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Abstract

Class-imbalanced datasets are common across different domains such as health,
banking, security and others. With such datasets, the learning algorithms are
often biased toward the majority class-instances. Data Augmentation is a com-
mon approach that aims at rebalancing a dataset by injecting more data samples
of the minority class instances. In this paper, a new data augmentation approach
is proposed using a Generative Adversarial Networks (GAN) to handle the class
imbalance problem. Unlike common GAN models, which use a single fake class,
the proposed method uses multiple fake classes to ensure a fine-grained gener-
ation and classification of the minority class instances. Moreover, the proposed
GAN model is conditioned to generate minority class instances aiming at re-
balancing the dataset. Extensive experiments were carried out using public
datasets, where synthetic samples generated using our model were added to the
imbalanced dataset, followed by performing classification using Convolutional
Neural Network. Experiment results show that our model can generate diverse
minority class instances, even in extreme cases where the number of minority
class instances is relatively low. Additionally, superior performance of our model
over other common augmentation and oversampling methods was achieved in
terms of classification accuracy and quality of the generated samples.

Keywords: Image Classification, Imbalanced Data, Deep Learning.

1. Introduction

The class-imbalanced problem arises when the samples in a dataset are
dominated by one class usually the negative class. It is common across dif-
ferent domains such as security, banking and medicine. This could occur in
a binary classification or a multi-classification task [1]. Models trained on a
class-imbalanced dataset tend to be biased towards the majority class. Exist-
ing approaches address this problem either at the data level or the algorithm
level [2]. Data re-sampling techniques such as undersampling and oversampling
are applied at data level to ensure equal representation of instances amongst
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classes. Algorithmic solutions include modifying the learning objective to en-
sure equal participation of all classes during training.

Data augmentation is a common technique employed to synthesize more
training data. Artificial variations are useful in minimizing any bias in data col-
lection and class-imbalanced problem. For instance, in image domain, augmen-
tation techniques used could range from simple image flips [3], random crops [4],
noise [3] distortions to more advanced techniques like PCA colour augmenta-
tion [4] and image-pairing [5]. Data augmentation technique can be a source
of more training data [6] or a regularizer [5] thereby improving generalization.
These techniques have proved to be effective in learning from class-imbalanced
datasets. However, in extreme class-imbalanced cases, applying augmentation
to few samples may not provide the required variations to produce distinct sam-
ples to re-balance the dataset. Furthermore, the problem becomes compounded
in a multi-class problem as the performance of a class may be affected while
trying to improve another [7]. Besides, existing techniques may not necessarily
be useful in deep learning [8].

More recently, Generative Adversarial Networks (GAN) have been used to
generate images with high visual fidelity [9]. Researchers have shown that these
images can be used as extra training data to support other processes such as
classification [6, 10]. A GAN model produces quality samples with the required
variations similar to the training data. Different GAN models have been pro-
posed for data augmentation in previous works [1, 11, 12, 6, 13]. Also, GAN was
used to tackle imbalanced data in a binary classification problem using none im-
age data in [1] and used by Antoniou et al. [11] as an augmentation approach to
improve image recognition accuracy. Our approach shares some similarities with
these researches but differs in the sense that we use a different GAN model in
image classification domain. Moreover, we are interested in performing multiple
classification with an imbalance training data. With scarce minority classes, im-
age generation can be challenging because a useful augmentation sample needs
to be plausible, diverse and from the required minority class [12, 11].

In this paper, Multiple Fake Class Generative Adversarial Network (MFC-
GAN) is proposed. MFC-GAN preserves the structure of the minority classes
by learning the correct data distribution and produce unique images whenever
it is sampled. We demonstrate the usefulness of MFC-GAN by addressing class-
imbalanced problem in a multi-classification task. MFC-GAN differs from other
GAN models that implement a classifier alongside the discriminator such as S-
GAN [14], AC-GAN [15] and similar frameworks in the sense that we use a
multi-fake class GAN model. Multiple fake class feature was implemented in
Few-Shot Classifier GAN (FSC-GAN) [16] to generate samples and perform clas-
sification. Incorporating more fake classes in the FSC-GAN resulted in artefacts
appearing in generated samples which may hinder using such samples as candi-
dates for augmentation. This paper extends FSC-GAN idea and demonstrates
that artefacts can be reduced significantly by conditioning image generation on
real class labels only and modifying the classification objective. Thus, fake class
labels are only employed when classifying generated images.

Incorporating more fake classes in this context stabilizes training early and
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generates plausible samples with fewer epochs. Our argument is that since both
minority and majority classes come from the same distribution, these classes
share some common features. Hence, features learned from majority classes
should aid in learning the minority classes. Consequently, class conditioned
generation will focus the model into sampling minority classes. Our approach
train MFC-GAN on the imbalanced dataset then generate and augment syn-
thetic minority class instances to the original training data. A Convolutional
Neural network (CNN) is then trained on the augmented dataset. We evaluated
our approach using four imbalanced datasets namely; E-MNIST1 and created
artificial imbalance in MNIST2, SVHN3 and CIFAR-104 by reducing the number
of samples in specific classes. Significant performance gain was obtained when
MFC-GAN was used as an augmentation model when compared to the baseline
(CNN classification without augmentation) and other common and state-of-the-
art methods (SMOTE [17] & AC-GAN [15]).

