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Abstract  

Wire Arc Additive Manufacturing (WAAM) is attracting significant attention in industry and academia 

due to its ability to capture the benefits of additive manufacturing for production of large components 

of medium geometric complexity. Uniquely, WAAM combines the use of wire and electric arc as a 

fusion source to build components in a layer-by-layer approach, both of which can offer significant 

cost savings compared to powder and alternative fusion sources, such as laser and electron beam, 

respectively. Meanwhile, a high deposition rate, key for producing such components, is provided, 

whilst also allowing significant material savings compared to conventional manufacturing processes. 

However, high quality production in a wide range of materials is limited by the elevated levels of heat 

input which causes a number of materials processing challenges in WAAM. The materials processing 

challenges are fully identified in this paper to include the development of high residual stresses, 

undesirable microstructures, and solute segregation and phase transformations at solidification. The 

thermal profile during the build poses another challenge leading to heterogeneous and anisotropic 

material properties. This paper outlines how the materials processing challenges may be addressed 

in WAAM by implementation of quality improving ancillary processes. The primary WAAM process 

selections and ancillary processes are classified by the authors and a comprehensive review of their 

application conducted. Strategies by which the ancillary processes can enhance the quality of WAAM 

parts are presented. The efficacy and suitability of these strategies for versatile and cost effective 

WAAM production are discussed and a future vision of WAAM process developments provided.  
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1. Introduction  

In recent years, Directed Energy Deposition (DED) techniques have enabled cost effective additive 

manufacturing of large, medium complexity metallic components. The effectiveness of DED in 

manufacturing these part types can be attributed to unconstrained build volumes and substantially 

higher deposition rates than alternative approaches such as Powder Bed Fusion. The lower resolution 

and need for post finish machining in DED is readily offset by the enhanced processing efficiency. 

Meanwhile significant raw material savings are possible in comparison to conventional approaches 

such as CNC machining and forging [1].They do not require specific tooling, as in casting and forging, 

therefore, manufacturing costs are significantly lower specifically for low production volumes and 

significant reduction in cycle time can be expected [2]. Complementary to this, is the ability to use wire 

as feedstock in DED, which offers high efficiency material deposition eliminating the need for 

peripheral powder recycling processes [3], reducing health and safety concerns and offering a 

significant reduction in price per kilogram compared to powder in a range of engineering materials 

including aerospace alloy Ti-6Al-4V [4], stainless steel and nickel based superalloys as shown in table 

1.  

Table 1 Approximate cost per kilogram in wire and powder compiled from supplier quotes sourced in 2016. 

 

 

Wire arc additive manufacturing (WAAM) is a wire-based DED approach that uses an electrical arc as 

a source of fusion to melt the wire feedstock and deposit a part preform, layer by layer. Use of an 

electrical arc as a fusion source provides a number of processing advantages, compared to electron 

beam and laser which are the alternative sources of fusion in DED outlined in the “Standard Guide for 

DED of Metals,” part of the ASTM F3187 - 16 standard series [5]. A major benefit of the WAAM 

process relates to the low capital investment, as the components of a WAAM machine may be 

derived of open source equipment, sourced from an array of suppliers in the mature welding industry 

[6]. The processing characteristics may also make the WAAM process preferable compared to the 

alternative fusion sources. For example, WAAM does not does not need a vacuum environment to 

operate as required in electron beam based methods [7]. As such, prolonged set up and ramp down 

Feedstock 
Cost per kilogram (£/kg) 

Ti-6Al-4V Inconel 718 Inconel 625 Stainless Steel 316L 

Wire 120 58 49 12 
Powder 280 80 80 40 
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times which can lead to over-aging in precipitate hardened materials can be avoided [8]. Whilst inert 

shielding gas may not be required in electron beam DED to avoid atmospheric contamination, there is 

an elevated susceptibility to element depletion and evaporation during processing [9]. In comparison 

to laser based methods, the use of the electrical arc offers a higher efficiency fusion source [10]. This 

is of benefit from an energy consumption perspective, in particular, for reflective metal alloys of poor 

laser coupling efficiency such as aluminium, copper [11] and magnesium [12]. With typical layer 

heights of 1-2mm, surface waviness of 500μm [13] and deposition rates up to 10kg/hr, WAAM 

productivity and material removed is similar to laser-based and electron beam-based DED 

approaches.  

Research and developments have allowed the WAAM process to become highly capable in a number 

of materials, including aerospace titanium alloy Ti-6Al-4V [14] and nickel bronze [15], where static 

mechanical properties close to those found in wrought and cast can be produced [16]. As shown in 

table 2, at present there are several commercial WAAM machine manufacturers and/or service 

providers able to produce WAAM components in a number of materials. However, high quality 

production of WAAM parts is only achievable when the specific materials processing challenges 

related to the high-levels of heat input of the WAAM process are addressed.  

 Table 2 Commercial WAAM DED technologies categorised by energy source and feedstock  

Williams, et al. [13] and Ding et al. [22] regarded the management of the high levels of residual stress 

and distortion as the primary heat-related material processing challenge in WAAM. Ding et al. [22] 

considered the surface finish of WAAM parts another major concern to dimensional compliance as 

well as premature part failure. Practical methods of mitigating these issues were presented, but were 

limited in scope primarily to build strategies for the management of residual stress. Pan et al. [16] 

summarised of static mechanical properties achieved in WAAM research, reporting the welding 

technology and processing condition, e.g. heat treated, interlayer cooling etc. however, the 

Commercial WAAM machine manufacturers and/or 
service providers 

Deposited Material 

Norsk Titanium AS [17] Ti6Al4V 

Gefertec [18] 
Inconel 718, 625, Ti6Al4V, invar and range of 

mild steels, stainless steels & aluminium alloys. 

Prodways [19] Ti6Al4V 

Mazak [20] Not specified 

Glenalmond Technologies [21] Not specified 
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mechanisms of material property improvements were not discussed. This paper identifies the full 

range of materials processing challenges in WAAM. The primary process selections and ancillary 

processes that may be used in WAAM are classified by the authors and the strategies in which they 

may be deployed to overcome these challenges are presented. Finally, future challenges and 

opportunities in the area of WAAM are identified.  

2. Materials processing challenges in WAAM 

The materials processing challenges in WAAM relate to the achievement of the performance 

measures related to geometric, physical and material properties as shown in figure 1 with several 

examples of possible requirements presented. The deposition rate of the process is essential to 

commercial adoption of WAAM as a high deposition rate DED process. This consequently comprises 

the final performance measure, which the aforementioned performance measures must be sustained 

relative to. Depending on material and the application, typical deposition rates for WAAM are reported 

in region of 1-10kg/hr. 

