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Abstract:

Background: Two major constituents of cannabis are Δ9-
tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is the main 
psychoactive component; CBD may buffer the user against the harmful 
effects of THC. 
Aims: We examined the effects of two strains of cannabis and placebo on 
the human brain’s resting-state networks using fMRI. 
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Methods: 17 healthy volunteers (experienced with cannabis, but not 
regular users) underwent three drug treatments and scanning sessions. 
Treatments were cannabis containing THC (Cann-CBD; 8mg THC), 
cannabis containing THC with CBD (Cann+CBD; 8mg THC + 10mg CBD), 
and matched placebo cannabis. Seed-based resting-state functional-
connectivity analyses were performed on three brain networks: the 
default mode (DMN; defined by positive connectivity with the posterior 
cingulate cortex: PCC+), executive control (ECN; defined by negative 
connectivity with the posterior cingulate cortex: PCC-) and salience 
(SAL; defined by positive connectivity with the anterior insula: AI+) 
network. 
Results: Reductions in functional connectivity (relative to placebo) were 
seen in the DMN (PCC+) and SAL (AI+) networks for both strains of 
cannabis, with spatially dissociable effects. Across the entire salience 
network (AI+) Cann-CBD reduced connectivity relative to Cann+CBD. 
The PCC in the DMN was specifically disrupted by Cann-CBD and this 
effect correlated with subjective drug effects including feeling ‘stoned’, 
and ‘high’. 
Conclusions: THC disrupts the default mode network and the PCC is a 
key brain region involved in the subjective experience of THC 
intoxication. CBD restores disruption of the salience network by THC, 
which may explain its potential to treat disorders of salience such as 
psychosis and addiction. 
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38 Abstract

39 Background: Two major constituents of cannabis are 9-tetrahydrocannabinol (THC) and 

40 cannabidiol (CBD). THC is the main psychoactive component; CBD may buffer the user 

41 against the harmful effects of THC. 

42 Aims: We examined the effects of two strains of cannabis and placebo on the human brain’s 

43 resting-state networks using fMRI. 

44 Methods: 17 healthy volunteers (experienced with cannabis, but not regular users) 

45 underwent three drug treatments and scanning sessions. Treatments were cannabis 

46 containing THC (Cann-CBD; 8mg THC), cannabis containing THC with CBD (Cann+CBD; 8mg 

47 THC + 10mg CBD), and matched placebo cannabis. Seed-based resting-state functional-

48 connectivity analyses were performed on three brain networks: the default mode (DMN; 

49 defined by positive connectivity with the posterior cingulate cortex: PCC+), executive control 

50 (ECN; defined by negative connectivity with the posterior cingulate cortex: PCC-) and 

51 salience (SAL; defined by positive connectivity with the anterior insula: AI+) network. 

52 Results: Reductions in functional connectivity (relative to placebo) were seen in the DMN 

53 (PCC+) and SAL (AI+) networks for both strains of cannabis, with spatially dissociable effects. 

54 Across the entire salience network (AI+) Cann-CBD reduced connectivity relative to 

55 Cann+CBD. The PCC in the DMN was specifically disrupted by Cann-CBD and this effect 

56 correlated with subjective drug effects including feeling ‘stoned’, and ‘high’.

57 Conclusions: THC disrupts the default mode network and the PCC is a key brain region 

58 involved in the subjective experience of THC intoxication. CBD restores disruption of the 

59 salience network by THC, which may explain its potential to treat disorders of salience such 

60 as psychosis and addiction.

61
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66 Introduction

67 Cannabis has been used by humans for thousands of years for medical, spiritual, and 

68 recreational purposes. Two of the main psychoactive ingredients of cannabis are 9-

69 tetrahydrocannabinol (THC) and cannabidiol (CBD). As well as making people “stoned”, THC 

70 produces amnestic, anxiogenic, and psychotomimetic effects (including perceptual 

71 distortions, paranoia, disruptions of cognitive functions, and euphoria; D’Souza et al., 2004), 

72 by acting as an agonist at endocannabinoid 1 (CB1) receptors (Pertwee, 2008). CBD’s effects 

73 have been less well studied, but early findings suggest it may have somewhat opposite 

74 effects, being anti-psychotic (Leweke et al., 2012), and perhaps anxiolytic (Bergamaschi et 

75 al., 2011). CBD is non-intoxicating,  and has a more complex neuropharmacological profile, 

76 including reducing the cellular reuptake and hydrolysis of anandamide, antagonism of the 

77 orphan receptor GPR55 and the 5-HT1A receptor, and  antagonism of the CB1 receptor with 

78 a low affinity (Pertwee, 2008).

79

80 THC is also largely responsible for providing many of the subjective effects of intoxication 

81 that recreational users seek (Curran et al., 2002). Concern has recently been raised about 

82 the high levels of THC found in modern cannabis, alongside  minimal, if any, levels of CBD 

83 (ElSohly et al., 2016; Niesink et al., 2015). This high-strength cannabis (often referred to as 

84 ‘skunk’) is popular with users, but is also hypothesised to be responsible for the dramatic 

85 increase in reporting of cannabis-related health issues in recent years; most notably 

86 addiction, and cannabis-induced psychosis (Di Forti et al. 2009; Freeman et al., 2018; 

87 Freeman and Winstock, 2015). Because of its putatively opposing psychological and 

88 pharmacological effects, cannabis that contains higher levels of CBD may be a safer option 

89 on the basis that CBD may buffer the user against the main negative effects of THC (Curran 

90 et al., 2016; Englund et al., 2013; Hindocha et al., 2015; Niesink and van Laar, 2013).

91

92 As cannabis transitions to legal/decriminalised status in many jurisdictions, understanding 

93 the neural effects of different strains of cannabis (with different levels of THC and CBD) is 

94 now a priority for public health. Functional Magnetic Resonance Imaging (fMRI) is a popular 

95 method for indexing drug effects (Bourke and Wall, 2015; Iannetti and Wise, 2007), with 

96 resting-state fMRI (Fox and Raichle, 2007; Luca et al., 2006) particularly useful, as it can 

97 derive results from multiple brain systems, and provides a sensitive index of drug effects 

98 (e.g. Carhart-Harris et al., 2015; Kaelen et al., 2016). The DMN is perhaps the most 

99 prominent and well-studied resting-state network and its activity increases in periods of 
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100 wakeful rest, and during internally-focussed states such as autobiographical memory 

101 retrieval (Buckner et al., 2008). In contrast, its complementary network (the Executive 

102 Control Network, or ECN) is most active when subjects are engaged on an external task (Fox 

103 et al., 2005). The Salience network (Seeley et al., 2007) is involved in the detection of 

104 emotional and sensory stimuli, and may be responsible for the switch between internally-

