of 2D and 3D has been shown in previous section. It worth of notice that the 

reconstruction results from simulation and experiment are different. It needs to be pointed 

out that the dynamic model is more complicated than a static one as the sample is actually 

kept moving at any moment, which would affect the data measurement. In the simulation 

part of both, it was assumed that the boundary data is corresponding to a specific location 

of the sample although what has been simulated is a dynamic model. However, for a real 

dynamic situation, the location of the sample is kept changing while that frame of data was 

being measured, which lead to the circumstance that the data are overlapping.  

 

In terms of the image reconstruction quality, the proposed algorithm has a good 

performance in the 2D test. By contrast, the object of experimental images got 

slightly overlapping than ones from simulation, which could also be from the reason 

stated above. In the 3D simulation and experiment test, the sample movement could 

be monitored properly although the ones in the middle area seem relatively weaker 

than the ones close to rings. Images produced in the experiment are still acceptable 

although inter-frame data are introduced. 
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In conclusion, the method of flow measurement using ERT with the proposed 

algorithm is validated with 2D simulation and experimental test. For the case using 

3D ERT, even if the reconstructed images are not as good as the 2D case and 

suffering from the problem of inter-frame data, however, a low-speed data collection 

ERT system was used and result from simulation study still shows a good 

performance. The speed measurement result of experimental test is controlled below 

4%, which is still acceptable and proved that the speed measurement using the 

technique of 2D and 3D ERT with spatiotemporal TV algorithm combined and cross-

correlation is achievable, and the result could potentially be upgraded with a fast 

ERT data collection system. The accuracy of cross-correlated result is actually 

determined by images. The quality of the reconstructed image would be quite 

important and must be upgraded, which is always a challenging topic to study. In 

further work, in terms of the proposed algorithm, a more effective method of 

parameter selection could be further researched in order to reconstruct images in a 

more time-efficient way. To eliminate the negative effect of inter-frame data, the time 

interval of collecting boundary data should be shortened, in this case, data collection 

system would be required to be fast enough.    

5.5 Conclusions 
 

Velocity profile measurement using high-speed two-channel 2D ERT and cross-correlation 

between two separate rings has been investigated for a few decades due to its fast 

development in the industrial field. Since the flow is a three-dimensional concept, using 2D 

ERT to obtain consecutive cross-sectional slices may ignore some occurrences in the flow 

pipe. In this case, it is desirable to combine the measurement method with a 3D 

reconstruction technique since a single multi-plane ERT can provide 3D flow velocity 

information with dual-plane electrodes. With a series of phantom experiments conducted, 

the measurement method based on 2D ERT was tested and validated, and the speed 

measurement method based on 3D ERT using spatiotemporal TV algorithm combined with 

voxel-voxel cross-correlation method is proposed. The reconstructed images showed the 
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feasibility of the speed measurement of a dynamic sample in 2D and 3D. The process 

reconstruction of 2D shows great performance with the proposed algorithm. A slightly 

degraded result in the 3D experiment has shown, and the reasons, as stated in the 

discussion chapter, could be from both insufficient time resolution and the inter-frame data 

generation. Produced noise in experiments can also be an influence factor to degrade the 

image quality. In this chapter, all the experiments were conducted by using an experimental 

tank with manually moved inclusion instead of real two-phase flow, the test is done in semi-

dynamical setting, making it much more robust compared to fully static tests making 

presented results very useful method for flow measurement and interior flow system 

monitoring.  
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Chapter 6 ERT image reconstruction using Planar 
Array 
 

ERT imaging modality has great potential for industrial applications with the advantages of 

being a high temporal resolution. It is especially useful in cases, such as, geophysical 

detection, landmine detection and detections on non-transparent region, where 

measurement data is only available from a single surface, for data acquisition. Instead of the 

circular ERT model that uses the traditional circular electrode model, in this work, 

Subsurface (also called Planar Array in this chapter) ERT is implemented, aiming to zvisualize 

a pipeline transporting a two-phase flow. The planar array can explore spatial information 

within its detectable region by producing 3D images, which have a higher spatial resolution 

in axis-direction than a traditional ERT with a dual-plane electrode sensor. However, in 

solving the inverse problem of a 3D subsurface ERT using a planar array the images may be 

degraded, especially in cases where the location of the target is relatively deep. The total 

variation (TV) algorithm as an L1-norm regularisation method has the potential to improve 

the image quality, and some works have shown that TV reconstructs sharper images, which 

provides an advantage when representing spatial information. In this chapter, the 

performance of subsurface ERT using the TV algorithm for 3D visualization are presented 

based on simulations and experiments, and the results of quantitative measurement of 

depth are discussed.     

6.1 Introduction  
 

ERT is capable of visualizing tested samples by solving conductivity distribution based on 

forward modelling and solving inverse problem. The solution of forward problem is achieved 

by combining FEM with complete electrode model, and EIDORS is a useful tool in the 

forward modelling of ERT. Various algorithms have been invented for image reconstruction 

to solve inverse problem, where regularization is involved to overcome the trouble brought 

by the ill-posed nature of ERT inverse problem. Of these algorithms Tikhonov is one of the 

most traditional and popular. However, the introduction of ‘smoothness’ may lead to 

blurring and result in the degradation of reconstructed images. Studies have shown that 
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total variation can make inroads into preserving the sharpness of the boundary by using 

the 𝑙1 − 𝑛𝑜𝑟𝑚 regularisation function. 

