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Abstract—By incorporating domain knowledge, simple greedy
procedures can be defined to generate reasonably good solutions
to many optimisation problems. However, such solutions are
unlikely to be optimal and their quality often depends on the way
the decision variables are input to the greedy method. Indirect
optimisation uses meta-heuristics to optimise the input of the
greedy decoders. As the performance and the runtime differ
across greedy methods and meta-heuristics, deciding how to split
the computational effort between the two sides of the optimisation
is not trivial and can significantly impact the search.

In this paper, an artificial scheduling problem is presented
along with five greedy procedures, using varying levels of do-
main information. A methodology to compare different indirect
optimisation strategies is presented using a simple Hill Climber,
a Genetic Algorithm and a population-based Local Search.

By assessing all combinations of meta-heuristics and greedy
procedures on a range of problem instances with different prop-
erties, experiments show that encapsulating problem knowledge
within greedy decoders may not always prove successful and
that simpler methods can lead to comparable results as advanced
ones when combined with meta-heuristics that are adapted to the
problem. However, the use of efficient greedy procedures reduces
the relative difference between meta-heuristics.

I. INTRODUCTION
In EAs, the term genotype describes the domain searched by

an algorithm, that is the search space on which operators are
applied. In order to assess solutions, a phenotype is required.
The phenotype represents the domain in which a solution
can be evaluated, or in other words, a domain that can be
read by the fitness function. Not only does using alternative
genotypes allow some problems to be modelled efficiently by
EAs, but it may also map a problem to a domain which is more
adapted to these algorithms. Most scheduling problem uses
genotypes that differ from phenotypes. For example, most state
of the art methods to the well-studied Permutation Flowshop
Scheduling Problem (PFSP) [1] generate permutations that are
translated into a schedule that can be evaluated, for example by
computing its makespan. The function translating the genotype
into a phenotype is often referred to as a decoder.

In the case of PFSP, all studies use the same decoder and
there are no known alternative to it. This may not be the case
for all problems for which several decoders can be defined,
resulting in different phenotypes for a given genotype. Con-
sequently, decoders to a same problem can result in solutions
of different quality. In addition, decoders can be of different
complexity or incorporate different quantity of domain-specific

knowledge, impacting the runtime of the optimisation process
or the fitness landscape.

The introduction of a decoder in the optimisation process
may also be motivated by the need to help the optimisation
algorithm to produce good solutions from the start of the
search, to satisfy constraints or by the need to produce so-
lutions of reasonable quality with a reduced number of fitness
evaluations.

There is a large body of literature on the topic of indirect
optimisation, revealing that it has been applied to many areas
of computational intelligence including set covering problem
[2], constraint satisfaction and graph colouring problems [3],
routing and sequencing [4], project scheduling [5] or Bayesian
network structure learning [6], [7], [8].

Using decoders enables the applications of well-researched
algorithms that rely on standard representations to real-world
problems in a wide range of domains such as telecommunica-
tions [9], nurse scheduling [10], web service composition [11]
or transportation [12].

This paper studies how the use of different decoders,
combined with different meta-heuristics impacts the search
and proposes an analysis of the tradeoff between spending
computational efforts on decoding or on optimisation. In
order to propose several decoders for the same problem, a
new artificial scheduling problem is proposed and instances
with distinct characteristics generated. All encoders take a
permutation as input.

The paper is organised as follows. First, the artificial
scheduling problem and the instance generator used for ex-
periments are described in the next section. In Section III, the
different greedy procedures considered for the problem are
detailed. Section IV describes the meta-heuristics selected for
the study. The experimental procedure and associated results
are presented in Section V before concluding in Section VI

II. THE SCHEDULING PROBLEM

For the purpose of this study, an artificial permutation
problem is created. The motivation behind the creation of
an additional scheduling problem lies in the fact that most
existing scheduling problems do not leave room for many
greedy procedures to be implemented and are therefore not
suitable for the present study. The proposed problem is simple
and enables the definition of many greedy algorithms, with



different level of domain knowledge. In this section, the new
artificial problem is presented along with an instance generator.

