

Citation for published version:
Miao, Y, Hunter, AJ & Georgilas, I 2019, 'K-nearest neighbours, Inverse sensor model, Occupancy mapping'
Paper presented at 20th Towards Autonomous Robotic Systems Conference, London, UK United Kingdom,
3/07/19 - 5/07/19, .

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Aug. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/222840654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/knearest-neighbours-inverse-sensor-model-occupancy-mapping(f65a8ece-9349-485c-a75a-c8b155c56a21).html

A K-Nearest Neighbours Based Inverse Sensor
Model for Occupancy Mapping

Yu Miao (�), Ioannis Georgilas, and Alan Hunter

University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
y.miao@bath.ac.uk

Abstract. OctoMap is a popular 3D mapping framework which can
model the data consistently and keep the 3D models compact with the
octree. However, the occupancy map derived by OctoMap can be incor-
rect when the input point clouds are with noisy measurements. Point
cloud filters can reduce the noisy data, but it is unreasonable to ap-
ply filters in a sparse point cloud. In this paper, we present a k-nearest
neighbours (k-NN) based inverse sensor model for occupancy mapping.
This method represents the occupancy information of one point with the
average distance from the point to its k-NN in the point cloud. The av-
erage distances derived by all the points and their corresponding k-NN
are assumed to be normally distributed. Our inverse sensor model is pre-
sented based on this normal distribution. The proposed approach is able
to deal with sparse and noisy point clouds. We implement the model
in the OctoMap to carry out experiments in the real environment. The
experimental results show that the 3D occupancy map generated by our
approach is more reliable than that generated by the inverse sensor model
in OctoMap.

Keywords: K-nearest neighbours · Inverse sensor model · Occupancy
mapping.

1 Introduction

Autonomous vehicles are widely used in military, agricultural, industrial and
commercial areas. Robotic mapping as an essential part of the autonomous nav-
igation system is often required in these application scenarios. The process of
building a map of the environment while locating a robot itself is referred to as
simultaneous localization and mapping (SLAM) [1].

In robotics, point clouds can be obtained by low-cost sensors and are effec-
tive in representing the environment [2]. Point clouds usually consist of a great
number of points which contain the location data of the environment. The point
cloud is a popular data type since it is easily accessible to researchers. Depth
sensors such as the LIDAR, stereo cameras and RGB-D cameras can be used
to produce point clouds. Point clouds are used for a wide range of research and
commercial applications, including mapping, navigation and autonomous driv-
ing. With 3D point clouds, a mapping approach for household environments is

TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . . 1

2 Y. Miao et al.

proposed in [3]. Some SLAM systems are also based on point clouds. In [4], a
3D SLAM system for outdoor scenes is presented using laser range data.

The Point Cloud Library (PCL) has been developed for processing point
clouds [5]. Many functions such as filtering, registration and segmentation are
included in this library. Recently, a popular occupancy mapping approach to map
the environment with point clouds is OctoMap [6]. It is an efficient framework
for 3D occupancy mapping. However, the map generated by OctoMap can be
inaccurate when the point clouds are noisy. Although PCL provides several point
cloud filters to remove noisy data, it is unreasonable to apply filters in a sparse
point cloud with only a few points.

To solve these problems, we propose a k-nearest neighbours (k-NN) based in-
verse sensor model for occupancy mapping. We use the average distance from a
point to its k-NN to represent the occupancy information of the point. This dis-
tance is assumed to be follow the normal distribution. Two neighbouring point
clouds are compared to obtain a dynamic normal distribution (Section 3.2). With
this distribution, a k-NN based inverse sensor model is presented to update the
occupancy map (Section 3.3). The proposed model is implemented in the Oc-
toMap to illustrate its effectiveness. We test it in a semi-structured environment
by generating a 3D occupancy map with the point clouds derived by ORB-
SLAM [7] (Section 4). The experimental results show that the map generated
by our method is more accurate than that derived by the model in OctoMap.

2 Related Work

The processing and mapping methods for point clouds have been investigated in
many studies.