105 focussed states supported by the DMN, and externally-focussed states supported by the ECN 

106 (Goulden et al., 2014). Unfortunately the differential effects of herbal cannabis with 

107 different concentrations of THC and CBD on these networks is largely unknown. Most 

108 previous neuroimaging studies using an acute drug challenge have focussed on the effects of 

109 synthetic THC (e.g. Klumpers et al., 2012). Bossong and colleagues (2013) demonstrated 

110 acute disruptive effects of synthetic THC on the Default Mode Network (DMN), but in the 

111 context of an executive function task, with less effect on task-related brain regions. A recent 

112 study has also found similar results (reduction in default mode function) using the CB1 

113 neutral antagonist tetrahydrocannibivarin (THCv; Rzepa et al., 2016). Another set of studies 

114 has compared oral synthetic THC and CBD, and found opposite effects of the two treatments 

115 on a range of functional and perceptual tasks, including differing effects on brain regions 

116 involved in salience processing (Bhattacharyya et al., 2010, 2012, 2014; Winton-Brown et al., 

117 2011). Further studies have focussed on other resting-state connectivity networks, including 

118 corticostriatal connectivity (Grimm et al., 2018; Ramaekers et al., 2016), and the insula and 

119 frontal lobe (van Hell et al., 2011)

120

121 Our aim was to use fMRI to directly investigate the effects of different strains of herbal 

122 cannabis on resting-state functional connectivity, using one strain containing high levels of 

123 THC but negligible levels of CBD (Cann-CBD), and another strain containing more balanced 

124 levels of THC and CBD (Cann+CBD). Both treatments were matched for total THC content, 

125 and were compared to placebo cannabis (containing neither compound), which was well 

126 matched for terpene content and therefore had the same smell and appearance as active 

127 treatments. We hypothesized that the Cann-CBD treatment would induce more disruption 

128 (i.e. reductions in functional connectivity measures) in resting-state networks than the 

129 Cann+CBD strain.

130  
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131 Methods

132

133 Design and Participants

134 A randomised, crossover, placebo-controlled, double-blind design was used to compare 

135 cannabis containing both THC and CBD (Cann+CBD), cannabis containing THC but no CBD 

136 (Cann-CBD), and matched placebo cannabis containing neither compound. Participants were 

137 randomly assigned to one of three treatment order conditions, based on a Latin Square 

138 design. In order to eliminate potential carry-over effects, scanning sessions were separated 

139 by wash-out periods of at least one week, which is more than three times the elimination 

140 half-life of THC (Hindocha et al., 2014, 2015). Additional data from this study have been 

141 published elsewhere (Freeman, Pope, Wall, Bisby, Luijten, Hindocha, Mokrysz, Lawn, 

142 Bloomfield, et al., 2017; Lawn et al., 2016).

143

144 Participants were 17 (9 female) healthy volunteers. Inclusion criteria were age between 18-

145 70, cannabis use 3 times per week and ≥4 times in the last year, and fluency in English. ≤

146 Exclusion criteria were previous negative experiences with cannabis, alcohol use >5 times 

147 per week, other illicit drug use > twice per month, current/history of psychosis, 

148 current/history of psychosis in an immediate family member, colour blindness, any other 

149 physical health problems deemed clinically significant, and general MRI contraindications. 

150 The mean age of subjects was 26.2 (SD = 7.1), and they reported using cannabis an average 

151 of 8.1 days per month (SD = 5.5). Full demographic data and information about current drug 

152 use for the group is provided in the supplementary material (Table S1). The study was 

153 approved by the University College London (UCL) Ethics Committee and was conducted in 

154 accordance with the Declaration of Helsinki. Subjects provided written informed consent, 

155 were reimbursed £7.50/hour, and could also win extra money via completion of other tasks 

156 (not reported here).

157

158

159 Drug Administration

160 Cannabis was sourced from Bedrocan (The Netherlands) and stored in foil-sealed pouches at 

161 -20°C, and then at ambient temperature immediately prior to administration. All three 

162 varieties of cannabis were well matched in terms of appearance and smell, and the same 

163 amount of cannabis (133.4mg) was administered in each session (see (Lawn et al., 2016) for 

164 full details of the dosing regime). Target doses were 8mg THC and 10 mg CBD (in the 
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165 Cann+CBD treatment) and 8mg THC (in the Cann-CBD treatment). This is equivalent to 

166 roughly 25% of an average UK joint, assuming a roughly 10% THC content (Freeman et al., 

167 2014). Doses were vaporized in a Volcano Medic Vaporizer (Storz and Bickel, Tuttlingen, 

168 Germany) at 210ºC, and the resulting vapour was collected in two balloons. These were 

169 inhaled sequentially at the participants’ own pace, with each inhalation held in the lungs for 

170 eight seconds, until the balloons were empty. This administration protocol using a vaporizer 

171 and inhaled balloons was similar to previous studies that have produced clear behavioural 

172 and brain effects with similar dosages (Bossong et al., 2009; Hindocha et al., 2015; Mokrysz 

173 et al., 2016).

174

175 Procedure

176 Participants completed a baseline/screening session consisting of task training (outside of 

177 the MRI scanner), video training for the vaporizer protocol, heart rate and blood pressure 

178 readings, and trait measures (BDI, TEPS, SDS, drug history). Subjects were asked to refrain 

179 from drug and alcohol use for 24 hours before each test session, and each session began 

180 with a urine screen to confirm recently reported drug use. Approximately 30 minutes 

181 following drug administration, participants were situated in the MRI scanner, and completed 

182 an approximately one-hour scanning session. The scanning session included standard 

183 anatomical scans, a music listening task (Freeman et al., 2017) a memory task, and a resting-

184 state scan (reported herein). Ratings of subjective effects using Visual Analogue Scales (VAS) 

185 were administered immediately before the drug dosing, approximately five minutes after 

186 drug dosing, and approximately 90 minutes after drug dosing (after the MRI scan). These 

187 consisted of the following items: “Alert”, “Happy”, “Anxious”, “Paranoid”, “Mentally 

188 impaired”, “Stoned”, “High”, “Feel drug effect”, “Like drug effect”, “Dry mouth”, “Enhanced 

189 colour perception”, “Enhanced sound perception”, “Want to listen to music”, “Want food”, 

190 and “Want more cannabis”. Analysis of the VAS scores has been reported elsewhere 

191 (Freeman et al., 2017; Lawn et al., 2016). Following the MRI scan subjects completed a 

192 number of additional behavioural tests and questionnaires; these are also fully reported 

193 elsewhere (Lawn et al., 2016).