A. The Problem

A set X of n jobs needs to be scheduled on a set M of
m machines. In this problem, all machines handle the same
number of jobs each and so k ∈

[
1, nm

]
. The objective of the

problem is to find an allocation xi,j,k, where xi,j,k = 1 if job
Xi is allocated to machine Mj in position k, 0 otherwise, such
that maxi Ci is minimised. Ci is defined as:

Ci =

{ ∑
j,k Pi,j ∗ (1 +

1
9+k ) ∗ xi,j,k k = 1∑

j,k(Pi,j ∗ (1 +
1

9+k ) +
∑
i′ Ci′ ∗ xi′,j,k−1) ∗ xi,j,k k > 1

(1)
and subject to: ∑

j,k

xi,j,k = 1,∀i ∈ [1, n] (2)

The completion time Ci of each job Xi depends on its
runtime on the machine Pi,j and on its position k on this
machine. A fraction of Pi,j that depends on its position on
the machines is added to the runtime. This fraction is set so
that it increases the completion time of jobs with low values
of k more significantly. The proportion of Pi,j has been set
in order to account for the relative positions of the jobs on a
specific machine and for the purpose of the present study has
been set to 1

9+k in (1).

B. Problem instances

A problem instance is defined by the cost matrix Pi,j .
In order to generate instances with different properties, the
stochastic process described in Algorithm 1 is used. The
process first generates a mean runtime µi for a job by sampling
a Gaussian distribution of mean µ and standard deviation
α. In order to generate a runtime for each machine Pi, j,
another Gaussian distribution with mean µi is sampled with
standard deviation β. For this paper, µ was set to 100 and
kept unchanged across instances. We refer to instances using
the notation n-m-α-β-id.

Algorithm 1 Instance generator
1: Input: n, m, µ, α, β,
2: for i← 1, n do
3: µi = N(µ, α)
4: for j ← 1,m do
5: Pi,j = N(µi, β)
6: end for
7: end for
8: Output Pi,j

III. GREEDY PROCEDURES

All greedy procedures designed for the problem follow a
generic overall method in which items of an input permutation
π are allocated to a machine at a specific position k iteratively.
The overall process is described in Algorithm 2. Although this

Fig. 1. Allocation of a job using LG. Jobs in grey are already allocated while
the position chosen by LG for the next job is shown in white.

process is common to all methods, the allocate function that
determine the machine and the position at which the job should
be performed differs. In this section, five greedy decoders are
described.

Algorithm 2 Overall greedy procedure to construct a schedule
1: Input permutation π
2: Initialise x = 0n×m×n/m
3: for i← 1, |π| do
4: j, k ← allocate(π, i, x)
5: xπi,j,k = 1
6: end for

A. Length Greedy Procedure (LG)

The Length Greedy procedure (LG) allocates the next job
Xπi to the first machine that has not reached its maximum
number of jobs n/m, at the last position available as illus-
trated in Figure 1. Outline of the procedure is provided in
Algorithm 3.

Algorithm 3 LG allocation
1: function allocate(π, i, x)
2: machine =

⌈
i

n/m

⌉
3: position =

∑
k xπi,j,k + 1

4: return machine, position
5: end function

B. Width Greedy Procedure (WG)

The Width Greedy procedure (WG) allocates the next job
Xπi

to the machine that can process it at the smallest position.
The procedure is illustrated in Figure 2 and Algorithm 4.

LG and WG do not incorporate much problem information
and so they both can be described as naive. One of their
common characteristics is that each input permutation π results
in a distinct schedule and so all possible schedules can be
explored using these methods.

C. Finish Greedy Procedure (FG)

As shown in Figure 3 and Algorithm 5, the Finish Greedy
procedure (FG) loops through all machines and allocates the
job Xπi

to the machine on which it can complete at the earliest
time.



