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Abstract 7 

Households in rural locations utilize septic tanks for wastewater treatment and can cause surface 8 

water contamination. A new methodology was developed to help investigate the role septic tanks play 9 

in the dissemination of prescription and over-the-counter drugs, personal care products and stimulants 10 

in the aqueous environment. Simultaneous analysis of 16 chiral and achiral anthropogenic markers 11 

was achieved using a Chirobiotic V2® enantioselective column in polar ionic mode. The optimized 12 

method achieved quantitation limits for 16 compounds in the range 0.001-2.9 µg L-1 and 0.0002-0.43 13 

µg L-1 for septic tank effluent and stream water, respectively. Application of the method to samples 14 

collected in North East Scotland found caffeine to be ubiquitous in all samples studied suggesting it as 15 

a good indicator of septic tank discharge. In rural streams studied, concentrations of all prescription 16 

drugs investigated were ≤0.02 µg L-1. However, analgesics and stimulants were at high concentration 17 

in one location indicating direct discharge of septic tank wastewater (i.e., not dissipated through a 18 

soak away). For example, paracetamol, cotinine and caffeine were measured at 1,100 µg L-1, 31 µg L-1 19 

and 200 µg L-1, respectively, which is comparable to septic tank effluents. Furthermore, S(+)-20 

amphetamine and R(-)-amphetamine were present in this stream sample at 0.20 and 0.27 µg L-1. This 21 

corresponds to an enantiomeric fraction of 0.43, which is typical of untreated wastewaters in the UK. 22 

Findings illustrate further study on the diffuse impact of septic tanks to surface water is needed and 23 

can be supported using this new multi-residue enantioselective method. 24 
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1. Introduction 27 

Anthropogenic chemicals such as pharmaceuticals and personal care products are ubiquitous in 28 

surface waters receiving municipal wastewater discharges (Hughes et al., 2013; Petrie et al., 2015).  29 

The presence of anthropogenic chemicals in surface waters is concerning due to their pharmacological 30 

active nature and the possible detrimental impact to aquatic organisms (Kasprzyk-Hordern, 2010; 31 

Hughes et al., 2013).  The majority of research to date has focused on the impact of effluent 32 

discharges from communal wastewater treatment plants (WWTPs) (Nakada et al., 2006; Gardner et 33 

al., 2012; Baker and Kasprzyk-Hordern et al., 2013; Archer et al., 2017).  However, a notable portion 34 

of the population can be served by onsite wastewater treatment processes such as septic tanks.  It is 35 

estimated that such systems (or similar) serve 20 % of households in the United States (Schaider et al., 36 

2017) and 33 % in Ireland (Carlow Tanks, 2018).  In Scotland, there are 161,000 known private 37 

wastewater discharges (CREW, 2018).  Assuming an average number of inhabitants per household of 38 

2.16 (National Records of Scotland, 2018), this would equate to a conservative estimate of 7 % of the 39 

Scottish population using a septic tank. 40 

Septic tank systems consist of a concrete or plastic chamber which allows settling of solids and 41 

flotation of fat, oil and grease.  It is considered that wastewater needs retained within the tank for a 42 

minimum of 24 h to pass through the system at slow velocity and turbulence for treatment (Seabloom 43 

et al., 2005).  The anaerobic environment facilitates slow growing bacteria which decompose organic 44 

matter.  However, solids enter the tank at a faster rate than they are broken down.  Therefore it is 45 

recommended that septic tanks need emptied every 1-2 years (Carlow Tanks, 2018).  The quality of 46 

septic tank effluent is considerably poorer than that of conventional (aerobic) communal WWTPs 47 

such as trickling filters.  For further treatment the effluent typically enters a soak away/septic drain 48 

field and is dissipated in the environment (Schaider et al., 2017).  This can lead to the contamination 49 

of ground water and surface water with anthropogenic chemicals such as pharmaceuticals (Schaider et 50 

al., 2017).  The potential for contamination of water bodies by septic systems can be increased by 51 

poor tank maintenance.  Furthermore, septic tanks are often historical systems with little knowledge 52 

on their configuration or maintenance history.   53 
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Septic tanks are not designed for the removal of trace contaminants.  Consequently, effluents from 54 

septic tanks have previously been found to contain prescription drugs, over-the-counter drugs, 55 

stimulants, personal care products and their metabolites (Hinkle et al., 2005; Carrara et al., 2008; 56 

Conn et al., 2010; Phillips et al., 2015; Schaider et al., 2017).  Such compounds (which do not have 57 

veterinary uses) are useful indicators of septic tank discharge entering both ground and surface waters.  58 

In septic tank effluent these markers vary in concentration from a few ng L-1 to mg L-1 and their fate 59 

and removal in drain fields can vary greatly (Schaider et al., 2017).  The majority of research to date 60 

has focused on the influence of septic tank discharges to ground water and drinking water quality 61 

(Hinkle et al., 2005; Swartz et al., 2006; Godfrey et al., 2007; Phillips et al., 2015; Schaider et al., 62 

2016).  However, septic tanks can be located close to small streams which form sub-catchments of 63 

larger rivers.  These small streams are themselves important ecosystems and can be used to help 64 

estimate the contribution of septic tanks to riverine concentrations of anthropogenic chemicals.  65 

Nevertheless, information on the impact of septic tanks to rural surface water quality is scarce.     66 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is preferred for analysis of 67 

pharmaceuticals and related chemicals in the environment due to its excellent sensitivity and 68 

specificity.  It is recommended that analysis of chiral anthropogenic chemicals is undertaken at the 69 

enantiomeric level (Kasprzyk-Hordern, 2010; Sanganyado et al., 2017).  This is essential for risk 70 

assessment due to enantiospecific toxicity of chiral species (Stanley et al., 2006; 2007; De Andrés et 71 

al., 2009).  For example, R(-)-fluoxetine is approximately 30 times more toxic than S(+)-fluoxetine 72 

towards Tetrahymena thermophila (De Andrés et al., 2009).  Furthermore, investigating the 73 

enantiomeric distribution of chiral analytes helps understand their source, fate and transport in the 74 

water cycle (Bagnall et al., 2013; Emke et al., 2014; Petrie et al., 2016a).  This is because chiral 75 

analytes can undergo (varying degrees of) stereoselective metabolism within the human body, during 76 

wastewater treatment and in the environment itself.  Nevertheless, there is a general lack of 77 

enantioselective methods in the literature for environmental analysis.  It is important that 78 

enantioselective methods support the simultaneous determination of achiral anthropogenic markers 79 

for a holistic understanding of water quality with respect to these chemicals.  Existing methods that 80 
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measure anthropogenic chemicals in wastewaters and surface waters do not support multi-residue 81 

enantioseparations and achiral analyte determinations (Bagnall et al., 2012; Lopez-Serna et al., 2013; 82 

Zhao et al., 2016) or have chromatographic run times (e.g., >60 min) (Lopez-Serna et al., 2013; 83 

Camacho-Muñoz and Kasprzyk-Hordern, 2015; Camacho-Muñoz and Kasprzyk-Hordern, 2017).  84 

Therefore, the aim of the study was to develop a new analytical methodology (including sample 85 

storage, extraction and instrumental analysis) for the multi-residue determination of chiral and achiral 86 

anthropogenic markers of septic tank discharge in a run time <60 min.  A total of 16 anthropogenic 87 

markers (over-the-counter medication, prescription drugs, stimulants and personal care products) were 88 

analysed simultaneously by LC-MS/MS using a Chirobiotic V2® enantioselective column.  The 89 

developed method was applied to septic tank effluents and surface waters in North East Scotland.    90 