The octree is an tree-based data structure in which each node is a cube and
has eight child nodes [8]. Due to this hierarchical structure, an octree can quickly
expand a large number of nodes by recursively subdividing a node into eight
children. Based on the octree structure, PCL is able to index 3D point cloud data
efficiently and provide processing algorithms, including point cloud compression,
spatial partitioning, neighbour search and spatial change detection [9–11].

OctoMap is a 3D occupancy mapping method, which is based on octrees and
probabilistic estimation [6]. OctoMap models the environment by volumetric
representation and can keep models compact by implementing octrees. With a
clamping update policy to limit the occupancy estimates, OctoMap can rapidly
adapt to environment changes.

ORB-SLAM is considered to be the most complete feature-based monocular
visual SLAM system and has been extended to stereo visual SLAM [7, 12]. It
uses ORB features in the mapping process. ORB-SLAM contains three threads,
tracking, local mapping and loop closing. They are parallel threads, so ORB-
SLAM can run efficiently on a CPU without using a GPU. Bundle adjustment
(BA) is performed in both local mapping and loop closing to reduce the pro-
jection error of the vision sensor. The map will be updated when the loop is
detected.

2 TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . .

Y. Miao et al. 3

We implement ORB-SLAM to get point clouds. In ORB-SLAM, keyframes
are selected frames to map the environment. Each keyframe contains the camera
pose, camera intrinsics and ORB features extracted from the image. Each ORB
feature point corresponds to a point on the objects in the environment, so we
can get a point cloud by accumulating the feature points in each keyframe. In
this paper, the point cloud obtained by ORB features in the keyframe is referred
to as the keyframe point cloud.

3 Methodology

The point cloud which contains the points from all the observations is referred
to as the map point cloud. In the map point cloud, the average distances from all
the points to their corresponding k-NN are assumed to follow the normal distri-
bution. We use these average distances to represent the occupancy information
of the points. Our mapping approach first updates the normal distribution and
then updates the occupancy map with the k-NN based inverse sensor model. We
implement our inverse sensor model in the OctoMap to generate a 3D occupancy
map. This section will explain our method in detail.

3.1 Background of OctoMap

OctoMap is an efficient probabilistic framework for 3D occupancy mapping. It
has been explained in detail in [6]. The probability P (n|z1:t) of a node is modelled
by Bayes rule and can be written as

P (n|z1:t) =
[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]−1

, (1)

where n is the node, z1:t denotes the set of all sensor measurements acquired
from time 1 to time t, P (n|zt) is the occupied probability given the measurement
zt and P (n) is the prior probability.

In OctoMap, the prior probability P (n) = 0.5 and (1) can be simplified by
the log-odds notation

L(n) = ln

[
P (n)

1− P (n)

]
. (2)

Then the probability of a node given measurements to time t is

L(n|z1:t) = L(n|z1:t−1) + L(n|zt), (3)

where L(n|zt) is the inverse sensor model. For any kind of ranging senor, a ray-
cast operation will be performed from the sensor origin to the end points. The
inverse sensor model in OctoMap is defined as

L(n|zt) =
{
locc if the endpoint is in the node n

lfree if a ray traverses the node n
, (4)

where locc and lfree are the probabilities set to the nodes. A clamping update
policy is applied in OctoMap to set lower and upper bounds on the log-odds
value.

TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . . 3

4 Y. Miao et al.

3.2 Update Normal Distribution

Description of Point Cloud Normally, the map point cloud can be different
at different times. We use new points, disappeared points and affected points to
describe the changes in the point cloud. As shown in Fig. 1, the points in the
point cloud at time t but not in the point cloud at time t − 1 are called new
points. While the points in the point cloud at time t − 1 but not in the point
cloud at time t are called disappeared points. Due to the changes in the point
cloud, some points may have different k-NN or average distances at time t − 1
and t. These points are called affected points. In Fig. 1, the points selected by
the dashed circle are the k-NN of the point in the center.

Disappeared points New points Affected points

(a) Point cloud at time t− 1 (b) Point cloud at time t

Fig. 1. Different points in the point cloud

To detect the changes in the map point cloud, the spatial change detection
in the PCL is implemented. The points in the point cloud are indexed by the
octree structure in PCL. By comparing the octree structures at time t − 1 and
time t, we can get new points and disappeared points. The detection of affected
points will be discussed later.