The main contributions in this paper are as follows.

• MFC-GAN is proposed to learn data representation from low number of
samples

• A method for handling class-imbalanced datasets by augmenting the orig-
inal data with synthesized samples using MFC-GAN

• Experimental framework for evaluating MFC-GAN on four different multi-
class imbalanced datasets

The remainder of this paper is organised as follows. In Section 2, we review
related work. Section 3 presents the proposed method. Section 4 discusses in
details experimental set-up and datasets used. Section 5 present the results
obtained. Our findings are discussed in section 6. Finally, we draw conclusions
and suggest future directions in Section 7.

2. Related Work

The class-imbalanced problem in binary classification is an active research
area which has witnessed the development of well-established techniques. How-
ever, little attention is given to class-imbalanced problem in multi-classification [2].
Imbalanced classes in a multi-classification problem may require new sampling
strategies and data pre-processing steps [2] other than those used in binary
classification. Existing methods for handling such problem includes multi-class
decomposition [7], Class Rectification Loss (CRL) [8] and mean squared false
error [18]. Resampling methods such as oversampling and undersampling are

1https://www.nist.gov/itl/iad/image-group/emnist-dataset
2http://yann.lecun.com/exdb/mnist/
3http://ufldl.stanford.edu/housenumbers/
4https://www.cs.toronto.edu/ kriz/cifar.html
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widely used in this area. However, oversampling is prone to over-fitting and
undersampling may discard essential data points [19].

Buda et al. [19] showed in an experimental study how the performance of
CNN drops significantly when the data is imbalanced. Wang et al. [18] modified
the learning algorithm to account for class-imbalance by penalising the misclas-
sification of minority class instances (i.e., cost-sensitive methods). However,
applying such methods require careful consideration of the cost matrix settings,
which can be tricky in a real-life problem [2].

Common methods such as Synthetic Minority Over-Sampling Technique
(SMOTE) proved to be ineffective in handling class-imbalance in extreme cases
(hugely imbalanced datasets) and results in performance deterioration of the
learning algorithm in such scenarios [2]. SMOTE can also lead to over-generalization
with high variance [18].

In deep models such as CNN for example, Class Rectification Loss(CRL) [8]
was used to handle class-imbalance. CRL algorithm performs hard mining of
the minority class is each batch forcing the model to create a boundary for each
minority class with a hard positive and negative threshold. Other approaches
such as Large Margin Local Embedding (LMLE) [20] employs clustering among
classes to maintain the structure of the minority data. However, these tech-
niques can be computationally expensive in large data domain [8].

Data augmentation techniques are increasingly becoming an integral part of
deep model approaches for classification. Dosovitskiy, et al. CNN [21] proposed
a method (Examplar) based on systematic augmentation of data and achieved
state-of-the-art results on CIFAR-10 dataset. Data augmentation is a widely
used technique to handle class-imbalanced datasets. Ali et al. [3] used affine
transformation and noise distortion across classes to generate more samples and
reduce the impact of class-imbalance. However, trivial augmentation may not
suffice for extreme class-imbalanced data or when sufficient data is not available.
Besides, orientation-related features in some domain may limit the application of
simple augmentation approaches [12]. Thus, more sophisticated augmentation
techniques such as image pairing [5] and mixup [22] have been proposed.

In recent years, generative models were successfully used to generate sam-
ples. GANs proved to be state-of-the-art in generating and capturing data [9].
In an imbalanced dataset, the aim is to generate class-specific samples, therefore
supervised GAN models such as Conditional GAN (C-GAN) [23] is a potential
solution for such a problem. However, these models and other established GAN
frameworks such as vanilla GAN [24] and AC-GAN [15] have performed poorly
on class-imbalanced datasets by failing to generate the required minority sam-
ples [12, 25]. Recently, good performance was reported by [6] using a Deep
Convolutional GAN (DCGAN) [26] to synthesise artificial liver lesion images.
This was achieved by using traditional augmentation techniques to oversample
the training set. Similarly, Baur et al. [13] generated high-resolution skin le-
sion images using MelanoGAN (a variant of DCGAN + Laplacian GAN [27])
from a small dataset of 2k samples. The model was used to synthesize more skin
lesion samples to reduce the effect of class-imbalanced data in training a ResNet-
50 [28] for classification. These examples show that trivial data augmentation
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techniques can be successful in handling class imbalance related problems ([6],
[13]). However, it should be noted that these examples were applied to binary
datasets with no orientation dependent features or fuzzy class boundaries.