194

195

196 MRI Acquisition and Analysis

197 Data were acquired on a Siemens Avanto 1.5T MRI scanner (Erlangen, Germany) using a 32-

198 channel phased-array head-coil. At the beginning of the scan session standard MPRAGE 
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199 (Magnetization Prepared RApid Gradient Echo) anatomical scans were acquired (TR = 

200 2730ms; TE = 3.57ms; matrix = 176 x 256 x 256; 1mm isotropic voxels; flip angle = 7°; 

201 bandwidth = 190Hz/pixel; parallel imaging acceleration factor = 2). The resting-state 

202 functional images were acquired with a gradient-echo Echo-Planar Imaging (EPI) sequence 

203 with a repetition time (TR) of 2800 ms, 32 slices with 3.2mm isotropic voxels, an echo-time 

204 (TE) of 43ms, and a flip-angle of 90°. A total of 260 volumes were acquired, for a total scan 

205 length of 12 minutes and 8 seconds. 

206

207 All analyses were performed with FSL 5.0.4 (except where noted below). Pre-processing of 

208 the data consisted of head-motion correction, spatial smoothing with a 6mm FWHM (Full-

209 Width, Half-Maximum) Gaussian kernel, high-pass temporal filtering (100s), and registration 

210 to a standard template (MNI152). Anatomical data were skull-stripped with FSL’s Brain 

211 Extraction Tool (BET) and segmented into grey/white matter and CSF (Cerebro-Spinal Fluid) 

212 masks using FMRIB’s Automated Segmentation Tool (FAST).

213

214 Seed-based functional connectivity analyses were conducted using the general 

215 methodological approach previously used by Demetriou et al. (2018) and (Comninos et al., 

216 2018). Regions Of Interest (ROIs) were defined in the posterior cingulate cortex (PCC) and 

217 anterior insula (AI) as seed-regions (see supplementary figure S1). These regions were 

218 derived from automated meta-analytic data on http://neurosynth.org/, using the ‘default 

219 mode’ and ‘salience’ terms. These meta-analysis maps were thresholded, and the PCC and 

220 anterior insula clusters were isolated and binarised for use as image masks. These masks 

221 were co-registered to each individual participant’s functional image space, thresholded (at 

222 0.5), and time-series from these resulting mask images were extracted and used as the 

223 regressor of interest in separate first-level analysis models. Additional regressors modelled 

224 noise effects and were derived from the mean white matter and CSF anatomical masks (also 

225 co-registered to individual functional space, and thresholded at 0.5). Group-level analyses 

226 used FSL’s FLAME-1 mixed-effects model and results were thresholded at Z > 2.3 (p < 0.05, 

227 cluster-corrected for multiple comparisons). Separate group-level models were produced in 

228 order to model mean functional connectivity effects (all subjects, all scans) and voxelwise 

229 comparisons between the three treatment conditions. The group mean functional 

230 connectivity results were used to produce image masks (thresholded at Z=5) in order to 

231 quantify the treatment effects across the entire network(s).

232
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233 This procedure of defining resting-state networks using a single seed-region is an established 

234 method (Comninos et al., 2018; Passow et al., 2015; Seeley et al., 2007), however networks 

235 can also be defined by Independent Components Analysis (ICA), multi-seed region analysis, 

236 and various other more exotic methods (see Cole et al., 2010 for a review). The single-seed 

237 region method has benefits in that it is strongly hypothesis driven, and generally produces 

238 robust patterns of connectivity, which bear a strong relationship to the canonical networks 

239 derived from large-scale ICA analyses (e.g. Biswal et al., 2010; Smith et al., 2009). However, 

240 this is dependent on the selection of a suitable seed-region, and the main drawback of this 

241 method is potential bias and/or error in region selection. For this reason, and for the sake of 

242 absolute precision, we will henceforth refer to these networks as DMN (PCC+; positive 

243 connectivity with the PCC), ECN (PCC-; negative connectivity with the PCC), and the salience 

244 network or SAL (AI+; positive connectivity with the anterior insula). 

245

246 Significant clusters resulting from these whole-brain analyses were defined as ROIs, and data 

247 from these ROIs was used to perform correlation analyses with VAS measures rated outside 

248 the scanner. A False Discovery Rate (FDR) correction for multiple comparisons (Benjamini 

249 and Hochberg, 1995) was applied to the p values resulting from these analyses within each 

250 brain region. 
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251 Results

252

253 Seed-based functional connectivity analyses

254 Group mean (all subjects, all scans) analyses of seed-based functional connectivity showed 

255 brain networks similar to those reported previously for the DMN and ECN (using the PCC 

256 seed region; e.g. Fox et al., 2005) and the salience network (using the anterior insula seed 

257 region; e.g. Seeley et al., 2007). There was also strong concordance between the observed 

258 networks and the meta-analytic maps available on http://neurosynth.org/ from which the 

259 original seed-regions were derived. These group mean connectivity maps are included in the 

260 supplementary material (see Figure S3). 

261

262 Treatment effects on the mean connectivity across the entire network(s) are shown in Figure 

263 1. Both treatments (relative to placebo) had similarly disruptive effects on the DMN (PCC+) 

264 network (Cann+CBD: t[16] = 2.46, p = 0.026; Cann-CBD: t[16] = 2.22, p = 0.041), and non-

265 significant effects on the ECN (PCC-) network (all p > 0.1). In the SAL (AI+) network the Cann-

266 CBD treatment caused a reduction in connectivity (relative to Cann+CBD; t[16]=3.18, p = 

267 0.005), however neither of the two drug treatments were significantly different to placebo.

268
269 Figure 1. Treatment effects on the mean connectivity across the three networks; 

270 Default Mode Network (DMN; PCC+, left), Executive Control Network (ECN; PCC-, 

271 middle) and the Salience Network (SAL, AI+, right).  * p < 0.05, ** p < 0.005. Error 

272 bars are standard errors. 

273

274 Voxelwise comparison of the treatment conditions revealed that in the DMN (PCC+) 

275 network, both strains caused a decrease in functional connectivity in the right inferior 

276 parietal lobe, and the hippocampus, though effects were restricted to the right 

277 hippocampus for the Cann-CBD strain, and were bilateral for the Cann+CBD strain. There 

278 was also a specific effect of Cann-CBD cannabis in the PCC/precuneus region (see Figure 2).

279

280
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281
282 Figure 2. Drug treatment effects on the DMN (PCC+) network. All contrasts are 

283 placebo > drug, therefore significant (Z = 2.3, p < 0.05, cluster corrected for multiple 

284 comparisons) clusters represent relative decreases in functional connectivity in the 

285 drug condition. The Cann+CBD treatment session is shown in the blue scale, and the 

286 Cann-CBD treatment session is shown in the green scale.

287

288 Disruptions of functional connectivity in the ECN (PCC-) network induced by both active 

289 treatments were relatively minimal, with effects restricted to the left frontal lobe. The two 

290 strains produced spatially dissociable effects however, with Cann+CBD showing most effect 

291 in the inferior frontal gyrus, and Cann-CBD showing most effect in ventro-lateral prefrontal 

292 cortex. See Figure 3.

