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Summary

crystal-torture is a Python, Fortran, and OpenMP module for the analysis of diffusion
networks in crystal structures. Ionic diffusion through crystalline solids depends not only on
the dynamics of ions within the crystal, but also the connectivity of the transport network.
Understanding how the connectivity of diffusion pathways in crystal structures is affected by
changes in chemistry is necessary for understanding how chemical modifications change ionic
conductivities, for example the doping of solid electrolytes. crystal-torture provides a
Python API for interrogating network connectivity and diffusion pathways in partially blocked
crystal structures. It can be used as a tool for materials scientists to quickly build up net-
work connectivity statistics to determine the viability of potential ionic conductors, and how
chemical modification affects network connectivity, before the use of more computationally
expensive approaches modelling the full dynamics.

Scientific Context

The transport of mobile ions through crystalline solids is a fundamental process underlying phe-
nomena such as solid-state reactions, and the behaviour of devices such as batteries and fuel
cells. Quantitative descriptions of microscopic ionic transport are often derived by considering
ionic trajectories as sequences of discrete “hops” made by individual ions moving between
lattice sites in the host crystal structure (Catlow, 1986; Morgan, 2017; Van der Ven, Bhat-
tacharya, & Belak, 2013; Vineyard, 1957). In a perfect crystal structure, the crystal symmetry
means the full lattice can be constructed by periodically tiling a unit cell, containing a minimal
number of lattice sites (Glazer, 2016). In conventional ionic conductors, ion diffusion on this
periodic lattice can be modelled as a stochastic random walk, allowing derivation of simple
quantitative relationships between the average microscopic hop rate and macroscopic transport
coefficients, such as diffusion coefficient and ionic conductivities (Catlow, 1983, 1986; Matina
et al., 2008; Morgan, 2017; Morgan & Madden, 2014). This model is complicated in highly
disordered crystal structures where some proportion of the host lattice sites are occupied by
immobile atoms, which block the diffusion of nominally mobile ionic species. The long-ranged
diffusion of mobile ions now depends on the proportion and arrangement of blocked sites, and
the degree to which the mobile ions can access percolating paths through the crystal struc-
ture [Fig. 1] (Deng, Radhakrishnan, & Ong, 2015; García Daza, Bonilla, Llordés, Carrasco, &
Akhmatskaya, 2018; Lee et al., 2014; Urban, Lee, & Ceder, 2014). If the proportion of blocked
sites, pb, exceeds 1− p, where p is the site-percolation threshold for that crystal lattice, then
no continuous paths exist and the diffusion coefficient and ionic conductivity for the mobile
ions are zero. If the proportion of blocked sites falls below this threshold (0 < pb < 1− p) at
least one percolating path exists and the mobile-ion transport coefficients are non-zero, but
are decreased relative to the corresponding values for the ideal fully open lattice (pb = 0).
This decreased ion mobility has two causes. First, the available continuous paths are more
tortuous than in a more open lattice: a mobile ion must move through more lattice sites
to diffuse an equivalent end-to-end distance. Second, some mobile ions may be trapped in
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(a) ideal lattice
pb = 0

(c) blocked lattice
pb > 1-p

(b) partially blocked lattice
0 < pb < 1-p

Figure 1: Schematic showing the effect of progressively blocking lattice sites on ion diffusion pathways.
(a) ideal lattice: all lattice sites are accessible and ions follow a random walk. (b) partially blocked
lattice: Long ranged diffusion is still possible, but diffusive pathways are tortuous (blue arrows). Not
all mobile ions can participate in long-ranged diffusion (orange arrows). (c) fully blocked lattice:
The proportion of available sites is below the site percolation threshold. No long ranged diffusion is
possible.

non-percolating paths, and can not contribute to long-ranged transport. crystal-torture
has been written to perform statistical analysis of these path-blocking effects in disordered
crystal lattices. The main analysis output is the per-site microscopic tortuosity, which provides
a quantitative measure of the degree to which diffusion paths become indirect, relative to an
ideal open lattice.
The concept of tortuosity has been extensively used in modelling macroscopic transport
through porous media (Ghanbarian, Hunt, Ewing, & Sahimi, 2013; Shen & Chen, 2007).
crystal-torture allows the calculation of “microscopic tortuosities”, which we define for
each lattice site as the length of the shortest possible path between a that site and its periodic
images, divided by the minimum-image distance in the corresponding ideal (unblocked) lattice.
If all lattice-lattice jumps are of equal distance, the microscopic tortuosity can equivalently be
defined as the minimum number of inter-nodal steps between a pair of site periodic images,
divided by the minimum number of steps between these sites in an ideal lattice:

τmicro
i =

minni→i′

minnideal
i→i′

The microscopic tortuosity is a microscopic analogue of the “geometric tortuosity” (Clennell,
1997).
crystal-torture provides an interface for parsing pymatgen Structure objects (Ong et al.,
2013) as inputs, which are used to construct network graphs of connected sites. These graphs
can be interogated to identify sets of sites forming connected clusters, which can be converted
to pymatgen Structure objects for visualisation or further processing. crystal-torture
can identify which clusters are periodic along one or more lattice directions, thereby identifying
the clusters that form percolating networks. For each cluster, the microscopic tortuosity can
be calculated, using a breadth-first-search algorithm. For each site in a periodic cluster, this
finds the shortest periodic pathway to that site’s periodic image. The number of nodes visited
along this pathway is used to calculate the microscopic tortuosity. The code also includes
routines for introducing varying proportions of blocked sites into a parent crystal structure,
which allows automated analysis of how site connectivity and microscopic tortuosity varies
with stoichiometry, for example under varying concentrations of dopant atoms.
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