Normal Distribution To describe how informative one point is, we assume
that the average distance from any point to its k-NN is subject to a normal
distribution

f(s) =
1√
2πσ2

exp

(
− (s− µ)2

2σ2

)
, (5)

where s is the average distance from the point to its k-NN, µ is the mean of
average distances derived by all the points and σ is the standard deviation.

To mitigate the impact from noisy or wrong measurements, a limit, slimit,
for the average distance is set to remove unreasonable data. The remaining
points, called valid points, will be used to calculate the mean and the standard

4 TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . .

Y. Miao et al. 5

deviation. When the map point cloud changes, the most common way to update
the normal distribution is to calculate the mean with all the average distances
and then sum the squares of all the deviations from the mean. To avoid this
brute force calculation, the method for calculating corrected sums of squares is
implemented [13]. This method does not need to store prior data and can reduce
rounding errors in the computer implementation [14]. A series of means and
standard deviations will be generated when the number of input values grows.
Based on the description of the point cloud and the method in [13], we will
illustrate how to update the normal distribution.

Add Point to Normal Distribution At time t, if a point p is a new point or an
affected point, we will compare the average distance sp,t of this point with the
limit slimit. If sp,t < slimit, the following process will be performed

N ← N + 1, (6)

S ← S +
N − 1

N
(sp,t − µ)2, (7)

µ← N − 1

N
µ+

1

N
sp,t, (8)

where N is the number of valid points and S is the sum of the squares of the
deviations of valid points. The sum of squares and the mean are updated after
this process. The average distance of the point will be included in the normal
distribution.

Erase Point from Normal Distribution This process is the inverse process of
adding a point to the normal distribution. At time t, if a point p is a disap-
peared point or an affected point, we will compare the average distance sp,t−1

of this point with the limit slimit. If sp,t−1 < slimit, the following process will be
performed

µ← N

N − 1
µ− 1

N − 1
sp,t−1, (9)

S ← S − N − 1

N
(sp,t−1 − µ)2, (10)

N ← N − 1, (11)

After this process, the sum of squares and the mean are updated. The average
distance of this point will be removed from the normal distribution.

Update Standard Deviation At time t, after all the new points, disappeared
points and affected points have been processed, we are able to update the stan-
dard deviation. The standard deviation is

σ =

√
S

N
. (12)

TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . . 5

6 Y. Miao et al.

Update Affected Points This process will search the affected points and up-
date the normal distribution with affected points. Algorithm 1 illustrates the
process of searching affected points. Let Cnew, Cdisappeared and Caffected denote
the collections of new points, disappeared points and affected points, respec-
tively. smax is the maximum limit for the affected points searching process.
The searching process increases the radius of the circle centred on any point
p ∈ (Cnew

⋃
Cdiappeared) by step ∆r. Lines 10 through 11 exclude new points

and affected points in the annulus with inner radius r−∆r and outer radius r in
the map point cloud at time t. Line 12 updates the average distance from each
remaining point to its k-NN. If the distance are different at time t− 1 and t, the
searching point will be marked as an affected point. Lines 16 and 17 update the
normal distribution with affected points. The searching process will stop when
the average distance of each searching point in the annulus remains same at time
t− 1 and t, or r ≥ smax.

Algorithm 1: Update Affected Points

Input: p, ∆r, smax, Cnew,
⋃

sp,t−1, MapPointCloudt, slimit, N , S, µ, σ
Output: N , S, µ, σ

1 r ← ∆r
2 Cprevious ← ∅
3 Caffected ← ∅
4 do
5 flagIncreaseRadius← false
6 Ctemp ← SearchPoints(MapPointCloudt, p, r)
7 if (Ctemp − Cprevious − Ctemp