5 
 

2. Materials and methods 91 

2.1. Materials 92 

The analytical standards aspartame, methylparaben, triclocarban, caffeine, carbamazepine, 93 

carbamazepine 10,11 epoxide, cotinine, paracetamol, R/S(±)-amphetamine, R/S(±)-atenolol, R/S(±)-94 

chlorpheniramine, R/S(±)-citalopram, R/S(±)-fluoxetine, R/S(±)-MDMA, R/S(±)-propranolol and 95 

R/S(±)-salbutamol were purchased from Sigma-Aldrich (Gillingham, UK) as well as the following 96 

labelled surrogate standards: caffeine-13C3, carbamazepine-d10, carbamazepine 10,11 epoxide-d10, 97 

cotinine-d3, paracetamol-d4, triclocarban-d3, R/S(±)-amphetamine-d11, R/S(±)-atenolol-d7, R/S(±)-98 

chlorpheniramine-d6, R/S(±)-citalopram-d6, R/S(±)-fluoxetine-d6, R/S(±)-MDMA-d5, R/S(±)-99 

propranolol-d7 and R/S(±)-salbutamol-d3. Oasis HLB (60mg, 3mL) cartridges for solid phase 100 

extraction (SPE) were obtained from Waters (Manchester, UK). HPLC-grade methanol, ammonium 101 

acetate and acetic acid were purchased from Fisher Scientific (Loughborough, UK).  Ultra-pure water 102 

used throughout the study was of 18.2 MΩ cm-1 quality.  For method development and validation, 103 

effluent (5 L) was collected from a septic tank which serves 7 inhabitants in Aberdeenshire, North 104 

East Scotland.  Stream water (10 L) was collected from a tributary of the River Don, Aberdeenshire.  105 

2.2. Sample collection and solid phase extraction 106 

All samples were collected (1 L for septic tank effluent and surface water) and transported in 107 

polypropylene bottles (Petrie et al., 2017).  These were kept dark and cooled to 4 ˚C whilst 108 

transported to the laboratory for processing.  Firstly, septic tank effluent and stream samples were 109 

filtered through 0.7 µm GF/F filters (Fisher Scientific).  Aliquots of 25 mL effluent and 250 mL 110 

stream water were then spiked with 100 ng of all deuterated surrogates (100 µL of a 1,000 µg L-1 111 

methanolic mixture).  For SPE, Oasis HLB cartridges were conditioned with 2 mL methanol and 112 

equilibrated with 2 mL water under gravity at a rate of 1 mL min-1.  Effluent and stream water were 113 

then loaded at 5 mL min-1, washed with 10 mL water and dried. 4 mL methanol was subsequently 114 

used to elute analytes under gravity at 1 mL min-1 which were accordingly dried using nitrogen stream 115 

at 40 °C.  Dried residues were reconstituted in 250 µL mobile phase (methanol containing 1 mM 116 

ammonium acetate and 0.01 % acetic acid) and filtered through 0.2 µm LC-MS pre-filters ready for 117 
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enantioselective LC-MS/MS analysis.  All samples were prepared in triplicate and analysed within 24 118 

h of collection.  Prepared samples containing anthropogenic markers above their respective calibration 119 

ranges were appropriately diluted and re-analyzed.   120 

2.3. Enantioselective LC-MS/MS 121 

An Agilent 1200 Infinity Series HPLC coupled to a 6420 MS/MS triple quadrupole (Cheshire, UK) 122 

was used for analysis.  Separation was performed using a Chirobiotic V2® HPLC column (250 x 2.1 123 

mm; 5 µm) maintained at 15 °C.  The final mobile phase was methanol containing 1 mM ammonium 124 

acetate and 0.01 % acetic acid.  This was operated under isocratic conditions with a flow rate of 0.17 125 

mL min-1.  The injection volume was 40 µL and run time 55 min.  126 

Electrospray ionisation (ESI) in both positive and negative modes with a capillary voltage of 4,000 V 127 

was used.  Nitrogen was the nebulising, desolvation and collision gas.  The desolvation temperature 128 

was 350 °C with a gas flow of 12 L min-1.  The nebulizing pressure was 50 psi.  All analytes were 129 

analysed in positive mode except methylparaben, triclocarban and triclocarban-d3 which were 130 

analysed in negative mode.  Optimized multiple reaction monitoring (MRM) transitions for each 131 

analyte are compiled in Table S1.   132 

2.4. Instrument and method performance 133 

A 13-point calibration curve ranging in concentration from 0 to 5,000 µg L-1 was used to establish 134 

linearity.  For chiral analytes this represents their total enantiomeric concentration (i.e., 5,000 µg L-1 is 135 

equivalent to 2,500 µg L-1 of each enantiomer).  To determine intra- and inter-day precision and 136 

accuracy, triplicate injections of 10, 100 and 500 µg L-1 standards were, respectively, conducted 137 

within 24 h and over 3 different days.  Instrument detection limits (IDLs) were determined by the 138 

lowest concentration at which the signal-to-noise ratio (S/N) ≥3 and instrument quantitation limit 139 

(IQL) when S/N ≥10.  Sensitivity of the SPE-enantioselective LC-MS/MS method was determined by 140 

calculating the method detection limit (MDL) and method quantitation limit (MQL) for each analyte: 141 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝜇𝜇𝜇𝜇 𝐿𝐿−1) = 𝐼𝐼𝐼𝐼𝐼𝐼 𝑥𝑥 100
𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥 𝐶𝐶𝐶𝐶

         [1] 142 



7 
 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝜇𝜇𝜇𝜇 𝐿𝐿−1) = 𝐼𝐼𝐼𝐼𝐼𝐼 𝑥𝑥 100
𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥 𝐶𝐶𝐶𝐶

         [2] 143 

Here IDL and IQL are the instrumental detection and quantitation limits, respectively (µg L-1), Rec is 144 

the absolute analyte recovery (%) and CF is the pre-concentration factor (100 for effluent and 1,000 145 

for stream water). 146 

During the development stages the optimum concentration factor for SPE was determined for both 147 

septic tank effluent and stream water samples.  This involved spiking filtered effluent and stream 148 

water with an additional 1 µg L-1 of each anthropogenic marker.  Concentration factors investigated 149 

were 25, 50, 100, 250 and 500 for effluent and 100, 250, 500, 1,000 and 2,000 for stream water. 150 

Method recovery was established by spiking filtered environmental samples at two concentration 151 

levels.  Effluent was spiked at 0.5 µg L-1 and 5 µg L-1 whereas stream water was spiked at 0.05 and 152 

0.5 µg L-1.  Signal suppression caused by co-extracted matrix was assessed by extracting samples as 153 

described previously and spiking SPE extracts to achieve a final theoretical concentration of 200 µg L-154 

1.  The suppression of analyte signal intensity using the developed SPE method was quantified using 155 

the following equation: 156 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (%) = 100− �(𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝐴𝐴 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥 100�   [3] 157 

Where A spiked extract is the peak area of analyte in extracts spiked post-SPE, A unspiked extract is 158 

the peak area of analyte in extracts not spiked and A standard is the peak area of analyte in a standard 159 

solution which corresponds to the spike.  All analysis was performed in triplicate. 160 

