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Abstract 1 

Achromobacter denitrificans PR1 has previously shown potential to degrade the antibiotic sulfamethoxazole, 2 

whereby sulfamethoxazole biotransformation was stimulated in the presence of biogenic substrates. This study 3 

examined the biotransformation kinetics of sulfamethoxazole and its two main conjugates, N4-acetyl-SMX 4 

and SMX-N1-Glucuronide, by activated sludge and activated sludge bioaugmented with A. denitrificans PR1. 5 

SMX biotransformation under both anoxic and aerobic conditions was tested, with and without the addition of 6 

acetate as growth substrate, to understand the range of applicable conditions for bioaugmentation purposes. 7 

Biological process models, such as the pseudo-first order kinetic and cometabolic models, were also applied 8 

and, following the estimation of kinetic parameters, could well describe data measured in bioaugmented and 9 

non-bioaugmented AS batch experiments under various test conditions. Experimental and modelling results 10 

suggest that (i) retransformation of the two conjugates to SMX in AS occurred under both aerobic and anoxic 11 

conditions, and (ii) biotransformation kinetics of SMX can vary significantly depending on redox conditions, 12 

e.g., SMX was biotransformed by AS only under aerobic conditions. Notably, SMX biotransformation was 13 

significantly enhanced when PR1 was bioaugmented in AS. Addition of acetate as biogenic substrate is not 14 

neccessary, as PR1 was capable of enhancing the SMX biotransformation by using the carbon sources present 15 

in wastewater. Overall, bioaugmentation by means of A. denitrificans PR1 could be a viable strategy for 16 

enhancing SMX removal in AS wastewater treatment plants (WWTPs).  17 

 18 

Keywords: antibiotics, cometabolism, N4-acetyl-SMX, SMX-N1-Glucuronide, modelling, retransformation 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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1. Introduction  27 

The intensive use of antibiotics for human and veterinary therapy has led to their continuous discharge, also 28 

in the form of conjugates, in the environment. WWTPs are not designed to remove these and other xenobiotic 29 

chemicals, and discharge of treated effluents into the environment has been a major concern due to the risk of 30 

a worldwide dispersal of antibiotic resistance genes [1].   31 

Amongst antibiotics, sulfamethoxazole (SMX) is one of the most widely used synthetic sulfonamides 32 

worldwide. SMX enters WWTPs via human excretion in the forms of unchanged SMX (15-25% of the 33 

excreted dose) as well as the conjugated forms N4-acetyl-SMX (Ac-SMX) (> 40%) and SMX-N1-Glucuronide 34 

(SMX-Glu) (9-15%) [2]. The two human conjugates have been detected in wastewater influent and effluent, 35 

and were observed to rapidly deconjugate during wastewater treatment [3,4] which was considered to likely 36 

explain the reported ‘negative removal’ of SMX in wastewater treatment [3,5]. This suggests the importance 37 

of investigating the retransformation of the two major human conjugates to parent SMX, in order to explain 38 

the reported differences in removal efficiencies  in WWTPs [6,7].  39 

SMX removal has been shown to vary greatly, i.e. from negative (-138%) to very high (>90%) [1] in full-scale 40 

WWTPs, and with variability in SMX biotransformation kinetics. SMX was also shown to be not readily 41 

biodegradable during the 28-day test period in a closed bottle test [8].  42 

Biotransformation has been recognized as the major elimination mechanism of SMX and its conjugates during 43 

biological treatment of domestic wastewater, with minor contribution of sorption onto sludge (due to the polar 44 

nature of these compounds). Overall, literature reports of inconsistent and incomplete SMX elimination 45 

suggest that novel technologies/strategies would be required if more stringent discharge limits for SMX and 46 

other antibiotics are enforced. Bioaugmentation can be an alternative WWTP operational strategy to enable or 47 

enhance xenobiotics removal by inoculating specialized degrading bacteria [9]. Despite the fact that 48 

bioaugmentation has been studied for years in wastewater treatment to reinforce biological processes, few 49 

studies have tested the use of bioaugmentation for enhancing the removal of xenobiotics, e.g. 17β-estradiol 50 

[10], estradiol [11], fungicides [12]. With respect to antibiotics, bioaugmentation resulted in limited SMX 51 

removal when applying Microbacterium sp. strain BR1 in full-scale membrane bioreactors [13], except for 52 

SMX concentrations far higher than the ones normally found in municipal wastewater. 53 
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Previously, we showed that a pure culture of Achromobacter denitrificans PR1 could exhibit faster 54 

biotransformation kinetics (up to two to three orders of magnitude higher) of SMX compared to AS alone [14], 55 

even at the low SMX concentrations typical of wastewater effluents. Given its ability to degrade SMX in the 56 

presence and/or absence of other additional carbon sources (acetate and succinate) at environmentally relevant 57 

concentrations (typical of e.g., wastewater effluents), the strain likely has potential for treating SMX in 58 

wastewater upon bioaugmentation. Therefore, the overall objective of this work was to investigate whether 59 

PR1 can enhance SMX biotransformation kinetics when bioaugmented to AS with real wastewater feed. 60 

Specifically, we (i) investigated the effect of redox conditions, i.e. aerobic and anoxic conditions, on the 61 

transformation rates of targeted compounds; (ii) assessed the potential influence of retransformation processes 62 

of the two main human conjugates, i.e. Ac-SMX and SMX-Glu, on the fate of sulfamethoxazole under the 63 

testing conditions; and (iii) evaluated the need for supplementation with a biogenic substrate (e.g. acetate) or 64 

whether the availability of carbon sources in wastewater could serve as biogenic substrates to achieve a 65 

sufficiently interesting kinetic for SMX removal upon bioaugmentation of AS with PR1. Modelling the fate of 66 

xenobiotics in WWTPs can be a useful tool to understand their removal mechanisms, predict and reduce their 67 

emissions with treated effluent through process optimization. Specifically, the Activated Sludge Modelling 68 

framework for Xenobiotics (ASM-X), has been previously used to predict the fate of SMX in biological 69 

treatment systems [7] and to identify factors (influent concentration of conjugates, solid residence time) 70 

possibly explaining the variability in SMX removal efficiencies [15]. In this context, suitable mathematical 71 

models were developed to examine the metabolic mechanism and predict kinetics of SMX and human 72 

conjugates biotransformation upon bioaugmentation of A. denitrificans PR1 into AS. 73 

2. Materials and methods 74 

2.1. Chemicals and reagents 75 

Reagent grade (purity ≥ 99%) SMX was purchased from Sigma-Aldrich. Ac-SMX, SMX-Glu and isotopically 76 

labelled Ac-SMX-d4, SMX-d4-Glu, SMX-d4 were obtained from Toronto Research Chemicals, Inc. (TRC, 77 

Canada). Individual stock standard solutions were prepared on a weight basis in methanol and stored at -20oC. 78 

HPLC-grade methanol was supplied by Merck (Darmstadt, Germany). 79 
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2.2. Laboratory-scale experiments - Bioaugmentation of AS with A. denitrificans PR1 80 

2.2.1. Culture media 81 

Bacterial inoculum was grown in mineral medium B, supplemented with ammonium phosphate at 82 

concentration of 400 mM (designated as MMBN), as previously described by [16]. The cells were harvested 83 

by  centrifugation (7000 x g for 10 min at 20oC using a Sigma® 4-16KS centrifuge), and rinsed three times 84 

with fresh MMBN medium to remove the trace amount of SMX remaining from the culture medium before 85 

augmenting to the reactors to get an initial cell suspension concentration of approximately 0.05-0.06 mgbiomass 86 

L-1. 87 

2.2.2. Batch tests 88 

Biotransformation of SMX and the two main human conjugates by AS and bioaugmented AS was assessed in 89 

a series of batch experiments in 1 L jacketed glass reactors. Dried compressed atmospheric air or pure nitrogen 90 

were continuously sparged by a diffuser placed at the bottom of each reactor to create aerobic or anoxic 91 

conditions, respectively. Temperature was controlled at 20°C using an external recirculating bath and pH was 92 

monitored and maintained between 7.0-7.4 by the addition of HCl (0.2 M) or NaOH (0.2 M), using pH 93 

controllers (HI8711, Hanna Instruments, US) with dual set point. 94 

For all experiments, primary effluent wastewater and AS (from a Modified Ludzack Ettinger system) collected 95 

from the Chelas WWTP (Lisbon, Portugal) were used. More information about Chelas WWTP is provided in 96 