  

Figure 1 Performance measures in WAAM 

In WAAM, solidification presents a major materials processing challenge due to the promotion of a 

microstructure containing large columnar grains. Although this is beneficial for applications requiring 

high temperature creep resistance [23], at regular operating temperatures it provides lower strength, 

toughness and corrosion resistance compared to a fine equiaxed microstructure [24]. A fine equiaxed 

microstructure tends to be difficult to develop in WAAM and other additive manufacturing 

technologies, as beyond an epitaxial growth zone close to the substrate, grains tend to grow in a 

competitive grain growth process in which the total number of grains reduce leading to grain 

Wire Arc Additive Manufacturing Performance 
Measures 

Deposition 
Rate 

Geometrical 
Properties

Accuracy

Surface 
Waviness

Effective 
Wall 

Thickness

Physical 
Properties

Porosity

Cracks

Microfissures 

Distortion

Material 
Properties

Tensile Strength

Corrosion Resistance

Residual Stress

Fatigue Life

Composition

Anisotropy
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enlargement [25]. The most dominant grain growth occurs in the preferred crystallographic 

orientations that correspond with the maximum thermal gradient. Due to the relatively low energy 

density of the electrical arc which results in low thermal gradient and low solidification rate [26], the 

heat sink effect of the substrate [27] can result in pronounced columnar grain growth aligned 

transverse to the weld direction as shown in figure 2 [28]. This grain growth can progress without 

interruption due to minimal grain nucleation mechanisms in WAAM, and consequently provides 

conditions for development of substandard and anisotropic mechanical properties which occur as 

shown in table 3.   

  

Figure 2 Large columnar WAAM grain growth shown in Ti-6Al-4V [28] 

Table 3 WAAM mechanical properties reported in the literature compared to industrial standards 

There is a lack of driving force in the solidified WAAM deposit for the recrystallisation to occur in order 

to generate new refined grains, whilst detrimental grain coarsening remains possible [35]. This is an 

Material and direction  Process 
0.2% YS 

(MPa) 
UTS 

(MPa) 
Elong. 

(%) 
Ref. 

Ti-6Al-4V  Wrought ≥830 ≥900 ≥10 [29] 
 (X-Y) As deposited 870±30 920±20 12±5 

[14]  (X-Y) Rolled 1030±5 1080±15 13±1.5 
 (Z) Rolled 990±30 1080±5 13±1 

 (X-Y) As deposited 868 971 8.6 
[27] 

 (Z) As deposited 803 918 14.5 

Inconel 718 Wrought ≥1034 ≥1276 ≥12 [30] 
(X-Y) As deposited 473 ± 6 828 ± 8 28±2 [31] 

Aluminium 2219  (T851) ≥317 ≥427 ≥8 [32] 
 (X-Y) As deposited 114±4.8 263±0.5 18±0.5 

[33] 
 (Z) As deposited 106±0.8 258±2.2 15.5±1 

 (X-Y) Special HT 269±28, 418±22 10.24 
[34] 

 (Z) Special HT 254±28 365±28 7.44 
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issue in materials that do not undergo solid state phase transformations such as ferritic and austenitic 

stainless steels as post-build heat treatments cannot be used to grain refine [36].  Even in heat-

treatable materials, the initial morphology can even persist through phase transformations, as 

demonstrated in WAAM of Ti-6Al-4V, where the strong fibre texture of the large primary β grains 

decomposes to a similarly undesirable α texture [37]. Furthermore, whilst precipitation hardened 

materials may be solutionised and aged in a post build heat treatment process to develop the desired 

microstructure, processing issues may be incurred during the WAAM process, due to the large grain 

growth and solute segregation leading to defective parts. 

Solidification cracking is promoted by excessive solute segregation, in the presence of high levels of 

residual stresses and enlarged grain size [38, 39], both of which are common in WAAM. The crack 

resistance is particularly poor in materials with high coefficient of thermal expansion and extensive 

solute segregation, such as heat treatable aluminium alloys and materials where crystal structure is 

easily degraded due to the heat induced grain coarsening, such as in ferritic stainless steels [40]. The 

significant residual stress [41] can result in significant distortion as shown in figure 3 [42] leading to 

build failure and reduced fatigue life [43], and stress corrosion resistance [44]. The solute distribution 

at solidification, also influences the phase transformation regardless of cooling rate [45].  This may 

prevent formation of solid state strengthening precipitates in a fine dispersed manner as shown in the 

WAAM production of the aluminium alloy 2219 [46]. Sensitization involving carbide precipitation is 

also possible welding in austenitic stainless steels of non-stablised composition [47] leading to loss of 

intergranular corrosion resistance [48]. The thermal profile in WAAM causes the deleterious Inconel 

718 [31] and Inconel 625 [49] causes the deleterious Laves phase to develop. This phase consumes 

local niobium concentrations which prevents effective formation of the gamma prime strengthening 

phase and causes embrittlement of the deposit [50].  

 

Figure 3 Structural distortion of a WAAM part due to residual stress [42] 
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Variations in thermal profile locally or differences in thermal histories, present a material processing 

challenge as these can cause different phases and microstructures to develop within the build, 

leading to inhomogeneous material properties. Evaporation of low melting point elements and 

adsorption of atmospheric gases due to heat dependency, can progressively occur affecting 

composition and oxidation of WAAM parts [51]. Variations in thermal profile occur when the heat flux 

changes from steady state due to change in heat dissipation due the geometry, or a varying numbers 

thermal cycles are experienced. In the change of local geometry between substrate to thin wall, the 

heat transfer mode transitions from mainly conduction-based heat dissipation near the substrate as 

shown in figure 4a, to include a greater proportion of radiation and convection within the thin wall 

section as shown in figure 4b. As the heat dissipation becomes less effective and pre-heat from the 

previous layer is introduced, heat can accumulate along the build direction [52] leading to a transition 

zone of microstructural and dimensional variation which in some cases complete loss of weld bead 

dimensional control [53]. Variation in wear rate performance along the build direction was also found 

in mild steel ER70S and stainless steel 304 [54]. Furthermore, the extent of thermal cycling affects the 

macroscale properties of the part. This leads to local variations in material properties as evident 

through the different microstructures shown in the top layers in contrast to the middle layers for 

WAAM deposits in Ti-6Al-4V [55], maraging steel [56] and Al-6.3%Cu [57]. 

To minimise the effect of heat accumulation, an interlayer dwell period is commonly used, based on a 

fixed time interval or a time linked to reaching a fixed interpass temperature [58]. If these values are 

specified such that deposition is carried out on a surface of low enough temperature, steady state 

deposition is possible, identifiable by a constant weld pool size. However, determination of a suitable 

interpass temperature tends to be by resource intensive trial and error, with limited systematic 

approaches proposed [59]. Additionally, the interpass temperature is difficult to control, and has been 

shown to easily lead to temperature variations up to 100K [60]. The effectiveness is also limited to 

sections of consistent heat dissipation limiting the applicability for commercial parts. With the inclusion 

of adjacent weld beads in multi-layer deposition, as shown in figure 4c, the heat transfer characteristic 

becomes more variable in the build direction, providing less opportunity for steady state deposition to 

develop. Thermal cycling effects also becomes more complex due to deposition of adjacent in 

addition to vertical weld beads. 
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For WAAM builds with variation in bulk cross sectional areas inherent to the design, or feature 

addition remanufacturing and repair applications [2], the achievement of homogenous and satisfactory 

material properties will be particularly challenging, especially properties presented to date in the 

WAAM literature consist of material properties sourced from samples in which steady state deposition 

has been achieved (excluding transition zone regions). An alternative approach to minimising the 

effect of heat accumulation involves the progressive reduction of the heat input from the welding torch 

[61]. However, as in the case of introducing an interlayer dwell period, this approach can reduce 

productivity due to reduction in wire feed speed [62]. The heat dissipation and the impact of thermal 

cycles may also be affected through the infill strategy employed. In woven path strategy, the 

amplitude and frequency is important in the development of the peak temperature and average 

temperature in the weld bead [63]. The Welding Institute [64] note that the woven weld path resulted 

in different mechanical properties of a deposit compared to parallel approach, whilst also reducing 

inhomogeneities due to start and stops. Whilst, these results indicate that the deposition pattern, 

direction and route made by the welding torch strongly affect the heat transfer characteristic and the 

thermal cycles, to date it is not clear if path planning approaches alone are able to overcome the 

issue of heterogeneity in WAAM parts. 