Other approaches combine GAN model with other generative processes such
as an auto-encoder training. Features learned by the auto-encoder are then used
to initialize the generator and discriminator of the GAN model. This may re-
quire a second training step [12] or joint training [25] to perform conditional ad-
versarial training. Data Augmentation Generative Adversarial Networks (DA-
GAN) [11], Balancing GAN (BAGAN) [12] and Fine-grained Multi-attribute
GAN (FM-GAN) [25] used a similar strategy to synthesize more samples for
augmentation. Image refinement is another technique used which preserves
the image class while producing diverse synthetic samples. Zhu et al. [10] ap-
plied image translation to generate minority samples using a reference sample
in an emotion recognition task. However, this approach was evaluated using
two closely-related classes (i.e. translate a face to another face image). Other
approaches re-parametrise the adversarial training by adding extra losses or
stricter conditions during the generation. This enforces learning and generation
of minority samples such as in DeliGAN [29]. The latent space in DeliGAN
is parametrized by a Gaussian Mixture Model (GMM) whose parameters are
learned alongside the GAN parameters.

In summary, resampling methods don’t perform well in hugely imbalanced
datasets. Traditional data augmentation are still widely used. However, these
are limited and often don’t generate enough data variance, especially in ex-
treme cases. GAN-based methods provide a more realistic solution to generate
data samples and handle class-imbalance (i.e., a multi-modal [11, 12], image-
translation [10]). Unlike these methods, MFC-GAN is simpler to train and
generates specific-class samples even in extreme cases.

3. Method

Our approach uses MFC-GAN to generate plausible samples which were used
to augment training data. GAN models are trained using two sets of training
data; the original data from the training set (or real images) and generated sam-
ples (or fake images) obtained from the generator. Similarly, we consider real
labels as the corresponding labels of the original training data and the associated
fake labels for generated images. Class labels were prepared by converting each
label into an n bit one-hot encoding vector, where n is the number of classes.
To accommodate fake classes, we pad n zeros to the right of the label encoding
to obtain a new representation for real labels. Hence, for each real label c, a
corresponding fake class label c′ is generated by padding n zeros to the left of
the original label encoding. For example, if the real label for class 0 is encoded
as 1000000000, we now represent this class label by 10000000000000000000

and its associated fake label as 00000000001000000000. To generate class spe-
cific samples, we conditioned MFC-GAN generator using real labels only. Label
conditioning encourages the generator to work towards producing realistic sam-
ples and controls the generation of class-specific samples [14]. When training
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MFC-GAN, we classify real images into real classes and generated images into
different fake classes. MFC-GAN is trained with a modified AC-GAN objective.
The objective maximises the log-likelihood of classifying real samples into real
classes C and fake samples into fake classes C ′ as shown in equations 1, 2 and
3.

Ls = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)] (1)

Lcd = E[logP (C = c|Xreal)] + E[logP (C ′ = c′|Xfake)] (2)

Lcg = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (3)

Where Ls is used to estimate the sampling loss, which represents the prob-
ability of the sample being real or fake. Lcd and Lcg are used to estimate the
classification losses over the generator and the discriminator. Xreal represents
the training data and Xfake is the set of generated images.

3.1. MFC-GAN Vs FSC-GAN

As can be seen in equation 2 and 3, MFC-GAN classification objective differs
from what was implemented in AC-GAN and FSC-GAN. Both FSC-GAN and
MFC-GAN discriminators classify generated samples into different fake classes.
This prevents classifying unrealistic samples into real classes by providing fine-
grained training to the model. However, MFC-GAN differs from FSC-GAN in
the way the loss function of the generator is defined as can be seen in Equation 3.
In other words, in our model, the model’s generator is penalised according to
how far the generated sample is from the real class label. Notice, that in the
FSC-GAN model, the generator model is penalised according to how far the
generated sample is from fake class label. By having this key difference in our
model, we ensure that poor generated samples guarantee higher loss, which is
not necessarily the case in the FSC-GAN settings. This has also promoted
early convergence of the model where MFC-GAN model proved to be able to
generating plausible samples with far fewer epochs than both AC-GAN and
FSC-GAN.

Furthermore, for every iteration, equation 2 means that the discriminator
classifies samples as real or fake with the associated class (i.e., real class 1 or
fake class 1) while equation 3 means that with every generator iteration, it tries
to classify fake samples as real classes. As the generator performance improves,
only subtle differences exist between the two set of images (fake, real) and this
acts as a regularizer that penalizes the discriminator as the model approaches
optimal performance. Similar to FSC-GAN, MFC-GAN is also capable of han-
dling labelled and unlabeled data in training. Depending on the availability
of labels, the network switcher feature [16] enables both models to alternate
between two training modes. This switcher is a piece-wise function that oscil-
lates between supervised and unsupervised training. Although, there is a slight
difference in the way classification loss is evaluated (as shown in equation 2).
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(a) AC-GAN (b) FSC-GAN (c) MFC-GAN

Figure 1: Comparing MFC-GAN architecture with AC-GAN and FSC-GAN models. C
is a set of labels, z is a random noise vector, G is the generator, D is the discriminator,
real & fake are GAN outputs representing the probability of an image being real or fake,
c1, ..cn are the set of real classes, f1, ..fn and c′1, ..c

′
n are sets of fake classes, Xreal is

the original training images, Xfake is the set of generated images and ⊗ is the network
switcher feature that alternates between labelled and unlabeled training.