Fig. 2. Allocation of a job using WG. Jobs in grey are already allocated
while the position chosen by WG for the next job is shown in white.

Algorithm 4 WG allocation
1: function allocate(π, i, x)
2: machine = i mod m
3: position =

∑
k xπi,j,k + 1

4: return machine, position
5: end function

Fig. 3. Allocation of a job using FG. Jobs in grey are already allocated while
the position chosen by FG for the next job is shown in white. Positions shown
in black are the other potential positions for the jobs that are not chosen.

Algorithm 5 FG allocation
1: function allocate(π, i, x)
2: bestMachine = 0, bestPosition = 0, bestScore =

−1
3: for j ← 1,m do
4: position =

∑
k xπi,j,k + 1

5: if position ≤ n/m then
6: if position = 1 then
7: score = Pπi,j ∗ (1 + 1

9+position )
8: else
9: score = Pπi,j ∗ (1 + 1

9+position ) +
∑
i′ Ci′ ∗

xi′,j,position−1

10: end if
11: if bestScore = −1 | bestScore > score then
12: bestScore = score
13: bestMachine = j
14: bestPosition = position
15: end if
16: end if
17: end for
18: return bestMachine, bestPosition
19: end function

Fig. 4. Allocation of a job using SG. Jobs in grey are already allocated while
the position chosen by SG for the next job is shown in white. Positions shown
in black are the other potential positions for the jobs that are not chosen.

D. Start Greedy Procedure (SG)

Similar to FG, the Start Greedy procedure (SG) loops
through all machines and allocates the job Xπi to the machine
on which it can start at the earliest time. It is detailed in
Figure 4 and Algorithm 6.

Algorithm 6 SG allocation
1: function allocate(π, i, x)
2: bestMachine = 0, bestPosition = 0, bestScore =

−1
3: for j ← 1,m do
4: position =

∑
k xπi,j,k + 1

5: if position ≤ n/m then
6: if position = 1 then
7: score = 0
8: else
9: score =

∑
i′ Ci′ ∗ xi′,j,position−1

10: end if
11: if bestScore = −1 | bestScore > score then
12: bestScore = score
13: bestMachine = j
14: bestPosition = position
15: end if
16: end if
17: end for
18: return bestMachine, bestPosition
19: end function

E. Execution Greedy Procedure (EG)

The final decoder is the Execution Greedy procedure (EG).
Similarly to FG and SG, EG loops through all machines and
allocates the job Xπi

to the machine on which its processing
time is the shortest. It is detailed in Figure 5 and Algorithm 7.

Unlike WG and LG, FG, SG and EG all have additional
problem knowledge in the sense that some optimisation is
done within these algorithms. The three methods generate
schedules while trying to minimise a time objective, whether
this is finish, start or execution time. While WG and LG are by
definition able to cover the whole space of possible schedules,
FG, SG and EG may not as many input permutation may result
in similar schedules.



Fig. 5. Allocation of a job using EG. Jobs in grey are already allocated while
the position chosen by EG for the next job is shown in white. Positions shown
in black are the other potential positions for the jobs that are not chosen.

Algorithm 7 EG allocation
1: function allocate(π, i, x)
2: bestMachine = 0, bestPosition = 0, bestScore =

−1
3: for j ← 1,m do
4: position =

∑
k xπi,j,k + 1

5: if position ≤ n/m then
6: score = Pπi,j ∗ (1 + 1

9+position )
7: if bestScore = −1 | bestScore > score then
8: bestScore = score
9: bestMachine = j

10: bestPosition = position
11: end if
12: end if
13: end for
14: return bestMachine, bestPosition
15: end function

F. Performance and runtime of the greedy procedures

In order to describe the different greedy procedures intro-
duced in this paper in terms of performance, runtime and
landscapes, preliminary experiments were run on selected
instances. For this experiments, 100 instances of each prob-
lem characteristics were generated. For each instance, 100
solutions were randomly generated, each used as input to all
greedy procedures. The resulting fitness values were collected
and plotted.