Section S2 and Table S3, Supplementary Information (SI). AS and primary effluent were seeded to the 1 L 97 

glass reactors at an initial biomass concentration of approximately 3 gTSS L-1 for all the experiments. Overall, 98 

four types of batch tests were performed: (i) abiotic control tests; (ii) sorption tests; (iii) bioaugmenation tests; 99 

(iv) nitrification inhibtion tests. The testing conditions are presented in Table 1. All the tests were performed 100 

in duplicate, except for the anoxic bioaugmented AS test (An2, Table 1), the control 1 and the allylthiourea 101 

(ATU) nitrification inhibition tests. 102 

Abiotic control test (control 1) 103 

The goal of this experiment was to determine the contribution of abiotic removal mechanisms (stripping, 104 

sorption onto reactor walls and equipment, and abiotic chemical reactions). In this test, the 1 L-glass-reactor 105 
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was filled with Milli-Q water that was spiked with the three compounds, e.g. SMX, Ac-SMX and SMX-Glu 106 

at the concentrations of 10 µg L-1, 15 µg L-1 and 15 µg L-1, respectively. The experiment lasted 6 hours. 107 

Sorption tests (control 2) 108 

Sodium azide (NaN3) is a well know respiration inhibitor used for negative control tests in AS studies. A wide 109 

range of concentrations from 0.5 to 720 1
azide TSSmg g  were used in previous studies for this purpose [17]. In this 110 

test, a concentration of ~ 650 1
azide TSSmg g  was used to inhibit AS activity. SMX, Ac-SMX and SMX-Glu were 111 

spiked into the reactors at the initial concentrations of 5 µg.L-1, 10 µg.L-1 and 10 µg.L-1, respectively. The tests 112 

were performed in duplicate. 113 

Bioaugmentation tests 114 

The goal of these tests was to assess biotranformation of the targeted compounds with non-bioaugmented and 115 

bioaugmented AS with A. denitrificans PR1. Batch experiments were performed  during 12 to 14 hours under 116 

aerobic and anoxic conditions. In aerobic tests, the influence of a biogenic substrate on SMX biotransformation 117 

was assessed by adding acetate at an initial concentration of ~ 137 to 152 1
CODmg L  that is similar to the level 118 

of soluble COD typically found in many activated sludge WWTPs. 119 

 In anoxic batch tests, reactors were supplemented with an initial nitrate concentration of 80 mg NO3-N L-1 in 120 

the form of KNO3. Aqueous stock solutions of SMX and the two target conjugates were spiked to obtain an 121 

initial concentration of approximately 5 µg L-1 and 10 µg L-1, respectively. 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 



7 

 

Table 1. Overview of the different tested conditions in the bioaugmented and non-bioaugmented AS 130 

experiments 131 

  Batch Feed  AS  

(gTSS L-1) 

A.denitrificans  

PR1 (gbiomass L-1) 

Acetate  

(
CODmg L ) 

NaN3  

( 1
azide TSSmg g  ) 

ATU 

(mg L-1) 

Control  Control 1 C1 MilliQ-

water 

- - -   

 Control 2 C2 WW* ~ 3  - - ~ 650   

Nitrification-

inhibition 

 ATU WW* ~ 3  - -  30  

  Without 

ATU 

WW* ~ 3 - - - - 

Bioaugment

ation tests 

Aerobic A1 WW* ~ 3  0 0   

 A2 WW* ~ 3  0 137-152   

 A3 WW* ~ 3  ~ 0.05-0.06 0   

 A4 WW* ~ 3   ~ 0.05-0.06  137-152   

Anoxic An1 WW* ~ 3   0 0   

 An2 WW* ~ 3 ~ 0.05-0.06  0   

WW*: wastewater from the effluent of a primary sedimentation tank was centrifuged at 10000 x g for 15 min at 4oC, and then filtered 132 

through Whatman® Glass microfiber filters, pore size 1.2 μm binder free, Grade GF/C before feeding to the reactors. 133 

Nitrification inhibition tests 134 

To determine the contribution of ammonia oxidizing bacteria and heterotrophs to the SMX biotransformation 135 

in AS communities, biomass was inactivated using ATU at 30 mg L-1 [18], a copper chelator that depletes 136 
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copper ions from the active center of ammonia monooxygenases (AMO), therefore inhibiting ammonia 137 

oxidizing activity.  138 

2.3. Sample preparation and analytical procedures 139 

Samples collected along the tests were centrifuged for 5 min at 8000 xg, followed by syringe filtration through 140 

0.2 µm cellulose Whatman filters and stored at -20oC prior to analysis of soluble chemicals. 141 

The acetate concentrations were determined by high-performance liquid chromatography (HPLC) using an IR 142 

detector and a BioRad Aminex HPX-87H column. 0.01 N sulfuric acid was used as eluent, with an elution rate 143 

of 0.6 mL/min and a 50oC operating temperature. 144 

Total and volatile suspended solids (TSS, VSS) were determined according to Standard Methods (APHA, 145 

1995). Ammonium, nitrate and nitrite concentrations were measured using a segmented flow analyzer through 146 

the Skalar San++ system. Samples were also analyzied for soluble COD (sCOD) using HACH-lange test kits 147 

and a DR2800 spectrophotometer (HACH, Germany).  148 

Analysis of SMX and the two human conjugates was performed on a high performance liquid chromatography 149 

coupled to tandem mass spectrometry (HPLC-MS/MS) using a Dionex Ultimate 3000 system from Thermo 150 

Scientific. Detailed descriptions of the sample preparation and analytical methods used are provided as Section 151 

S1 (SI).  152 

2.4. Determination of kinetic parameters-modelling approach 153 

2.4.1. Modelling assumptions 154 

In this study, we hypothesized that (i) only retransformation of the two conjugates, e.g. Ac-SMXl and SMX-155 

Glu, will occur through deconjugation to form the parent compound SMX and that (ii) the dissolved 156 

compounds are the only biodegradable fractions. Thus, the biotransformation of SMX includes two processes: 157 

(i) formation of SMX due to the retransformation (deconjugation) of Ac-SMX and SMX-Glu; (ii) simultaneous 158 

elimination of SMX. 159 

2.4.2. Model implementation and estimation of parameters 160 

In this study, the biotransformation rate of the three target compounds was calibrated using the ASM-X 161 

modelling framework [7,15,19].   162 
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Deconjugation of the two human conjugates (Ac-SMX and SMX-Glu) to form the parent compound SMX is 163 

described by a pseudo-first order kinetic model (Table 2, process (1) for aerobic and process (9) for anoxic 164 

removal), thus allowing the estimation of the biotransformation rate coefficients, e.g. kDec,Ox or kDec,Ax  (L gTSS-165 

1 d-1). 166 

For the biotransformation of SMX under aerobic conditions, both pseudo-first order and cometabolic models 167 

were implemented to test which one could appropriately predict SMX biotransformation (Table 2). The 168 

cometabolic biotransformation model [19] consisted of two biotransformation rates: the enhanced rate in the 169 

presence (qbio, L d-1 g-1)  and the pseudo-first order rate in the absence (kbio, L d-1 g-1) of growth substrates. 170 

Accordingly, biotransformation kinetics of the cometabolic substrate (e.g. micropollutants) depend on the 171 

readily biodegradable growth substrates, SS (mgCOD L-1). SS was determined as the difference between soluble 172 

COD (sCOD, measured during the experiments) and soluble inert COD (SI – calculated according to [20]). 173 

The initial SS concentration of the pre-clarified municipal wastewater used in this study ranged between 41 174 

and 128 mgCOD L-1. Parameters that could not be identified through model calibration to experimental results 175 

(i.e. heterotrophic yields YH, substrate affinity constant KS) were adopted from literature [21]. Concentration 176 

profiles of acetate, expressed as sCOD, were used to calibrate the maximum specific growth rate of 177 

heterotrophs µH (Table S5 and Fig. S1, SI). The estimated parameters included: (i) biotransformation rate 178 

constants of the AS (kbio,AS) and the bioaugmented strain (kbio,PR1) in the absence of primary substrate; and (ii) 179 

the cometabolic biotransformation rate constants of the AS (qbio,AS) and the bioaugmented strain (qbio,PR1) in 180 

the presence of the primary substrates. Each batch test was designed to determine a specific kinetic constant 181 

and is described in Table 3. The model was implemented in Aquasim 2.1d [22] and the embedded secant 182 

method was used for parameter estimation.   183 

In our study, experimental data from A1, A4, An1 and An2 tests were used for the model calibration and 184 

estimation of the biotranformation rate constants of SMX and the two human conjugates by AS and A. 185 

denitrificans PR1 under aerobic and anoxic conditions (Table 3). More details on the model calibration 186 

procedure are presented in Supplementary Information (section S3). 187 
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2.4.3. Model validation 188 