⋂
Cnew) = ∅ then

8 flagIncreaseRadius← true
9 else

10 for q ∈ (Ctemp − Cprevious − Ctemp

⋂
Cnew) do

11 if q /∈ Caffected then
12 sq,t ← UpdateAverageDistance(MapPointCloudt, q)
13 if sq,t 6= sq,t−1 then
14 flagSameKNN ← false
15 Caffected.insert(q)
16 ErasePointFromNormalDistribution(sq,t−1)
17 AddPointFromNormalDistribution(sq,t)
18 if flagIncreaseRadius = false and

flagSameKNN = false then
19 flagIncreaseRadius← true

20 if flagIncreaseRadius=true then
21 r ← r +∆r
22 Cprevious ← Ctemp

23 while flagIncreaseRadius = true and r < smax

6 TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . .

Y. Miao et al. 7

Update Normal Distribution Based on the process of updating affected
points, we can update the normal distribution completely. Algorithm 2 presents
the complete process of updating the normal distribution. Lines 1 through 4
update the normal distribution with new points and affected points caused by
new points. Lines 5 to 7 update the normal distribution with disappeared points
and affected points caused by disappeared points. Line 8 calculates the standard
deviation.

Algorithm 2: Update Normal Distribution

Input: Cnew, Cdisappeared,
⋃

sp,t−1, MapPointCloudt, slimit, N , S, µ, σ
Output: N , S, µ, σ

1 for p ∈ Cnew do
2 sp,t ← UpdateAverageDistance(MapPointCloudt, p)
3 AddPointToNormalDistribution(sp,t)
4 UpdateAffectedPoints(p)

5 for p ∈ Cdisappeared do
6 ErasePointFromNormalDistribution(sp,t−1)
7 UpdateAffectedPoints(p)

8 σ ←
√

S/N

3.3 Mapping with k-NN based Inverse Sensor Model

k-NN Based Inverse Sensor Model With (5) that the average distance is
subject to a normal distribution, we can define a probability function to represent
the occupancy information of a point in the point cloud

Prob(sp,t) = Pu −

∫ sp,t

−∞
f(s)ds

∫ wσ+µ

−∞
f(s)ds

(Pu − Pw), (13)

where w is a scale factor, Pu is the upper limit of the probability and Pw is
the corresponding probability when sp,t = w. w, Pu and Pw are changeable
parameters. The probability will be smaller than Pu since the lower limit of the
integral is negative infinity. A point is more relevant to points nearby when it
has a higher probability. The noisy data and wrong measurements usually have
lower probabilities. In this way, noisy measurements are given lower weights and
thus can be filtered out to some extent. We use a similar method as the free
nodes update strategy in OctoMap to update free nodes. However, before a ray
is cast from the sensor position to the endpoint p, the endpoint must satisfy

ln

[
Prob(sp,t)

1− Prob(sp,t)

]
> ln

[
Pw

1− Pw

]
. (14)

TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . . 7

8 Y. Miao et al.

Then the inverse sensor model can be defined as

L(n|zt) =

∑

p

ln

[
Prob(sp,t)

1− Prob(sp,t)

]
if the end point p is in the node n

lfree if a ray traverses the node n

, (15)

where p ∈ Cview and p is in node n. Cview is the measurement zt, the collection of
points in the sensor field of view (FOV) at time t. This model considers both the
occupancy probability of each point and the number of points in a node. L(n|zt)
tends to be bigger when the points in the node are with higher probabilities and
the node contains more points. This also accords with the common sense.

Update Occupancy Map Algorithm 3 shows the mapping process with the
proposed inverse sensor model. xsensor denotes the position of the vision sensor.
Lines 3 through 7 update the occupied nodes and prepare for free nodes updates.
Line 8 updates the free nodes. Now the map has been updated with the latest
observation zt.

Algorithm 3: Mapping with k-NN Based Inverse Sensor Model

Input: Cview, xsensor,
⋃

L(n|z1:t−1),
⋃

sp,t, w, Pu, Pw

Output:
⋃

L(n|z1:t)
1 L(n|z1:t)← L(n|z1:t−1)
2 Cend ← ∅
3 for p ∈ Cview do
4 n← SearchNode(p)
5 L(n|z1:t)← L(n|z1:t) + ln

[
Prob(sp,t)/(1− Prob(sp,t))

]

6 if ln
[
Prob(sp,t)/(1− Prob(sp,t))

]
> ln

[
Pw/(1− Pw))