 

Figure 4 Schematic diagram of the heat dissipation modes, conduction (Qcond), convection (Qconv), radiation 
(Qrad), (a) at the beginning of WAAM (b) during the build of a thin wall part and (c) for a part with overlapping 
weld beads 

3. Classification of primary process selections in WAAM 

To establish the capability of WAAM for producing parts of a particular material, the material 

characterisation is required. Primary process selections at this stage include the welding technology, 
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welding process parameters, shield gas, wire, substrate, and motion system as outlined in figure 5.

 

Figure 5 Primary process selections to perform materials characterisation in WAAM 

The welding technology that may be employed in WAAM include Gas Metal Arc Welding (GMAW), 

Gas Tungsten Arc Welding (GTAW) or Plasma Arc Welding (PAW). Each category and the variants 

within have been detailed by Pan, et al. [16]. Selection of welding technology is driven by the user 

application. For example, if high deposition rate is prioritised, GMAW may be preferred to GTAW, 

although quality and process stability is generally lower [25]. Although PAW, provides the highest 

energy density electrical arc that enables high travel speeds and high-quality welds of minimised 

distortion, it typically requires the most extensive capital expenditure [65]. 

Material considerations may also drive the welding technology selection, for example to obtain 

cathodic cleaning action to remove the oxide surface layer in welding aluminium alloys. Another 

consideration is the prevention of arc wander with titanium alloys [66] which eliminates GMAW as a 

solution in this material. As wire feed is only coaxial through the weld torch in GMAW, the PAW, and 

GTAW approaches require a method to re-orientate the wire and the deposition direction changes to 

achieve consistent metal transfer. However, Wu et al. [67] showed that geometrically consistent 

deposition could be achieved for any travel direction with a wire feed angle set up of 60° offering a 

possible solution to this issue. Geng, et al. [68] also developed a mathematical model to ensure that 

wire offset could be updated with change in angle to achieve consistent deposition. 

The welding parameters, including nominal current, wire feed speed (WFS) and travel speed (TS) are 

instrumental to the thermal profile in WAAM and thus the material properties, dimensional stability and 

wettability of substrate [69]. The heat input is determined by the following equation: 

𝐻𝑒𝑎𝑡 𝑖𝑛𝑝𝑢𝑡 =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑥 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑇𝑟𝑎𝑣𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 
 (1) 
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A limited range of process parameter combinations result in a defect free, stable weld bead deposit 

and this region can be represented within a process map. Lower heat input processes may also act to 

reduce porosity content due to the reduction in droplet temperature as well as gas solubility in the 

weld pool [70].   A constant specific heat input is represented by WFS/TS ratio and is one way to 

ensure adjustments of the process parameters will also result in stable deposition. Williams, et al. [13] 

found that a WFS/TS ratio of 30 effectively resulted in stable deposition for PAW-based WAAM of 

Ti6Al4V.  Many welding power supplies include synergic welding programs to ensure welding 

processes are stable for a given material. However, these have been designed for single pass 

welding processes i.e cool substrate, synergic programs may not remain suitable if heat accumulates 

during a WAAM build. Due to the narrow processing window in WAAM, there is subsequently limited 

ability to control the heat dissipation characteristic in to transfer across solidification modes and to 

modify the microstructure as seen in electron beam additive manufacturing [71].    

An adequate flow rate of shield gas is required to flood the area surrounding hot weld metal in WAAM 

to exclude atmospheric gases and prevents the formation of detrimental oxides, nitrides and porosity 

[66].  Too high a flow rate can result in poor penetration and porosity can be introduced due to 

turbulence drawing in atmospheric gases to the gas column.  In most cases, the shield gas is 

delivered through the welding torch, however, for materials that are highly susceptible to atmospheric 

contamination such as Ti-6Al-4V and maraging steel as shown in figure 6 [56], additional measures 

may be required. This includes the use of inert chambers or flexible tents, however these have 

prolonged purge times. Ding, et al. [72] developed a local shielding device for WAAM builds of Ti-6Al-

4V. By providing laminar flow of shield gas, as opposed to conventional local shielding devices, the 

protection zone could be extended to the side walls during the build of WAAM components. 

  

Figure 6 WAAM walls of maraging steel showing degradation with oxide accumulation for torch only shielding [73] 
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The composition of the shield gas is important due to the influence on the heat transfer in the welding 

zone [74]. Argon is commonly used and additions of elements of higher dissociation and ionization 

potential than argon, such as active gases such as carbon dioxide, or helium, nitrogen and hydrogen 

[75] offer the ability to able to raise the temperature of the arc [76]. Sequeira Almeida and Williams 

[77] were able to produce Ti-6Al-4V samples with refined prior β grains due to enhanced cooling rate 

provided by using argon shielding gas mixture with higher helium content. 

The process selections regarding the wire in WAAM are instrumental to the performance measures. 

The wire gauge and the number of wires fed into the arc for given welding process parameters affect 

the deposition rate, the heat transfer within the weld pool, imparting a chilling effect as mass is 

increased [78]. This can lead to lack of fusion defects without careful optimisation of the welding 

processing parameters. It has been shown possible to use multiple wires for in-situ alloying. This is 

useful for materials of compositions that are difficult to obtain in singular wire form such as γ- titanium 

aluminide [79] and iron aluminide [80]. The presence of diameter variations, cracks or scratches on 

the wire surface can lead directly to porosity within the deposited material [81]. Murav'ev, et al. [82] 

found higher quality wire greatly reduced porosity in the welded joint in welding of titanium alloys.  

A further effect of the wire process selections is related to composition of the wire and content of 

inoculants. Inoculants can act as heterogeneous nuclei, increasing the number of locations from 

which grains can develop. However, they can also act to increase the level of constitutional 

supercooling by the compositional change involved. This lowers the temperature in the solidifying 

mushy zone to below the equilibrium solidus temperature of the metal alloy which increases the 

tendency for grains to solidify.  Bermingham, et al. [83] effectively demonstrated inoculation by 

modifying Ti-6Al-4V with trace boron additives. This promoted thinner β-grains in WAAM a more 

equiaxed dendritic structure developed. Mereddy, et al. [84] investigated the addition of silicon to 

commercially pure titanium and found that grain refinement was achieved, although it was eliminated 

due to thermal reheating cycles which caused grain growth.  Elements with a strong affinity to oxygen 

such as silicon, can also form oxides, which act to pin the grain boundaries and limit grain growth in 

stainless steel [85]. Haselhuhn investigated compositional change in 4047 and 4943-based aluminium 

alloys with additions of magnesium, strontium, titanium boride, and combinations, with combination of 
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strontium and titanium boride in the high-silicon producing the finest eutectic structure in the study 

[86].  