Two different sets of experimental results (A2 and A3) were used to validate the cometabolic kinetic models 189 

calibrated with the data sets of A1 and A4.  190 

 191 
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Table 2. Stoichiometric (Gujer) matrix of the ASM-X for processes of parent compound retransformation, biotransformation and the alternative 192 

cometabolic biotransformation model. Parameters and state variables for determination of micropollutants kinetics are described in the main text. 193 

Processes  i      Process rate 

      j process CLI CCJ Ss XAS XPR1*  

Pseudo-first order kinetics – Aerobic processes  
 

(1) Parent compound formation due to retransformation of human 

F -1  *  
1

Dec CJ AS

D AS

k C X

K X
 

(2) Pseudo-first order kinetics – biotransformation transformation of 

parent compound CLI  by AS 
-1   *  _

1
bio AS LI AS

D AS

k C X

K X  
(3) Pseudo-first order kinetics – biotransformation of parent 

compound CLI  by the bioaugmentation strain, i.e. A. denitrificans PR1 
-1     

*

_ 1 1

11
bio P R L I P R

D PR

k C X

K X  

Cometabolic model – Aerobic processes  

4) Cometabolic biotransformation of CLI by AS -1   * 
 

_ _( )

1

S
bio AS bio AS LI AS

S S

D AS

S
q k C X

S K

K X





 

(5) Cometabolic enhancement biotransformation of CLI by the bio-

augmentation strain, i.e. A. denitrificans strain PR1 
    

 

* 

_ 1 _ 1 1( )

1

S
bio PR bio PR LI PR

S S

D AS

S
q k C X

S K

K X





 

(6) Aerobic growth    * * 
                 

S
H H

S S

S
X

S K



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Pseudo first order kinetics – Anoxic processes
 

(7) Parent compound formation due to retransformation of human 

conjugates CCJ 

F -1  *  

1
Dec CJ AS

D AS

k C X

K X
 

(8) Biotransformation of parent compound CLI  by AS 

 
-1   *  

_

1
bio AS LI AS

D AS

k C X

K X
 

(9) Biotransformation of parent compound CLI  by the bio-

augmentation strain, i.e. A. denitrificans PR1 
-1    

* 
_ 1 1

11
bio PR LI PR

D PR

k C X

K X
 

*Due to short duration of the batch experiment and low S/X ratio, negligible biomass growth was assumed. 194 

F = ratio between molecular mass of parent compound and metabolite undergoing deconjugation. 195 

SS: primary substrate concentration (e.g., organic matter or acetate in some of these experiments, expressed as readily soluble biodegradable COD) considering a co-substrate (gCOD L-1). 196 

CLI and CCJ : the aqueous concentrations of the parent compound and the human conjugates undergoing deconjugation to the parent compound, respectively (µg L-1). 197 

kDec: retransformation rate constant of deconjugation of the human conjugates to parent compound (L gTSS-1 d-1). 198 

kbio_AS : is the reaction rate coefficient of biotransformation of parent compound (L gTSS-1 d-1) by AS. 199 

kbio_PR1: is the reaction rate coefficient of biotransformation of parent compound (L gTSS-1 d-1) by the bioaugmented A. denitrificans strain PR1. 200 

KS : half-saturation coefficient for SS 201 

KD: sorption coefficient (0.256 L gbiomass-1 for SMX - [23]). The values are not available for N4-acetyl-SMX and SMX-N1-Glucuronide, and were thefore assumed to be equal to 0. 202 
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XPR1 or XAS : biomass concentration of bio-augmented strain A. denitrificans or AS, expressed in gTSS L-1;  203 

XH is expressed in gCOD L-1 by assuming biomass-to-COD ratio of 0.75204 
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Table 3. Model calibration and parameter estimation procedures for the batch tests performed under aerobic and anoxic conditions 205 

Batch  Goal Process used Input parameters Estimated parameters 

A1 (non-bioaugmented) Model calibration Process (1) 

Process (2) 

Process (1), (4) and (6) 

 

 

k_dec_N4_Ox, k_dec_Glu_Ox, k_bio_AS_Ox  

k_dec_N4_Ox, k_dec_Glu_Ox 

k_bio_AS_Ox  

q_bio_AS_Ox 

A4 (bioaugmented) Model calibration Process  (3) 

Process  (1), (4), (5) and (6) 

 

k_dec_N4_Ox, k_dec_Glu_Ox, k_bio_AS_Ox, q_bio_AS_Ox, k_bio_PR1_Ox 

k_bio_PR1_Ox
** 

q_bio_PR1_Ox 

A2 (non-bioaugmented) Model validation Process (1), (4) and (6) k_dec_N4_Ox, k_dec_Glu_Ox, k_bio_AS_Ox, q_bio_AS_Ox None  

A3 (bioaugmented) Model validation Process (1), (4), (5) and (6) k_dec_N4_Ox, k_dec_Glu_Ox, k_bio_AS_Ox, q_bio_AS_Ox, k_bio_PR1_Ox, q_bio_PR1_Ox None 

An1 (non-bioaugmented) Model calibration Process (7) 

Process (8) 

 

k_dec_N4_Ax, k_dec_Glu_Ax 

k_dec_N4_Ax, k_dec_Glu_Ax 

 k_bio_AS_Ax 

An2 (bioaugmented) Model calibration Process (7), (8) and (9) k_dec_N4_Ax, k_dec_Glu_Ax, k_bio_AS_Ax k_bio_PR1_Ax 

** k_bio_PR1_Ox was determined in our previous study [14], from the test with the pure culture (i.e. A.denitrificans PR1 biodegradation test) conducted in mineral medium 206 

supplemented with SMX as the only substrate.  207 

 208 

 209 

 210 
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3. Results and discussions 211 

3.1. Abiotic and sorption processes 212 

Fig. 1 shows the evolution of SMX, Ac-SMX and SMX-Glu concentrations over the test period of 6 h 213 

in control test 1, revealing 1.8%, 11.4% and 11.8% removal for Ac-SMX, SMX-Glu and SMX, 214 

respectively. This suggests that abiotic processes had minor contribution to the removal of the tested 215 

compounds, in agreement with previous studies [24]. 216 

To investigate sorption to AS, sodium azide (NaN3) was used to inhibit the aerobic respiration and 217 

suppress the microbial activity of the AS (control 2). The results showed that Ac-SMX and SMX-Glu 218 

were transformed concomitantly with an increase in SMX concentration (Fig. 1), indicating that the 219 

retransformation of the parent SMX from the two human conjugates occurred even with inactivated 220 

biomass, likely via extracellular enzymes. This is in agreement with previous studies for other 221 

conjugates [25]. In terms of mass balance, supposing that all the human conjugates were converted back 222 

to SMX, there was approx. 0.02 µmol SMX formed after 4.5 hours, while there was a removal of approx. 223 

0.02 µmol of the two human conjugates. Therefore, no SMX removal was observed in the presence of 224 

NaN3 (control 2). Since sodium azide was present at concentrations previously observed to be sufficient 225 

to inhibit the fraction of  aerobic biomass [26], biotransformation of the two human conjugates could be 226 

due to the activity of facultative anaerobic bacteria, which was not sufficiently inhibited by the addition 227 

of NaN3.  228 

Due to the impossibility of determining the partitioning coefficient for SMX, the sorption fraction was 229 

assessed considering the sorption coefficient KD obtained from previous literature. A KD value of 0.256 230 

L gTSS-1 [23] was chosen as the tests in this study were performed with fresh AS and real wastewater, 231 

which was representative of the real WWTPs where the KD was obtained. At circumneutral pH typical 232 

of activated sludge systems, SMX is predominantly speciated as an anion (pKa = 5.7). Possibly due to 233 

repulsion with negatively charged slugde particles, sorption of SMX has been generally found to be 234 

limited (Kd < 0.4 L g-1) but not negligible. Notably, the Kd value used is in agreement with other 235 

determinations in activated sludge (see, e.g. [7], [27], [23]). Sorption of the two human conjugates onto 236 
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AS was not considered in these experiments as no reference values of sorption coefficient were reported. 237 

Indeed, the pH of the mixed liquor in the tests was between 7.0-7.4, which is well above the pKa of 238 