ERT sensors have a few different types, depending on the way of accessing data, and the 

availability of where data could be measured. Circular ERT is commonly applied to relatively 

flexible situations where most sides of the region of interest are accessible, for example, an 

electrode ring could be installed on the wall of the entire pipeline for monitoring purposes. 

However, some cases would have limitations and inconveniences in data collection, where 

only a single side would be available for measurement, for instance, some inclusions buried 

in the ground or inside the water that only the surface would be available for data 

acquisition. The circular electrode model would not be suitable for any such circumstance, 

and a planar array installed on a subsurface ERT sensor would potentially be helpful for 

visualizing the target. Subsurface ERT is similar to a ‘scanner’ for 3D visualization and can be 

useful in various applications, however, it would suffer from additional challenges, 

especially in cases where samples are placed very deep. Current density and the strength of 

electric fields would decay with the distance from the subsurface electrode-plane, and extra 

difficulties are imposing if inclusion leaving far from the planar array. However, compared 

with the planar array and dual-plane sensor for ERT visualization of a pipeline, a 

conventional circular electrode-plane could represent the spatial information of the whole 

medium of interest, but would suffer from a very low resolution along axis-directions 

because of the limited number of rings. Although multiple electrode-plane sensors have 

shown improvements in spatial resolution, it would also place a high demand on the data 

acquisition system since many more electrodes will be involved. The planar array can 

provide assistance in exploring information of the region with less depth. Although the 

center area might be difficult to detect (but also depending on the size of the pipeline and 

planar array), it still capable of generating 3D images with higher resolution on axis-direction 

in its detectable region, which supplements the traditional ERT model using electrode rings 

around the pipeline. In this case, a planar array could potentially be combined with a 

traditional ring model to produce more useful information.  

Subsurface ERT has been studied mostly in clinical applications. In 2000, J.L. Mueller 

presented their work, in which a rectangular electrode array based on EIT was applied to the 

human chest for 3D reconstruction during ventilation and perfusion, suggesting the 
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potential for collecting information about blood volume variations in the chest [133]. 

Following on from that, other clinical applications have also been shown in the last decade, 

such as in, prostate disease [134], and cervical neoplasia [135]. More recently, H. Perez 

presented a method for 3D image reconstruction using a novel electrode configuration in 

the context of breast cancer, where electrodes of current injection and voltage 

measurement work separately [136] .ERT using planar array is actually different with the 

conventional ones with electrode bounded the whole region of interest if the domain of 

interest is infinite (such as ground), and such approach can also term open domain EIT since 

all electrodes are placed on one side, which introduces more challenges on image 

reconstruction. To overcome such an effect, most research approximates it to be an 

enclosed domain, but this brings error, and a recent study proposed to transform the 

original open domain into an enclosed 2D circular domain based on Riemann mapping [137].       

For monitoring purpose, reconstructing high-quality images is always the target. Previous 

works suggest that TV has the capability to produce sharp-edged images and preserve the 

discontinuities between the background medium and the target and is especially suitable 

for big contrasts. The TV regularisation method was firstly proposed by L.I. Rudin and S. 

Osher in 1992 as a denoising algorithm [77]. In comparison, the conventional least-square 

method uses the L2-norm yields linear solutions and can be computed with an algebraic 

framework, whilst TV employing L1-norm is nonlinear and computationally complicated, 

however, research shows that TV functions makes contributions to edge preserving, and 

becomes an appropriate method for noise removal and deals with image restoration. TV 

regularisation has received much attention, especially in electrical tomography in recent 

years. 

In this work, we are aiming to explore the flow visualization approach using a planar array 

with the ERT approach, in addition, numerical measurements of target depths based on 

reconstructed images are studied. Split Bregman TV regularisation has been chosen for 

visualization to test the performance of subsurface ERT, and both simulation and 

experiments are included in this work. Simulation is implemented by modelling a phantom 

with a 4 × 4 electrode planar array on the top surface to demonstrate the feasibility of the 

approach, and the experimental sensor was designed, keeping it consistent with the 

simulated model, in which a series of experiments are validated. Moreover, position error 
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and volume fraction are applied for assessing the image quality, and suggested parameter 

selection method. Furthermore, results based on selected parameters using real data are 

displayed, and spatial gradients along the depth were generated for working out the depths 

that reflected visualized images. The accuracy of the depth detection of the samples is 

shown at the end.   

6.2 Method 
 

The following sections are aimed at exploring the performance of ERT visualization based on 

a planar array, where simulated data and experiments are both conducted for a series of 

analyses. In section 6.2, the measurement strategy is described, and the parameter 

selection of the SBTV procedure is suggested. Some quantitative indices are defined for 

further numerical analysis.     

6.2.1 Data acquisition 

 

Among various current excitation and voltage measuring strategies, the traditional 

neighboring method has been used for data collection. Instead of the ring-electrode model 

that has been discussed in the previous chapter, electrodes are numbered No.1-No.16. Then 

the procedure of excitation and data collection would be the same as explained in Chapter 1. 

The diagrams below show the detailed steps, where the first two excitations are 

represented with numbered electrodes for illustration, and 16 current excitations are be 

conducted.    
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Figure 6.1: Illustration diagram of data measurement procedure.  