2.5. Anthropogenic marker stability in collected samples 161 

The stability of analytes was assessed under typical sample transport/storage conditions.  Both freshly 162 

collected septic tank effluent and stream water were spiked to ensure adequate levels of all 163 

anthropogenic markers for detection (5 µg L-1 and 0.5 µg L-1, respectively), and mixed.  Sample 164 

volumes of 4 L were prepared in polypropylene bottles and stored in the dark at both room 165 

temperature (18 ±0.5 ˚C) and 4 ±0.5 ˚C (Petrie et al., 2017).  Bottles were then left unmixed to 166 

replicate proposed storage conditions.  Samples were then taken for analysis and subject to SPE as 167 
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described previously at 0, 6, 24 and 48 h.  The enantiomeric composition (and changes) of chiral 168 

markers can be expressed as enantiomeric fraction (EF) using: 169 

𝐸𝐸𝐸𝐸 = (+)
[(+)+(−)]

                [4] 170 

Here (+) is the concentration of the (+)-enantiomer and (-) is the concentration of the (-)-enantiomer.   171 

2.6. Profiling anthropogenic markers in septic tank effluents and surface waters 172 

Two sub-catchments of the River Don, Aberdeenshire were investigated (Figure 1).  These were 173 

studied as they are rural areas without communal wastewater discharges within their catchment area. 174 

The land use of both catchments is arable farmland.  Any wastewater discharges here are from septic 175 

tanks or farmyards.  Sub-catchment A contains ~10 septic tanks (estimated population of 30 176 

inhabitants) and a small stream (discharge <0.1 m3 s-1).  Sub-catchment B (Figure 1) contains >100 177 

septic tanks with a population of ~500 inhabitants and a stream with an estimated discharge of ~0.1 178 

m3 s-1.  Permission was granted to sample effluent from 15 septic tanks (Figure 1).  All septic tanks 179 

were constructed of concrete serving 2-7 inhabitants per tank.  A total of 11 stream water samples 180 

were collected from sub-catchments A and B.  The River Don is impacted by communal wastewater 181 

discharges as well as effluent from septic tanks and farmyards.  River water was collected upstream 182 

and downstream of each sub-catchment location (Figure 1), and at the time of sampling the river 183 

discharge was 9.5 m3 s-1.  The nearest communal WWTP discharge is 7 km upstream of sampling 184 

point 1 (Figure 1).  Sampling was conducted on 21st June 2018.       185 

  186 
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3. Results and discussion 187 

3.1. Instrumental development and performance 188 

A Chirobiotic V2® enantioselective column was operated in polar ionic mode due to its separation 189 

ability for a range of chiral anthropogenic markers at the enantiomeric level including beta-blockers, 190 

beta-agonists, anti-depressants, stimulants and anti-histamines.  The mobile phase consisted of 1 mM 191 

ammonium acetate in methanol containing 0.01 % acetic acid maintained at 0.17 mL min-1.  It was 192 

found that ammonium acetate concentration and column temperature had the greatest influence on 193 

enantioseparations.  Reduced mobile phase concentrations of ammonium acetate improved 194 

enantioresolution (RS), however this can lead to reduction in ionization and MS/MS sensitivity for 195 

some analytes.  The final method utilized a concentration of 1 mM ammonium acetate which gave the 196 

best trade-off between RS and sensitivity for the analytes studied.   197 

Reducing column temperature improved enantiomer separation for the majority of chiral analytes.  198 

This is in agreement with Sanganyado et al (2014) who noted that reducing column temperature from 199 

40 ˚C to 13 ˚C improved RS of both atenolol and fluoxetine enantiomers under similar mobile phase 200 

conditions.  In our study the column temperature was maintained at 15 ˚C which facilitated 201 

satisfactory multi-residue enantiomeric separation within a run time of 55 min.  RS was ≥1 for all 202 

chiral anthropogenic markers which showed separation (atenolol, propranolol, salbutamol, fluoxetine, 203 

citalopram, amphetamine and chlorpheniramine) (Figure 2).  This satisfies a maximum 2 % peak 204 

overlap required for quantitative analysis (Bagnall et al., 2012).  Under these conditions achiral 205 

analytes (caffeine, paracetamol, etc) were also determined.  Achiral analytes exhibited retention times 206 

between 5 and 10 min due to comparatively less interaction with the chiral vancomycin stationary 207 

phase (Figure 2).  Nevertheless, peak shape was satisfactory avoiding the need for a separate non-208 

chiral analytical method to encompass a full suite of anthropogenic markers.    209 

Instrument performance for all chiral and achiral analytes was evaluated by investigating linearity, 210 

sensitivity and intra- and inter-day precision and accuracy.  The majority of analytes exhibited 211 

linearity from their respective IQL to 1,000 or 2,500 µg L-1 with coefficient of determination (r2) 212 

≥0.999 (Table S2).  IDLs were in the range 0.02-1.5 µg L-1 and IQLs 0.05-10 µg L-1.  Only aspartame 213 
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was out with these ranges due to broad peak shape.  Intra- and inter-day precision was generally <5 % 214 

whereas accuracy was normally ±10 % for each concentration level studied (Table S3).  The 215 

instrument performance was similar to previously reported enantioselective vancomycin methods 216 

operated in polar ionic mode by LC-MS/MS for both chiral analytes (López-Serna et al., 2013; Evans 217 

et al., 2015; Petrie et al., 2018) and achiral analytes (Petrie et al., 2018).   218 

3.2. Extraction and method performance 219 

Oasis HLB cartridges were selected for SPE as they are favoured for multi-residue analysis due to the 220 

mixed mode ion exchange and reversed phase retention mechanisms of the co-polymer.  Furthermore, 221 

extracted samples do not require elution with any additive (e.g., ammonium hydroxide) which can be 222 

detrimental to enantioselective separation on vancomycin stationary phases (Evans et al., 2015; Petrie 223 

et al., 2018).  However, a drawback of using non-selective SPE is the comparatively high 224 

concentration of co-extractives in environmental samples containing the analyte of interest.  This can 225 

lead to severe quenching (or complete loss) of analyte signal strength during ESI (Gros et al., 2006).  226 

Extracting more analyte at greater sample pre-concentration factors may not be translated into 227 

increased instrument response.  A breakthrough can be reached where signal suppression outweighs 228 

the advantages of extracting a greater quantity of analyte (as well as sorbent saturation).   Therefore, it 229 

is essential to investigate the sample pre-concentration factor which gives the highest analyte 230 

response, especially when conducting environmental trace analysis.   231 

For septic tank effluent, pre-concentration factors of 25, 50, 100, 250 and 500 were investigated.  It 232 

was found that analyte response increased proportionally with concentration factors up to 100 (Figure 233 

S1).  Above this value, response did not increase for some analytes (particularly those with retention 234 

times <30 min) and loss of chiral recognition was observed.  Therefore, the pre-concentration factor 235 

selected for effluent was 100.  In stream water analyte response increased linearly over the studied 236 

range of pre-concentration factors investigated (100-2,000) (Figure S1).  However, at a concentration 237 

factor of 2,000 some loss of chiral recognition was found for several analytes, thus a pre-238 

concentration factor of 1,000 was selected for stream water.   239 
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Signal suppression during ESI was in the range 20-98 % and 7-96 % for septic tank effluent and 240 

stream water, respectively (Table 1).  Highest suppression was observed for those analytes with the 241 

least interaction with the chiral stationary phase (i.e., shortest retention time).  For example, all 242 

analytes with a retention time <10 min (methylparaben, paracetamol, carbamazepine, carbamazepine 243 

10,11 epoxide, triclocarban, caffeine and cotinine) exhibited suppression of ≥67 %.  On the other hand 244 