293

294
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295
296 Figure 3. Drug treatment effects on the ECN (PCC-) network. All contrasts are 

297 placebo > drug, therefore significant (Z = 2.3, p < 0.05, cluster corrected for multiple 

298 comparisons) clusters represent relative decreases in functional connectivity in the 

299 drug condition. The Cann+CBD treatment session is shown in the blue scale, and the 

300 Cann-CBD treatment session is shown in the green scale.

301

302 Effects on the SAL (AI+) network were also strongly dissociated, with only minimal disruption 

303 seen for the Cann+CBD treatment in the left hemisphere post-central gyrus and the frontal 

304 pole. However the Cann-CBD strain produced widespread disruptions (reductions) in 

305 functional connectivity in left frontal (dorsolateral prefrontal cortex, ventrolateral prefrontal 

306 cortex) and temporal (anterior superior temporal gyrus, posterior inferior temporal gyrus) 
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307 regions. Also present in the Cann-CBD treatment were bilateral effects in the putamen, the 

308 ventromedial prefrontal cortex, and the frontal pole. See Figure 4.

309

310
311 Figure 4. Drug treatment effects on the SAL (AI+) network. All contrasts are placebo 

312 > drug, therefore significant (Z = 2.3, p < 0.05, cluster corrected for multiple 

313 comparisons) clusters represent relative decreases in functional connectivity in the 

314 drug condition. The Cann+CBD treatment session is shown in the blue scale, and the 

315 Cann-CBD treatment session is shown in the green scale.

316

317 Group-level voxelwise comparisons between the two active treatment conditions (Cann-CBD 

318 vs. Cann+CBD) produced no significant clusters, in any of the three networks. Likewise there 
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319 were no significant clusters when increases in functional connectivity (relative to placebo) 

320 were examined; all observed effects were decreases, relative to placebo.

321

322 Each of the major clusters resulting from the analyses of treatment effects was defined as a 

323 ROI, and response amplitude data was extracted from these regions in order to perform 

324 cross-subject correlations with self-report response measures performed outside the 

325 scanner, immediately following the scan session. The majority of significant (FDR-corrected) 

326 correlations involved the Cann-CBD treatment and the region in the PCC that showed 

327 specific effects for this treatment in the DMN (PCC+) network analysis. The extent of 

328 disruption of connectivity in the PCC showed strong correlations with a number of subjective 

329 measures: ‘Stoned’, ‘High’, ‘Feel drug effect’, ‘Dry mouth’, ‘Enhanced colour perception’, and 

330 ‘Enhanced sound perception’. See Figure 5 for scatterplots and correlation coefficients for 

331 this region and treatment. One additional significant correlation involved the frontal pole 

332 region seen in the salience network analysis; this region significantly negatively correlated 

333 with feelings of paranoia, again specifically in the Cann-CBD treatment (r = -0.674, p(FDR) = 

334 0.048). All other correlations were non-significant (p > 0.05, FDR-corrected). See 

335 supplementary material for full tables of the correlation results.
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336
337 Figure 5. Correlations between the specific effect of Cann-CBD on the PCC in the 

338 DMN (PCC+) network analysis and Visual Analogue Scale (VAS) measures collected 

339 immediately after the MRI scanning session (approximately 90 minutes post-dosing). 

340 Correlations between the effect of Cann-CBD cannabis on the PCC cluster (top row, 

341 surface and slice-based visualisations of the region) and six separate VAS scales; 

342 feeling ‘stoned’, feeling ‘high’, feeling the drug effect, having a dry mouth, 

343 experiencing enhanced colour and sound perception. Pearson’s r values and False 

344 Discovery Rate (FDR) corrected p values are included for each plot. See 

345 supplementary information for full statistical tables of r, p, and FDR-corrected p 

346 values.
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348 Discussion

349 We have shown that cannabis reduces functional connectivity in a number of canonical 

350 resting-state brain networks, and furthermore that different strains of cannabis have 

351 dissociable effects on these networks. Effects on the DMN (PCC+) and SAL (AI+) networks are 

352 extensive, while effects on the ECN (PCC-) network appear relatively minor. Furthermore, 

353 effects of the THC without CBD strain (Cann-CBD) are more widespread in the DMN (PCC+) 

354 and SAL (AI+) networks, and the specific effect of this strain in the PCC region of the DMN 

355 (PCC+) is highly associated with classic subjective measures of the drug effect such as feeling 

356 ‘stoned’ and ‘high’ and having enhanced perception of both sounds and colours. Specific 

357 effects of the Cann-CBD strain were also seen in left frontal and temporal regions in the 

358 salience network. 

359

360 These findings are broadly consonant with the few previous reports using cannabinoids and 

361 resting-state fMRI. One recent study (Rzepa et al., 2016) used the CB1 neutral antagonist 

362 THCV, and showed a pattern of disruption of the DMN strikingly similar to the present data, 

363 with selective effects in the PCC and right hemisphere parietal lobe. Another previous 

364 resting-state study (Klumpers et al., 2012) which used pure synthetic THC  showed effects in 

365 the visual cortex, frontal lobe, cerebellum, and sensorimotor regions, though notably, in this 

366 study THC instead appeared to increase connectivity measures in the majority of regions. A 

367 third previous study (Bossong et al., 2013) also showed less deactivation (relative to 

368 placebo) in the DMN (particularly in the PCC) with pure synthetic THC treatment during a 

369 cognitive task. This deactivation of the PCC was also negatively correlated with task 

370 performance, suggesting that higher activation levels of the PCC during the task had a 

371 deleterious effect on task performance. 