SMX-Glu and Ac-SMX (pKa2 = 2.7 and 5.6, respectively). Under these experimental conditions, Ac-239 

SMX and SMX-Glu exist predominantly or completely as negatively charged species in the aqueous 240 

phase. Hence, negligible sorption of Ac-SMX and SMX-Glu was assumed due to their high solubility 241 

and polar nature.  242 

3.2. Biotransformation of SMX, SMX-Glu and Ac-SMX in bioaugmented and non-bioaugmented AS 243 

tests 244 

Aerobic batch experiments (A1-A4) 245 

In general, biotransformation of the two human conjugates was almost complete for all the batch tests 246 

performed under aerobic conditions. This is in agreement with previous studies, showing >85% removal 247 

of the two conjugates in laboratory-scale [3] and full-scale [4] AS processes, or even fully eliminated in 248 

a pilot membrane bioreactor [28]. In the aerobic non-bioaugmented reactors (A1, A2), an increase in 249 

SMX concentration was observed in the first 4–6 hours followed by a slow decrease during the rest of 250 

the tests when biotransformation of the two human conjugates was complete (Fig. 2a and 2b). Negative 251 

SMX removal was observed, i.e. -43.1% and -63.8%, for the AS in tests A1 and A2, respectively. The 252 

decrease in Ac-SMX and SMX-Glu concentrations corresponded to increases in SMX concentrations 253 

(Fig. 2a, 2b), strongly suggesting that the two human conjugates deconjugated rapidly to form the parent 254 

compound SMX under aerobic conditions. There is relatively limited knowledge on the environmental 255 

fate and behavior of the conjugated pharmaceuticals, but these conjugates can undergo deconjugation 256 

reactions where deconjugation enzymes are present, with cleavage of the conjugated moiety, resulting 257 

in the formation of the parent pharmaceuticals [15,29]. 258 

For bioaugmentation of AS with PR1, experimental results obtained in the two batches A3 and A4, show 259 

a comparably high rate of SMX biotransformation in the first 4 hours, followed by a relatively lower 260 

SMX removal rate after the growth substrates were completed (Fig. 2c and 2d). Similar SMX removal 261 

was observed in A3 and A4 after 12 hours, i.e. 92.5 ± 1.0% and 89.4 ± 1.5%, respectively. 262 
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Concomitantly, complete removal of the SMX-Glu and Ac-SMX in the first 4 hours of the test was 263 

observed, which supposedly was converted back to SMX (Fig. 2c and 2d) as suggested by other studies 264 

[3,15].  265 

Relative contribution of heterotrophs and ammonia oxidizing bacteria 266 

Batch tests  performed in the presence of ATU showed no removal of ammonium and no formation of 267 

nitrate (Fig. 3b), suggesting nitrification was completely suppressed There was 42 % removal of SMX 268 

after 12 hours (Fig. 3a). No appreciable differences were observed in the removal efficiency of SMX 269 

with and without ATU (Fig. 3a), suggesting negligible contribution of AOB to the biotransformation of 270 

SMX. Also, for all the remaining aerobic batch tests (A1, A2, A3, and A4) performed, no ammonium 271 

removal and no nitrate formation could be observed (Fig. S2) during the testing periods, confirming that 272 

no nitrifying activity occurred in the tested AS. Even though biotransformation of SMX in AS was 273 

previously shown to correlate with  both nitrifying activity [30,31] and heterotrophic bacteria [32,33], 274 

no appreciable differences were observed in the removal efficiency of SMX with and without ATU (Fig. 275 

3a) in our study, which could be due to the fact that (i) the SMX biotransformation rate by heterotrophic 276 

aerobic degradation was reported to be much faster compared to autotrophic nitrification (e.g. kbio, h = 277 

0.09 L/gVSS d vs. kbio, a = 0.01 L/gVSS d) [32]; and (ii) the possible higher abundance of heterotrophs 278 

compared to nitrifiers. Thus, heterotrophs seem to be the dominant organisms responsible for the 279 

biotransformation of SMX in the current study and the cometabolic model applied for all the batch tests 280 

could be based on only organic carbon (i.e. readily biodegradable substrates and supplemental acetate) 281 

as the primary substrates.  282 

Effect of acetate addition on the biotransformation of SMX 283 

We previously showed that the presence of a biogenic substrate, e.g. acetate or succinate, provided for 284 

an 8-fold increase of SMX biotransformation kinetics by PR1 [14]. In the current study, the initial 285 

concentration of acetate was approximately 137 to 152 mg COD L-1, supplemented with preclarified 286 

wastewater to (i) the bioaugmented reactor (A4) (Fig. S8b) as a biogenic substrate to enhance the 287 

kinetics of SMX biotransformation by PR1, and (ii) the non-bioaugmented reactor (A2) (Fig. S8a) as a 288 
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control for comparison purposes. Upon bioaugmentation of AS with PR1 (reactor A3, Fig. 2c), with 289 

only wastewater (no acetate addition), SMX was biotransformed steadily and almost completely without 290 

any lag phase. In addition, the profiles of SMX in the tests fed with acetate were comparable to the one 291 

in the tests without acetate (Fig. S8a (A1 versus A2) and S8b (A3 versus A4)). From these observations, 292 

we hypothesized that (i) PR1 could use other available carbon sources present in wastewater as biogenic 293 

substrates to enhance the SMX biotransformation kinetics and the addition of acetate is unnecessary for 294 

the bioaugmentation with PR1; (ii) there is no enhancement effect due to acetate addition on the 295 

biotransformation of SMX by AS when fed with real wastewater. These hypotheses were also justified 296 

with the modelling results in section 3.3 and 3.4. 297 

Anoxic experiements 298 

Pure culture biotransformation tests had previously shown that the A.denitrificans PR1 is capable of 299 

biotransformation of SMX under both aerobic [14] and anoxic conditions (data not shown). Hence the 300 

extent of SMX removal under anoxic conditions was also assessed and compared to those obtained in 301 

aerobic conditions.  302 

In the two anoxic batch tests with non-bioaugmented (An1) and bioaugmented AS (An2), most of the 303 

two human conjugates were removed in the first 6 hours (Fig. 4a and 4b),which is in agreement with 304 

Stadler et al. 2015 [3] that observed >90% of Ac-SMX and SMX-Glu removals under anoxic condition.  305 

For the non-bioaugmented reactor An1, the consumption of nitrate (Fig. 4c) revealed denitrifying 306 

activity, while no net SMX removal could be observed (Fig. 4a) overall. SMX concentration increased 307 

in the first 6 hours simultaneously with the deconjugation of the two human conjugates, and remained 308 

constant for the rest of the experiment. This is opposed to what was observed in denitrifying AS [7] and 309 

denitrifying MBBR sludge [34,35]. In contrast, in the bioaugmented reactor (An2), a slight decrease in 310 

SMX concentration was observed after the retransformations of the two human conjugates had 311 

completed (after 4 hours) (Fig. 4b). This suggests a biotransformation of SMX associated with the 312 

activity of the bioaugmented strain PR1, but at a rather slow rate.  313 
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3.3. Model-based assessment of biotransformation kinetics 314 

Experimental data obtained in the batches A1, A4 and An1, An2 was used for the estimation of the 315 

biotransformation rate constants for AS and the A. denitrificans PR1 under aerobic and anoxic 316 

conditions. Predicted dissolved concentration profiles of SMX and its two human conjugates during 317 

batch experiments are compared with measured data and shown in Fig. 2a, 2c, Fig. 4a and 4b. The 318 

estimated parameters are summarized in Table 4. The model predictions were evaluated using the R-319 

squared (R2) coefficient, shown in Fig. S3-S5, and summarized in Table S4 (SI). Confidence intervals 320 

were obtained by the estimation of standard deviations for a level of confidence of 95% (Fig. S3-S5, 321 

SI).  322 

Kinetics of deconjugation  323 

Deconjugation kinetics of the two conjugates could be described with pseudo-first order kinetics, in 324 

processes for aerobic (1)  and anoxic (9) conditions. For the conjugated Ac-SMX, fitting of measured 325 

data resulted in kDec values of 8.9 ± 0.53 L gTSS-1 d-1 for aerobic conditions, which was almost 2-fold 326 

higher than anoxic conditions (5.30 ± 0.21 L gTSS-1 d-1) (Table 4). These data agree well with values 327 

reported in literature for kDec of 5.9-7.6 L gTSS-1 d-1 [7,36]  under aerobic conditions or 7.9 L gTSS-1 d-1 328 