The composition of the substrate is important due to wettability of the weld bead to the surface which 

may be difficult in dissimilar materials. Dilution of the first layer of deposit must also be considered. 

The thickness and stiffness of the substrate provides resistance to distortion. Mechanical tensioning 

of the workpiece through heavy jigs, fixings, clamps and other technologies, can also restrict the 

possible distortion, however may increase the formation of residual stresses. [87]. While these 

mechanical adjustments might prove effective, they require extra financial resources and can restrict 

the flexibility of changes regarding the product geometry.  

Cartesian (linear XYZ), 5 Axis, articulated robotic arm and parallel kinematic machines have been 

investigated for use to provide the necessary relative motion between the weld-torch and build plate. 

Due to the importance of the arc length and the relative position of the wire on heat input and weld 

bead dynamics [69], the positional repeatability and accuracy affects the geometrical, physical, and 

material properties of the weld. If the motion system is less accurate, a greater volume of material 

may be required to be removed in post-processing, detrimentally affecting the cost effectiveness of 

WAAM.  Cartesian systems are typically more stiff and accurate than articulated robotic arm systems 

[88]. Robotic systems are also more prone to speed reduction at sharp corners which can result in 

systematic humping of material [89]. However, articulated robotic systems are more practical for very 

large build volumes due to their maneuverability and optional parallel working. In addition, despite low 

accuracy, high repeatability can be achieved.  Retrofitting to WAAM capability to CNC machines, has 

been implemented by several investigators [90] [91] and is reported to be a cost effective approach to 

WAAM [92] providing the ability to deposit and finish machine in the same set up in a hybrid process.  

4. Classification of ancillary processes in WAAM 

Ancillary processes are increasingly implemented in WAAM to improve the material performance 

measures that are achievable with primary process selections. The ancillary WAAM processes are 

classified by the authors as shown in figure 7, by timing of application relative to the deposition 

process and by the overarching process mechanism. The latter relate to modifying the thermal profile 

relative to common point in space and successive layer completions respectively and their operation 
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is therefore decoupled from the WAAM deposition [93]. Although post build strategies are commonly 

used, these form costly and often time consuming aspects of the process chain. Furthermore as 

outlined in section 2, these approaches are often unsuccessful in addressing the heat based materials 

processing challenges in WAAM. The following sections consequently review the capability in-situ and 

inter/intralayer ancillary processes. 

 

Figure 7 Classification of ancillary processes in WAAM 

4.1. Oscillation-based processes  

The following sections introduce the oscillation processes applied in-situ of WAAM deposition. These 

processes are categorised by torch, wire feeder, and workpiece as shown in figure 7. This is achieved 

as the oscillation based processes promote weld pool stirring which can lead to fragmentation of 
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dendrites from the mushy zone at the rear of the weld pool and grain detachment from the partially 

melted grains at the weld pool sides [25]. As these particles are swept into the weld pool, they provide 

starting points for nucleation events, significantly decreasing the Gibbs free energy required to 

nucleate. Constitutional supercooling and a refined microstructure may also be encouraged due to 

increased mixing experienced within the weld pool [94]. A reduction in level of solute segregation may 

also occurs due to the greater grain boundary area, with associated benefits to the material properties 

and crack resistance during processing. Although residual stress is unchanged, the ability to 

withstand the stresses without distortion and cracking is improved. 

4.1.1. Torch based oscillations  

The torch based oscillations are classified as shown in Figure 8 and include sub-categories of power 

supply modulation, shielding gas modulation and oscillation of the weld torch and electrode. The 

following sections provide a literature review research conducted in these areas. 

 

Figure 8  Classification of oscillation processes applied in-situ 

 Power supply modulations 

Pulsing of the welding power supply current is a widely used technique and is a commonly available 

feature of modern welding power supplies. This process is able to decouple the metal transfer 

process from the baseplate heating process, as shown in Figure 9 [70]. The low current phase 

manages the arc stability and the high current phase, the droplet detachment. The frequency of pulse 

can excite the weld pool, changing the weld pool oscillations and subsequently the cooling rate.  

In GMAW based WAAM of AZ31 magnesium alloy, a pulsed current was found to produce samples 

with refined equiaxed grains of higher ultimate tensile strength and yield strength than non-pulsed 



16 
 
 

with similar to those of the forged AZ31 alloy.  Maximum grain refinement was found at the resonant 

frequency which disturbed the geometrical accuracy. The weld pool has a natural oscillation 

frequency that depends on factors such as its size and shape, surface tension and viscosity. The 

natural frequency generally rises with a smaller weld pool size, ranging between approximately 10 

and 200 Hz frequency [95]. In pulsed current welding of aluminium 7050 with non-heat treatable filler, 

grain size was small and precipitates in a uniformly distributed enough to enable direct aging of the 

material bypassing the need to apply prior solution heat treatment [96]. This was significant as 

solution and aging heat treatment is typically required to correct the grain growth, which is a cost and 

time intensive process. 

 

Figure 9 Schematic current waveform of single pulsed GMAW adapted from [70] 

Double pulse waveforms may also be used where the pulse magnitude and frequency are time 

dependent as shown in Figure 10 [97]. This is reported to reduce porosity and refinement compared 

to standard pulse methods [97]. Wang, et al. [98] reported that this method allows control of cooling 

rate by changing current amplitude rather than heat input. Considerable temporal variation of fusion 

zone geometry, local cooling rates and solidification parameters were reported, and although 

apparently beneficial for material properties, due to the changing weld pool dimensions additional 

process planning measures may be required to efficiently achieve geometric properties in WAAM.  
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Figure 10 Schematic current waveform of double pulsed GMAW adapted from [97] 

An alternating arc force can also be provided by alternating current (AC) or variable polarity (VP) 

methods, which are often preferred for removal of oxide layers in light metals. VP differs from AC in 

that the balance of the two polarities can be changed independently [99]. Wang, et al. [100] combined 

both variable polarity and double pulse methods in autogenous GTAW welding of aluminium alloy 

2124. The amount of fine equiaxed grains increased significantly with a clear reduction of the coarse 

dendrite grains found with the conventional double pulsed approach, and more uniform distribution of 

the precipitations as shown in Figure 11. 

 

Figure 11 Microstructure of the weld zone a) conventional double pulse b) double pulse and variable polarity 
[100] 

The electrical arc may also be excited via ultrasonic arc modulation. Hua, et al. [101] demonstrated 

this by superimposing an ultrasonic sinusoidal current of frequency 20 kHz to a DC GTAW welding 

power supply current waveform. Grain refinement through violent weld pool stirring in nickel filler 

metal FM-52M. This reduced the detrimental grain boundary length with more extensive branching of 

nickel dendrites which subsequently reduced the susceptibility to ductility dip cracking. In the same 

study, this technique was also found to be advantageous in reduction of the brittle Laves phase 

200μm 200μm 
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formation through dispersion of local niobium concentration to levels lower than the phase 

precipitation threshold. 