Figure 1 compares the structure of MFC-GAN to FSC-GAN and AC-GAN.
With labelled data, the MFC-GAN discriminator is trained to maximise the
sum of Ls and Lcd while the generator is trained to maximise the difference
between Ls and Lcg. In this setup, the MFC-GAN generator is sampled using
a noise vector conditioned on real class labels. In the absence of labels, MFC-
GAN is trained using Ls only and behaves like a vanilla GAN model as shown
in equation 4. In the latter case, the generator is sampled using a noise vector
only. Although, in these experiments, this feature was not exploited. Further
comparisons and discussions around there differences can be found in section 5
and Figure 2.

V (D,G) =

{
C = {∅} : Ls

C 6= {∅} : Ls ± Lc

(4)

4. Experiments

The architecture of both the discriminator and generator used on MNIST &
E-MNIST were adopted from FSC-GAN, details of this can be found in [16].
Regarding SVHN & CIFAR-10 experiments, we used the same architecture as in
the original AC-GAN model [15], and added spectral weight normalization [30]
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in both generator and discriminator for both AC-GAN, FSC-GAN & MFC-
GAN. This is to ensure a fair comparison.

4.1. Experimental Set-up

In order to evaluate the performance of our method, we compared it with
AC-GAN [15] which is one of the best supervised generative models. We also
compared our method with SMOTE [17] which is one of the most common
methods for generating data to handle class-imbalanced datasets. This was
achieved by first training a classifier on the original dataset. This forms a
baseline for comparing performances of the models. Then MFC-GAN, AC-
GAN, and SMOTE were used to generate more samples from the minority
classes. The resulting samples were then augmented into the original dataset
and classification was performed again using CNN. The performance of the CNN
on the three different augmented datasets are then compared and discussed.
Algorithm 1 provides a schematic overview of this experiment.

Algorithm 1 Experimental procedure

procedure Data Augmentation
d← original imbalanced dataset
train:

MFC-GAN(d)
AC-GAN(d)
FSC-GAN(d)

augment:
dmfc ← d + MFC-GANsamples

dsmote ← d + SMOTEsamples

dacgan ← d + AC-GANsamples

dfscgan ← d + FSC-GANsamples

classify:
r1 ← CNN(d)
r2 ← CNN(dmfc)
r3 ← CNN(dsmote)
r4 ← CNN(dacgan)
r5 ← CNN(dfscgan)

compare(r1, r2, r3, r4, r5)
end procedure

Furthermore, the fidelity of generated minority samples from MFC-GAN was
compared to state-of-the-art AC-GAN.

All models were implemented using tensorflow 1.05 and Keras 2.06. SMOTE
was implemented using 7. Models were evaluated subjectively based on the

5https://www.tensorflow.org/
6https://keras.io/
7https://github.com/tgsmith61591/smrt
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plausibility of samples (i.e., visual inspection) and objectively by assessing the
classification performance after augmentation.

4.2. Datasets

The models were tested using four publicly available datasets. These are,
MNIST [31], E-MNIST [32], SVHN [33] and CIFAR-10 [34] datasets.

MNIST is a dataset of hand-written digits with ten classes (0− 9) consisting
of 28 × 28 grey-scale images. MNIST has a total of 50k images training set, 10k
images for validation and 10k test images. Both the training and validation
sets were merged to form a more significant training set, and the test set was
used as a holdout sample in classification. MNIST is a balanced dataset, and so
we induced imbalance among its classes by undersampling. Two classes were
chosen arbitrarily and their instances were reduced significantly to mimic a
multi-classification imbalance problem. We could have chosen more but given
the size of the dataset, we do not want to inhibit learning due to the number
of training examples. In our experiments, different experiments were run with
adjacent classes chosen as minority classes in each run. The first run considers
0 and class 1 as minority, then classes 2 and 3 and so on. In each run only
50 samples in these classes were used (about 1% of the original). The rest of
the classes remained unchanged and experiments were carried out on the new
imbalanced MNIST dataset.

E-MNIST is an extended version of MNIST. The dataset also consists of 28×28
grey-scale images with 62 classes (0 − 9, A − Z and a − z). For our exper-
iments, the byclass grouping was used with 814, 255 samples in total. The
dataset consists of 697, 932 training samples and 116, 323 samples for testing.
The distribution of samples across classes in the training data is not balanced;
thus, experiments on this dataset did not require inducing artificial imbalance.
E-MNIST contains many classes with a considerably small number of samples
than others with 21 out of 62 classes having less than 3000 samples. These
classes include class G, K, Q, X, Z, c, f, i, j, k, m, o, p, q, s, u, v, w, x, y & z,
where the 10 least populated were used in our experiment.

SVHN dataset contains google street view of house numbers across ten cat-
egories (1, 2, 3, 4, 5, 6, 7, 8, 9, 0). This dataset consists of 32 × 32 pixels images
with 73k and 26k train and test images set. These images appear noisy with
other numbers in the background and the dataset is not balanced. Similar to
MNIST, we induced artificial imbalance by considering 50 samples in classes 1&2
to form a multi-class imbalance scenario with the rest of the classes unaltered.