R(-)-fluoxetine, R(-)-citalopram, S(+)-citalopram, S(+)-chlorpheniramine, R(-)-chlorpheniramine all 245 

had retention times >40 min and suppression was ≤40 % (Table 1).  Such levels of signal suppression 246 

are typical for enantioselective LC-MS/MS methods for environmental analysis (Bagnall et al., 2012; 247 

Lopez-Serna et al., 2013; Camacho-Muñoz and Kasprzyk-Hordern, 2015).  It is also important to note 248 

that signal suppression between enantiomers of the same chiral marker can vary substantially.  To 249 

demonstrate, signal suppression of S(+)-fluoxetine in stream water was 70 ± 4 % whereas R(-)-250 

fluoxetine had suppression of 38 ± 6 % (Table 1), highlighting the necessity of incorporating labelled 251 

surrogates for quantitative analysis at the enantiomeric level. 252 

Performance of the overall SPE-enantioselective LC-MS/MS methodology was evaluated by spiking 253 

septic tank effluent and stream water at two concentration levels (i.e., 0.5 and 5 µg L-1 for septic tank 254 

effluent and 0.05 and 0.5 µg L-1 for surface water).  Absolute recovery (i.e., only taking into account 255 

analyte peak area) ranged from 2 % to close to 100 % (Table 1).  Corrected recovery or method 256 

accuracy which accounts for the deuterated surrogate response was 90-110 % with RSDs <10 % for 257 

the majority of analytes studied.  However, both methylparaben and aspartame were out with this 258 

range.  As they were quantified using an alternative deuterated surrogate (caffeine-13C3 and S(+)-259 

fluoxetine-d6, respectively), their analysis can only be considered semi-quantitative.        260 

Septic tank effluent MDLs ranged from <0.001 µg L-1 to ~1 µg L-1 whilst MQLs up to ~3 µg L-1 were 261 

determined (Table 1).  In stream water MDLs and MQLs were approximately 10 times lower due to 262 

the cleaner matrix and greater sample pre-concentration that were applied.  MDLs were in the range 263 

<0.001-0.13 µg L-1 with MQLs being <0.001-0.43 µg L-1 (Table 1).  In stream water, paracetamol had 264 

the greatest MQL.  The sensitivity of the developed SPE-LC-MS/MS methodology is similar to those 265 

previously developed and reported in the literature for wastewaters and surface waters (Bagnall et al., 266 
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2012; Lopez-Serna et al., 2013; Camacho-Muñoz and Kasprzyk-Hordern, 2015) (Table 2).  Other than 267 

being the first enantioselective method for the determination of anthropogenic markers in septic tank 268 

effluent, the developed stereoselective LC-MS/MS method reports the greatest number of analytes in 269 

a run time ≤60 min (Table 2).  Methods which do offer multi-residue enantioseparations (e.g., ≥5 270 

analyte classes) often require run times ≥100 min (Camacho-Muñoz and Kasprzyk-Hordern, 2015; 271 

Camacho-Muñoz and Kasprzyk-Hordern, 2016).  The ability to offer simultaneous determination of 272 

achiral anthropogenic markers (caffeine, paracetamol, etc) within the same methodology is a further 273 

advantage.          274 

3.3. Anthropogenic marker stability under sample transport and storage conditions  275 

An important consideration during development of new analytical methods is sample collection and 276 

storage.  This is because errors associated with sampling can outweigh those associated with the 277 

analytical method itself (Ort et al., 2010).  Grab sampling was adopted in this study to give an insight 278 

into anthropogenic marker occurrence and concentration in septic tank effluents and surrounding 279 

surface waters.  However, a limitation of active sampling is the possibility for in-sample degradation 280 

or transformation of anthropogenic markers during sample transport and storage prior to processing.     281 

Analyte stability was assessed in septic tank effluent and stream waters stored at both 18 ˚C and 4 ˚C, 282 

respectively.  Results showed the studied anthropogenic markers were more stable in septic tank 283 

effluent than in stream water kept at both 18 ˚C and 4 ˚C (Figure S2; Figure 3).  In septic tank effluent 284 

only aspartame fell below 75 % of its initial concentration after 48 h storage at 18 ˚C (Figure S2).  On 285 

the other hand, methylparaben, carbamazepine 10,11 epoxide, triclocarban, aspartame, S(+)-286 

amphetamine, S(+)-fluoxetine and R(-)-fluoxetine all fell below 75 % of their starting concentration 287 

under equivalent conditions in stream water (Figure S2).  The difference in stability between the two 288 

matrices could be linked with the aerobic (stream) and anaerobic (septic tank) bacterial species 289 

present.  Degradation of amphetamine in stream water was found to be stereoselective in nature due to 290 

the preferential degradation of S(+)-amphetamine over R(-)-amphetamine (Bagnall et al., 2013).  An 291 

initial racemic EF of 0.5 changed to 0.1 after 48 h storage.  Stereoselective change to amphetamine 292 
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has previously been observed in river water microcosms leading to the enrichment of R(-)-293 

amphetamine (Bagnall et al., 2013).   294 

Stability of anthropogenic markers was improved in both samples matrices by storing at 4 ˚C (Figure 295 

3).  These findings suggest anthropogenic marker losses during storage were biological in nature and 296 

in agreement with previous studies (Hillebrand et al., 2013; Petrie et al., 2017).  In samples stored at 4 297 

˚C for 24 h only carbamazepine 10,11 epoxide and triclocarban degraded by ≥25 % in stream water 298 

(Figure 3B).  At 4 ˚C carbamazepine 10,11 epoxide was found to be stable over 6 h.  However, with 299 

practical considerations in mind a threshold of 24 h (whilst being kept at 4 ˚C) was set for the 300 

transport and processing of all samples.  Under these conditions all analytes were considered stable in 301 

septic tank effluent (Figure 3A).  Furthermore, no enantioselective change to chiral markers was 302 

observed in effluent or stream water stored at 4 ˚C for ≤24 h.         303 

3.4. Application to septic tank effluents 304 

Effluents collected from septic tanks found 10 of the studied anthropogenic chemicals were detected 305 

at least once (Figure 4).  Effluent concentrations ranged from 0.07 µg L-1 for salbutamol-E1 to 1,600 306 

µg L-1 for paracetamol.  Prescription drugs showed greater spatial variation in terms of detection and 307 

concentration than observed in communal wastewater (Baker and Kasprzyk-Hordern et al., 2013; 308 

Petrie et al., 2015).  This is to be expected due to the low number of people which contribute to 309 

individual septic tanks.  Consequently, where detected, prescription drugs were present at 310 

comparatively greater levels than communal wastewaters.   311 

The prescription drug found at the highest concentration was the anti-depressant citalopram.  R(-)-312 

citalopram and S(+)-citalopram were found in one of the studied effluents at 5.1 and 2.1 µg L-1, 313 

respectively (Figure 4).  These concentrations are >20 times greater than previously reported in 314 

communal wastewaters in the UK (Evans et al., 2015; Petrie et al., 2016b).  The EF of citalopram is 315 

0.3 and is typical for that expected in wastewater due to enantioselective metabolism in the body.  The 316 