 Shielding gas modulations 

This process involves the discrete periodic supply of two different shielding gases to the welding 

region in order to take advantage of the beneficial properties of each shielding gas [102]. This is in 

contrast to the mixed gas methods supplied from the same canister described in section 4.3. Wood 

[103] found that metal transfer modes could be transitioned noting spray transfer, buried arc globular 

transfer, and short circuiting within the molten weld puddle as the pulsing mechanism operated. The 

arc diameter reduced significantly the switching from argon to carbon dioxide indicating a vigorous 

stirring weld pool effect. Same penetration but with less CO2. As a result of the pressure peaking 

present in alternating shielding gases, there is a momentarily greater arc force, thus permitting even 

faster travel speeds than the premixed helium addition while maintaining equivalent penetration. Ley, 

et al. [102] found for the same level of heat input to the workpiece, a lower shielding gas flow rate with 

reduced helium flow being used whilst also reducing distortion indicative of a cost effective and quality 

enhancing process. Chinakhov [104] found that weld bead droplet detachment could be regulated, 

and frequency increased to reduce workpiece heating time, penetration depth, and mean droplet size.  

 Weld torch or electrode vibration 

Weld torch or electrode vibration also imparts oscillations to the weld pool to cause weld pool stirring. 

Biradar and Raman [105] applied 1.4mm amplitude mechanical oscillations to the welding torch 

across the direction of weld bead deposit, in GTAW welding of 6061 plates with 4043 filler material. 

This resulted in grain refinement and improved ductility. In vibration of the electrode in GTAW, higher 

arc pressure was with vibrations translated to the weld pool via the arc which improved the 

penetration compared to conventional GTAW [106]. Furthermore vibration of the weld torch in GMAW, 

the metal transfer was improved [107].  



19 
 
 

4.2. Wire feeder based oscillations 

4.2.1.   Mechanical oscillation of wire 

Watanabe, et al. [108] reported improved mechanical properties for ultrasonic wire oscillation in 

GTAW of ferritic stainless steel with a columnar-to-equiaxed transition promoted at the weld centre-

line and ductility improved significantly as shown in Figure 12. Wu and Kovacevic [109] found wire 

oscillation initiated more rapid and stable droplet transfer, improving the surface finish and increasing 

deposition rate. With this approach the minimum current could be reduced by 10-20% compared with 

pulsed-current welding, showing that ultrasonic wire oscillation can reduce heat input as well as 

directly impact the weld pool dynamics to affect grain refinement. Silwal and Santangelo [95] 

investigated the droplet dynamics as a result of wire oscillation for both cold and hot wire GTAW.  

Cold Metal Transfer (CMT), an advanced GMAW process developed by Fronius GmbH [110] in the 

1990’s, combines wire and pulse oscillations to synchronise short circuit-controlled bead transfer. This 

process has been shown to be effective in joining of dissimilar materials. CMT pulse showed 

improved hardness in a Cu-Al alloy compared to standard pulse GMAW [111]. Sequeira Almeida and 

Williams [77] found the large columnar prior β grain were refined in Ti-6Al-4V. Further improvements 

were found for variable polarity CMT using Al-6Mg filler wire, where a columnar to equiaxed transition 

was made and ultimate tensile strength was maximised compared to pulse CMT [112]. Cong, et al. 

[57] found that the porosity was reduced in aluminium alloy (6.3%Cu) using CMT variable polarity 

pulse. Ola and Doern [113] by measuring the secondary dendrite arm spacing of CMT welds of 

Inconel 718 inferred that the cooling rate could be increased to levels expected of laser-based 

welding. 



20 
 
 

   

Figure 12 Fracture elongation of samples vs. travel speed, with and without ultrasonic wire oscillation adapted 
from [108] 

4.3. Workpiece based oscillations 

The workpiece based oscillations are classified in Figure 13 by power supply modulation, shielding 

gas modulation and oscillation of the weld torch and electrode. The following sections discuss the 

developments in these areas of research. 

 

Figure 13 Classification of workpiece based oscillation processes applied in-situ 

4.3.1. Build volume oscillation  

Vibration of the build plate can be imparted by imposing a periodic external force with a typical 

approach shown in Figure 14 by Wen, et al. [114] in which a 2 kW transducer drives a tapered horn 

resonator and frame. Oscillation may also be generated by piezoelectric effect or by electromagnetic 

vibration. Yuan, et al. [115] reported that the mechanical approach to workpiece oscillation can be 

beneficial where the feed wire reduces the efficacy of arc-based approaches previously discussed.  

Thavamani, et al. [116] were able to refine the microstructure and hence reduce the hot cracking 
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susceptibility of Inconel 718 and improve solute distribution through ultrasonic oscillation of the build 

plate for GTAW. Multiple researchers have investigated this for welding applications, however, 

investigation for WAAM has been limited perhaps due to the extensive energy requirement for 

oscillation of large parts. 

  

Figure 14 Schematic approach showing a typical approach to build plate oscillation [114] 

4.3.2. Direct weld pool oscillation  

Kou and Le [117] developed electromagnetic arc oscillation to directly modify the grain structure and 

solidification cracking tendency of welds. The magnetic field is produced parallel to the welding 

electrode and can be produced by single or multiple magnetic oscillators [118] and has been found to 

be most effective applied in the circular or transverse direction relative to the weld. The 

electromagnetic stirring produces a Lorentz force, which leads to rotation of the molten metal in the 

weld pool [94, 119]. Improvements to cracking resistance was found with this approach for nickel 

based filler metal FM-52 [120]. The effectiveness of mechanism is attributed to the ability to force 

columnar grains to reverse their orientation at regular intervals obstructing the progression of a crack 

propagation site as shown in Figure 15. 
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Figure 15 Schematic of crack path obstruction due to circular electromagnetic oscillation of the arc [117] 

Yuan, et al. [118] reports that lower frequency operation is more effective for grain refinement as this 

allows enough time for the solidifying portion of the weld pool to be reheated and in the process 

provide more dendrite fragments. Mousavi, et al. [121] reported an intermediate frequency was most 

appropriate for grain refinement as at lower frequencies columnar grain growth is able to become 

established and at higher frequencies the ripples overlap and counteract each other. Matsuda, et al. 

[122] noted that the stronger the magnetic field the better the grain refinement, however this is 

counterbalanced by increased surface roughness and burn through, which may be unacceptable in 

production of WAAM parts. Pearce and Kerr [123] report that as well as constitutional supercooling, 

grain detachment may also increase nucleation rate.  

Placement of a high temperature ultrasonic probe into the mushy zone of the weld pool also oscillates 

the weld pool directly, involves the. This has been found to induce significant levels of grain 

refinement for difficult-to-weld magnesium alloys AZ31 and AZ91 [115]. The improvement was 

attributed to the dendrite fragmentation within the mushy zone. This approach has the advantage of 

reducing the power requirement compared to build volume oscillation, however, due to the probe 

offset from the arc, it leaves an unrefined zone at the end of deposits as shown in Figure 16, which 

would have to be considered in WAAM path planning and potentially introducing zones of run off 

waste. 
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Figure 16 Weld bead of AZ31 Mg, showing grain refinement where ultrasonic probe is dipped into the weld pool 
and unrefined zone due to probe-torch offset [115] 

4.4. Heat transfer-based processes  

The following sections introduce the heat transfer-based processes that may be applied in-situ of 

deposition or inter/intralayer to change the total heat flux to the part during the WAAM process.  