CIFAR-10 dataset is made up of 32 × 32 images of real objects. It has fifty
thousand training images grouped into ten classes namely; Aeroplane, Auto-
mobile, Bird, cat, Deer, Dogs, Frog, Horse, Ship and Truck. Samples distribu-
tion across these classes is balanced with five thousand samples in each class.
We induced artificial imbalance by considering 50 samples in Aeroplane and
Automobile classes. The dataset has ten thousand tests set with one thousand
samples from each category. In all the datasets, the test sets were used as a
hold out in evaluating the classification model.

9
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4.3. Image generation

We perform augmentation by synthesizing more samples.AC-GAN, FSC-
GAN and MFC-GAN were first trained using the imbalanced datasets described
in section 4.2. The three models are then used to generate minority samples,
these samples were then used to augment the original datasets. Samples gen-
erated using SMOTE were produced by repeatedly applying SMOTE to over-
sample the class of interest as the minority sample and the rest of classes as the
majority sample.

Regarding SVHN and CIFAR-10, the four models MFC-GAN, FSC-GAN,
AC-GAN, and SMOTE were used to generate the class of interest (the minority
class). These are classes 1&2 in SVHN and Aeroplane and Automobile classes
in CIFAR-10. As for E-MNIST, we chose classes G,K,Q, f, j, k,m, p, s, y as the
class of interest (minority classes). These were chosen because they have the
least number of instance. Every class in the MNIST dataset was considered a
minority class (by undersampling each of them at different runs).

4.4. Image Classification

Our classification model is Convolutional Neural Network (CNN). The CNN
used for MNIST & E-MNIST has three layers with a soft-max activation layer
on top. The first two layers are convolution layers with 3× 3 kernels which are
followed by a 2×2 max-pooling layer. The two layers have a filter map of size 32
and 64 respectively. This is followed by a fully connected layer with 128 neurons
that feeds into the final soft-max layer (with 10 and 62 output neurons for MNIST
and E-MNIST respectively). All layers are ReLu activated, and a dropout ratio of
0.5 was used in the fully connected layer. Adadelta optimiser [35] (an extension
of Adagrad) was used with default settings and weights were initialised using
random uniform distribution. The same model was used in SVHN experiment
but with a different input channel and input size to accommodate the images.

For CIFAR-10 experiment, we increase the number of convolution layers to
three (with channel sizes 32,32 & 64) and reduced the dropout ratio to 0.2. The
number of neurons in the fully connected layer was also increased to 512 and the
CNN was trained with SGD optimizer using learning rate of 1e-3 and decay of
lr/epoch. The initial experiment trains the CNN on the original dataset. Then
the model is trained by augmenting the dataset using one of the approaches
considered. Both CNNs were trained using a batch size of 64 for CIFAR-10 and
100 for the others over 25 epochs and we evaluate on the holdout test sets from
each of the datasets described.

The choice of the CNN models above was made to evaluate the proposed
method (MFC-GAN) on generating images of minority classes. This was achieved
by first, classifying the original datasets using CNNs, then classifying the aug-
mented datasets and comparing the results. In this way, we can have an objec-
tive measure for the quality of samples generated by our model and how it does
compare with other methods. This is in addition to the subjective evaluation
based on the visual inspection of the generated images.

10
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5. Results

(a) Original MNIST data (b) FSC-GAN (10k labels) (c) MFC-GAN (10k labels)

(d) Original MNIST data (e) FSC-GAN (all labels) (f) MFC-GAN (all labels)

Figure 2: FSC-GAN versus MFC-GAN on MNIST dataset

A preliminary experiment comparing MFC-GAN against FSC-GAN [16] was
carried out using the MNIST dataset. This was achieved by reducing the number
of labelled instances in the dataset across all classes. Figure 2 shows that MFC-
GAN generated better quality samples and considerably reduced the amount of
artefacts. The results also show that MFC-GAN can effectively handle both la-
belled and unlabeled instance. It is worth noting that MFC-GAN generates good
quality images even in the presence of a large number of unlabelled instances
(50K unlabeled instances, Figure 2c). The training time was also reduced con-
siderably (by a factor of 10) with MFC-GAN producing plausible samples at
about 50 epochs while FSC-GAN reaches optimum at 500 epochs. The results
suggest that MFC-GAN would be a suitable model for augmentation.

MFC-GAN was also applied to imbalanced datasets to evaluate the quality
of generated samples. The models were initially evaluated subjectively using
visual inspection. Figures 4, 3, 5, 6 and 7 compare the original images and
the generated samples. The minority classes in MNIST, SVHN, and CIFAR-10

dataset are highlighted using a red line for the different experiments conducted.
For E-MNIST, we report the performance from the ten minority classes. Using
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(a) Original E-MNIST samples (b) AC-GAN samples (c) MFC-GAN samples

Figure 3: Original images (left) with AC-GAN and MFC-GAN generated samples
(middle, right) from E-MNIST dataset with minority class instances highlighted in red.