 

6.2.2 Image-based depth detection 

 

The depth of the target is detectable based on the 3D reconstructed image of ERT. There are 

two different depths defined. The distance between the CoG of the target and planar array 

is labelled Dc, and the distance Dt measures the distance from the top surface of the target 

to the planar array. Calculation of Dc is given by working out the CoG of target based on 

visualization. The distance Dt is measured with an average distance since the 3D image 

produced by ERT would not be perfect, so it is more accurate to discover the depth Dt of the 

target from different points from the top boundary os the 3D image. Note that the 3D 

images are composed with voxels of 21 × 21 × 21, so the distance can be detected by 

searching downward from a voxel on the top slice through voxels of 1 × 21. In this chapter, 

a 2D slice is extracted from the center, and 3 lines of voxels in the center are taken out for 

calculations of average distance, where  
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𝐷𝑡 =
1

3
(𝐷1 + 𝐷2 + 𝐷3)                                                           (6.1) 

6.2.3 Numerical analysis 

 

In some literature, the void fraction would commonly be utilized for analysis of the 

reconstructed result. In the two-phase, the void fraction is defined as the ratio between the 

disperse phase and continuous phase as stated in Chapter 3. In terms of the static 

experiments that have been discussed in this section, a similar definition is given, where the 

fraction of the 3D object (Volume fraction) is defined as the effective volume ratio between 

the inclusion and the 3D phantom. To evaluate the results that are generated using a planar 

array based on the SBTV algorithm, the error of volume is taken into account for the 

numerical analysis. The true volume of the target is 15.625 cm3, and the calculation of the 

volume of the tested sample is given by the thresholding images. The numerical analysis of 

volume fraction uses the average relative error of volume (REV): 

REV = ave (
|𝑉𝐼𝑀𝐴𝐺𝐸 − 𝑉𝑡𝑟𝑢𝑒|

𝑉𝑡𝑟𝑢𝑒
× 100%)                                        (6.2) 

In many industrial or geophysical applications, the detection aimed at an unknown object in 

a region of interest is very important, where knowledge of the depth of the detected object 

can potentially be suggested by reconstructed images from Subsurface ERT using a Planar 

Array sensor. Therefore, numerical analysis of position error aimed at depth detection is 

critical. Paying attention to the detected depth of the target, the calculation of the Centre of 

Mass of an image can reflect the depth 𝐷𝐶 , and the residual error is given by the numerical 

difference of the depth from the reconstructed image and the actual depth. The numerical 

analysis of the performance of depth detection with subsurface ERT employed average 

relative error (RED): 

RED = ave(
|𝐷𝐼𝑀𝐴𝐺𝐸 − 𝐷𝑡𝑟𝑢𝑒|

𝐷𝑡𝑟𝑢𝑒
× 100%)                                      (6.3) 
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6.2.4 Parameter selection 

 

Although some studies have shown that the SBTV algorithm contributes to improving the 

image quality, different combinations of parameters can largely affect the result of either 

visualization or measurements reflected from reconstructed 3D images. Such situations also 

create a fluctuating residual error which leads to uncertainty if optimal parameters cannot 

be discovered. In addition, the number of parameters, as in the case of SBTV algorithm with 

three parameters, also brings more difficulties as so many combinations of parameters 

make it too hard to make choices. In such situations, the numerical analysis would be 

helpful for making the selections of parameters. In the SBTV algorithm that has been used in 

this chapter, three parameters, mu, lambda and gamma,  are involved in the iterative 

calculations (See equation 2.77-2.81 in section 2.5.2). If optimal parameter selection can be 

made using a training procedure, and those selected optimal parameters are brought for 

further testing, it would be helpful for effectively solving the inverse problem. The main idea 

of parameter selection is choosing those close to the ideal solution, and a range of relative 

error is set up for discovering qualified solutions among lots of parameter combinations. For 

detection purposes using an ERT planar array, the numerical depth and size of the 

reconstructed object were paid close attention. The true depth and volume are calculated 

as the expected ‘ideal’ solution. There were 3375 combinations of parameters produced for 

‘training’, where each set of parameters has a corresponding image. The depth and volume 

can quantitatively be determined from reconstructed 3D images, which give a residual error 

between the solution and the true measurement. If their corresponding error is located 

within the defined range they are considered as optimal parameters. The parameter 

selection process requires the following scheme: 

1. Choose the range of each parameter: 

mu1 = logspace(a1, b1, n1) 

lambda1 = logspace(a2, b2, n2) 

gamma1 = logspace(a3, b3, n3) 

2. Input each combination of parameters and save all corresponding images and 

parameters. 
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for ii=1:n1 

  mu=mu1(ii); 

for jj=1:n2 

lambda=lambda1(jj); 

        for kk=1:n3 

         gamma   =gamma1(kk); 

 

        image=SBTV(mu, lambda, gamma, Data) 

        number=number+1; 

        save_parameter(1,num)=num; 

        save_parameter(2,num)=mu; 

        save_parameter(3,num)=lambda; 

  save_parameter(4,num)=gamma; 

        save_image{num}=image; 

         

        end   

    end       

end 

3. Calculating the true depth and volume, and defining a range of acceptable error.  

4. Parameters are selected based on a residual error of depth/volume. 

 