4.4.1. Cooling localised to the weld pool  

Li, et al. [62] demonstrated in-situ cooling with a thermo-electric cooling device in WAAM of aluminium 

alloy 2325. It was shown that this was an effective way of maintaining stable heat dissipation 

characteristics without reducing the heat input and wire feed speed. For equivalent welding 

processing parameters this changed the weld bead geometry, increasing weld bead height meant that 

fewer deposition passes were required. It was shown that microstructure could be refined, and 

although an interpass dwell was required this was reduced by 60.9% compared to without in-situ 

cooling. This was used to establish a similar thermal boundary condition at the substrate and 

multilayer position compensating for the poorer heat dissipation at the multilayer level. 

There have been multiple publications investigating in-situ cooling for welding. Wells and Lukens 

[124] investigated the effects of forced convective cooling behind the weld torch in autogenous GTAW 

welding of Ti-6Al-4V. They developed a cooling device in which helium gas, cooled by a surrounding 

water-cooled manifold is discharged through multiple holes in an impingement plate. The method was 

found to be effective in refining the microstructure of Ti-6Al-4V welds, by reducing time at 

transformation temperature and changing the shape of the weld pool.  Van der Aa [125], in a similar 

approach, used the device applied solid CO2 behind the weld pool. It was found that this approach 

could significantly reduce residual stress in single pass butt welding Ti-6Al-4V and SS316L. The 

distance from the cooling source to the weld pool was found to be critical to the efficacy of this 

process as the mechanism of stress reduction was dependent on influencing the weld pool shape and 
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thermal field.  To position the device close enough to the arc, whilst preventing turbulence, a physical 

shield was required, which offset the point of cooling to a minimum distance of 25mm. For this reason 

microstructural refinement was only found in materials of high thermal conductivity, as the critical 

portion of cooling is otherwise passed by the time that the cooling jet impinges. The buckling of thin 

sheets could be completely eliminated with this approach as shown in Figure 17 indicating a 

significant reduction in residual stress. 

 

Figure 17 Distortion found in a) conventional butt welding and b) Dynamically Cooled – Low Stress Low Distortion 
of 1.5mm thick SS316L sheets [125] 

Kala, et al. [126] found with cooling localised to the weld pool with liquid nitrogen that the process was 

also limited by severe arc disturbance. In this instance an argon curtain was used to protect the arc, 

however the extended distance from cooling jet to arc limited the efficacy of the process with regards 

to residual stress. Elimination of hot cracking and reduction in mechanical strain was possible in 

aluminium alloy 2024 with the use of a trailing heat sink of liquid nitrogen (LN2) discharged from a 

spray nozzle, indicative of a reduction in residual stress [127].  

4.4.2. Heating localised to the weld pool 

Heating processes can occur in front or behind the weld pool at the centreline and also at a parallel 

offset. Bai, et al. [128] investigated the effects WAAM set up with symmetric induction coils mounted 

positioned ahead of and behind the weld torch as shown in Figure 18. Both positions were shown to 

reduce residual stresses by causing the distribution of heat input to become more homogeneous in 

both time and space. Norsk Titanium, a WAAM machine manufacturer and supplier to the aerospace 

industry, produces parts by plasma arc based WAAM [17]. They preheat the Ti-6Al-4V deposit with 

another plasma torch ahead of the bead deposition to increase deposition rate without incurring 

spatter and less consistent spray transfer. Qian et al. [129] investigated the effect of using a laser as 

an assisting heat source in plasma arc deposition. The shielding gas used in plasma arc deposition 

absorbed the laser energy and ionized gas molecules to improve the energy density of the plasma arc 
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and arc diameter. This corresponded to improvements to minimum resolution of the process and part 

accuracy. 

  

 Figure 18 Induction pre-heating ahead of the weld pool [128]. 

4.4.3. Heating of the wire 

Systems that provide separate heating of the wire, termed hot-wire welding, are widely available in 

the welding industry for GTAW. The primary benefit from a welding perspective is that the energy 

from the arc is enabled to melt a greater volume of wire compared to cold wire which subsequently 

increase deposition rates and productivity. Typically the wire feeder resistively heats the incoming 

wire feed [130]. Silwal and Santangelo [95] investigated hot-wire GTAW dynamics and found that for 

the same welding parameters the droplet detachment occurred at a higher velocity and frequency, 

and smaller bead width compared to cold wire approach. This resulted in a greater cooling rate and 

with greater weld pool mixing. This approach thus demonstrates potential for grain refinement, 

however, the microstructural differences for WAAM parts have not yet been investigated.  

4.4.4. Heating/Cooling of Build Volume 

Substrate platforms with integrated conformal cooling channels is a generalised heat transfer 

approach adopted for cooling of the build volume. Lu, et al. [53] embedded a pipe through a copper 

backing plate in GMAW-based WAAM. It was found continuous deposition was whilst maintaining 

geometric consistency was impossible without interpass cooling as shown in figure 19, whereas for 

the continuously cooled base plate continuous stable deposition was possible. However, Haselhuhn 

[86] found that WAAM implemented with water based substrate cooling negatively affected print 

quality by causing an increase in weld arc wander, more weld spatter, increased deposit minimum 
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resolution and diminished surface finish. Furthermore, as this approach is reliant on conduction, the 

effectiveness of this approach in terms of the changes possible to implement regarding residual 

stress, microstructure and dimensional stability may be limited for components of larger size and 

lower thermal conductivities. 

 

Figure 19 WAAM deposition (a) without (b) with water cooling of base of substrate [53] 

Several types of cooling gases have been investigated for production of WAAM mild steel cylindrical 

pipe structures [131]. It was found that the cooling application was most effective in improving layer 

geometry and mechanical properties through grain refinement and homogenous hardness, in the 

position closest to the weld torch and cooling nitrogen with 5% H2 was most effective. However, due 

possibility of nitrogen adsorption and deleterious effects the applicability to a wide range of materials 

is unclear. Additionally, the use of argon as a cooling gas would increase from 15L/min to 45l/min 

compared to with a non-cooling process. As argon gas consumption is a key cost driver in WAAM 

[132] this may reduce cost effectiveness of the process.  

  

Figure 20 Active interpass cooling configuration of equipment adapted from [133] 
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Furthermore, Wu, et al. [133] investigated forced interpass cooling using compressed CO2 gas in 

WAAM production of Ti-6Al-4V. This approach was explicitly selected to avoid arc disruption 

discussed in section 7.1. A schematic of the set up adopted is shown in Figure 20. This process was 

able to reduce the oxidation of the specimens produced as well as refined microstructure, improved 

hardness and enhanced strength. As the interpass temperature was carefully controlled, 

improvements to geometric repeatability and accuracy were achieved.  