MFC-GAN model, we were able to generate the minority classes without arte-
facts. Thus, the samples are good candidates for augmentation. As can be
seen, poor minority class samples were generated by AC-GAN model and in
some cases, it was biased toward the majority class. The classification perfor-
mances are reported in tables 2, 1 and 3. Several common evaluation metrics
were used in the experiments including balanced accuracy, sensitivity, specificity
and Geometric Mean (G-Mean). These metrics were computed as follows:

Sensitivity =
tp

tp + fn
(5)

Specificity =
tn

tn + fp
(6)

G−Mean =
√
Sensitivity × Specificity (7)

F1− score =
2tp

(2tp + fp + fn)
(8)

BalancedAccuracy =
tp + tn

2
(9)

Prescision =
tp

tp + fp
(10)

recall =
tp

tp + fn
(11)

where tp stands for true positive, tn denotes true negative, fp and fn denotes
false positive and false negative respectively.

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) Original MNIST samples (b) AC-GAN samples (c) MFC-GAN samples

Figure 4: Original images (left) with AC-GAN and MFC-GAN generated samples
(middle, right) from MNIST dataset with minority class instances highlighted in red.

Metric Model 0 1 2 3 4 5 6 7 8 9

Sensitivity

Baseline 0.83 0.93 0.64 0.73 0.68 0.70 0.73 0.65 0.62 0.58
SMOTE 0.92 0.94 0.76 0.89 0.81 0.87 0.87 0.79 0.79 0.76
AC-GAN 0.77 0.89 0.55 0.71 0.58 0.88 0.85 0.66 0.68 0.70
FSC-GAN 0.78 0.87 0.60 0.58 0.49 0.51 0.61 0.48 0.38 0.41
MFC-GAN 0.98 0.98 0.83 0.85 0.76 0.71 0.88 0.90 0.89 0.83

Specificity

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SMOTE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FSC-GAN 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00
MFC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy

Baseline 0.91 0.97 0.82 0.87 0.84 0.85 0.86 0.83 0.81 0.79
SMOTE 0.96 0.97 0.88 0.95 0.90 0.93 0.91 0.89 0.90 0.88
AC-GAN 0.89 0.95 0.78 0.85 0.79 0.94 0.92 0.83 0.84 0.85
FSC-GAN 0.89 0.94 0.80 0.79 0.74 0.75 0.80 0.74 0.69 0.63
MFC-GAN 0.99 0.99 0.92 0.92 0.88 0.85 0.94 0.95 0.94 0.92

Precision

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
SMOTE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
AC-GAN 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.99 0.95
FSC-GAN 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.97
MFC-GAN 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99

Recall

Baseline 0.83 0.93 0.64 0.73 0.68 0.70 0.73 0.65 0.62 0.58
SMOTE 0.92 0.94 0.76 0.89 0.81 0.87 0.87 0.79 0.79 0.76
AC-GAN 0.77 0.89 0.55 0.71 0.58 0.88 0.85 0.66 0.68 0.70
FSC-GAN 0.78 0.87 0.60 0.58 0.49 0.51 0.61 0.48 0.38 0.41
MFC-GAN 0.98 0.98 0.83 0.85 0.76 0.71 0.88 0.90 0.89 0.83

F1-score

Baseline 0.91 0.96 0.78 0.84 0.81 0.82 0.84 0.79 0.77 0.73
SMOTE 0.96 0.97 0.87 0.94 0.89 0.93 0.93 0.88 0.89 0.86
AC-GAN 0.87 0.94 0.71 0.83 0.73 0.94 0.92 0.80 0.81 0.80
FSC-GAN 0.88 0.93 0.75 0.73 0.65 0.67 0.76 0.65 0.55 0.44
MFC-GAN 0.99 0.99 0.91 0.91 0.87 0.83 0.93 0.94 0.94 0.90

G-Mean

Baseline 0.91 0.97 0.80 0.85 0.83 0.84 0.85 0.81 0.79 0.76
SMOTE 0.96 0.97 0.87 0.94 0.90 0.93 0.94 0.89 0.89 0.87
AC-GAN 0.88 0.95 0.74 0.84 0.76 0.94 0.92 0.82 0.83 0.83
FSC-GAN 0.88 0.93 0.77 0.76 0.70 0.71 0.78 0.69 0.62 0.64
MFC-GAN 0.99 0.99 0.91 0.92 0.87 0.84 0.94 0.95 0.94 0.91

Table 1: Results of SMOTE, AC-GAN, FSC-GAN and MFC-GAN classification per-
formance on MNIST when each class is used as a minority.13
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(a) Original MNIST samples (b) AC-GAN samples (c) MFC-GAN samples

(d) Original MNIST samples (e) AC-GAN samples (f) MFC-GAN samples

(g) Original MNIST samples (h) AC-GAN samples (i) MFC-GAN samples

(j) Original MNIST samples (k) AC-GAN samples (l) MFC-GAN samples

Figure 5: Minority class instances (highlighted in red) in different runs.
14
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(a) Original SVHN samples (b) AC-GAN samples (c) MFC-GAN samples

Figure 6: Original images (left) and generated images from AC-GAN and MFC-GAN,
minority classes are highlighted in red rectangle