[7] under anoxic conditions. No difference in the rate constants of SMX-Glu under aerobic and anoxic 329 

conditions was obtained (4.76 ± 0.4 and 4.74 ± 0.31 L gTSS-1 d-1, respectively). No data for the 330 

biotransformation rate coefficients of SMX-Glu were available in literature for comparison. Good 331 

agreement between experimental data and model simulations for Ac-SMX and SMX-Glu was shown, 332 

as confirmed by high R2 coefficients (≥0.98), indicating that pseudo-first order equations describe well 333 

the biotransformation kinetics of the two human conjugates. These results suggest that (i) deconjugation 334 

rate constants are well above 1 L gTSS-1 d-1, thus indicating high degradability for conjugates; and (ii) 335 

deconjugation kinetics depend on redox conditions for Ac-SMX only, being faster under aerobic 336 

conditions. 337 
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Kinetics of SMX biotransformation under aerobic conditions 338 

The removal of SMX under aerobic conditions was predicted using different mathematical models for 339 

comparision (i) a pseudo-first order kinetic model; and (ii) cometabolic models. Fig. 2 and Fig. S6 (SI) 340 

compare predicted and measured concentrations of SMX in the batches A1-A4, using a cometabolic 341 

model and a pseudo first order model, respectively. According to the data plotted in these figures, the 342 

prediction of SMX biotransformation was significantly improved by adopting the cometabolic model 343 

(R2 ranged from 0.79 to 0.99, Table S4, SI) compared to pseudo-first order biotransformation model (R2 344 

ranged from 0.044 to 0.94). These results: (i) show that the cometabolic model was able to consistently 345 

describe the experimental data, with measured concentrations that fall well within the 95% confidence 346 

interval (Fig. S3, S4, SI), making the cometabolic model the relevant choice for description of the 347 

removal of SMX; (ii) support our hypothesis of the deconjugation of Ac-SMX and SMX-Glu results in 348 

the formation of parent compound SMX, which likely explains the previously observed 349 

variability/negative SMX removal efficiencies in biological treatment. In this study, we also simulated 350 

two other scenarios for the fate of SMX, i.e.: (i) biotransformation of the two human conjugates leading 351 

to the formation of a compound different from SMX (model simulations presented as blue dashed lines 352 

in Fig. 2 and 4); and (ii) all of the Ac-SMX and SMX-Glu are converted back to parent SMX, but no 353 

SMX is biodegraded, and the model simulation is presented as black dashed lines in Fig. 2 and Fig. 4. 354 

However, the model simulations in these scenarios were far different from the respective observed 355 

concentrations of SMX in all the batch experiments (Fig. 2 and 4), indicating that neither situation is 356 

applicable in the current study. 357 

According to our simulation results, a SMX biotransformation rate constant kbio,AS of 0.47 ± 0.03 L 358 

gTSS-1 d-1 and a cometabolic biotransformation rate constant qbio_AS of 7.97 ± 0.51 L gTSS-1 d-1 (Table 359 

4) were obtained by AS under aerobic conditions. Previous studies reported kbio,SMX of 0.14 – 0.41 L 360 

gTSS-1 d-1 [7,27,32,37,38], in agreement with our kbio,AS result.  361 

For the bioaugmented AS, test A4 – with acetate supplementation, values of measured SMX 362 

concentration data plotted as a function of time elapsed show comparably high biotransformation rate in 363 
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the first 4-6 hours (when primary substrate was available), followed by lower removal rate during the 364 

remaining time (following primary substrate depletion) (Fig. 2d). By using the obtained parameters kbio,AS, 365 

qbio_AS from the A1 test, kbio,PR1 (56.20 ± 3.70 L gTSS d-1) from our previous study [14], fitting of measured 366 

data in the substrate depletion phase using cometabolic model as described in Table 2 resulted in 367 

estimation of qbio,PR1 = 528.39 ± 6.78 L gTSS-1 d-1. This qbio,PR1 value is consistent with rate constants 368 

(kbio,PR1 = 445.6 – 570.1 L gTSS-1 d-1) previously obtained with PR1 when acetate was supplemented  as 369 

a biogenic substrate to enhance the biotranforamtion rate of SMX in pure culture biodegradation tests 370 

[14]. Higher biotransformation kinetics of SMX by PR1 (qbio, PR1 and kbio, PR1), compared to the 371 

retransformation kinetics of  the two human conjugates (kDec), likely lead to the observation of no increase 372 

in SMX concentration in bioaugmented AS tests (A3 and A4), differently than what was observed in non-373 

bioaugmented AS tests (A1 and A2).  374 

In general, two different kinetic rates of the removal of SMX are obtained for AS as well as for A. 375 

denitrificans PR1: a fast rate qbio when primary substrate was available and a slower rate kbio when 376 

primary substrate was depleted. These results can likely explain the two patterns of SMX 377 

biotransformation observed in bioaugmented batch tests A3 and A4 (Fig. 2c and 2d). As a result of 378 

cometabolism, SMX removal was enhanced in the presence of primary substrates (as characterized by 379 

qbio), with a subsequent decrease of biotransformation kinetics upon primary substrate limitation 380 

(characterized by the kbio) at the end of the A3 and A4 tests (Fig. 2c and 2d).  381 

Also, the significant differences between kbio and qbio imply that growth substrates (readily biodegradable 382 

substrates) availability can substantially impact the removal of SMX as a result of cometabolism. In fact, 383 

typically present in wastewater at very low concentrations (ng L-1 to μg L-1), micropollutants are unable 384 

to support cell replication and primary substrates (e.g. readily biodegradable carbon sources or 385 

ammonium) are essential  for  biomass growth and to induce enzymes for assimilation or co-factors for 386 

biotransformation [39]. As wastewater is a complex medium where not only micropollutants but also 387 

organic matter and nutrients are present, which could be degraded simultaneously by AS, cometabolism 388 

kinetics could be suitable to predict the behavior of micropollutants in real WWTPs.  389 

In addition, the SMX biotransformation rate constants by A. denitrificans PR1, e.g. qbio,PR1 in the presence 390 
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and kbio,PR1 in the absence of growth substrates, are three and two orders of magnitude higher, respectively, 391 

than that estimated for AS, confirming a specialized biotransformation capability by PR1 in comparison 392 

to the mixed AS community. Thus, bioaugmentation of AS with PR1 substantially enhanced the 393 

biotransformation rate of SMX.  394 

Kinetics of SMX biotransformation under anoxic conditions 395 

SMX retransformation and removal under anoxic conditions can be predicted using pseudo-first order 396 

kinetics (processes (7) – (9)), thereby allowing for the estimation of kbio,Ax (L gTSS-1 d-1). In Fig. 4a-b, 397 

simulated and corresponding measured concentrations of the three compounds in An1 and An2 batch 398 

experiments are plotted. High R2 values (≥0.98) were obtained, and measured concentrations always fell 399 

within the 95% confidence interval (Fig. S5, SI), indicating that the pseudo-first order model was able 400 

to predict the fates of SMX and the two human conjugates obtained in the anoxic experiments. The 401 

estimated kbio,Ax for SMX biotransformation are 13.57 ± 2.10 and 0 L gTSS-1 d-1 for A. denitrificans PR1 402 

and AS, respectively (Table 4). The latter value is in contrast with other studies. Plósz et al. [7] obtained 403 

a SMX biotransformation rate constant of 0.41 L gTSS-1 d-1 under anoxic conditions with AS. In other 404 

studies, values of 0.1 and 0.05 L gTSS-1 d-1 were reported for SMX biotransformation rate constants of 405 

heterotrophic denitrification and autotrophic denitrification, respectively [32]. Torresi et al. [34] 406 

reported a rate constant kbio of 0.1 ± 0.1 L gTSS-1 d-1 and qbio of  1.7 and  3.2 for SMX biotransformation 407 

in a post-denitrification MBBR system dosed with methanol and ethanol, respectively. The obtained 408 

results suggest that, upon bioaugmentation to AS, PR1 could also be able to degrade SMX under anoxic 409 

conditions but at a significantly lower  rate as compared to aerobic conditions – decreasing by 4-fold in 410 

terms of the rate constant (kbio,PR1) under anoxic conditions as compared to aerobic conditions (Table 4).  411 