Three pairs of {α, β} were selected. These are {0.9, 0.1},
{0.9, 0.3} and {0.9, 0.9}. As illustrated in Figures 6, 7, 8 for
dimensions 50x5, these give different profiles with respect to
the performance of the greedy procedures. When α = 0.9
and β = 0.1, the difference between the best greedy approach
(EG) and the worst ones (LG, WG and SG) is 7%. When
α = 0.9 and β = 0.9, this difference reaches 83%, showing
that instances generated with the latter values of α and β are
more challenging for LG, WG and SG.

It is also interesting to observe the worst solutions obtained
by the greedy methods. Across all instances, LG and WG
appear to produce the worst solutions in comparison with other
approaches. This is in line with their principle that allows both
LG and WG to generate every possible phenotype that exists to
a problem. This is not the case with the three other algorithms
that incorporate extra problem knowledge which will naturally
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Fig. 6. Schedule quality using the five greedy search on instances generated
using α = 0.9 and β = 0.1
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Fig. 7. Schedule quality using the five greedy search on instances generated
using α = 0.9 and β = 0.3

prevent very poor phenotypes to be evaluated. While this
seems a good feature, especially when little computation is
available, it may not always support search algorithms and
introduce plateaux, where several solutions produced, have
similar fitness values. Plateaux are often a challenge for
algorithms such as GAs because they prevent discrimination
between solutions and so affect selection.

Additional experiments were performed to gain insight on
the difference between the greedy methods in terms of runtime.
1000 solutions were generated for three types of instances
for problems of dimensions 50x5 and evaluated using each
greedy procedure. The average runtimes associated with each
and associated standard deviations are provided in Table I.
Experiments were run on a standard PC (2.5 GHz CPU, 8GB
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Fig. 8. Schedule quality using the five greedy search on instances generated
using α = 0.9 and β = 0.9



RAM) using R.
As expected, the runtimes correlate with the amount of

problem knowledge incorporated into each greedy procedure.
The two most naive methods, LG and WG, exhibit the fastest
profiles and the difference between their runtime and those
of the three remaining techniques is large and statistically
significant (based on student t-tests).

FG and EG are the two methods taking the longest time
to translate a genotype into a phenotype and there is no sig-
nificant difference between the two. SG’s runtime is between
those of LG and WG and those of FG and EG. Thus, in terms
of runtime, the 5 greedy approaches exhibit 3 distinct profiles.

TABLE I
AVERAGE RUNTIME OF THE GREEDY PROCEDURES OVER 1000 RUNS ON
50X5 INSTANCES, SHOWING THE TIME (IN µS) REQUIRED TO PERFORM A

SINGLE EVALUATION

Greedy Proc. {α, β}
{0.9, 0.1} {0.9, 0.3} {0.9, 0.9}

LG 320 (143) 308 (322) 310 (107)
WG 284 (108) 281 (77) 282 (119)
FG 1670 (335) 1678 (257) 1763 (294)
SG 1263 (232) 1241 (288) 1249 (242)
EG 1625 (247) 1501 (227) 1503 (283)

IV. META-HEURISTICS

In order to optimise the input to the greedy procedures
described above, three meta-heuristics were selected: a Hill
Climber (HC) local search algorithm, a Genetic Algorithm
(GA) and a new algorithm which evolves a population of solu-
tion by generating multiple neighbours for selected solutions.
In this section, we describe each of the three methods.

A. Hill Climber

The pseudo-code of the standard HC used in the study is
presented in Algorithm 8. The mutation operator chosen to
define the neighbourhood is the swap operator which swaps
two randomly selected elements from a permutation. Note that
the initial solution is chosen as the best among 2n randomly
generated solutions denoted as pop, to reduce the impact of
poor initial solutions on the search. Preliminary experiments
using alternative operators (insert and adjacent swap) were also
investigated but did not yield better results.