372

373 What these previous studies and the present data clearly demonstrate is that the PCC is a 

374 key brain structure involved in the neuropsychopharmacological effects of cannabinoids 

375 (including THCV, and pure THC). This is further reinforced by investigations using CB1-active 

376 radioligands and Positron Emission Tomography (PET) to image CB1 receptor distribution 

377 and function, which have shown a very high density of CB1 receptors in the PCC, visual 

378 cortex, putamen, and temporal lobe regions (Burns et al., 2007). A further PET study 

379 demonstrated that CB1 receptor distributions were down-regulated in daily cannabis 

380 smokers, most notably in the PCC/precuneus, visual cortex, and temporal and frontal lobes, 

381 and that this down-regulation was reversible after four weeks of abstinence (Hirvonen et al., 
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382 2012). This is also consistent with findings that show reductions in endogenous cannabinoids 

383 in chronic cannabis use (Morgan et al., 2013). One other recent study (Orr et al., 2013) on 

384 cannabis dependent adolescents demonstrated increased PCC connectivity in the default 

385 mode network (while abstinent). These findings taken together therefore suggest a possible 

386 mechanism for the effect of cannabinoids (particularly THC) on the PCC. The acute effect is 

387 to disrupt PCC function (as demonstrated by (Bossong et al., 2013; Rzepa et al., 2016), and 

388 the present data), and regular use may lead to down-regulation of CB1 receptors in the 

389 region (Hirvonen et al., 2012). This longer-term impairment of PCC function may then lead to 

390 compensatory hyperactivation/hyperconnectivity of the PCC in long-term users (as seen in 

391 Orr et al., 2013). This proposed mechanism, while plausible, rests on results from only a few 

392 studies, and therefore requires much further substantiation. In addition, how these 

393 potential effects on the PCC are precisely related to issues associated with long-term use 

394 such as dependence, and cannabis-induced psychosis is a key question for future research.

395

396 In the present data, the PCC also emerged as the only region that was significantly related to 

397 subjective effects of the drug, and this was only true when administered cannabis which 

398 contained no CBD. This lends support to an emerging view that the effects of THC and CBD 

399 are in many ways oppositional, and that CBD may serve to buffer the user somewhat against 

400 the harmful long-term effects of THC (Curran et al., 2016; Demirakca et al., 2011; Morgan et 

401 al., 2012; Morgan and Curran, 2008; Niesink and van Laar, 2013; Yücel et al., 2016). The 

402 present data further suggest that CBD may also buffer the user against the acute effects of 

403 THC on the PCC and abolishes the relationship between functional disruption in this region 

404 and the subjective effects of intoxication. Adding this element to the potential physiological 

405 mechanism outlined above, dampening of the acute effects of THC by CBD may lead to less 

406 overall down-regulation of CB1 receptors with long-term use, and lessen the probability of 

407 the user developing dependence and/or psychosis (Morgan et al., 2010, 2012; Morgan and 

408 Curran, 2008). Two cross-sectional studies to date have also reported associations between 

409 chronic CBD exposure and protection of the hippocampus (Demirakca et al., 2011; Yücel et 

410 al., 2016), also a key DMN region with high CB1 receptor density.

411

412 The salience network has been proposed (Goulden et al., 2014; Sridharan et al., 2008) as the 

413 mechanism that switches between higher activity in the DMN (reflecting an internal focus, 

414 or a resting, relaxed state) and higher activity in the ECN (reflecting active engagement with 

415 a task, or focussed attention). Efficient function of the salience network therefore supports 
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416 the functions of the other networks in an important manner. Disruption of the salience 

417 network may therefore also underlie some of the acute phenomenology of cannabis 

418 intoxication, which include a variety of cognitive effects such as impairments in memory 

419 (Curran et al., 2002), executive function (Ramaekers et al., 2006), effort-related decision 

420 making (Lawn et al., 2016), and effects on salience processing (Bhattacharyya et al., 2012, 

421 2014). Across the SAL (AI+) network as a whole, the reduction in connectivity produced by 

422 Cann-CBD was not seen in the treatment containing CBD. Regional disruption of the salience 

423 network was also much more evident and widespread in the Cann-CBD treatment, again 

424 suggesting that CBD buffers the user somewhat against the effects of THC on this network. 

425 Disruptions of salience attribution are also thought to play a key role in the development 

426 and maintenance of addiction (Robinson and Berridge, 1993, 2001) and psychosis (Kapur, 

427 2003). This differential effect on the salience network may therefore be a potential neuro-

428 protective mechanism for CBD, by which it prevents the development of such issues with 

429 chronic use. This finding is also consistent with previous behavioural evidence that cannabis 

430 without CBD acutely increases the salience of cannabis cues on an attentional bias task, 

431 while cannabis containing CBD reversed this effect so attention was directed away from 

432 cannabis-cues (Morgan et al., 2010). 

433

434 Results have also been reported by Freeman et al. (2017) on a music-listening fMRI task 

435 conducted on the same cohort, in the same scan session, as the resting-state data presented 

436 here. These showed that the Cann-CBD treatment significantly dampened responses to 

437 music in the auditory cortex, and in limbic and striatal regions (amygdala, hippocampus, and 

438 right ventral striatum) while the Cann+CBD treatment had little effect. While it is difficult to 

439 make precise comparisons between the two sets of results, Cann-CBD produced more 

440 disruptions in function than Cann+CBD on this task, and this general pattern is consistent 

441 with the resting-state results presented here.

442

443 A major strength of the present study is that the treatments were administered by vaporiser 

444 inhalation, using the whole plant form rather than synthetic THC and CBD. Doing this in a 

445 placebo-controlled cross-over study gives our findings strong ecological validity and 

446 relevance in a time of increasing liberalisation of cannabis controls across many parts of the 

447 globe. However, given the somewhat exploratory nature of the study and the fact that some 

448 of the results (e.g. the correlations between VAS measures and the PCC) were unpredicted, 

449 the results require replication to be fully substantiated. Replication with a larger sample, 
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450 that included use of a 3 Tesla MRI scanner and further optimised acquisition protocols 

451 would certainly be useful. The use of a larger sample may also enable other factors to be 

452 considered, such as the relationship between the acute response to the drug and the 

453 subjects’ regular usage patterns. Subjects in the current study were somewhat regular, 

454 though not heavy, cannabis users (< 3 times per week, > 4 times in the past year). A more 

455 strictly drug-naïve subject group may have been preferable; however this has to be balanced 

456 against the ethical issues associated with using drug-naïve subjects in pharmacological 

457 studies of this type. Also, subjects who are (semi-)regular users may be more representative 

458 of typical cannabis users than entirely naïve subjects. Other limitations are related to the 

459 study protocol. The resting-state scan was placed towards the end of the imaging protocol; 

460 approximately 70-75 minutes after dosing. Even though subjects still indicated strong 

461 subjective effects of cannabis intoxication after the scan session, it is likely the peak drug 

462 effect occurred somewhat earlier, before the resting state scan. Finally, blood samples were 

463 not acquired in this study protocol, so we have no information about plasma levels of 

464 cannabinoids; future studies should incorporate blood sampling in the protocol to address 

465 this.