]
then

7 Cend.insert(p)

8 UpdateFreeNodes(xsensor, Cend)

4 Experimental Results

4.1 Experiment Setup

We run ORB-SLAM with a ZED stereo camera to capture the feature points
on a tree (See Fig. 2 (a)). To collect enough points to shape the tree, we move
the camera around the tree. The trajectory of the camera is approximately a
circle of radius 3.5 meters. In the end, we use a set of keyframes derived after
loop correction to extract a series of keyframe point clouds and poses. With
the pose information, the map point clouds can be recovered by accumulating
keyframe point clouds. Then the map point clouds are used to update the nor-
mal distribution in section 3.2. Each keyframe point cloud can be regarded as

8 TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . .

Y. Miao et al. 9

an measurement zt. So the keyframe point cloud can be used to update the oc-
cupancy map with the k-NN based inverse sensor model in section 3.3. When
the objects are far away from the camera, the depth measurements can be unre-
liable. To remove those unreasonable but avoid impacts on the occupancy map,
we keep those points whose distances to the camera are within 4 meters.

(a) Tree (b) Reference

Fig. 2. Tree and reference

The ground truth is described by a reference map in which the foliage and
the pot are represented by an ellipsoid and an cuboid (See Fig. 2 (b)). In this
paper, the resolution of the occupancy map is set to 0.1 meter. Since the trunks
in Fig. 2 (a) are partly blocked by the foliage and the grass in the pot, we ignore
the trunks in the reference map. The grass is treated as a part of the pot, so the
height of the pot in the reference map is greater than the real height. Although
the reference is different from the ground truth, we can compare different inverse
sensor models by comparing their relative mapping results to the reference.

4.2 Experiment Results

Fig. 3 (a) shows the camera trajectory derived by ORB-SLAM. Fig. 3 (b) is
the last keyframe point cloud and Fig. 3 (c) is the corresponding map point
cloud. Fig. 3 (d) and (e) present the occupied nodes derived by the OctoMap
inverse sensor model and the proposed k-NN model, respectively. Fig. 3 (f) and
(g) show the occupancy maps with both free and occupied nodes. The mapping
results of the inverse sensor model in OctoMap and the proposed model are
compared with the reference map. The occupied nodes in an occupancy map is
a shell since the camera cannot observe the inside of an object. Fig. 3 (h) and (i)
are the comparison results of the mapping results and the reference. A number
of nodes are attached to the surface of the shell in the reference map and a
minor translation occurs between two maps. This is because the measurements
from the stereo camera are not accurate enough. To find those nodes that are
apparently irrelevant to the map, we inflate the reference above ground by 0.3
meter. The ground part and the nodes whose vertical distances to the ground
are within 0.3 meter are also ignored. The nodes outside the inflated reference

TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . . 9

10 Y. Miao et al.

map are presented in Fig. 3 (j) and (k). These nodes are apparently irrelevant
to the ground truth.

(a) Camera trajectory (b) Keyframe points (c) Map points

(d) Occupied nodes (OctoMap model) (e) Occupied nodes (k-NN model)

(f) Occupancy map (OctoMap model) (g) Occupancy map (k-NN model)

(h) Comparison with reference
(OctoMap model)

(i) Comparison with reference
(k-NN model)

(j) Comparison with inflated reference
(OctoMap model)

(k) Comparison with inflated reference
(k-NN model)

Fig. 3. Experimental results

10 TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . .

Y. Miao et al. 11

Table 1 shows the comparison results of the reference map and the inflated
reference map. The total nodes number of the reference shell is 1441. The map-
ping results of the OctoMap model and the k-NN model share 399 and 387
nodes, respectively. 756 occupied nodes in the map derived by the OctoMap
model are either on the reference shell or inside the shell. While the reference
shell can cover 703 occupied nodes in the map generated by the k-NN model.
The numbers of irrelevant nodes for two maps are 33 and 4, respectively.

Table 1. Comparison with reference

Model Nodes in reference shell Nodes covered by reference Irrelevant Nodes

OctoMap model 399 756 33
K-NN model 387 703 4

4.3 Discussion

Sometimes the spatial change detection in PCL cannot detect all the new points
and disappeared points. It is possible that the average distance sp,t−1 of an
affected point and the average distance sp,t of a point in the keyframe point
cloud are unknown. In these cases, we process such points as new points.