B. Genetic Algorithm

The GA used in this study is a standard generational GA.
Its outline is provided in Algorithm 9. It uses elitism of size
1, a population size of 2n, a tournament selection of size 3,
partially matched crossover with crossover rate cRate = 0.8
and swap mutation with mutation rate mRate = 0.1.

C. Mutations on Selection Algorithm (MOSA)

A third algorithm called Mutations on Selection Algorithm
(MOSA) is introduced in order to provide an alternative to
the simple naive HC and the GA. Similarly to the GA,
this algorithm evolves a population of solutions. However, it
does not use any crossover operator and relies on a mutation

Algorithm 8 Hill Climber
1: Generate pop uniformly at random
2: Evaluate and rank pop
3: x = pop1
4: xbest = x
5: fbest = f(x)
6: for i← 1,maxFEs do
7: Generate x by applying mutation to xbest
8: if f(x) < fbest then
9: xbest = x

10: fbest = f(x)
11: end if
12: end for
13: return xbest

Algorithm 9 Genetic Algorithm
1: Generate pop uniformly at random
2: Evaluate pop
3: for i← 1,maxGen do
4: newpop = ∅
5: Add xbest to newpop
6: while |newpop| < |pop| do
7: Select p1 and p2
8: Generate offsprings c1 and c2 by applying crossover

to p1 and p2 with probability cRate
9: Mutate offsprings c1 and c2 by applying mutation

with probability mRate
10: Evaluate c1 and c2
11: Add c1 and c2 to newpop
12: end while
13: end for
14: return xbest

operator to generate new solutions as does HC. The outline
of MOSA is provided in Algorithm 10. The algorithm starts
by generating an initial population at random. The population
is then evaluated and ranked. At each generation, truncation
selection is used to select the best k% of pop. Selected
solutions are then mutated cyclically one after the other and
inserted into the new population until newpop is of the same
size as pop. This means that each selected solution will
generate multiple offsprings in the next population. The overall
best solution xbest seen during the search is returned.

For the experiments presented in this paper, for consistency
between algorithms and based on preliminary results, the
population size is set to 2n and the truncation size is set to
5% of the population size.

MOSA essentially makes use of the ranks of solutions
to direct the search and favours small genotype changes
rather than larger ones such as those resulting from the use
of crossover operators. This matches the principles of other
algorithms coupling either mutation or probabilistic model
sampling and selection mechanisms to move in the search
space [7], [13].



Algorithm 10 MOSA
1: Generate pop uniformly at random
2: Evaluate and rank pop
3: xbest← pop1
4: for i← 1,maxGen do
5: newpop = ∅
6: Select subset selection of k solutions from pop by

truncation
7: j = 0
8: while |newpop| < |pop| do
9: Mutate selectionj and insert into newpop

10: if j = |selection| then
11: j = 0
12: else
13: j = j + 1
14: end if
15: end while
16: Evaluate and rank newpop
17: if newpop1 is better than xbest then
18: xbest← pop1
19: end if
20: end for
21: return xbest

V. EXPERIMENTS AND RESULTS

A. Experimental setup

The main experimental analysis aims to provide insights
on how the pairing of meta-heuristics and greedy procedures
perform on instances with different characteristics (different
n, m, α and β). For this purpose, all combinations were
evaluated on each problem family. To reduce the bias that
could potentially be introduced when randomly generating an
instance, 5 instances were created for each {n,m,α, β} set.
The maximum number of fitness evaluations used as stopping
criteria for all algorithms is provided in Table II. These were
chosen based on preliminary experiments on sample instances
in order for all algorithms to have enough time to converge.
Problems of size 20, 50 and 100 are considered. For each, two
values of m are considered, m = n/2 and m = n/10, that
is problems where a solution will consist in 2 and 10 jobs
per machine respectively. A total of 50 runs were performed
for each set of algorithms on each instance. Student t-test
with Bonferroni correction was performed to test statistical
differences in results between strategies for each problem
family. Combinations that are statistically better than others
are highlighted in bold in the result tables.