In the current study, we also provided a detailed description of SMX removal in AS processes when 412 

assessing the biotransformation of the parent compound and the deconjugation of the two major human 413 

conjugates (Ac-SMX and SMX-Glu) back to SMX. SMX formation from the deconjugation of the two 414 

human conjugates was experimentally observed and comfirmed by model-based predictions. Ac-SMX 415 

and SMX-Glu were detected at levels that are comparable to the SMX concentrations in WWTPs [6,40] 416 
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(see also Table S3, SI). Significant retransformation of SMX can take place in WWTPs at a higher rate 417 

compared to its removal rate (Table 4), resulting in the sometimes negative or varied SMX removal that 418 

have been observed in many studies. It implies that deconjugation of human conjugates should be taken 419 

into account to thoroughly understand the fate and removal of SMX during wastewater treatment.  420 

In general, the results of these tests highlight the potential application of A. denitrificans PR1 for 421 

bioaugmentation for SMX removal in WWTPs. One criterion for a successful bioaugmentation is the 422 

metabolically active inoculum of a microorganism or consortium. Inability of the inoculated strains to 423 

degrade the xenobiotic chemicals once augmented into AS has been reported [41]. One explanation 424 

given for such failure in bioaugmentation was the presence of alternative readily biodegradable 425 

substrates [41]. In our experiments, enhancement of SMX biotransformation upon bioaugmentation of 426 

AS with PR1 was observed. Upon bioaugmentation of AS with A. denitrificans, without lag phase, a 427 

fast biotransformation of SMX was observed at rates similar to those obtained in pure culture 428 

biodegradation tests when acetate was supplemented as biogenic substrate. In addition, the SMX 429 

reaction rate constant and cometabolic biotransformation rate of PR1 were about two orders of 430 

magnitude higher than the kinetics of AS, regardless of the presence of additional acetate. The fact that 431 

the strain was able to use the complex substrates present in real wastewater to stimulate the activity and 432 

provide energy for growth and maintenance, suggests that PR1 has a great potential to survive in AS 433 

communities upon bioaugmentation. Overall, bioaugmentation with PR1 appears to be a feasible 434 

solution for enhancing SMX removal in wastewater, while further studies should focus on long-term 435 

biotransformation activity and stability of the bioaugmentation strain in wastewater systems in order to 436 

make bioaugmentation applicable. 437 

3.4. Model validation 438 

The models for retransformation of SMX from the two human conjugates and cometabolic 439 

biotransformation of SMX were validated using the two sets of experimental results, A2 and A3, for the 440 

non-bioaugmented and bioaugmented cases, respectively (Fig. 2b and 2c). The set of estimated parameter 441 

values (kDec,N4, kDec,Glu, kbio,AS, qbio,AS, kbio,PR1, qbio,PR1) was used to test the capability of the proposed models 442 
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to predict the behaviour of the three compounds (SMX, Ac-SMX and SMX-Glu) in the reactors A2 and 443 

A3, providing measured data independent from those used for model identification. Measured and 444 

predicted concentrations were compared and R2 was calculated to determine the extent of correlation. 445 

Good agreement between the experimental data and model simulations could be observed with high R2 446 

(≥0.95, Table S4). This indicates the applicability of the model towards the prediction of the fate of SMX 447 

and human metabolite biotransformation by both AS and PR1 (Fig. 2b and 2c), even in the presence of 448 

an externally dosed carbon source (in this case acetate).  449 

As cometabolic biotransformation depend on the readily biodegradable growth substrates, SS (mgCOD 450 

L-1), the addition of acetate to AS would affect the biotransformation of SMX. From our previous study 451 

[14]  as well as the modelling result of the bioaugmentation test A4 (section 3.3.2), there is no doubt 452 

that acetate is a biogenic substrate to enhance the SMX biotransformation by A. denitrificans PR1, i.e. 453 

primary substrate for the cometabolism of SMX. For the non-bioaugmented activated sludge (A2), we 454 

hypothesized above (section 3.2.1.2) that there is no enhanced effects of acetate on the biotransformation 455 

of SMX by AS. To test this hypothesis, for modelling of SMX biotransformation of non-bioaugmented 456 

AS (batch A2 – with the supplementation of acetate), we tested, (i) both acetate and other readily 457 

biodegradable substrates that are present in wastewater (expressed as sCOD); (ii) only readily 458 

biodegradable substrates that are present in wastewater (expressed as sCOD) were considered as the 459 

primary substrates (SS) in the cometabolic model to enhance the SMX biotransformation by AS. 460 

However, only the latter option gave good fitting between measured and model-based prediction (Fig. 461 

S7, SI vs. Fig. 2b), suggesting that the readily biodegradable substrates that are present in wastewater 462 

(expressed as sCOD) acted and were sufficient as primary substrates for the cometabolism of SMX by 463 

AS. Acetate was measured in the wastewater and it was typically below 7 mg/L, therefore the 464 

microorganisms were probably not particularly adapted to it. Mũller et al. [33] observed that SMX 465 

cometabolism with acetate by AS occurred only after a sufficient adaptation time, meaning that the 466 

supplementation of additional acetate might have still enhanced the SMX further if sufficient adaptation 467 

time was allowed, although little is known about which easily biodegradable compounds are used as 468 

primary substrates by the AS community. Although the R2 calculated for the SMX in the A2 test (Fig. 469 
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2b) was equal to 0.79, the difference between measured and predicted SMX concentrations were still 470 

within the standard deviations of the measured concentrations and falls in between confidence interval 471 

boundaries (Fig. S3), making the cometabolic model term still relevant.   472 

Model calibration and validation results revealed that the applied models could predict accurately the fate 473 

of SMX, Ac-SMX and SMX-Glu. Kinetic parameter values describing the biotransformation of SMX, 474 

Ac-SMX and SMX-Glu under aerobic and anoxic conditions could therefore be implemented in AS 475 

models linking organic carbon removal (heterotrophic activity) and xenobiotic biotransformation to 476 

predict the fate of SMX in WWTPs. Overall, modelling is fundamental to understand the kinetics and the 477 

contribution of different members in bioaugmented AS communities with respect to xenobiotic 478 

biodegradation. Thus, combining modeling and experimental data offers the opportunity for a thorough 479 

understanding of elimination mechanisms of micropollutants in WWTPs to facilitate optimization of 480 

wastewater treatment processes and reduce emissions of xenobiotics. 481 

4. Conclusions 482 

In this study, six different batch tests with non-bioaugmented and bio-augmented (with A. denitrificans 483 

PR1) AS, operated under different redox conditions and primary substrate addition levels, were used for 484 

in-depth assessment of SMX removal in combination with its two main human conjugates (Ac-SMX and 485 

SMX-Glu). The extent of SMX removal varied depending on the experimental conditions, and process 486 

models were used for interpretation of experimental results and determination of biotransformation 487 

kinetics. The results from the experimental and model-based predictions show that the conversion of Ac-488 

SMX and SMX-Glu back to parent SMX was confirmed in activated sludge, whereby deconjugation in 489 

non-bioaugmented AS was significantly faster than SMX biotransformation. This likely explains the 490 

previously observed variability of SMX removal efficiencies, including net formation of SMX, in full-491 

scale biological WWTPs. The biotransformation of SMX and the deconjugation of Ac-SMX clearly 492 

depend on the redox conditions, with the highest removal occuring under aerobic conditions. 493 

Deconjugation of SMX-Glu was however independent of redox conditions. Also, cometabolic models 494 

were successfully used to predict the biological transformation kinetics of SMX in both bioaugmented 495 
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and non-bioaugmented reactors under different test conditions. Estimation of kinetic parameters allowed 496 

for the assessment of the success of the bioaugmentation strategy and for the identification of best 497 

conditions for its applicability. Furthermore, estimated kinetic parameters obtained from this study could 498 

be integrated in AS models to predict the fate of SMX during the biological treatment in WWTPs. Overall, 499 

bioaugmentation of AS with A. denitrificans strain PR1 led to enhanced (100-fold) biotransformation 500 

kinetics of SMX compared to the non-bioaugmented AS, within a complex carbon environment found at 501 

a WWTP without an addition of another C-source (acetate) as specific substrate for the biotransformation 502 

of SMX. These results prospect the use of A. denitrificans PR1 for bioaugmentation as a feasible and 503 

efficient option to improve SMX elimination in WWTPs.  504 
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Fig. 1. Measured concentrations of SMX, Ac-SMX, and SMX-Glu as a function of time for the control 

batch tests, i.e. control 1-with Milli-Q water (continuous lines), control 2-with NaN3 (dashed lines) as 

an inhibitor. Error bars indicate the standard deviations for duplicates 
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Fig. 2. Illustration of measured concentrations of SMX, Ac-SMX, and SMX-Glu (markers) and 

simulated (lines) as a function of time for aerobic batch tests (A1): non-bioaugmented AS test (2a); 