EF of other chiral drugs determined at the enantiomeric level in effluents (propranolol EF=0.40, 317 

atenolol EF=0.48 and 0.49, fluoxetine EF=0.58 and salbutamol EF=0.37 and 0.50) are typical of that 318 

previously observed in municipal wastewaters following consumption and excretion (Lopez-Serna et 319 
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al., 2013; Evans et al., 2015).  To the authors knowledge chlorpheniramine has not been investigated 320 

at the enantiomeric level in wastewater before.  Septic tank effluent (n=1) was found to have an 321 

enrichment of R(-)-chlorpheniramine (0.10 µg L-1 vs. 0.073 µg L-1 for S(+)-chlorpheniramine) and a 322 

corresponding EF of 0.4.  This is contrary to pharmacokinetic studies whereby the S(+)-enantiomer is 323 

cleared more slowly than the R(-)-enantiomer resulting in an EF >0.5 in urine (chlorpheniramine is 324 

administered as a racemic mixture) (Tung Hiep et al., 1998; Yasuda et al., 2002).  However, 325 

stereoselective degradation could occur within the septic tank resulting in the enrichment of the R(-)-326 

enantiomer in effluent.  Further investigation would be required to verify this hypothesis.                   327 

It is important to consider which anthropogenic markers can be used as indicators of rural surface 328 

water contamination by septic tanks.  Three of the studied analytes were detected in >10 effluents and 329 

at high concentration.  Cotinine, the metabolite of nicotine (n=12), was found in concentrations 330 

ranging from 0.14 µg L-1 to 21 µg L-1 and paracetamol (n=14) from 4.8 µg L-1 to 1,600 µg L-1 (Figure 331 

4).  However, caffeine (n=15) was determined in all samples analyzed ranging from 4.2-396 µg L-1.  332 

The hydrophilic nature of caffeine (log KOW -0.1) and resultant mobility in water, as well as its 333 

ubiquity in septic tank effluent make it a good indicator compound of septic tank discharge in rural 334 

surface waters.  Our findings are in agreement with previous studies which have proposed caffeine as 335 

an indicator of wastewater discharge (Buerge et al., 2003; Potera, 2012), including septic tank systems 336 

(Richards et al., 2017).          337 

3.5. Surface water quality 338 

Surface waters were collected from two rural streams (n=11) to give insight into contamination by 339 

anthropogenic markers originating from septic tanks.  In total 7 of the studied analytes were detected 340 

at least once (paracetamol, carbamazepine, carbamazepine 10,11 epoxide, cotinine, caffeine, 341 

amphetamine and atenolol).  Interestingly, caffeine was detected in all stream water samples and was 342 

generally <0.5 µg L-1 (Table 3).  Such levels are considerably lower than those observed in septic tank 343 

effluents due to further degradation (e.g., in a soak away) and dilution within the stream itself.  344 

Caffeine concentrations determined in river waters (impacted by both septic tanks and communal 345 

WWTPs) were 0.11-0.23 µg L-1 (Table 1).  Prescription drugs detected in stream water included the 346 
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anti-epileptic carbamazepine and carbamazepine 10,11 epoxide, and the beta-blocker atenolol.  These 347 

were <0.02 µg L-1 where quantifiable and in similar levels to that observed in the main river which is 348 

impacted by both septic tank discharges and WWTP effluent.          349 

The most notable finding from collected stream waters was the level of anthropogenic markers found 350 

in sample 2 (Figure 1).  This stream sampling site was directly after passing adjacent to several 351 

households and has low flow.  Upon collection of this sample it had high turbidity and was 352 

malodorous, indicating contamination with untreated wastewater.  In this sample paracetamol, 353 

cotinine and caffeine were present at 1,100 µg L-1, 31 µg L-1 and 200 µg L-1, respectively (Table 3).  354 

Such concentrations are similar to those found in septic tank effluent (Figure 4), and considerably 355 

greater than previously observed in UK surface waters.  To demonstrate, the highest previously 356 

reported concentrations of paracetamol and caffeine in UK surface water is ~2 µg L-1 (Kasprzyk-357 

Hordern et al., 2008; Baker and Kasprzyk-Hordern, 2013).  Furthermore, S(+)-amphetamine and R(-)-358 

amphetamine were present at 0.20 and 0.27 µg L-1, respectively (Table 1).  These concentrations 359 

correspond to an EF of 0.43 which is typical of that found in raw wastewater in the UK (Castrignanò 360 

et al., 2016; Castrignanò et al., 2018).  Findings indicate the direct discharge of septic tank effluent (or 361 

untreated wastewater) to surface water, demonstrating the advantage of undertaking analysis at the 362 

enantiomeric level.  As a limited number of samples were collected in this study to demonstrate the 363 

methods application, a more detailed investigation is now needed to better appreciate the impact of 364 

septic tanks to surrounding surface water quality.              365 
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4. Conclusion 366 

A new multi-residue enantioselective method was successfully developed for anthropogenic markers 367 

in septic tank effluent and rural surface water for the first time.  The method was adequately sensitive 368 

for 16 achiral and chiral markers within a run time of 55 min.  Storage of samples at 4 ˚C was found 369 

to be sufficient for stabilising the majority of anthropogenic markers in septic tank effluent and 370 

surface water for 24 h.  Application of the new methodology revealed the presence of some 371 

anthropogenic markers at high concentration in both septic tank effluents and surrounding surface 372 

waters.  In rural surface water paracetamol was determined at a maximum concentration of 1,100 µg 373 

L-1 which is indicative of untreated wastewater discharge.  Therefore, further application of the 374 

method is needed to better appreciate the environmental risk of septic tanks to surface water quality.  375 

Facilitating the simultaneous analysis of both achiral and chiral compounds at the enantiomeric level 376 

will enable a better understanding of their transport, fate and possible effects in the environment.    377 
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Figure 1.  Area studied in North East Scotland showing septic tank and stream sampling 
locations within sub-catchment A and B, respectively.  Sampling locations on the main river also 

identified.   
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Figure 2. Multiple reaction monitoring enantioselective LC-MS/MS chromatograms of studied 
anthropogenic markers spiked in stream water at 0.05 µg L-1 (paracetamol and aspartame were 
spiked at 0.5 µg L-1). Key: MDMA, 3,4-methylenedioxy-methamphetamine; E1, enantiomer 1; 

E2, enantiomer 2 
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Figure 3. Stability of anthropogenic markers in septic tank effluent (A) and stream water (B) 
stored in polypropylene bottles stored at 4 ˚C in the dark (n=3). Key: MDMA, 3,4-

methylenedioxy-methamphetamine; E1, enantiomer 1; E2, enantiomer 2 
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Figure 4. Anthropogenic markers determined in septic tank effluents and their concentration. 
Note: numbers in brackets represent the number of samples the anthropogenic marker was 

found in (from n=15 effluents profiled).  Each effluent is represented by a different graphical 
marker. Key: E1, enantiomer 1; E2, enantiomer 2  
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Table 1. Method performance data for studied anthropogenic markers in septic tank effluent and stream water (n=3) 

Anthropogenic marker 
class Anthropogenic marker 

Recovery from effluent (%) Recovery from stream water (%) 
Signal suppression (%) Effluent Stream water 0.5 µg L-1 5 µg L-1 0.05 µg L-1 0.5 µg L-1 

Absolute Corrected Absolute Corrected Absolute Corrected Absolute Corrected Effluent Stream MDL 
(µg L-1) 

MQL 
(µg L-1) 

MDL 
(µg L-1) 

MQL 
(µg L-1) 

Preservative Methylparaben 2±0 42±2 2±0 34±1 7±1 48±1 9±1 20±1 98±0 95±0 0.084 0.28 0.002 0.0065 
Analgesic Paracetamol - - 5±2 95±15 - - 2±0 107±0 92±0 96±0 0.85 2.8 0.13 0.43 