466

467 To summarise, both low-CBD and high-CBD strains of cannabis  have widespread effects on 

468 the brain’s major resting state networks, but cannabis devoid of CBD appears to have more 

469 widespread effects, particularly on the DMN (PCC+) and SAL (AI+) networks. In particular, 

470 reductions of connectivity in the SAL (AI+) network produced by the Cann-CBD treatment 

471 were not evident in the presence of CBD. Strong and specific correlations were found only in 

472 the Cann-CBD treatment between PCC function in the DMN (PCC+) and subjective measures 

473 of drug effects, suggesting the PCC is a key region underlying the psychoactivity of THC. A 

474 productive avenue for future work on cannabis would be to examine potential changes in 

475 these networks (and the psychological processes that depend upon them) in a longitudinal 

476 study with individuals who use different strains of cannabis in differing frequencies and 

477 amounts.
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Figure 1. Treatment effects on the mean connectivity across the three networks; Default Mode Network 
(DMN; PCC+, left), Executive Control Network (ECN; PCC-, middle) and the Salience Network (SAL, AI+, 

right).  * p < 0.05, ** p < 0.005. Error bars are standard errors. 
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Figure 2. Drug treatment effects on the DMN (PCC+) network. All contrasts are placebo > drug, therefore 
significant (Z = 2.3, p < 0.05, cluster corrected for multiple comparisons) clusters represent relative 

decreases in functional connectivity in the drug condition. The Cann+CBD treatment session is shown in the 
blue scale, and the Cann-CBD treatment session is shown in the green scale. 
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Figure 3. Drug treatment effects on the ECN (PCC-) network. All contrasts are placebo > drug, therefore 
significant (Z = 2.3, p < 0.05, cluster corrected for multiple comparisons) clusters represent relative 

decreases in functional connectivity in the drug condition. The Cann+CBD treatment session is shown in the 
blue scale, and the Cann-CBD treatment session is shown in the green scale. 
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Figure 4. Drug treatment effects on the anterior insula network. All contrasts are placebo > drug, therefore 
significant (Z = 2.3, p < 0.05, cluster corrected for multiple comparisons) clusters represent relative 

decreases in functional connectivity in the drug condition. The Cann+CBD treatment session is shown in the 
blue scale, and the Cann-CBD treatment session is shown in the green scale. 
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Figure 5. Correlations between the specific effect of Cann-CBD on the PCC in the DMN (PCC+) network 
analysis and Visual Analogue Scale (VAS) measures collected immediately after the MRI scanning session 

(approximately 90 minutes post-dosing). Correlations between the effect of Cann-CBD cannabis on the PCC 
cluster (top row, surface and slice-based visualisations of the region) and six separate VAS scales; feeling 

‘stoned’, feeling ‘high’, feeling the drug effect, having a dry mouth, experiencing enhanced colour and sound 
perception. Pearson’s r values and False Discovery Rate (FDR) corrected p values are included for each plot. 

See supplementary information for full statistical tables of r, p, and FDR-corrected p values. 
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Supplementary Material

Methods

Figure S1. Masks and derived seed-regions used for the seed-based analyses. Masks were 

derived from automated meta-analytic data provided by Neurosynth (Yarkoni, Poldrack, 

Nichols, Van Essen, & Wager, 2011) using the ‘default mode’ 

(http://www.neurosynth.org/analyses/terms/default%20mode/) and ‘salience’ 
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(http://www.neurosynth.org/analyses/terms/salience/) terms. Posterior cingulate cortex 

and anterior insula ROIs were derived from these maps for use in the seed-based analyses.

Participants
Age 26.18 (7.13)
Gender (m/f) 8/9
BDI 3.38 (3.12)
TEPS consummatory 43.50 (5.61)
TEPS anticipatory 42.06 (4.85)
TEPS total 86.56 (9.30)
Cannabis SDS 1.13 (1.26)
Alcohol ever used (y/n) 16/0
Alcohol use now (y/n) 16/0
Alcohol days per month 10.81 (4.86)
Alcohol units/session 5.93 (2.08)
Amphetamine ever used (y/n) 8/8
Amphetamine use now (y/n) 0/16
Amphetamine days per month NA
Amphetamine grams/session NA
Cannabis ever used (y/n) 16/0
Cannabis use now (y/n) 16/0
Cannabis days per month 8.06 (5.48)
Cannabis days to smoke an 8th 25.88 (33.73)
Cocaine ever used (y/n) 11/5
Cocaine use now (y/n) 3/13
Cocaine days per month 1.0 (0.0)
Cocaine grams/session 0.5 (0.0)
Heroin ever used (y/n) 0/16
Heroin use now (y/n) 0/16
Heroin days per month NA
Heroin grams/session NA
Ketamine ever used (y/n) 10/6
Ketamine use now (y/n) 2/14
Ketamine days per month 1.50 (0.71)
Ketamine grams/session 0.75 (0.35)
Mephedrone ever used (y/n) 7/9
Mephedrone use now (y/n) 0/16
Mephedrone days per month NA
Mephedrone grams/session NA
MDMA ever used (y/n) 14/2
MDMA use now (y/n) 6/10
MDMA days per month 1.50 (0.84)
MDMA grams/session 0.31 (0.19)
Tobacco ever used (y/n) 15/1
Tobacco use now (y/n) 15/1
Tobacco days per month 11.30 (10.27)
Tobacco cigs/day 3.63 (3.62)
Tobacco average cigs/day 2.16 (3.48)
Table S1. Means (S.D.) and frequencies for demographic data and drug use for participants. 
Data was missing for one participant for BDI, TEPS and drugs history. TEPS = Temporal 
Experience of Pleasure scale. BDI = Beck Depression Inventory. SDS = Severity of 
Dependence Scale.
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Results

Figure S3. Mean (all subjects, all scans) functional connectivity maps from the seed-region 

analyses showing the Default Mode Network (DMN; defined by positive connectivity with 

the PCC seed region; red), the Executive Control Network (ECN; defined by negative 

connectivity with the PCC seed region; blue), and the Salience network (defined by positive 

connectivity with the anterior insula seed region; green).
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Treatment Analysis Anatomical 
Location

Number 
of Voxels Z-Max P(corr.) COG-X COG-Y COG-Z

Placebo vs. 
Cann+CBD:

DMN 
(PCC+) Hippocampus (RH) 1420 -3.63 6.79E-06 20 -37 -1

Parietal Lobe (RH) 1365 -4.21 1.04E-05 42 62 38

ECN (PCC-) Inferior frontal 
gyrus (LH) 2189 -3.92 5.96E-08 44 13 23

SAL (AI+) Precentral gyrus 
(LH) 724 -3.75 0.000955 -55 -11 48

Frontal Pole 438 -3.97 0.0239 -18 53 40

Placebo vs. 
Cann-CBD:

DMN 
(PCC+) Precuneous/PCC 1539 -3.64 2.80E-06 11 -55 15

Parietal Lobe (RH) 457 -3.51 0.035 49 -47 31

ECN (PCC-) Superior frontal 
gyrus (RH) 564 -3.56 0.0113 -16 -4 68

Inferior frontal 
gyrus (LH) 543 -3.42 0.0141 -36 40 -1

SAL (AI+) Inferior frontal lobe 
(LH) 3630 -4.52 2.96E-13 -39 12 -1

Frontal pole (LH) 399 -4.4 0.0386 -6 49 28

Table S2. Coordinates of the major activation clusters shown in Figures 2, 3, and 4 of the 
main text. Z-Max = Maximum Z-score in cluster. LH = left Hemisphere, RH = Right 
Hemisphere. COG = Centre Of Gravity. Coordinates are in MNI space. Z values are negative 
as only reductions in connectivity (relative to placebo) were found.
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Brainstem Hippocampus Lateral Parietal

VAS Item r p p (FDR) r p p (FDR) r p p (FDR)

Alert -0.148 0.57 0.820 -0.381 0.131 0.977 0.383 0.129 0.619

Happy 0.099 0.706 0.820 -0.018 0.945 0.977 -0.236 0.362 0.659

Anxious 0.077 0.769 0.820 -0.072 0.782 0.977 -0.063 0.811 0.927

Paranoid 0.213 0.412 0.820 -0.102 0.696 0.977 0.001 0.997 0.997

Mentally impaired 0.505 0.039 0.624 0.408 0.104 0.977 -0.04 0.88 0.939

Stoned 0.249 0.335 0.820 0.013 0.961 0.977 -0.207 0.425 0.659

High 0.335 0.188 0.820 0.151 0.562 0.977 -0.306 0.232 0.619

Feel drug effect 0.27 0.294 0.820 0.14 0.591 0.977 -0.409 0.103 0.619

Like drug effect 0.087 0.739 0.820 0.018 0.944 0.977 -0.195 0.453 0.659

Dry mouth -0.226 0.384 0.820 -0.155 0.553 0.977 -0.207 0.426 0.659

Enhanced colour perception 0.126 0.631 0.820 0.067 0.799 0.977 -0.447 0.072 0.619

Enhanced sound perception 0.127 0.627 0.820 -0.018 0.946 0.977 -0.328 0.198 0.619

Want to listen to music 0.125 0.634 0.820 -0.038 0.885 0.977 -0.359 0.157 0.619

Want food -0.104 0.692 0.820 0.008 0.977 0.977 -0.09 0.73 0.898

Want more cannabis balloon -0.146 0.575 0.820 -0.107 0.683 0.977 -0.107 0.683 0.898

Want to smoke cannabis 0.022 0.933 0.933 -0.113 0.665 0.977 0.197 0.448 0.659

Table S3. Correlation coefficients between ROIs defined based on the results of the 

Cann+CBD treatment in the DMN (PCC+), and visual analogue scale scores of subjective 

effects, taken in the same treatment session. Tables show Pearson’s r, the uncorrected p 

values, and FDR-corrected p values for each region.

Dorsolateral Prefrontal 

Cortex

Inferior Frontal Medial Frontal Gyrus

VAS Item
r p p (FDR) r p

p 

(FDR)
r p

p 

(FDR)

Alert -0.050 0.848 0.987
-

0.148

0.57

2
0.785 0.014

0.95

8
0.976

Happy 0.096 0.715 0.987 0.133
0.61

1
0.785 0.211

0.41

6
0.976

Anxious 0.106 0.686 0.987
-

0.206

0.42

7
0.785

-

0.191

0.46

3
0.976

Paranoid 0.086 0.743 0.987
-

0.114

0.66

3
0.785

-

0.015

0.95

5
0.976

Mentally impaired -0.223 0.389 0.987 - 0.68 0.785 0.100 0.70 0.976
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0.106 7 4

Stoned 0.006 0.983 0.987 0.280
0.27

6
0.785

-

0.008

0.97

6
0.976

High -0.018 0.947 0.987 0.279
0.27

9
0.785 0.071

0.78

7
0.976

Feel drug effect 0.004 0.987 0.987 0.204
0.43

1
0.785

-

0.116

0.65

7
0.976

Like drug effect -0.232 0.371 0.987 0.256
0.32

1
0.785

-

0.037

0.88

8
0.976

Dry mouth -0.075 0.776 0.987 0.071
0.78

8
0.829

-

0.255

0.32

3
0.976

Enhanced colour 

perception
-0.102 0.697 0.987 0.198

0.44

6
0.785

-

0.072

0.78

3
0.976

Enhanced sound perception -0.100 0.704 0.987 0.133
0.61

1
0.785

-

0.151

0.56

2
0.976

Want to listen to music -0.058 0.824 0.987 0.488
0.04

7
0.752 0.231

0.37

3
0.976

Want food 0.184 0.481 0.987 0.316
0.21

7
0.785

-

0.029

0.91

1
0.976

Want more cannabis 

balloon
-0.083 0.752 0.987 0.057

0.82

9
0.829

-

0.215

0.40

8
0.976

Want to smoke cannabis 0.159 0.542 0.987 0.144
0.58

3
0.785

-

0.022

0.93

4
0.976

Table S4. Correlation coefficients between ROIs defined based on the results of the 

Cann+CBD treatment in the ECN (PCC-), and visual analogue scale scores of subjective 

effects, taken in the same treatment session. Tables show Pearson’s r, the uncorrected p 

values, and FDR-corrected p values for each region.

LH Motor Cortex

VAS Item r p p (FDR)

Alert 0.059 0.822 0.877

Happy -0.416 0.097 0.585

Anxious -0.213 0.411 0.750

Paranoid -0.207 0.425 0.750

Mentally impaired 0.020 0.939 0.939

Stoned -0.471 0.056 0.585

High -0.362 0.154 0.585

Feel drug effect -0.292 0.256 0.585

Like drug effect -0.059 0.822 0.877
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Dry mouth -0.382 0.130 0.585

Enhanced colour perception -0.318 0.213 0.585

Enhanced sound perception -0.312 0.223 0.585

Want to listen to music -0.131 0.617 0.849

Want food -0.188 0.469 0.750

Want more cannabis balloon 0.124 0.637 0.849

Want to smoke cannabis -0.092 0.727 0.877

Table S5. Correlation coefficients between ROIs defined based on the results of the 

Cann+CBD treatment in the SAL (AI+) network, and visual analogue scale scores of 

subjective effects, taken in the same treatment session. Tables show Pearson’s r, the 

uncorrected p values, and FDR-corrected p values for each region.
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Hippocampus Posterior Cingulate

VAS Item r p p (FDR) r p p (FDR)