Metric Model G K Q f j k m p s y

Sensitivity

Baseline 0.84 0.81 0.82 0.02 0.62 0.56 0.00 0.10 0.00 0.29
SMOTE 0.82 0.73 0.80 0.25 0.84 0.58 0.23 0.38 0.01 0.48
AC-GAN 0.77 0.76 0.87 0.14 0.57 0.57 0.00 0.21 0.00 0.18
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.89 0.69 0.94 0.48 0.80 0.68 0.22 0.77 0.14 0.65

Specificity

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SMOTE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FSC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy

Baseline 0.92 0.90 0.91 0.51 0.81 0.78 0.50 0.55 0.50 0.65
SMOTE 0.91 0.86 0.90 0.62 0.92 0.79 0.61 0.69 0.50 0.74
AC-GAN 0.89 0.88 0.94 0.57 0.78 0.79 0.50 0.61 0.50 0.59
FSC-GAN 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
MFC-GAN 0.94 0.84 0.97 0.74 0.90 0.84 0.61 0.89 0.57 0.82

Precision

Baseline 0.91 0.64 0.91 0.43 0.72 0.79 0.00 0.55 0.00 0.53
SMOTE 0.93 0.64 0.93 0.36 0.48 0.70 0.41 0.54 0.25 0.42
AC-GAN 0.96 0.63 0.88 0.43 0.81 0.74 0.33 0.61 0.17 0.62
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.80 0 .63 0.61 0.36 0.50 0.61 0.40 0.36 0.13 0.33

Recall

Baseline 0.84 0.81 0.82 0.02 0.62 0.56 0.00 0.10 0.00 0.29
SMOTE 0.82 0.73 0.80 0.25 0.84 0.58 0.23 0.38 0.01 0.48
AC-GAN 0.77 0.76 0.87 0.14 0.57 0.57 0.00 0.21 0.00 0.18
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.89 0.69 0.94 0.48 0.80 0.68 0.22 0.77 0.14 0.65

F1-score

Baseline 0.88 0.71 0.86 0.03 0.66 0.65 0.00 0.17 0.00 0.38
SMOTE 0.87 0.68 0.86 0.29 0.62 0.64 0.29 0.45 0.01 0.45
AC-GAN 0.86 0.69 0.88 0.21 0.67 0.65 0.00 0.32 0.00 0.28
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.85 0.66 0.74 0.41 0.62 0.64 0.29 0.49 0.13 0.44

G-Mean

Baseline 0.92 0.90 0.90 0.12 0.78 0.75 0.00 0.32 0.00 0.54
SMOTE 0.91 0.76 0.89 0.49 0.92 0.76 0.48 0.62 0.08 0.69
AC-GAN 0.88 0.76 0.93 0.37 0.75 0.76 0.05 0.46 0.05 0.42
FSC-GAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MFC-GAN 0.94 0.83 0.97 0.69 0.90 0.83 0.47 0.88 0.37 0.80

Table 2: Sensitivity analysis of of the classifier when using SMOTE, AC-GAN,FSC-
GAN and MFC-GAN on ten E-MNIST minority classes.
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(a) Original CIFAR-10 (b) AC-GAN samples (c) MFC-GAN samples

Figure 7: Original sample images(left) with AC-GAN and MFC-GAN generated sam-
ples (middle, right). Minority classes are highlighted in red

6. Discussion

Tables 1, 2 and 3 show that the CNN achieved better performances when
it was trained on the MFC-GAN generated samples. Higher sensitivity, bal-
anced accuracy and G-Mean demonstrate that the MFC-GAN model was able
to generate samples from minority classes in a multi-classification problem. It
has to be pointed out that all the figures in all tables have been rounded to the
nearest two decimal points. Results also show that MFC-GAN out-performed
SMOTE and AC-GAN on all SVHN & CIFAR-10 minority classes, and in 7 out
of 10 E-MNIST & MNIST, minority classes. The fidelity and diversity of MFC-
GAN minority samples made classification easier for the CNN. The diversity of
generated samples indicates no sign of mode collapse in the model. Thus, with
multiple fake classes, the GAN model was able to distinguish among classes bet-
ter. A similar performance was recorded across all methods using the specificity,
and this is reasonable as most classification models will accurately predict the
majority class instances (tn).

FSC-GAN samples did not improve the classification in all experiments con-
ducted as can be seen in Tables 1, 2 and 3. The results obtained showed that the
classifier performed below the baseline when FSC-GAN samples were added to
the training data. This is because FSC-GAN generated poor samples even when
the number of classes is fairly balanced as shown in Figure 2. The other datasets
are more challenging than MNIST and FSC-GAN goes into mode collapses when
trained on the imbalanced datasets. The results indicate how negatively FSC-
GAN is affected by the class-imbalanced problem.