Figure 6.2: illustration of parameter selection process 

In the following parts, results based on this parameter selection scheme are displayed and 

make discussion, where errors over 10% are filtered out.   
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6.3 Simulation tests 
 

The 3D modelling of ERT using Planar Array has been simulated based on EIDORS. The 

phantom was designed as a cubic tank with a 16 (4×4) circular electrode-plane placed single 

sided. The background medium has been given a conductivity of 1, while a sphere with 

various locations and depth as an inclusion with a conductivity of 10. Excitation current was 

set at 0.1 mA, and the current pattern has been chosen as a neighboring excitation and 

measurement method. Figure (6.3) displayed below shows the forward modelling of such a 

planar array, and the specifications of sizes of different components of the model are 

illustrated in Table (6.1). In the 3D coordinate system, the subsurface ERT model is defined 

within the range of −7𝑐𝑚 < 𝑥 < 7𝑐𝑚,−12.5 𝑐𝑚 < 𝑦 < 12.5 𝑐𝑚,−14 𝑐𝑚 < 𝑧 < 0, with 

the geometrical centre of the electrode-plane being located at the origin of 

coordinates(0, 0, 0). The coordinates of all electrodes are specified in Table (6.2), and the 

Sensitivity map of the Planar Array is drawn by Mayavi as shown in Figure (6.4). In this 

section, different locations with varying depths of the sample are set-up for the simulation 

test, and reconstructed images are displayed in Tables (6.3)-(6.5).   

 

Figure 6.3: Forward modeling of planar array using EIDORS 
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Table 6.1: Specifications of simulation phantom of Planar Array 

Items Size  

Number of electrodes 16  

Length  25cm 

Width   14cm 

Depth  14cm 

Diameter of circular electrodes 0.85cm 

 

Table 6.2: Locations of each electrode. The electrode number in this table is keeping 

consistence with how it was numbered in forward modeling, and coordination of 16 

electrodes has been given for illustration.   

Electrode 1 Electrode 2 Electrode 3 Electrode 4 

(-4.1 , 4.1) (-1.3 , 4.1) (1.3 , 4.1)  (4.1 , 4.1) 

Electrode 8 Electrode 7 Electrode 6 Electrode 5 

(-4.1 , 1.3) (-1.3 , 1.3) (1.3 , 1.3) (4.1 , 1.3) 

Electrode 9 Electrode 10 Electrode 11 Electrode 12 

(-4.1 , -1.3) (-1.3 , -1.3) (1.3 , -1.3) (4.1 , -1.3) 

Electrode 16 Electrode 15 Electrode 14 Electrode 13 

(-4.1 , -4.1) (-1.3 , -4.1) (1.3 , -4.1) (4.1 , -4.1) 
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Figure 6.4: Sensitivity mapping of Planar Array drawing by Mayavi 

 

Table 6.3: Results of image reconstruction in simulation test by placing the sample in the 

center of the electrode-plane with a depth of 2cm, 3cm and 4cm.  

 

Depth True image from simulation Reconstructions 
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2cm 

 

 

 

3cm 

 

 

4cm 
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Table 6.4: Results of image reconstruction of simulation test by placing the sample near the 

out boundary of the electrode-plane with a depth of 2cm, 3cm and 4cm.  

 

Depth True image from simulation Reconstructions 

2cm 

 
 

3cm 

 

 

4cm 
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Table 6.5: Results of image reconstruction of simulation test by placing the sample near the 

out boundary of the electrode-plane with a depth of 2cm, 3cm and 4cm.  

 

Depth True image from simulation Reconstructions 

2cm 

 

 

3cm 
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4cm 

 

 

 

 

Depths of 2cm, 3cm, and 4cm have been chosen as distances between the center of the 

target and the planar array to make detections based on the shape of the sensitivity map. 

The simulated sample was placed at different positions with 3 different depths. In tables 

(6.3) and (6.5), the visualization results are displayed with corresponding true images placed 

on the left-hand side. According to the results shown in the tables above, visualizations 

produced using a planar array show consistence in various locations. At different depths of 

each location, the reconstructed 3D objects are showing agreement on tendency, with 

changes in the distance between the object’s top surface and electrode-plane being 

recognized.  

Since images are reconstructed from targets that are placed at different positions and 

depths, the numerical depths explored should be feasible based on visualized results using 

the TV algorithms with optimal parameters. If the depth is measured from the planar array 

to the center of the object, the Centre of Mass (CoM) of the recovered 3D object can be 

calculated based on the thresholding image. Results of the depth measurement based on 

visualization are shown below: 
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Table 6.6: Detected depth of different locations from simulation tests. 

Locations\True 

Depth 

2cm 3cm 4cm 

Center 2.0328cm 3.0167cm 4.032cm 

Left 2.078cm 3.037cm 4.11cm 

Right 1.922cm 3.03cm 3.78cm 

    

 

Figure 6.5: Plots of the reflected distance of the target from images based on simulation 

In terms of the image quality before quantitative analysis, all images are showing a sharp 

edge on the top surface, and the other side is very smooth. Degraded 3D images are 

observed since the volume gets bigger as the distance moves further down. Numerical 

calculations of distance detected by ERT planar array based on simulation data are 

represented, and Figure (6.5) brings them together as line graphs to make a comparison. 