Alert -0.035 0.895 0.990 -0.283 0.271 0.394

Happy -0.157 0.547 0.990 0.059 0.823 0.933

Anxious 0.488 0.047 0.376 0.188 0.469 0.577

Paranoid 0.511 0.036 0.376 0.225 0.386 0.515

Mentally impaired 0.218 0.401 0.917 0.513 0.035 0.078

Stoned 0.300 0.241 0.771 0.573 0.016 0.043

High 0.381 0.131 0.699 0.607 0.010 0.035

Feel drug effect 0.308 0.228 0.771 0.669 0.003 0.021

Like drug effect 0.020 0.938 0.990 0.409 0.103 0.165

Dry mouth -0.052 0.842 0.990 0.667 0.003 0.021

Enhanced colour perception 0.139 0.594 0.990 0.602 0.011 0.035

Enhanced sound perception 0.242 0.349 0.917 0.657 0.004 0.021

Want to listen to music -0.075 0.774 0.990 0.022 0.933 0.933

Want food 0.034 0.898 0.990 -0.031 0.905 0.933

Want more cannabis balloon 0.003 0.990 0.990 0.466 0.060 0.107

Want to smoke cannabis 0.032 0.904 0.990 0.504 0.039 0.078

Table S6. Correlation coefficients between ROIs defined based on the results of the Cann-

CBD treatment in the DMN (PCC+), and visual analogue scale scores of subjective effects, 

taken in the same treatment session. Tables show Pearson’s r, the uncorrected p values, and 

FDR-corrected p values for each region. Significant (FDR-corrected) p values are highlighted 

in bold text.

LH Supplementary Motor Area LH Orbitofrontal Cortex

VAS Item r p p (FDR) r p p (FDR)

Alert 0.147 0.573 0.813 -0.269 0.296 0.773

Happy 0.102 0.696 0.813 -0.339 0.183 0.773

Anxious 0.205 0.431 0.791 -0.010 0.971 0.985

Paranoid 0.217 0.403 0.791 -0.056 0.831 0.985

Mentally impaired 0.335 0.189 0.791 0.276 0.283 0.773

Stoned 0.227 0.382 0.791 0.011 0.965 0.985

High 0.103 0.695 0.813 0.190 0.466 0.773

Feel drug effect 0.229 0.378 0.791 0.206 0.427 0.773

Like drug effect -0.259 0.316 0.791 -0.005 0.985 0.985

Dry mouth -0.199 0.445 0.791 -0.051 0.847 0.985

Enhanced colour perception 0.162 0.536 0.813 0.283 0.272 0.773

Enhanced sound perception 0.079 0.762 0.813 0.189 0.468 0.773

Want to listen to music 0.080 0.759 0.813 0.183 0.483 0.773

Want food -0.238 0.358 0.791 -0.324 0.205 0.773

Want more cannabis balloon -0.045 0.863 0.863 -0.040 0.878 0.985
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Want to smoke cannabis 0.291 0.257 0.791 -0.200 0.441 0.773

Table S7. Correlation coefficients between ROIs defined based on the results of the Cann-

CBD treatment in the ECN (PCC-), and visual analogue scale scores of subjective effects, 

taken in the same treatment session. Tables show Pearson’s r, the uncorrected p values, and 

FDR-corrected p values for each region.

Putamen Dorsomedial Prefrontal 

Cortex

Dorsolateral Prefrontal 

Cortex

VAS Item
r p

p 

(FDR)
r p p (FDR) r p p (FDR)

Alert
-

0.423

0.09

1
0.918 -0.260 0.314 0.625 -0.169 0.518 0.872

Happy
-

0.104

0.69

1
0.918 -0.102 0.698 0.798 -0.160 0.538 0.872

Anxious
-

0.304

0.23

6
0.918 -0.421 0.093 0.380 -0.298 0.246 0.872

Paranoid
-

0.216

0.40

4
0.918 -0.674 0.003 0.048 -0.079 0.763 0.872

Mentally impaired 0.065
0.80

5
0.918 -0.418 0.095 0.380 0.120 0.646 0.872

Stoned 0.141
0.58

9
0.918 -0.206 0.427 0.625 -0.036 0.890 0.932

High 0.325
0.20

4
0.918 -0.182 0.484 0.645 0.022 0.932 0.932

Feel drug effect 0.131
0.61

6
0.918 -0.205 0.430 0.625 -0.085 0.746 0.872

Like drug effect 0.219
0.39

8
0.918 0.008 0.974 0.974 0.205 0.430 0.872

Dry mouth 0.201
0.44

0
0.918 0.160 0.539 0.663 -0.080 0.760 0.872

Enhanced colour perception
-

0.030

0.90

8
0.918 -0.444 0.074 0.380 -0.093 0.722 0.872

Enhanced sound perception 0.083
0.75

3
0.918 -0.302 0.238 0.625 0.091 0.728 0.872

Want to listen to music
-

0.031

0.90

6
0.918 -0.083 0.751 0.801 0.254 0.325 0.872

Want food
-

0.027

0.91

8
0.918 -0.229 0.378 0.625 0.313 0.221 0.872

Want more cannabis 

balloon

-

0.156

0.55

1
0.918 -0.291 0.257 0.625 -0.237 0.359 0.872

Want to smoke cannabis - 0.78 0.918 -0.233 0.368 0.625 -0.257 0.319 0.872
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0.071 7

Frontal Operculum Medial Orbitofrontal cortex

VAS Item r p p (FDR) r p p (FDR)

Alert 0.319 0.212 0.436 -0.430 0.085 0.275

Happy 0.362 0.153 0.436 -0.276 0.284 0.499

Anxious -0.241 0.352 0.481 -0.409 0.103 0.275

Paranoid 0.180 0.490 0.490 -0.510 0.036 0.203

Mentally impaired 0.395 0.117 0.436 -0.342 0.179 0.358

Stoned 0.243 0.347 0.481 -0.257 0.320 0.499

High 0.200 0.442 0.481 -0.139 0.595 0.680

Feel drug effect 0.233 0.369 0.481 -0.245 0.343 0.499

Like drug effect 0.421 0.092 0.436 -0.160 0.541 0.666

Dry mouth 0.221 0.394 0.481 -0.005 0.984 0.984

Enhanced colour perception 0.315 0.218 0.436 -0.615 0.009 0.144

Enhanced sound perception 0.436 0.080 0.436 -0.362 0.153 0.350

Want to listen to music 0.584 0.014 0.224 -0.088 0.736 0.785

Want food 0.329 0.198 0.436 -0.170 0.515 0.666

Want more cannabis balloon 0.200 0.441 0.481 -0.506 0.038 0.203

Want to smoke cannabis 0.291 0.257 0.791 -0.200 0.441 0.773

Table S8 and S9. Correlation coefficients between ROIs defined based on the results of the 

Cann-CBD treatment in the SAL (AI+) network, and visual analogue scale scores of subjective 

effects, taken in the same treatment session. Tables show Pearson’s r, the uncorrected p 

values, and FDR-corrected p values for each region. Significant (FDR-corrected) p values are 

highlighted in bold text.
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