(A2):  non-bioaugmented AS test with supplementation of acetate as additional C-source (2b); (A3): 

bioaugmented AS with A. denitrificans PR1 test (2c); and (A4): bioaugmented AS with A. 

denitrificans PR1 supplemented with acetate test (2d). Orange dashed lines represent the SMX 

simulation if no SMX formation from the retransformation of Ac-SMX, and SMX-Glu. Black 

dashed lines represent the SMX simulation when all of Ac-SMX and SMX-Glu are converted back 

to parent SMX, but no SMX biodegraded. Error bars indicate the standard deviations for 

duplicates. 
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Fig. 3. Effect of ATU inhibition on removal of SMX (3a) and nitrogen (3b) 
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Fig. 4. Illustration of measured concentrations of SMX, N4-acetyl-SMX, and SMX-N1-Glucuronide 

(markers) and simulated (lines) as a function of time under anoxic conditions (An1): non-bioaugmented 

AS (4a); (An2): bioaugmented AS with A. denitrificans strain PR1 (4b). Orange dashed lines represent 

the SMX simulation if no SMX is formed from the retransformation of Ac-SMX, and SMX-Glu. Black 

dashed lines represent the SMX simulation when all of the Ac-SMX and SMX-Glu are converted back 

to SMX, but no SMX is biodegraded. Nitrate consumption for the batch tests is also shown (4c). Error 

bars indicate the standard deviations for duplicates. 
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Table 4. Model parameters and information of estimated kinetics for the biotransformations of SMX 

and the two human conjugates by activated sludge and A. denitrificans PR1 (PR1). Values in brackets 

indicate literature references. 

   Compound

Symbol Definition  Unit  SMX-Glu N4--SMX 

   AS PR1 AS PR1 

Aerobic 

,Dec Oxk   
Aerobic biotransformation rate coefficient 

for the human conjugates, CJC   

L g 1TSS  d-1  4.76 ± 0.38  

(n.a) 

- 8.9 ± 0.53 

(5.9-7.6 [36]) 

(6.8[7]) 

 

- 

,bio Oxk   
Aerobic biotransformation rate coefficient 

for the parent compound, LIC   

L g 1TSS   d-1 - - - - 

 ,bio Oxq   
Aerobic cometabolic-biotransformation 

rate constant for parent compound, LIC   

L g 1TSS   d-1 - - - - 

Anoxic 

 ,Dec Axk   
Anoxic biotransformation rate coefficient 

for the human conjugates, CJC   

L g 1TSS   d-1 4.74  ± 0.31 

(n.a) 

- 5.30 ± 0.21 

(7.913]) 

- 
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 ,bio Axk   
Anoxic biotransformation rate coefficient 

for the parent compound, LIC   

L g 1TSS   d-1 - - - - 

n.a.: not available 
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S1. Sample preparation and analytical methods for the concentration of sulfamethoxazole, the two 

human metabolites and biodegradation metabolites with HPLC-LC-MS/MS  

Sample preparation 

The following SPE procedure was based on a previously published method for the analysis of sulfonamides in 

natural waters [1]. The sample was filtered through nylon syringe filter 0.2 µm (Whatman). The supernatant 

was stored in 10 mL glass vials until analysis (within 2 weeks). Before performing SPE, the sample aliquot 

was added with Na2EDTA solution as a complexing agent, and was spiked with surrogate standards d4-N4-

acetyl-sulfamethoxazole, sulfamethoxazole-d4-N1-glucuronide, sulfamethoxazole-d4 each at 500 ng/L, 

adjusted to pH = 3. Isotope labelled compounds were used to correct for any losses that may have occurred 

during SPE and quantify the compounds while accounting for matrix effects inherent to wastewater samples. 

Analytes were extracted using the hydrophilic-lipophilic balance OASIS HLB catridge (6 mL, 200 mg) from 

Waters (Millford, MA). The cartridge was pre-conditioned with 6 mL of MeOH, followed by 3 mL of acidified 

metanol (0.1% formic acid in HPLC grade methanol, v/v), and then 2 x 6 mL of MilliQ-water. After that, 

samples were extracted through the HLB cartridges at a flow rate of ~5 mL/min using a 20-position vacuum 

manifold (Waters). After extraction, the cartridge was rinsed with 2 x 6 mL of MilliQ-water and vacuum-dried 

for ~5 min. The retained analytes were subsequently eluted with 4 x 2 mL of acidified methanol (50 mM formic 

acid) into a glass test tube. The SPE eluent was evaporated to dryness under a gentle flow of nitrogen and 

finally reconstituted to 500 µL in a solvent mixture of MilliQ-water:methanol (9:1). The extract was transferred 

to an amber autosampler vial, and stored at -20oC until LC-MS/MS analysis, which was carried out the day 

after. 

Analytical methods 

The concentration of SMX and their metabolites were monitored by using high performance liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS) using a Dionex Ultimate 3000 system 

from Thermo Scientific. This equipment is equipped with a binary pump, an automatic injector and a 

thermostatted column compartment coupled to a Mass Spectrometer TSQ Endura triple quadrupole model, 

from Thermo Scientific. The separation was performed on a reversed-phase column (Acquity BEH C18 (2,1 x 

50 mm, 1,7 µm), Waters)) at 40oC using an injection volume of 20 µL. The mobile phase consisted of 

water:formic acid 0.5% v/v supplemented with 0.01 mM ammonium acetate (A): methanol (B) at a flow rate 

of 0.30 mL/min and the eluting conditions applied consisted of 2 min at 5% of B; 2 min at 20% of B, 2 min at 

50% of B followed by 2 more minutes at 70% of B then a linear gradient up to 90% of B for 2 min before 

finally reduced to 5 % of B for the last 3 min.  
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Triple quadrupole operating conditions were optimized in order to work in multiple reaction monitoring mode 

(MRM). The optimization was based on the selection of ionization mode, optimum collision energy (eV), cone 

voltage.  

Ionization was achieved by positive electron spray ionization (ESI), using a spray voltage of 4 kV situated at 

a 90◦ angle to the entrance. Drying gas temperature was set as 350◦C, nebulizer pressure (N2) as 22 psi and 

drying gas flow rate as 11 L/min to achieve the highest sensitivity. Ultra high-purity Argon (Ar) was used as 

collision gas. High purity nitrogen was used as sheath, auxiliary and sweep gas.   

MRM transitions, the optimum collision energies and cone voltages selected for each transition are indicated 

in Table S1. The first transition corresponds to the most abundant and was used for quantification and the 

second one for confirmation purposes. 

XCalibur software (version 4.1) was used for data acquisition and processing. 

Table S5. MS/MS parameters for the analysis of target analytes by MRM positive ionization mode 

Target compounds Rt 
(min) 

Precursor 
ion [M+H]+ 

MRM1  MRM2 

   Collision 
energy 
(eV) 

Production 
ion 

Collision 
Energy 
(eV) 

Production 
ion 

Sulfamethoxazole 5.84 254.1 15 156 20 92 

N4-acetyl-sulfamethoxazole 6.81 296.3 25 134.1 18 198.1 

sulfamethoxazole-N1-
glucuronide 

4.93 430.3 10 254.3 30 156.1 

d4-sulfamethoxazole 5.80 258.2 15 160.1 25 96.1 

d4-N4-acetyl-sulfamethoxazole 6.82 300.3 25 138.2 18 202.2 

sulfamethoxazole-d4-N1-
glucuronide 

4.87 434.3 12 258.3 30 160.1 

3-amino-5-methylisoxazole 0.89 99.1 10 99.2>72 12 99>44 
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Table S6. Target pharmaceuticals and transformation products under investigation: structure, 
properties, and wastewater concentration (Kow – octanol–water partition coefficient; Kd – solid–liquid 
partition coefficient; pKa–acid dissociation constant; TP – transformation product; N.F – not found). 