AC-GAN model performed poorly on all the datasets in minority class image
generation. This was evident by the below-average performance of the CNN
when it was trained on AC-GAN samples. As can be seen in Figures 4, 5, 6 and 7,
AC-GAN generated plausible majority class instances, however, the quality of
generated minority class instances dropped significantly. In some cases, the
model completely failed and became biased towards the majority class instances.
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Metric Model Class 1 Class 2 Aeroplane Automobile
Sensitivity Baseline 0.01 0.00 0.07 0.04

SMOTE 0.18 0.31 0.06 0.07
ACGAN 0.00 0.02 0.07 0.05
FSC-GAN 0.02 0.09 0.00 0.00
MFC-GAN 0.51 0.68 0.07 0.08

specificity Baseline 1.00 1.00 1.00 1.00
SMOTE 1.00 1.00 1.00 1.00
ACGAN 1.00 1.00 1.00 1.00
FSC-GAN 1.00 1.00 1.00 1.00
MFC-GAN 1.00 0.99 1.00 1.00

Accuracy Baseline 0.50 0.52 0.53 0.52
SMOTE 0.59 0.65 0.53 0.53
ACGAN 0.50 0.51 0.53 0.52
FSC-GAN 0.51 0.54 0.50 0.50
MFC-GAN 0.75 0.83 0.54 0.54

Precision Baseline 1.00 0.99 0.93 1.00
SMOTE 0.99 1.00 0.97 0.98
ACGAN 1.00 1.00 0.93 0.89
FSC-GAN 0.99 0.99 1.00 1.00
MFC-GAN 0.98 0.96 0.80 0.81

Recall Baseline 0.01 0.05 0.07 0.04
SMOTE 0.18 0.31 0.06 0.07
ACGAN 0.00 0.02 0.07 0.05
FSC-GAN 0.02 0.09 0.00 0.00
MFC-GAN 0.51 0.68 0.07 0.08

F1-score Baseline 0.02 0.09 0.12 0.08
SMOTE 0.30 0.47 0.11 0.12
ACGAN 0.00 0.03 0.12 0.09
FSC-GAN 0.04 0.16 0.00 0.00
MFC-GAN 0.67 0.79 0.14 0.14

G-Mean Baseline 0.09 0.21 0.25 0.21
SMOTE 0.42 0.56 0.24 0.25
ACGAN 0.00 0.13 0.26 0.22
FSC-GAN 0.14 0.30 0.00 0.00
MFC-GAN 0.71 0.82 0.27 0.28

Table 3: SMOTE, AC-GAN, FSC-GAN and MFC-GAN performance on SVHN (Class 1 &
Class 2) & CIFAR-10(Aeroplane & Automobile) minority classes.

This is consistent with the findings observed by [12]. For some specific classes
a mode dropping in AC-GAN was observed, and the model generated the same
image in all samples as can be seen in Figure 7b.

It was also observed from results that classification improvement was achieved
when oversampling using SMOTE rather than augmenting with AC-GAN gen-
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erated samples (Tables 1, 2 and 3). SMOTE achieved slightly better recall than
MFC-GAN on two E-MNIST minority classes as seen in table 2. This is be-
cause E-MNIST has more samples in the minority class (with the smallest class
having 1896 samples). However, on the other datasets, SMOTE didn’t per-
form well when the number of minority class instances drops significantly. This
also proves that MFC-GAN maintains good performance even with minimum
number of samples in comparison with SMOTE and AC-GAN.

While good results have been obtained on MNIST, E-MNIST and SVHN, poor
performances were recorded on CIFAR-10 by all models on minority class in-
stances. AC-GAN model collapsed completely on CIFAR-10 while salient fea-
tures required to distinguish samples effectively where not synthesized by MFC-
GAN. These results might be attributed to the relatively small size of these
images (i.e, 32 × 32 CIFAR-10 image patches) and the level of details within
such tiny size. Although the samples generated by these models may look real-
istic, the characteristic features that will be vivid enough to train a classification
model were missing. Increasing the number of minority samples from 50 to 100,
150, 200, 250 and 300 showed better but not significant improvement in per-
formance. That said, as can be seen in Table 3, MFC-GAN produced slightly
better performance amongst all these models.

Interestingly, poor results were obtained by all models for some specific mi-
nority classes. In particular, in the E-MNIST’s minority classes m and s (Table 2).
These minority classes were entirely missed by the baseline classifier, and very
poor performance was reported using SMOTE, FSC-GAN and AC-GAN. MFC-
GAN has also performed poorly in these classes. These results might be due to
the similarity between some of these minority class instances and other majority
class instance (i.e., class s is similar to classes 5, S, 2, z).

7. Conclusion

In this paper, a new augmentation method using Multiple Fake Class Gener-
ative Adversarial Networks (MFC-GAN) was presented and evaluated using four
public datasets. We showed that MFC-GAN was capable of generating plau-
sible samples of minority class instances. For evaluation, samples generated
using our model were first added to the imbalanced datasets. Classification us-
ing Convolutional Neural Network was then carried out. Results showed that by
augmenting the training set with MFC-GAN generated samples, performance
improves across common metrics used for evaluating class-imbalanced datasets
classification. Our method showed superior performance when compared with
other common augmentation and oversampling techniques.

Future directions will include further evaluation and theoretical analysis of
results on a higher resolution images. More specifically, it would be interesting to
study the performance of the model under different settings where the number
of minority class instances varies significantly. Other directions will include
considering different models architectures such (i.e., ResNet).
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