Anti-epileptic Carbamazepine 2±0 103±7 2±0 97±2 19±1 107±1 23±4 111±4 98±0 84±1 0.075 0.25 0.0007 0.0024 
 Carbamazepine 10,11 epoxide 5±1 79±5 6±0 74±5 41±2 94±2 45±2 97±2 96±0 67±1 0.0059 0.020 0.0001 0.0002 

Anti-bacterial Triclocarban 3±1 111±29 4±1 102±5 36±9 117±9 35±1 111±1 93±0 71±2 0.081 0.27 0.0008 0.0028 
Beta-antagonist Salbutamol E1 50±5 102±5 51±2 106±4 72±5 105±5 75±4 115±4 53±1 26±3 0.0016 0.0049 0.0001 0.0003 

 Salbutamol E2 31±2 96±4 34±1 107±4 72±5 106±5 77±5 118±5 74±1 19±4 0.0025 0.0077 0.0001 0.0003 
Sweetener Aspartame - - 33±2 113±2 - - 27±1 94±1 64±1 64±7 0.87 2.9 0.099 0.33 

Stimulant and metabolite Cotinine 5±0 91±1 2±1 100±14 16±2 117±2 23±4 105±4 82±1 76±0 0.0089 0.030 0.0002 0.0005 
 Caffeine 31±9 93±4 18±8 98±6 20±4 97±5 22±7 94±7 91±3 80±9 0.0012 0.0041 0.0001 0.0005 
 S(+)-amphetamine 24±2 101±2 23±3 108±2 45±4 109±4 46±3 109±3 78±2 60±9 0.0034 0.011 0.0002 0.0006 
 R(-)-amphetamine 40±1 106±1 41±1 113±5 45±4 98±4 51±4 110±4 61±1 58±11 0.0020 0.0061 0.0002 0.0005 
 R/S(±)-MDMA 69±2 118±3 67±1 106±2 89±6 83±36 90±3 110±3 40±2 32±3 0.0044 0.015 0.0003 0.001 

Beta-blocker S(-)-propranolol 28±3 101±2 27±1 98±2 94±6 101±7 87±5 108±5 74±1 23±1 0.054 0.18 0.0017 0.0056 
 R(+)-propranolol 36±1 99±4 38±1 108±1 100±8 106±8 95±3 113±3 60±2 17±4 0.040 0.14 0.0015 0.0051 
 S(-)-atenolol 49±3 110±10 48±2 107±2 94±8 115±8 89±2 112±2 61±1 48±3 0.0004 0.0010 0.0001 0.0003 
 R(+)-atenolol 94±2 110±4 99±2 107±4 116±8 101±8 110±4 110±4 44±2 26±3 0.0002 0.0005 0.0001 0.0003 

Anti-depressant S(+)-fluoxetine 29±1 104±3 31±1 107±3 34±3 107±3 37±2 114±2 66±0 70±4 0.0050 0.017 0.0042 0.14 
 R(-)-fluoxetine 53±3 104±4 59±1 106±3 66±4 104±4 61±3 109±3 40±1 38±6 0.0027 0.0090 0.0002 0.0008 
 R(-)-citalopram 66±2 110±3 68±1 111±4 93±2 101±2 92±4 102±4 30±0 18±3 0.023 0.075 0.0016 0.0054 
 S(+)-citalopram 70±3 116±4 76±1 111±7 96±5 92±6 96±2 106±2 20±2 16±0 0.021 0.069 0.0016 0.0052 

Anti-histamine S(+)-chlorpheniramine 78±1 104±1 84±1 104±1 102±5 108±5 102±4 110±4 20±4 7±7 0.019 0.062 0.0015 0.0049 
 R(-)-chlorpheniramine 85±2 104±2 90±1 111±3 99±7 99±7 107±5 113±6 20±4 7±5 0.017 0.057 0.0015 0.0049 
Key: MDL, method detection limit; MQL, method quantitation limit; MDMA, 3,4-methylenedioxy-methamphetamine; E1, enantiomer 1; E2, enantiomer 2 

 

  



Table 2.  Enantioselective LC-MS/MS methods validated for the determination of anthropogenic markers in wastewaters and surface waters 
Anthropogenic markers Sample type + preparation Chromatographic 

column Mobile phase conditions Run time 
(min) 

MS 
detector 

Enantiomer 
RS 

Method 
recovery (%) 

MDL  
(µg L-1) Reference 

Aminorex, carboxyibuprofen, cephalexin, 
chloramphenicol, dechloroethylifosfamide, O-
desmethylnaproxen, 10,11-dihydro-10-hydroxy 
carbamazepine, dihydroketoprofen, florfenicol, 

griseofuvlin, 2-hydroxyibuprofen, ibuprofen, ifosfamide, 
indoprofen, ketoprofen, naproxen, phenylpropionic acid, 

praziquantel & tetramisole 

River water (200 mL), wastewater effluent 
(100 mL) filtered (0.7 µm) and Oasis HLB-
MAX SPE. Reconstituted in 0.5 mL mobile 

phase 

Chirobiotic T® 250 x 
4.6 mm, I.D. 5 µm 

@ 25 °C 

10 mM ammonium acetate in 
water (pH 4.2): methanol 

(70:30, v/v) @ 0.08 mL min-1 
150 QqQ 0.4-0.9 8-127 

0.0001-
1.3 

Camacho-
Muñoz and 
Kasprzyk-
Hordern, 

2017 

Omeprazole*, lansoprazole*, pantoprazole* & 
rabeprazole* 

Wastewater/river water (100 mL) adjusted 
to pH 10 and Cleanert PEP-2 SPE & 

DLLME 

Chiralpak IC® 250 x 
4.6 mm, I.D. 5 µm  

Acetontrile:5 mM 
ammonium acetate in water 
(40:60, v/v) @ 0.6 mL min-1 

30 QqQ >1.5 90-107 0.0007-
0.0023 

Zhao et al., 
2016 

Aminorex*, carboxyibuprofen, cephalexin, 
chloramphenicol*, dechloroethylifosfamide, 10,11-

dihydro-10-hydroxy carbamazepine, 
dihydroketoprofen*, fexofenadine*, 2-hydroxyibuprofen, 

ibuprofen*, ifosfamide*, indoprofen, ketoprofen, 
mandelic acid, naproxen*, phenylpropionic acid, 

praziquantel & tetramisole* 

River water (500 mL), wastewater effluent 
(250 mL) filtered (0.7 µm) and Oasis HLB-
MAX SPE. Reconstituted in 0.5 mL mobile 

phase 

Chiral AGP 100 x 2 
mm, I.D. 5 µm @ 

25 °C 

10 mM ammonium acetate in 
water with 1 % acetonitrile 

(pH 6.7) 
100 QqQ ≥0.7 2-158 0.0001-

0.34 

Camacho-
Muñoz and 
Kasprzyk-
Hordern, 

2015 

Flumequine, albuterol*, ketoprofen, pindolol*, 
propranolol*, atenolol*, metoprolol*, clenbuterol*, 

sotalol*, timolol*, naproxen & fluoxetine* 

River water (500 mL), wastewater effluent 
(100 mL) filtered (0.7 µm) and Oasis HLB 
SPE. Reconstituted in 0.5 mL mobile phase 