Chemical  Structure  Use  Log Kow Log Kd pKa WWTP primary 
effluent incidence 
concentration (µg 
L-1) 

Sulfamethoxazole  

 

Antibiotic  0.89[2] 2.4[3] pKa1 = 
1.8[4] 

pKa2 = 
5.7[4] 

0.87  ± 0.75  

Ac-acetyl-
sulfamethoxazole 

 

Antibiotic 
TP 

N.F N.F 5.6 ± 0.5[4] 0.98 ± 0.2 

Sulfamethoxazole-
N1-glucuronide  

Antibiotic 
TP 

1.21 N.F 2.7 ± 0.5[4] n.d. 

n.d. : not determined  

 

S2. Chelas Wastewater Treatment Plant (Lisbon, Portugal) 

Municpal WWTP Chelas was designed to receive about 52500 m3 of wastewater per day, with a capacity of 

211000 population equivalents (PE). The WWTP comprises various treatment processes such as a pre-

treatment, primary treatment, biological treatment (anoxic-aerobic process), tertiary treatment (sand filtration 

 UV) and sludge treatment. The biological treatment was designed for nitrogen removal with a pre-

denitrificcation process and operated at hydraulic retention time (HRT) of 2 hours. Biogas produced from the 

anaerobic digestion process of sludge treatment is used as energy to lower the plant operational cost. 

Characteristics of the primary effluent wastewater are mentioned in Table S3. The average treatment 

performance of Chelas WWTP was 90% removal of N-NH4+, 60% removal of N-NO3
-.  
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Table S7. Primary effluent wastewater characteristics 

 TCOD 

(mg L-1) 

(n=23) 

sCOD 

(mg L-1) 

(n=23) 

BOD5 

(mg L-1) 

(n=13) 

N-NH4
+ 

(mg L-1) 

(n=76) 

SMX 

(µg L-1) 

(n=3) 

Ac-SMX 

(µg L-1) 

(n=3) 

Range 126-500 50-139 33-143 40-53 0.52 – 1.73 0.78 -1.17 

Mean ± std 258 ± 97 99 ± 22 91 ± 37 40 ± 8 0.87 ± 0.75 0.98 ± 0.20 

TCOD: total COD; sCOD: soluble COD  

 

S3. Model calibration procedure 

For model calibration, the kbio,AS value was approximated based on process (2) (Table 2) using the tangent value 

of the linear regression line fitted to measured data obtained in the primary substrate limitation period (from 6 

hours to 14 hours, after retransformation was completed and growth substrates were depleted (Fig. 2a). KD 

values (shown in Table 2) were used to assess the sorption fraction, while the constant value XAS in Table 2 

represent activated sludge (AS) biomass concentration. Process (1), (4) and (6) (Table 2) allows estimation of 

qbio,AS, using the kbio,AS value obtained above, the KD value (shown in Table 2), and a constant value for XAS.  

 Data obtained from the bioaugmented test A4 was used to determine the cometabolic biotransformation rate 

constant of A. denitrificans PR1, i.e. qbio,PR1. Biotransformation of SMX in this experiment was attributed to the 

activity of both AS and the strain PR1 (Table 2, process (1), (4), (5) and (6)) and characterized by the 

biotransformation rate constants of AS (kbio,AS and qbio,AS) and of PR1 (kbio,PR1 and qbio,PR1). Biotransformation 

kinetic associated with AS were previously estimated through calibration against A1 test results, while kbio,PR1 

was derived from our previous study under primary substrate limitation [5].  

The biotransformation of SMX under anoxic conditions is predicted using pseudo-first order kinetics, thereby 

allowing for the estimation of the biotransformation rates kbio,Ax (L gSS-1 d-1).  

Experimental results from An1 were used to determine the retransformation rate, i.e. kDec,Ax and SMX 

biotransformation kinetics of AS, i.e. kbio,AS, under anoxic conditions using processes (7) and (8) (Table 2). 

The anoxic kbio,AS was then used as an input for predicting An2 results and estimating the biotransformation 

rate coefficient of strain PR1 (kbio,PR1) using processes (7), (8) and (9) (Table 2).  
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S4. Standard deviation calculated for average samples 

The standard deviations of the measured concentrations of the three target compounds, e.g. sulfamethoxazole, 

N4-acetyl-sulfamethoxazole, and SMX-N1-Glucuronide were calculated by STDEV function in Excel that uses 

the following formula: 

 
2( )

( 1)

x x

n





 (Eq. S1) 

where x is the sample mean of the duplicate of two tests and n is the sample size, in this study n=2.  

 

Table S8. Goodness of the fit (R2) of the models used in this study 

Test Compound Biotransformation Retransformation 

  Pseudo-first order 
kinetic 

Cometabolic 
enhancement 
kinetic 

Pseudo-first order 
kinetic 

A1 SMX 0.04 0.95  

 Ac-SMX   0.99 

 SMX-Glu   0.98 

A2 SMX 0.52 0.79  

 Ac-SMX   0.99 

 SMX-Glu   0.98 

A3 SMX 0.94 0.95  

 Ac-SMX   0.99 

 SMX-Glu   0.98 

A4 SMX 0.89 0.99  

 Ac-SMX   0.98 

 SMX-Glu   0.94 

An1 SMX 0.99   

 Ac-SMX   0.99 

 SMX-Glu   0.99 

An2 SMX 0.98   

 Ac-SMX   0.99 

 SMX-Glu   0.99 

 

Table S5. Parameters of the ASM model [6] used and calibrated in this study 

Parameter Definition Values Unit 

µH Specific growth rate of heterotrophs Calibrated  day-1 

YH Yield coefficient for heterotrophs 0.67 g cell COD formed (g COD oxidized)-1 
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KS Saturation constant for substrate SS 20 gCOD m-3 
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Fig. S5. Measured and simulated acetate, expressed as sCOD (mg/L) for aerobic batch tests (A1): non-
bioaugmented AS with supplementation of acetate; and (A4): bioaugmented AS with supplementation 
of acetate. Error bars indicates standard deviation for duplicates 
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Fig. S2. Evolution of ammonium concentration for aerobic batch tests (A1): non-bioaugmented activated sludge 
test; (A2): non-bioaugmented activated sludge test with supplementation of acetate as additional C-source; (A3): 
bioaugmented activated sludge with A. denitrificans PR1 test; and (A4): bioaugmented activated sludge with A. 
denitrificans supplemented with acetate test. Error bars indicate standard deviations for duplicates. 
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Fig. S3. Modelling results. Figure shows the results obtained for SMX and the two human metabolites, e.g. Ac-SMX and SMX-Glu, biotransformation in the non-
bioaugmented aerobic batch tests (A1): non-bioaugmented activated sludge test; (A2): non-bioaugmented activated sludge test with supplement of acetate as additional 
C-source. Full symbols represent measured concentrations plotted versus simulated concentrations during batch experiments. Dashed lines are the 95% confidence 
limits for the predicted concentrations.  
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Fig. S4. Modelling results. Figure shows the results obtained for SMX and the two human metabolites, e.g. Ac-SMX and SMX-Glu, biotransformation in the 
bioaugmented aerobic batch tests (A3): bioaugmented activated sludge with A. denitrificans PR1 test; and (A4): bioaugmented activated sludge with A. denitrificans PR1 
supplement with acetate test. Full symbols represent measured concentrations plotted versus simulated concentrations during batch experiments. Dashed lines are the 
95% confidence limits for the predicted concentrations.  
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Fig. S5. Modelling results. Figure shows the results obtained for SMX and the two human metabolites, e.g. Ac-SMX and SMX-Glu, biotransformation in the anoxic 
batch tests (An1): non-bioaugmented activated sludge; (An2): bioaugmented activated sludge with A. deninitrificans PR1. Full symbols represent measured 
concentrations plotted versus simulated concentrations during batch experiments. Dashed lines are the 95% confidence limits for the predicted concentrations.  
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Fig. S6. Illustration of measured concentrations of SMX, Ac-SMX, and SMX-Glu (markers) and 
simulated (lines) as a function of time for aerobic batch tests (A1): non-bioaugmented activated 
sludge test; (A2):  non-bioaugmented activated sludge test with supplementation of acetate as 
additional C-source; (A3): bioaugmented activated sludge with A. denitrificans PR1 test; and (A4): 
bioaugmented activated sludge with A. denitrificans PR1 supplemented with acetate test. Error 
bars indicate the standard deviations for duplicates 
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Fig. S7. Illustration of measured (makers) and simulated (continuous lines) concentrations of SMX as a function of time for aerobic batch tests (A2): 
non-bioaugmented AS test with supplementation of acetate as additional C-source, with both acetate and other readily biodegradable substrates that 
present in wastewater (expressed as sCOD) were considered as the primary substrates (SS) in the cometabolic model to enhance the SMX 
biotransformation by AS 

 

 

 

 

 

 

 



52 

 

  

Fig. S8. Measured concentrations of SMX as a function of time for the batch tests of non-bioaugmented AS (S8a) 
and bio-augmented one (S8b), with and without the addition of acetate under aerobic conditions. Error bars 
indicate the standard deviations for duplicates. 
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