TABLE II
MAXIMUM NUMBER OF FITNESS EVALUATIONS

n Fitness Evaluations

20 1200
50 30000

100 60000

Fig. 9. Fitness of the best solution obtained by the GA over time, averaged
over 20 runs on 50-5-0.9-0.3-1

B. Results and discussion

TABLE III
RESULTS ON INSTANCES WITH n = 20

GA HC MOSA
20-2-0.9-0.1-LG 1214.61 1240.62 1195.79
20-2-0.9-0.1-WG 1215.19 1241.20 1191.31
20-2-0.9-0.1-FG 1214.52 1229.22 1191.24
20-2-0.9-0.1-SG 1221.49 1238.42 1191.24
20-2-0.9-0.1-EG 1374.28 1378.90 1191.24
20-2-0.9-0.3-LG 1063.01 1139.31 1034.47
20-2-0.9-0.3-WG 1060.78 1134.85 1032.45
20-2-0.9-0.3-FG 1056.46 1080.99 1032.45
20-2-0.9-0.3-SG 1090.25 1127.78 1032.45
20-2-0.9-0.3-EG 1085.96 1095.11 1032.45
20-2-0.9-0.9-LG 1004.99 1217.20 980.82
20-2-0.9-0.9-WG 1004.15 1209.14 980.44
20-2-0.9-0.9-FG 988.42 1008.92 980.44
20-2-0.9-0.9-SG 1070.72 1191.26 980.44
20-2-0.9-0.9-EG 1036.64 1049.05 980.44
20-10-0.9-0.1-LG 300.82 320.82 282.13
20-10-0.9-0.1-WG 304.11 320.32 279.70
20-10-0.9-0.1-FG 288.68 309.26 279.47
20-10-0.9-0.1-SG 294.79 320.96 279.47
20-10-0.9-0.1-EG 295.09 308.46 279.47
20-10-0.9-0.3-LG 263.34 306.77 228.88
20-10-0.9-0.3-WG 268.20 306.49 228.11
20-10-0.9-0.3-FG 234.04 252.97 226.33
20-10-0.9-0.3-SG 264.58 304.10 227.85
20-10-0.9-0.3-EG 242.02 256.12 225.92
20-10-0.9-0.9-LG 219.37 326.46 129.83
20-10-0.9-0.9-WG 219.00 332.86 126.19
20-10-0.9-0.9-FG 132.74 145.78 126.19
20-10-0.9-0.9-SG 250.99 323.22 126.19
20-10-0.9-0.9-EG 132.87 153.23 126.19

Tables III, IV and V show the average fitness obtained by
each combination of meta-heuristics and greedy procedure for
each family of problem. Note that the results provided are
averaged over 50 runs on each of the 5 instances produced
for a given problem characteristic and so are overall averaged
over 250 runs.

Experiments first highlight differences in terms of quality
of solutions produced by the different meta-heuristics without
particular consideration for the greedy procedure chosen. Gen-
erally speaking and as expected, HC is the least performing



TABLE IV
RESULTS ON INSTANCES WITH n = 50

GA HC MOSA
50-5-0.9-0.1-LG 1229.50 1354.18 1193.07
50-5-0.9-0.1-WG 1231.71 1356.23 1187.84
50-5-0.9-0.1-FG 1234.16 1307.51 1186.88
50-5-0.9-0.1-SG 1259.92 1338.93 1186.88
50-5-0.9-0.1-EG 1196.14 1243.53 1178.44
50-5-0.9-0.3-LG 1003.92 1286.86 931.72
50-5-0.9-0.3-WG 1006.28 1282.26 927.83
50-5-0.9-0.3-FG 1000.12 1097.42 927.29
50-5-0.9-0.3-SG 1135.23 1257.80 927.29
50-5-0.9-0.3-EG 951.33 1032.39 927.00
50-5-0.9-0.9-LG 650.14 1295.53 562.57
50-5-0.9-0.9-WG 648.18 1293.98 557.78
50-5-0.9-0.9-FG 599.41 694.28 556.61
50-5-0.9-0.9-SG 1005.87 1246.13 557.65
50-5-0.9-0.9-EG 607.36 649.81 556.37