Chirobiotic V® 250 
x 4.6 mm, I.D. 5 µm 

@ 25 °C 

4 mM ammonium acetate + 
0.005 % formic acid in 

methanol @ 0.1 mL min-1 
65 QqQ ≥0.4-1.1 56-116 0.0001-

0.011 

Lopez-
Serna et al., 

2013 
Amphetamine*, methamphetamine*, MDMA*, 

propranolol*, atenolol*, metoprolol*, venlafaxine* & 
fluoxetine* 

River water (250 mL), effluent (100 mL) 
filtered (0.7 µm) and Oasis HLB SPE. 
Reconstituted in 0.5 mL mobile phase 

Chirobiotic V® 250 
x 4.6 mm, I.D. 5 µm 

@ 25 °C 

4 mM ammonium acetate + 
0.005 % formic acid in 

methanol @ 0.1 mL min-1 
40 QTOF-

MS 0.9-4.7 61-126 0.0002-
0.023 

Bagnall et 
al., 2012 

Aspartame, caffeine, carbamazepine, carbamazepine 
10,11 epoxide, cotinine, methylparaben, paracetamol, 

triclocarban, amphetamine*, atenolol*, 
chlorpheniramine*, citalopram*, fluoxetine*, MDMA, 

propranolol* & salbutamol* 

River water (250 mL), septic tank effluent 
(25 mL) filtered (0.7 µm) and Oasis HLB 

SPE. Reconstituted in 0.25 mL mobile 
phase 

Chirobiotic V2® 250 
x 2.1 mm, I.D. 5 µm 

@ 15 °C 

1 mM ammonium acetate + 
0.01 % acetic acid in 

methanol @ 0.17 mL min-1 
60 QqQ 1-2.3 20-118 0.0001-

0.87 This study 

Key: MS/MS, tandem mass spectrometry; MDL, method detection limit; QqQ, triple quadrupole; SPE, solid phase extraction; NH4OAc, ammonium acetate; 
MeOH, methanol; ACN, acetonitrile; HCOOH, formic acid; CH3COOH, acetic acid; QTOF, quadrupole time of flight; MDMA, 3,4-methylenedioxy-
methamphetamine; *, highlights those separated at the enantiomeric level with RS≥1 

 

  



Table 3.  Concentration of anthropogenic markers detected in studied surface water samples (µg L-1)  

Anthropogenic marker 
Stream water sample 

River water sample 
Sub-catchment A Sub-catchment B 

1 2 3 4 5 6 7 8 9 10 11 1 2 3 
Paracetamol <MQL 1,100 <MQL <MQL 1.6 <MQL <MQL <MQL 1.0 <MQL <MQL <MQL <MQL <MQL 

Carbamazepine - - 0.0037 - - - 0.011 - - - 0.0091 0.015 0.015 0.012 
Carbamazepine 10,11 epoxide - - 0.0056 - - - <MQL - - - <MQL 0.018 0.013 0.011 

Cotinine - 31 0.0063 <MQL 0.013 0.011 0.0015 0.0025 0.011 0.00070 0.012 0.0042 0.0025 0.0011 
Caffeine 0.036 200 0.16 0.038 0.49 0.17 0.29 0.17 0.37 0.045 0.42 0.19 0.23 0.11 

S(+)-amphetamine - 0.20 - - - - - - - - - - - - 
R(-)-amphetamine - 0.27 - - - - - - - - - - - - 

S(-)-atenolol - - - - 0.015 - - 0.0054 - - 0.020 0.0056 0.0056 0.0039 
R(+)-atenolol - - - - 0.015 - - 0.0043 - - 0.019 0.0045 0.0049 0.0034 

Key: -, below method detection limit; <MQL, below method quantitation limit 
Note: Sample locations correspond to those outlined in the catchment map in Figure 1.  All other anthropogenic markers were not detected in any of the 
collected surface water samples 
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Figure S1. Impact of SPE concentration factor on analyte response for septic tank effluent (A) 14 
and stream water (B). Key: MDMA, 3,4-methylenedioxy-methamphetamine; E1, enantiomer 1; 15 

E2, enantiomer 2 16 
  17 
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Figure S2. Stability of anthropogenic markers in septic tank effluent (A) and stream water (B) 19 
stored in polypropylene bottles stored at 18 ˚C in the dark. Key: MDMA, 3,4-methylenedioxy-20 

methamphetamine; E1, enantiomer 1; E2, enantiomer 2 21 
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Table S1.  MS/MS method detail for studied anthropogenic markers 
Class of anthropogenic 

marker 
Anthropogenic marker Fragmentor 

(V) 
MRM 1 

(quantifier) 
Collision 

energy (eV) 
MRM 2 

(qualifier) 
Collision 

energy (eV) 
Corresponding internal standard 

Preservative Methylparaben 90 150.9>92.0 20 150.9>136.0 10 Caffeine-13C3 
Analgesic Paracetamol 100 151.9>110.0 10 151.9>65.1 30 Paracetamol-d4 

Anti-epileptic Carbamazepine 130 236.8>178.9 40 236.8>193.9 20 Carbamazepine-d10 
 Carbamazepine 10,11 epoxide 90 252.8>179.9 30 252.8>210.0 10 Carbamazepine 10,11 epoxide-d10 

Anti-bacterial Triclocarban 110 312.5>159.7 10 312.5>125.6 20 Triclocarban-d3 
Beta-antagonist Salbutamol  90 239.9>147.9 10 239.9>165.9 10 Salbutamol-d3 

Sweetener Aspartame 90 295.0>119.9 20 295.0>180.0 30 S(+)-fluoxetine-d6 
Stimulant and metabolite Cotinine 90 176.9>80.0 20 176.9>98.0 20 Cotinine-d3 

 Caffeine 90 194.9>110.0 20 194.9>138.0 18 Caffeine-13C3 
 R/S(±)-amphetamine 70 135.8>90.9 20 135.8>65.0 40 R/S(±)-amphetamine-d11 
 R/S(±)-MDMA 90 193.9>162.8 10 193.9>104.8 30 R/S(±)-MDMA-d5 

Beta-blocker R/S(±)-propranolol 110 259.9>115.9 30 259.9>182.9 20 R/S(±)-propranolol-d7 
 R/S(±)-atenolol 90 267.0>145.0 30 267.0>190.0 20 R/S(±)-atenolol-d7 

Anti-depressant R/S(±)-fluoxetine 90 309.8>44.0 10 309.8>147.7 5 R/S(±)-fluoxetine-d6 
 R/S(±)-citalopram 130 325.0>108.9 30 325.0>262.0 20 R/S(±)-citalopram-d6 

Anti-histamine R/S(±)-chlorpheniramine 90 274.9>229.9 10 274.9>166.8 40 R/S(±)-chlorpheniramine-d6 
Labelled surrogates Caffeine-13C3 90 198.0>139.9 20 - - - 

 Paracetamol-d4 90 155.9>114.0 20 - - - 
 Carbamazepine-d10 130 246.9>204.1 20 - - - 
 Carbamazepine 10,11 epoxide-d10 90 263.0>189.9 30 - - - 
 Triclocarban-d3 110 318.9>161.9 10 - - - 
 Salbutamol-d3 90 243.0>150.9 10 - - - 
 R/S(±)-amphetamine-d11 70 147.0>98.0 20 - - - 
 R/S(±)-MDMA-d5 90 199.0>164.9 10 - - - 
 R/S(±)-propranolol-d7 110 267.0>188.8 15 - - - 
 Cotinine-d3 90 180.0>80.0 30 - - - 
 R/S(±)-fluoxetine-d6 90 316.0>154.0 2 - - - 
 R/S(±)-atenolol-d7 100 274.1>145.0 30 - - - 
 R/S(±)-citalopram-d6 130 331.0>109.0 30 - - - 
 R/S(±)-chlorpheniramine-d6 100 281.0>229.9 10 - - - 