4.5.    Cold-work based processes  

High pressure interpass rolling, as shown in Figure 21, has been developed as a process for WAAM 

at Cranfield University in recent years. Applied vertically, this has been shown to effectively induce 

grain refinement, reduce anisotropy and residual stresses in aluminium alloy [134], steel [135], and 

titanium alloy [37] WAAM parts, as well as improve the geometric repeatability. A review by Derekar 

[136] conducts a review of the rolling process in WAAM, specifically for aluminium alloys. The process 

may be carried out immediately behind the welding torch. However, the temperature at which the 

rolling is carried out is important to the efficacy of the process.  For example, due to greater thermal 

conductivity an application of an intralayer rolling process i.e immediately behind the welding torch 

achieved grain refinement in aluminium alloy 2024 [134]. However, negligible microstructural changes 

were found with this approach with Ti-6Al-4V, due to the need for lower rolling temperature, with an 

optimum interpass rolling temperature of 40°C found [37]. Despite the need to cool, McAndrew, et al. 

[137] recently demonstrated that productivity could be enhanced by effectively rolling of wider walls 

with use of an inverted profiled roller.  Side rolling [138] was found to be significantly more effective 

than rolling vertically in terms of residual stress and distortion, however due to the need to support the 

thin wall against a block during the process, for consistent application process may be limited to linear 

thin wall applications to not require specialist tooling. 
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Figure 21 Schematic of trailing high pressure rolling in a GTAW based WAAM process adapted from [37] 

Gefertec GmbH, refer to a rolling process in their patent [139], which is used for reshaping, surface 

roughness and productivity improvement. In contrast to other rolling methods cited, this takes 

advantage of the extended formability due the residual levels of heat in the build. Significant 

improvements in material properties were achieved with laser shock peening in WAAM [140]. Side 

rolling and machine hammer peening reduced porosity in aluminium alloys and an increase of surface 

hardness by 50-70% was achieved by peening and 20% increase was achieved by side rolling with 

150kN load, as compared to as-deposited condition [141]. 

4.6.  Material removal based processes 

CNC machining on an interlayer basis is of benefit for part geometries with surfaces that are difficult 

to access post build, such as conformal cooling channels. These surfaces may be finished in process, 

as demonstrated with a WAAM system retrofit to a CNC machine [92]. Although intermittent CNC 

milling can be used to improve geometrical accuracy and surface finish [92] this approach reduces the 

material utilisation and manufacturing efficiency. As it is possible to maintain a stable deposition 

process through management of welding parameters by open loop [61] and closed loop control [142] 

of processing parameters, or an interpass dwell [69], this approach is no longer required.  

5. Quality improving strategies for WAAM  

The WAAM solidification characteristic, comprises of the thermal gradient and nucleation rate within 

the weld pool as shown in figure 22 and determines the primary performance measures for a specific 

location and the quality in-situ. As the thermal gradient affects the final performance measures of the 

layers beneath, until the reheat effect has no metallurgical impact, the and sets the thermal boundary 

conditions for the following layers of deposition, this aspect controls the heterogeneity that may be 
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expected within the final as-built part and the quality. As outlined in section 3 and in figure 22, the 

primary process selections and the heat dissipation factor based on the geometry and infill strategy 

provide certain primary performance measures. However, the WAAM solidification characteristic 

obtained may be unsuitable for producing high quality WAAM parts efficiently. As shown in the 

diagram it is possible to introduce the ancillary processes classified and introduced within section 4, 

figure 7 of this paper to adjust the WAAM solidification characteristic and subsequently improve 

quality. In-situ processes, affect the solidification characteristic directly, whereas inter/intralayer 

processes can calibrate the primary performance measures to desired levels and affect the thermal 

boundary conditions for the following layer. 

 

Figure 22 Flowchart primary and final performance measures development in WAAM   

Increasing the nucleation rate within the weld pool through in-situ ancillary processes, provides a 

method of achieving significant disruption in average grain size and interruption the competitive 

columnar grain growth to develop equiaxed grain morphology. Processes which dynamically disrupt 

the shape of the weld pool, such as power supply and shield gas modulation, are particularly 

beneficial as shown in table 4 due to the ability to increase nucleation rate and also affect the thermal 

profile of the weld pool. This directly changes the heat input to the weld and hence more significantly 
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affects the cooling rate and extent of constitutional supercooling compared to the other in-situ 

oscillation-based processes. However, processes, which directly affect the nucleation rate through 

weld pool stirring, have displayed greater capability in processing materials of high crack susceptibility 

than power supply modulation and shielding gas modulation. 

 Table 4 Strategies to alleviate materials processing challenges in WAAM 

By implementing a cooling process localised to the weld pool or build volume, it may also be possible 

to also increase the nucleation rate, if surface nuclei are generated or constitutional supercooling is 

initiated. The localised approach in particular also allows steady state shape of the weld pool thermal 

profile to be modified with significant reduction to peak and amplitude values of residual stresses for 

conventional welding [125] than power supply and shield gas modulation. However, the transferability 

of these results to WAAM are yet to be established. An additional benefit of the cooling processes is 

that time at temperature is limited and grain growth can be hindered, leading to improved material 

properties and removal of interpass dwell [111]. Whilst build times are shown to have a small effect on 

the costs of production in WAAM generally [4], provides the ability to avoid one of the major limiting 

Applied: Strategy Mechanism 

Materials Processing Challenges Affected 

Phase 
changes 

Grain size 
and solute 

segregation 
Residual Stress 

Thermal based 
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Oscillation based 
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Power supply or 
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Indirectly  

 
Management of 
residual stress is 

improved by 
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Reduce WAAM 
total heat flux, 

impact of thermal 
cycling and set 
new boundary 
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Cooling local to weld 
pool or build volume  
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Especially 

cooling localised 
to weld pool 
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Heating local to weld 
pool or build volume 

Heating of wire  
 

    

Inter/ 
intralayer 
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cycling and new 
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Heating/cooling, or 
Interlayer dwell, or 
Intralayer interval  

 Indirectly   

Modify surface 
layer properties 

Material removal     

Modify sub-
surface layer 

properties 
Cold working     
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factors with regards to WAAM productivity which would otherwise have to be overcome with parallel 

working and more complex path planning strategies.  

Furthermore, compared to a passive interlayer dwell or intra-pass interval, an in-situ cooling process 

may be preferential due to provision of more extensive control over microstructural and phase 

developments. This can be achieved as well with an inter-layer or intralayer heating or cooling, the 

WAAM build experiences different temperature characteristic compared to the aforementioned in-situ 

processes, whereby the heat flux changes work in series rather than in parallel to the weld torch. As 

shown in figure 22 this can, indirectly, affect the solidification characteristic by setting the thermal 

boundary conditions for the next layer.   

The decision regarding the selection of heating or cooling processes, depends on the metallurgy of 

the material. A high interpass temperature build strategy allows the residual stress and time spent 

cooling to interpass temperature to be reduced. Implementing a constant interpass temperature may 

also allow the benefits of preheat, which is less effective due to the geometry in WAAM [143] to be 

captured. This is known to be beneficial in materials, where the high cooling rates during solidification 

in welding are detrimental to material properties. For example, in the production of precipitation 

strengthened stainless steels, there can be difficulties in developing the precipitates due to the rapid 

solidification [144].  To avoid martensitic transformation, mild steel AM parts require that the time at 

temperature between 800-500°C, to be greater than 30 seconds [145]. Even in martensitic steel, too 

high a cooling rate introduced retained austenite due to introduction of thermal stresses [146]. 