50-25-0.9-0.1-LG 356.62 419.99 343.23
50-25-0.9-0.1-WG 356.79 420.93 343.04
50-25-0.9-0.1-FG 347.05 399.01 343.04
50-25-0.9-0.1-SG 353.56 418.51 343.04
50-25-0.9-0.1-EG 357.59 397.11 343.04
50-25-0.9-0.3-LG 278.00 386.04 245.33
50-25-0.9-0.3-WG 279.85 386.55 245.05
50-25-0.9-0.3-FG 249.58 304.11 245.05
50-25-0.9-0.3-SG 284.63 386.29 245.05
50-25-0.9-0.3-EG 251.92 288.35 245.05
50-25-0.9-0.9-LG 237.00 439.00 204.28
50-25-0.9-0.9-WG 233.52 441.50 204.25
50-25-0.9-0.9-FG 204.44 209.27 204.25
50-25-0.9-0.9-SG 295.07 434.40 204.25
50-25-0.9-0.9-EG 204.49 208.86 204.25

Fig. 10. Fitness of the best solution obtained by MOSA over time, averaged
over 20 runs on 50-5-0.9-0.3-1

method. Although the GA used in this study is better than HC,
the overall best meta-heuristics is the proposed MOSA, which
makes use of both local move operators and of a population.

Figures 9 and 10 show the fitness of the best solution found
over time for GA and MOSA respectively and so confirm
that both algorithms do not suffer from early convergence
issues. While both methods continuously produce solutions
for improving fitness, MOSA does so in a faster manner.
It is particularly apparent in the early stages of the search,
where the mutation operator used in MOSA leads to faster
improvements than the combination of mutation and crossover
used by the GA.

TABLE V
RESULTS ON INSTANCES WITH n = 100

GA HC MOSA
100-10-0.9-0.1-LG 1120.27 1305.59 1056.85
100-10-0.9-0.1-WG 1123.58 1305.80 1053.83
100-10-0.9-0.1-FG 1107.68 1228.34 1052.38
100-10-0.9-0.1-SG 1166.01 1284.96 1052.38
100-10-0.9-0.1-EG 1079.45 1194.90 1036.69
100-10-0.9-0.3-LG 963.99 1316.90 833.26
100-10-0.9-0.3-WG 971.99 1318.22 825.90
100-10-0.9-0.3-FG 884.45 1026.83 823.71
100-10-0.9-0.3-SG 1139.47 1284.78 825.21
100-10-0.9-0.3-EG 822.05 964.48 789.34
100-10-0.9-0.9-LG 747.47 1555.54 538.70
100-10-0.9-0.9-WG 755.05 1564.57 529.12
100-10-0.9-0.9-FG 547.37 699.35 497.05
100-10-0.9-0.9-SG 1309.65 1488.05 528.05
100-10-0.9-0.9-EG 522.48 605.02 486.82
100-50-0.9-0.1-LG 376.07 434.45 358.19
100-50-0.9-0.1-WG 378.49 434.91 358.05
100-50-0.9-0.1-FG 358.62 406.73 358.05
100-50-0.9-0.1-SG 366.42 435.37 358.05
100-50-0.9-0.1-EG 360.04 402.10 358.05
100-50-0.9-0.3-LG 347.68 429.19 321.55
100-50-0.9-0.3-WG 350.07 426.70 321.19
100-50-0.9-0.3-FG 321.38 341.20 321.19
100-50-0.9-0.3-SG 341.96 426.42 321.19
100-50-0.9-0.3-EG 321.45 332.74 321.19
100-50-0.9-0.9-LG 269.05 477.13 147.23
100-50-0.9-0.9-WG 264.82 478.36 140.50
100-50-0.9-0.9-FG 137.03 152.58 136.59
100-50-0.9-0.9-SG 320.00 475.25 140.25
100-50-0.9-0.9-EG 137.52 147.06 136.59