The black line indicates the true distance, and others are given by the quantitative results 

that are suggested from positions shown in Table (6.6). Regarding these numerical distances, 

results from all positions are showing a better performance with 2cm and 3cm, while it 

starts to degrade at the depth of 4cm. Comparing the different positions, the one at the 

center of the planar array gives a slightly better result as the calculated distance is closer to 

the true distance, with the others showing a little further deviation. In general, the 

simulation results display a successful visualization as well as providing the quantitative 
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measurement result of depth detection, which suggests that it would be feasible to explore 

information based on ERT using a planar array. In the next section, experiments using a 

phantom are engaged to validate this idea.    

 

6.4 Experimental validation and results 

 

Conductivity mapping across the region of interest would theoretically be re-distributed if 

the inclusion changed the locations or depth, therefore Subsurface ERT could potentially be 

applied to detecting or monitoring an invisible and unknown sample underneath a surface 

with real data. The previous section has shown reconstructed images with the sample at 

different depths and locations using simulation data, and compared detected distance 

based on visualization, which quantitatively showed agreement with the true distance, 

hence demonstrating the feasibility of sample detection using subsurface ERT. In this section, 

experimental validation has been engaged based on real experimental data collected from a 

designed Planar Array sensor. The main body of the designed physical planar array sensor 

for experiments is made from a transparent cubic tank with the electrode plane on the front 

surface, enabling it to contact the medium inside the tank. As shown in the photo of Figure 

(6.6), the size of the tank is 14 cm(length) × 14 cm(width) × 25cm(height), and the 4 × 4 

electrode-plane is fixed with a diameter of 0.85cm for all the circular electrodes. The EIT 

Swisstom Pioneer system has been utilized for data collection, where a current with an 

amplitude of 1mA and frequency of 195 KHz has been chosen as the excitation source. The 

experimental sensor was designed to be consistent with the simulation model. A metal cube 

with a size of 2.5 cm × 2.5 cm × 2.5 cm was chosen as a testing sample in a series of 

experimental tests, and tap water filled the tank as a background conductive liquid. 

Background measurement data using a planar array sensor is compared with simulation 

data, and Figure 6.7 shows consistent agreement.  
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Figure 6.6: Planar Array experimental sensor for 3D image reconstruction: this sensor is 
designed for different works, in this study, electrodes placed on the single side are used for 
experiments, and the second array did not involve in this work. 

 

Figure 6.7: Comparison of normalized background data from simulation and experiment 
with EIT Planar Array 

 

Position and depth tests are applied in this section, where the target has been placed at 

different positions and depths for each test. To simplify the illustration of each location of 

the sample, the region has been divided into a few areas, as shown in Figure (6.8). The top-

view of the sensor has a 3 × 3 grid formed by the 16 electrodes, and each area could be 

renamed (for simplified description) as: Middle-left (ML), Middle-right (MR), Centre (C), 
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Upper-left (UL), Upper-middle (UM), Upper-right, Lower-left (LL), Lower-middle (LM), 

Lower-right (LR).  

 

Figure 6.8: Simplified drawing of Subsurface ERT sensor 

 

6.4.1 Position and depth detections  

 

Above all, the capability of detecting different positions underneath the planar array is 

investigated. The metal cube has been placed at 6 positions with the same depth. Table 6.7 

shows the pictures of the position detection experiments, and the reconstructed images 

using the SBTV algorithm are displayed in the right column.   
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Table 6.7: Optimized image reconstruction of position detection. The inclusion was placed 

on different locations to planar electrode array.  

Locations Photos (view from electrode 

plane) 

Experimental results (optimized images) 

ML 

 
 

MR 

 
 

C 
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UL 

 
 

UM 

  

UR 

  

In order to produce good quality images using the experimental data, some quantitative 

parameters defined in section 2(c) are conducted for the purpose of selecting optimal 

parameters to be involved in the SBTV algorithm. The procedure of parameter selection was 

presented in section 2(d) in detail.  

The SBTV algorithm has three parameters. The choice of the parameter can largely affect 

the reconstruction results when using TV regularization, and the residual error in numerical 

depth and volume are largely fluctuating. Figure 6.9 shows the results of numerical depth 

and volume with various combinations of parameters, such results mean some of the 

reconstructed images are actually very far from the truth and bias the expected result. 
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Hence, parameters should be optimized to obtain expected results. Manual parameter 

selection would require experts who are familiar with the TV algorithm and have knowledge 

of how each parameter would affect the image. However, TV regularisation is complicated, 

and such work would be time-consuming, and there were no much works suggesting how 

each parameter influence the reconstructions.  

 

Figure 6.9: Plots of calculated volume and detected depth of the target based on 
reconstructed images using Planar Array with 3375 combinations of parameters.  
 

 

Figure 6.10: Results after applying parameter selection are displayed with the acceptable 
error of 10% on numerical depth and volume   
 

Parameter selection in this chapter was manipulated using the procedure stated in the last 

section, where results with residual errors under 10% are considered acceptable. Results 

showing that relative error in the volume calculation of the target could be controlled to 

around 5% in all positions and different depths, which lead to the error being about 0.78 
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cm3. In depth detection, the average residual error of the tested depth of up to 3cm could 

be controlled to be 0. For the depth of 4cm, the error in the center is slightly lower than 

other locations, and results located in the corners are showing a higher average relative 

error. However, for the planar array sensor that is employed in these experiments, the 

depth of 4cm is generally the detectable limit, since measurements would not react to 

further distances for such a small sensor, and such numerical analyses indicate the 

consistence between the result and the sensitivity mapping.   