The experiment in the semi-structured environment shows that our approach
can deal with sparse and noisy point clouds. The occupied nodes derived by the
k-NN based model are more accurate and with less irrelevant nodes. Due to
the noise and wrong measurements in the point cloud, the OctoMap model can
branch free nodes even when the measurements are highly irrelevant. While the
k-NN based model only generate free nodes with reliable measurements.

Since the point clouds are sparse, and camera measurements and the reference
map are not accurate enough, the number of nodes shared by the occupancy map
and the reference shell is smaller than the number of the nodes which form the
reference shell. In table 1, the numbers of the k-NN model are slightly smaller
than the numbers of the OctoMap model. Because the k-NN based method can
filter unreliable points, and the reference map cannot overlap the ground truth
completely so that wrong matches may occur between the map derived by the
OctoMap model and the reference map.

In this paper, we ignore the influence of the pruning and clamping update
policy in the OctoMap when counting the number of nodes. Because it is rare
to see pruning and clamping when the input point clouds are sparse.

5 Conclusion

In this paper, we present a k-NN based inverse sensor model for occupancy
mapping with an illustration of the update process of the normal distribution
and the inverse sensor model. Our approach is reliable even when the input

TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . . 11

12 Y. Miao et al.

point cloud is noisy and sparse. The mapping result of the k-NN based method
is with less irrelevant nodes than that of the OctoMap model. In the future,
the performance of the proposed algorithms will be optimized. An map update
policy will be developed so that the occupancy map can update accordingly
when ORB-SLAM detects loop closure and updates the keyframes. Then the
proposed model can be extended to the real-time mapping.

Acknowledgments Yu Miao thanks University of Bath grant University Re-
search Studentship Award-Engineering and China Scholarship Council grant No.
201706120022 for financial support.

References

1. Robotic mapping, https://en.wikipedia.org/wiki/Robotic mapping. Last accessed
23 Jan 2019

2. Kwon, Y., Kim, D. and Yoon, S.E.: Super ray based updates for occupancy maps.
In: Proceedings of the 2016 IEEE International Conference on Robotics and Au-
tomation, pp. 4267–4274. IEEE, Stockholm (2016)

3. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M. and Beetz, M.: Towards 3D point
cloud based object maps for household environments. Robotics and Autonomous
Systems 56(11), 927–941 (2008)

4. Cole, D.M. and Newman, P.M.: Using laser range data for 3D SLAM in outdoor en-
vironments. In: Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, pp. 1556–1563. IEEE, Orlando (2006)

5. Rusu, R.B. and Cousins, S.: 3D is here: Point Cloud Library (PCL). In: Proceedings
of the 2011 IEEE International Conference on Robotics and Automation, pp. 1–4.
IEEE, Shanghai (2011)

6. Hornung, A., Wurm, K.M., Bennewitz, M.: OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Autonomous Robots 34(3), 189–206 (2013)

7. Mur-Artal, R., Montiel, J.M.M. and Tardos, J.D.: ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics 31(5), 1147–
1163 (2015)

8. Octree, https://en.wikipedia.org/wiki/Octree. Last accessed 24 Jan 2019
9. Point Cloud Compression, http://pointclouds.org/documentation/tutorials/

compression.php#octree-compression. Last accessed 24 Jan 2019
10. Spatial Partitioning and Search Operations with Octrees, http://pointclouds.org/

documentation/tutorials/octree.php#octree-search. Last accessed 24 Jan 2019
11. Spatial change detection on unorganized point cloud data, http://pointclouds.

org/documentation/tutorials/octree change.php#octree-change-detection. Last ac-
cessed 24 Jan 2019

12. Taketomi, T., Uchiyama, H. and Ikeda, S.: Visual SLAM algorithms: A survey
from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications 9(1),
16 (2017)

13. Welford, B.P.: Note on a method for calculating corrected sums of squares and
products. Technometrics 4(3), 419–420 (1962)

14. Standard deviation, https://en.wikipedia.org/wiki/Standard deviation. Last ac-
cessed 23 Jan 2019

12 TAROS2019, 027, v2 (final): ’A K-Nearest Neighbours Based Inverse Sensor Model for . . .