Key: MRM, multiple reaction monitoring; MDMA, 3,4-methylenedioxy-methamphetamine; E1, enantiomer 1; E2, enantiomer 2



Table S2. Instrument performance information for studied anthropogenic markers 
Class of anthropogenic 

marker 
Anthropogenic marker Rt (min) 

Linearity 
IDLS/N (µg L-1) IQLS/N (µg L-1) 

Range (µg L-1) r2 
Preservative Methylparaben 4.78±0.02 0.50-500 0.999 0.15 0.50 
Analgesic Paracetamol 4.98±0.03 10-1,000 0.999 3.0 10 

Anti-epileptic Carbamazepine 5.47±0.01 0.50-2,000 0.999 0.15 0.50 
 Carbamazepine 10,11 epoxide 6.06±0.03 0.10-1,000 0.999 0.030 0.10 

Anti-bacterial Triclocarban 6.48±0.03 1.0-500 0.999 0.30 1.00 
Beta-antagonist Salbutamol E1 16.10±0.17 0.25-2,500 0.999 0.080 0.25 

 Salbutamol E2 18.14±0.21 0.25-2,500 0.999 0.080 0.25 
Sweetener Aspartame 20.60±0.78 100-1,000 0.999 30 100 

Stimulant and metabolites Cotinine 5.85±0.03 0.10-1,000 0.999 0.030 0.10 
 Caffeine 6.46±0.03 0.10-1,000 0.999 0.030 0.10 
 S(+)-amphetamine 24.33±0.27 0.25-2,500 0.999 0.080 0.25 
 R(-)-amphetamine 28.04±0.33 0.25-2,500 1.000 0.080 0.25 
 R/S(±)-MDMA 35.77±0.45 1.0-1,000 0.999 0.30 1.0 

Beta-blocker S(-)-propranolol 24.42±0.32 5.0-1,000 0.999 1.5 5.0 
 R(+)-propranolol 27.50±0.35 5.0-1,000 0.999 1.5 5.0 
 S(-)-atenolol 34.75±0.44 0.050-1,000 0.999 0.020 0.050 
 R(+)-atenolol 37.91±0.46 0.050-1,000 0.999 0.020 0.050 

Anti-depressant S(+)-fluoxetine 32.03±0.40 0.50-2,500 0.999 0.15 0.50 
 R(-)-fluoxetine 41.54±0.60 0.50-2,500 0.999 0.15 0.50 
 R(-)-citalopram 45.60±0.77 5.0-1,000 0.999 1.5 5.0 
 S(+)-citalopram 50.93±0.93 5.0-1,000 0.999 1.5 5.0 

Anti-histamine S(+)-chlorpheniramine 42.19±0.76 5.0-1,000 0.999 1.5 5.0 
 R(-)-chlorpheniramine 46.53±0.88 5.0-1,000 0.999 1.5 5.0 

Key: Rt, retention time; IDL, instrument detection limit; IQL, instrument quantitation limit; MDMA, 3,4-methylenedioxy-methamphetamine; E1, enantiomer 
1; E2, enantiomer 2 



Table S3. Inter-day and intra-day precision and accuracy of enantioselective LC-MS/MS method 
Class of anthropogenic 

marker Anthropogenic marker 
Precision (%, expressed as RSD) Accuracy (%) 

Intra-day Inter-day Intra-day Inter-day 
Low Mid High Low Mid High Low Mid High Low Mid High 

Preservative Methylparaben 3.6 0.7 0.5 4.6 0.1 0.3 96.9 99.6 101.1 98.7 99.2 100.1 
Analgesic Paracetamol 3.4 1.8 1.2 3.5 0.8 0.7 95.0 99.7 101.4 94.8 101.5 102.6 

Anti-epileptic Carbamazepine 6.9 4.7 3.1 8.1 1.1 1.7 112.9 110.0 99.9 110.5 106.6 102.4 
 Carbamazepine 10,11 epoxide 0.6 2.4 1.8 1.2 0.2 0.6 92.4 99.7 97.9 93.2 99.5 97.4 

Anti-bacterial Triclocarban 3.8 3.2 4.0 0.9 3.2 4.0 92.9 96.6 92.7 90.8 96.6 92.7 
Beta-antagonist Salbutamol E1 0.8 2.9 1.8 0.3 1.0 0.7 96.7 95.2 104.2 95.6 96.9 102.7 

 Salbutamol E2 1.5 0.4 4.2 1.6 3.0 2.9 104.4 106.1 94.9 106.0 109.7 93.4 
Sweetener Aspartame 3.2 1.6 0.6 4.9 3.2 1.5 101.6 89.4 97.8 103.7 91.9 98.7 

Stimulant and metabolites Cotinine 0.6 2.4 1.8 1.2 0.2 0.6 92.4 99.7 97.9 93.2 99.5 97.4 
 Caffeine 3.2 1.3 1.1 1.3 0.6 0.1 89.0 100.8 99.5 87.9 98.7 100.1 
 S(+)-amphetamine 2.8 3.3 0.2 0.8 0.3 0.2 93.3 98.8 101.4 93.4 100.7 99.4 
 R(-)-amphetamine 2.2 1.8 0.4 1.1 3.2 2.3 93.0 98.9 97.6 94.6 101.0 99.0 
 R/S(±)-MDMA 1.5 5.3 0.1 0.4 2.3 1.8 94.1 98.8 96.0 95.0 98.7 97.1 

Beta-blocker S(-)-propranolol 3.2 0.8 0.4 1.1 0.7 0.2 98.2 95.4 99.2 98.7 95.6 99.6 
 R(+)-propranolol 4.4 2.2 1.4 1.1 0.5 1.4 91.3 90.6 98.3 85.6 93.4 98.3 
 S(-)-atenolol 1.6 1.1 2.0 1.4 1.4 2.3 95.8 102.3 97.6 94.8 99.7 102.0 
 R(+)-atenolol 3.3 1.4 1.7 1.8 2.4 1.1 93.8 98.3 106.0 92.8 103.3 103.8 

Anti-depressant S(+)-fluoxetine 0.9 2.0 2.1 0.9 1.8 2.0 91.5 100.7 99.0 91.5 100.6 99.7 
 R(-)-fluoxetine 2.3 1.8 1.2 2.8 3.1 1.3 90.4 99.6 101.0 92.4 102.3 102.4 
 R(-)-citalopram 1.3 2.0 1.1 1.1 1.5 1.1 105.9 96.1 97.2 104.6 94.3 97.2 
 S(+)-citalopram 1.9 2.0 0.5 1.5 1.3 0.1 102.7 109.6 107.3 100.9 109.0 106.7 

Anti-histamine S(+)-chlorpheniramine 0.9 1.3 0.3 0.9 0.6 0.3 99.4 107.6 110.0 98.9 106.8 110.0 
 R(-)-chlorpheniramine 2.0 1.0 0.8 0.8 1.7 0.9 94.2 98.4 97.7 95.7 99.7 98.3 

Key: MDMA, 3,4-methylenedioxy-methamphetamine; E1, enantiomer 1; E2, enantiomer 2; RSD, relative standard deviation; Low, mid and high 
concentration levels were 0.010, 0.10 and 0.50 ng mL-1, respectively.  For aspartame the concentration levels were 0.010, 0.10 and 0.50 ng mL-1  
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