 

A series of experiments were conducted with the metal target hanging at positions UL, UM, 

UR, ML, C and MR with depths of 2cm, 3cm and 4cm measured from the center. For 

distances further than 4cm, the difference in measurement data from electrodes is hardly 

detectable, which indicates a detection limitation of the planar sensor of such a physical size.  

Table 6.8: Numerical analysis of errors of reconstructed sample volume with respect to the 
actual volume of 15.625 cm3 

Depth(cm)/ 

error/ 

locations 

UL UM UR ML Center MR 

2 

Measured 

volume / 

REV (%) 

15.380 

cm3/4.96%  

15.560 

cm3/4.80% 

15.953cm3/5.7

0% 

15.819cm3/5.6

6% 

16.177cm3/6.5

% 

15.626cm3/5.2

8% 

3 

Measured 

volume / 

REV (%) 

15.849cm3/5.1

0% 

15.825cm3/4.5

4% 

15.575cm3/5.7

4% 

15.858cm3/5.7

% 

15.790cm3 / 

5.47% 

16.445cm3/6.8

% 

4 

Measured 

volume / 

REV (%) 

16.169cm3/6.8

3% 

16.402cm3/6.6

6% 

15.814cm3/5.4

4% 

16.400cm3/5.0

% 

16.100cm3/6.0

9% 

15.997cm3/5.0

5% 
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Table 6.9: Numerical analysis of position errors of reconstructed sample with respect to 

actual depth 

Depth(cm)/ 

error/ locations 
UL UM UR ML Center MR 

2  

Measured 

Depth / 

RED (%) 

2cm/0% 2cm/0% 2cm/0% 2cm/0% 2cm/0% 2cm/0% 

3  

Measured 

Depth / 

RED (%) 

3cm/0% 3cm/0% 3cm/0% 3cm/0% 3cm/0% 3cm/0% 

4  

Measured 

Depth / 

RED (%) 

3.745cm/6.80

% 

3.778cm/6.23

% 

3.916cm/5.61

% 

3.859cm/5.62

% 

3.792cm/5.28

% 

3.816cm/5.66

% 

 

According to many experimental tests, it was discovered that optimized parameters based 

on volume fraction/ depth might not be the optimal combinations for detecting precise 

depth/ volume. In other words, the position error could still be large or over the expected 

standard although the volume is very close to the actual size of the tested sample, or ones 

with accurate depth might have an enlarged/shrunken volume of the target. For solving 

such a problem, joint constraints for training can be made to find out an ‘overlapping’ that 

satisfies both conditions. The flow chart illustrates the process of training. The position error 

is considered prior to the volume as the accuracy of depth is more important for detection 

purposes.  

 

Figure 6.11: Flowchart of parameter optimization 
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Table 6.10: Image reconstruction of depth detection. Various depth was applied to each set 

with the metal cubic inclusion parallel to the center of the electrode plane. 

Depth  Photos Experimental results 

2cm 

 
 

3cm 

  

4cm 
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6.4.2 Analysis of gradient  

 

Since the TV algorithm can reconstruct an image with a sharp boundary, the spatial gradient 

has the potential to explore useful information. visualizations of subsurface ERT in Figure 

(6.10) shows results using selected parameters with new experimental sampling data at 

different depths. Apparently, the recovered object has a sharp boundary on the side that is 

closest to the sensor, which corresponds to the distance between the top surface of the 

sample and the planar array if the image quality is high enough. The spatial gradient is given 

by the difference in conductivity distribution along the direction of interest. Smooth 

distributions would generate a gradient that is slowly stepping up/down, while a sharp 

gradient suggests a sharp boundary. The spatial gradient in the direction of depth is capable 

of discovering the upper boundary of the object which reflects the distance measured from 

the top surface to the electrode-plane.   To conduct such an approach, new sampling data at 

depths of 2cm, 3cm, and 4cm are tested.   

 

Figure 6.12: Visualization results of center position with various detection depth 

 

Table 6.11: Distance measurement results based on images reconstruction reflected by 

spatial gradient 

Depth 2cm 3cm 4cm 

Distance 

( on top 

surface) 

7.5mm 17.5mm 27.5mm 
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Spatial 

distribution 

   

Spatial 

Gradient 

 

 

 

  

Reflected  

distance 

(mm) 

6.67mm 13.33mm 20.00mm 

Average 

Accuracy (%) 
89.3% 76% 72.7% 

 

The table above displays the spatial distribution conductivity values against the number of 

elements, where the reconstructed 3D image is composed of 21× 21 × 21 elements. From 

the spatial distribution graphs, the growing tendency at the beginning is very smooth and 

steady and has a sharp change at the end. Such a result suggests the change of the 

sharpness along the direction of interest. The parts before and after the peak point 

correspond to the area underneath and above the top-boundary on reconstructed images. 