However, too high an interpass temperature can increase cross sectional weld bead geometry 

variations, known as humping [59]. Besides, control of the thermal profile can be used to affect post-

solidification developments. Xu et al. [147] found that an operating temperature 600-850°C in SLM 

processing of Ti-6Al-4V, decomposed martensite to improve anisotropy and residual stress 

associated with the volume transformation. Based on this decision a strategy to limit heterogeneity 

due to thermal cycling and geometrical features is required. Cooling processes provide the ability to 

accelerate to the interpass temperature which may reduce the differences in thermal profile 

throughout the build. In addition, heating processes reduce the transition zone by accelerating to the 

pseudo-steady state temperature if the interpass temperature is high [59]. 
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For heating of the build volume, the interlayer approach provides the opportunity to use of existing 

resource of the welding torch, however, at the expense of productivity. An intralayer interval, i.e. 

restarting at a location that has already cooled to the interpass temperature may be implemented 

without affecting productivity. However, it may not be feasible for small components where time 

cooling to interpass temperature is high compared to time depositing [12, 41, 69] and for components 

made from materials of high heat capacity and low thermal conductivity, such as Ti-6Al-4V. 

Furthermore, implementation is dependent on a comprehensive online knowledge of the heat 

distribution within the WAAM part to determine the position where to restart and build the next layer, 

which may hinder uptake until appropriate online-monitoring technology and path planning software is 

widely available.  

Material removal processes are the only possible on an interlayer basis are the only possible way of 

accessing features which are enclosed by the end of the build. An opportunity provided by interlayer 

CNC machining is reduction in non-value adding time with the WAAM process by using the time 

assigned to cooling to the interpass temperature by machining in this period of time. However, limited 

understanding exists on the machinability of WAAM parts and the feasibility of machining at high 

temperatures, although if material softens this may enhance machinability. Other benefits that may be 

explored include the removal of oxides on the surface of the WAAM deposit. This may be achieved by 

interlayer CNC machining, however, alternative material removal processes such as ablation 

methods, sand or bead blasting, and CO2 are also potentially feasible in addressing this problem.  

Cold work based processes can effectively reduce inhomogeneity in material properties and impart 

quality improvements to the previous layer of deposit. By deforming the material the geometrical 

properties of the weld bead can be made more repeatable [148]. Positive internal stresses may be 

induced which can lead to work hardening and recrystallisation of grains which may be used to refine 

the grains and mechanical properties. Approaches can include high pressure rolling. As shown in 

table 4, with implementation of cold working based processes, it may be possible to implement many 

of the beneficial changes made possible in-situ. However, due to the need for a certain extent of 

cooling of the build before rolling is effective, this is incompatible with a high interpass temperature 

build strategy that is sometimes preferred for example in Ti-6Al-4V in order to minimise dwell periods 

and relieve residual stress throughout the build. As residual stress is effectively relieved in rolling, this 
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may be acceptable, however, a significant amount of non-value adding time may be added, especially 

as the interpass rolling temperature may be well below the compulsory interpass temperature for build 

stability. This compounded by the need for rolling process on a layer by layer basis, with effects found 

to be less effective when applied in multiple of layers. Further processing issues involve the effective 

deployment of the roller for complex or bulk deposits. 

Mechanical and energy based peening methods are also possible and may include use of electron, 

laser, ion, and fluid jet [149]. Well adopted methods in the welding industry include shot and hammer 

peening and according to Coules [150], needle ultrasonic, and laser shock peening have become 

more widespread in recent years. In the past, such peening processes were primarily related to 

surface treatments to improve fatigue life, however, as emphasised in the review paper by Sealy et al. 

[151], this is now an integral method for influencing properties throughout the part in hybrid AM, 

although the set-up of the process within a WAAM machine to achieve the required depth of impact 

requires further investigation.  

6. Future Perspectives and Conclusions 

With growing acceptance in the market for additively manufactured end products, the development of 

strategies and processes to overcome the materials processing limitations in WAAM are of prime 

importance. For this reason, to produce end-parts in challenging materials, enhancement of 

processing capability through integration of the ancillary processes identified and reviewed in this 

paper is envisioned. The ancillary processes have been classified by timing of application and 

mechanism. Strategies by which these processes may be applied to enhance quality of WAAM parts 

have been determined to provide guidance to ancillary process selection based on the material 

property improvements sought. 

With market demand for high quality WAAM parts, it is expected ancillary processes will see greater 

adoption, and become advanced and diverse in future years. To date the most commonplace ancillary 

process implemented in WAAM involves the modulations of the heat input from the welding torch. 

There is evidence these processes becoming more advanced to meet the strenuous requirements of 

WAAM, with increasingly varied and advanced processes investigated in the published literature over 

the last 10 years. For example, standard pulse welding processes appears to be transitioning to 
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advanced pulse and oscillation based methods such as cold metal transfer (CMT) [57, 112, 152] and 

variable polarity approaches [100, 112]. However, this process category cannot manage fully the wide 

ranging metallurgical requirements for producing WAAM parts of challenging materials. This paper 

has revealed the enormous capabilities of the full range of ancillary processes to enhance quality of 

WAAM parts. In selecting ancillary processes, there may be a range effective routes in terms of 

achieving the performance measures, as evidenced by the separate approaches by Norsk Titanium 

and Cranfield University for producing Ti-6Al-4V components. The ease of integration with existing 

WAAM equipment, adaptability of the process to the range of materials to be produced and the impact 

on the non-value added time will formulate key aspects of industrial adoption, as well as the efficacy 

of the process in terms quality enhancement itself. 

As WAAM matures as a commercial manufacturing process, to provide a versatility, it will be 

important too that the ancillary processes selected are capable of enhancing quality in multiple 

materials. To achieve this, the ancillary processes will require adjustable settings to effectively 

develop different metallurgies on one machine. This is already possible in many of the processes, for 

example, the pulse heat input modulation, oscillation of build volume and rolling. However, heat 

transfer based processes investigated to date have had limited ability to adjust the cooling or heating 

capacity or timing of application. The widespread acceptance and uptake of CMT, indicates 

synergistically combining processes can be particularly powerful, however, synergic ancillary process 

combinations currently are primarily limited to include power supply modulation as one of the 

processes. Due to the exclusivity of the effects on material properties, material removal processes are 

likely comprise one such combination if enclosed finished features are to be manufactured.  

Due to the array of potential processes and process combinations, advanced computation and 

mathematical tools, such as machine learning, decision science and process modelling, are required 

to develop resource-efficient process planning techniques. Development of novel process planning 

techniques to balance tool paths and infill patterns with primary process selections and the ancillary 

processes to minimise inhomogeneous material properties attributed to geometrical changes.  

Technical advancements in processing capability imparted by in-situ and intralayer/interlayer, 

processes mean it may be possible to manipulate grain size and solidification mode throughout the 

part, providing a route to functionally graded materials in large scale parts. On-machine development 
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of material properties, presents a great opportunity for reducing the overall post-processing time and 

cost for WAAM parts. Knowledge of on-machine development of material properties will also aid in 

feature addition or repair WAAM applications, where heat treatment is unfeasible. In summary, the 

future vision of this research area involves the emergence of highly capable WAAM machines that 

may combine manufacturing processes from a number of process categories to efficiently transform 

numerous raw materials into finished parts with minimal post processing. 
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