Sharpness on the top is far more than the region below the sample, this clarifies the truth 

that more information of the area near the top surface is recorded by electrodes, whilst 

missing data, as well as a weakened electric field on the other side, lead to a smoothing 

object boundary on reconstructed images. The absolute gradient demonstrates how fast the 

conductivity distribution varies along the plotted direction. The maximum peak value 

estimates the location of the upper boundary, and the corresponding pixel number on the 

2D slice could be read from the x-axis, which is related to the distance between the upper 
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boundary and the subsurface sensor. Results suggest the accuracy of measuring distance 

using this method, and more error would be introduced with further distance to the planar-

array due to image quality degradation. Numerical results show an accuracy of 89.3%-72.7% 

when the distance went from 2cm to 4cm. The number of elements that are setting up the 

reconstructed 3D images is actually limited for the purpose of saving computational time, 

and a 2D cross-sectional slice from the 3D image only contains 441 elements. Along the 

direction of depth, the limit number of elements may lead to degraded accuracy in 

calculations of distance. For the application stage in the future, an improvement in the 

element number would potentially contribute to a more precise measurement based on 

image reconstruction.   

6.5 Conclusion 

 

ERT is a visualization technique that produces images based on a sensitivity map and 

measurement data from electrodes in contact with a region of interest. Applications that 

use ERT can benefit from its features of high time resolution, low cost, and non-invasive. 

However, the inverse problem of ERT is ill-posed, and reconstructed images suffer from a 

low spatial resolution, especially in the cases of missing data. Subsurface ERT has been 

researched for a few decades. It is still a challenging problem despite many efforts has been 

put into many applications since the image quality might be degraded due to decaying of 

the current density on the region with deep distance. To detecting the depth of the targets, 

it is required to optimize the image quality, as a perfect image could reflect numerical 

parameter measurements. Total variation is capable of preserving the edge of the detected 

targets, although ERT planar array sensors suffer from data missing on the other side, a 

sharp boundary on the top surface is still observed. The visualized information of the 

target’s topside is more critical while the bottom may be less important for sample 

detection purposes. Therefore, utilization of the TV algorithm can improve the image quality 

and spatial resolution of ERT reconstructed images, and visualizations of conductive objects 

in pipelines with ERT has great potential. In this chapter, the capability of the planar array 

has been investigated using a series of simulation and experimental phantom tests. 

Simulation has shown the feasibility of depth detection using an ERT planar array, and 

experiments have been carried out based on the simulation modelling. Visualization results 
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employing Split Bregman TV have been shown and discussed, where few quantitative 

parameters are defined for evaluating reconstructed images. In addition, a simple method 

has been suggested to select parameters aiming at producing qualified images. The imaging 

results showing that an ERT planar array with an overall size of 4.5cm×4.5cm could monitor 

to a depth of around 4cm, with a depth detection accuracy of up to 89.3%.   
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Chapter 7 Conclusions and Future Work 
 

7.1 Conclusion 
 

The purpose of this thesis is presenting works aiming at developing a better understanding 

on the boundary of materials by improving the performance of 2D/3D ERT for visualisations 

and quantitative analysis for potential applications in industrial flow pipelines, as the new 

emerging ERT technique is low-cost, has a high temporal resolution and is non-invasive for 

the tested targets. Many efforts have been made to upgrade the image quality by analyzing 

the inverse problem of 2D/3D dynamical ERT to improve the spatial/temporal performance 

of visualizing a moving target in a process tomography problem. The main contributions are 

based on TV regularisations, and a novel STTV algorithm is proposed to impose temporal 

information which is first being applied to dynamical ERT imaging. In addition, two types of 

sensors, conventional circular dual-plane sensors, and planar array sensors are investigated. 

Both sensor types have their own advantages, and a combination can potentially contribute 

to a high resolution, quality image. The contents of each chapter progressively demonstrate 

the procedures of gradually reaching the subjects. Each chapter of this thesis presents a 

specific problem, and the methods with valuable results are deeply discussed.  

Previous works regarding the historical background and applications of ERT are reviewed in 

Chapter 1, where it proposes problems to be solved as well as procedures used in this thesis. 

Forward modelling and image reconstruction are two of the most important subjects for 

ERT. The Matlab-based software package known as EIDORS has been employed for 

assistance for forward modelling, and basic theory, including Maxwell’s equations, forward 

mathematical modelling, basics of FEM and Jacobian, are reviewed and simple 

mathematical derivations are conducted.  In the second chapter are the contents of ERT 

algorithms for solving the inverse problem, where two algorithms for static imaging, 

Tikhonov regularisation and Split Bregman Total Variation, are illustrated, and another two 

regularisations aiming at temporal imaging, Spatiotemporal Total Variation method and 

Temporal one-step solver, are demonstrated.  

In chapter 4, a novel temporal regularisation method STTV for 2D dynamical imaging is 

proposed, and in particular, it represents how STTV performs for applications of a sharp 
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temporal 2D ERT visualization, which has never been attempted in ERT. ERT is a high 

temporal-resolution tomography modality, so STTV is supposed to be suitable for exploiting 

information along with both time and space. Experimental works are conducted by 

comparing STTV with the previously proposed temporal algorithm TOS. Quantitative 

analysis of reconstructed dynamical images, especially time response, show that the good 

sharpness of images from STTV benefits from a faster time response to the dynamical 

changing in the time domain. In this case, STTV not only shows a good performance in 

exploring spatial information, but also contributes to temporal information. Process 

tomography requires the exploitation of temporal information, which is difficult for 

conventional algorithms. This work suggests that STTV can help to develop more 

applications in industrial flow pipelines for dynamical processes.  

In Chapter 5, 3D ERT with circular sensors is investigated with the extended STTV temporal 

algorithm. It represents the performance of STTV for monitoring a moving object. In 

addition, calculations of the velocity profile are expected in this work, and the cross-

correlation method is supposed to be used to deal with the numerical calculation of time 

delay in order to work out the average speed of the moving target. By applying such an idea 

to both 2D and 3D ERT in simulation studies, the feasibility has been investigated. 

Experiments validate such a method, and the result of both image reconstructions and 

numerically calculated velocity are discussed. It verifies that a good time response is 

important in dynamical processes using a tomography-based method for the purpose of 

tracking or numerical analysis. Improvement of image quality can contribute to good time 

response and also spatial resolution, which means a better accuracy for quantitative 

calculations during the dynamical process. STTV can produce images with higher quality by 

benefitting from the capability of exploiting information from both spatial and temporal 

domains of the 3D imaging. The published journal paper suggested that such research work 

can potentially be developed for the real multiphase flow in industrial applications in the 

future. 

Chapter 6 investigates 3D ERT with planar array sensors for further extending flow 

applications. Simulation and experiments are conducted, and both use SBTV for image 

reconstruction. Planar array sensors can represent better spatial distribution in axis-

direction of flowing pipe compared with the sensor with two circular rings, although the 
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detectable region is relatively limited. However, these two types of 3D ERT can be combined 

to be a fusion-sensor, where a circular sensor can explore information concentrating on the 

center (undetectable for planar array) area, and the planar array sensor is responsible for 

visualizing the regions close to the electrode-plane. In other word, the performance of 3D 

ERT can be upgraded with the assistance of planar array based on the conventional 

multiple-ring circular sensor.  

7.2 Future works 
 

In this thesis, ERT for the application of flow imaging and basic measuring are researched by 

applying the novel temporal TV algorithm to 3D dynamical ERT, and also suggests that the 

information exploration can be better conducted using an ERT Planar array for 3D 

visualization, which further proposes the idea that two sensor types can be combined as a 

joint sensor that assembles the advantages of both. However, future works are still required 

for reaching the final target of being a mature technique in practical applications. In addition, 

this research can also be developed into more applications aside from flow visualizing. A list 

of further works and applications are suggested below:     

 

 Fusion-sensor for image quality improvement of 3D ERT  

In chapters 5 and 6, circular-ring and planar-array sensors are developed and evaluated 

separately. Although both show acceptable results in image reconstructions and numerical 

measurements, the approaches of combining information from both sensors are critical. 

With more complete information, theoretically, image quality can potentially be upgraded. 

For further study, a fusion-senor for 3D ERT should be designed, and more effort should also 

be made on information integration. Simulation and experimental validations can be 

conducted for evaluating the image quality from this method.   

 

 Real flow system 

All experimental data collected are from designed phantoms. Phantom studies are essential 

before applying novel ideas to real life, and real flow should be tested in the next stage of 

this work. Big differences exist between semi-dynamical movements conducted by phantom 
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studies and actual multi-phase flow in an industrial flow system. More noise will be present 

from different sources, such as, flow regime and pressure drop, which can bring many 

challenges. For the purpose of laboratory research, a small flow system can be designed to 

conduct flow loops with the generation of various flow regimes and enable data 

measurement via ERT sensors.          

 

 3D Flow Rheology with fusion-sensor 

Rheology generally describes the deformation behavior of materials. Regarding the motion 

of flow, deformation appearance is actually applied to fluid surfaces, which also lead to an 

inhomogeneous velocity of each spatial element. The combination of ERT sensors can 

potentially visualize real flow and also employ a velocity profile of the real flow. The circular 

ERT sensor can reflect information of the entire region, but the spatial resolution between 

electrode rings are low, whilst Planar array ERT sensor can exploit more information on the 

axis-direction of the pipe, which provides additional spatial information of flow pipes.      

 

 Open domain ERT imaging using a planar array 

 

Chapter 6 investigates the performance of subsurface ERT using TV algorithms, and the 

feasible domain of depth detection has been suggested with numerical analyses. In terms of 

the planar array sensor, it can be developed for open domain 3D ERT imaging. For most 

scenarios, the sensor cannot move as electrodes are normally directly connected to the 

solid medium, such as, the wall of the pipe or the ground. For the case that the domain 

being tested is a flexible liquid, a sensor board with electrodes embedded into it can be 

designed to enable the sensor to float on the top surface. On one hand, the movement of 

the sensor board can scan the top of the liquid medium to enable dynamical imaging using 

the planar array, on the other hand, horizontal rotation of the sensor board can collect 

more data for visualizing for more complete information underneath the domain.     

 

 Control with temporal TV algorithm 
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Tomography-based control systems can potentially be developed in the future. In industrial 

processes, quantitative parameters are important. For example, the monitoring of oil-water 

two-phase flow can reflect information relating to, for instance, water disposal or 

reinjection. For the purpose of control, a real-time modality with a high time response is 

required. Based on the discoveries of the temporal TV algorithm showing a good time 

response, it could potentially be applied to a real-time visualization technique for exploiting 

information from the objects, and reflect quantitative factors for the purpose of control.  
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