The extent of the difference between the algorithms is also
correlated with the instance characteristics as illustrated in
Figure 11, where the relative percentage deviation between
MOSA and GA is shown for dimension 50. This shows
how much better the results of MOSA are than those of
GA. Because the value is positive on all instances, MOSA
always outperforms GA. In general, the deviation increases as
β increases. This reflects higher differences between the job
costs in the Pi,j matrix.

By incorporating a different amount of problem informa-
tion in the different greedy procedures, bias was introduced
towards some of them, expecting to perform better on random
solutions. This was confirmed by the earlier experiments for
which results were provided in Figures 6, 7 and 8. When
considering the use of a meta-heuristics that may not be
particularly adapted to the problem, such as the GA used in
the present study, the importance of the greedy procedure is
key to obtaining good final solutions. When considering GA,
the use of FG and EG guarantees a better final solution that
other greedy approaches. However, when considering MOSA,
overall better adapted to this problem, the choice of the greedy
procedure becomes less important and on many instances,
leads to the same final results.

This is without considering the runtime associated with each
of the greedy methods. Reported results are based on a fixed
number of fitness evaluations, similar to all runs, regardless
of the runtime. As seen in Table I, the runtime can vary
significantly across greedy methods with FG at least 5 times



Fig. 11. ARPD of GA vs MOSA for combined with all greedy procedures on all instances of size n=50

more computationally expensive than WG for example and
thus the choice of the greedy method should be recommended
based on the computational time available.

Finally, experiments also highlighted the importance of
carefully designing greedy procedures. For example, regard-
less of the meta-heuristic chosen and despite having some
problem information embedded, SG produces solutions of
particularly bad quality. Despite Figures 6, 7 and 8 showing
that its performance is similar to LG and WG based on random
solutions, it actually proves worst than LG and WG when used
as part of an indirect optimisation strategy. In this particular
case, the knowledge embedded into the greedy procedure acts
as a constraint that prevents some phenotypes to be produced,
some of them likely to be of high quality.

VI. CONCLUSIONS

In this paper, a methodology to compare greedy procedures
and the optimisation of their input has been introduced. A
novel artificial problem, an instance generator and five greedy
methods presented. Three optimisation algorithms were used
to perform the indirect optimisation, including a novel algo-
rithm, MOSA, which exhibits better performance than a GA
and a HC.

Beyond the simple comparison of meta-heuristics, the anal-
ysis shows the influence of the greedy methods within an indi-
rect search framework. While greedy procedures that contains
a lot of problem knowledge (e.g. EG) are essential with some
meta-heuristics like HC and GA, they can be substituted by
more naive approaches (e.g. LG, WG) when combined with
better meta-heuristics like MOSA. This can prove particularly
useful when considering the runtime of individual greedy
procedures, where naive approaches take considerable less
time to decode a solution.

The analysis performed in this paper provided good insights
on how meta-heuristics and greedy decoders can interact.
However, more elements should be considered in order to get a
more complete picture. Future work should incorporate fitness

landscape analysis and highlight how landscapes associated
with each decoder may support different optimisation tech-
niques. Finally, the impact of the problem characteristics α
and β should be further studied.
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[12] U. Derigs and T. Döhmer, “Indirect search for the vehicle routing
problem with pickup and delivery and time windows,” OR Spectrum,
2008.

[13] J. Ceberio, A. Mendiburu, and J. A. Lozano, “Kernels of Mallows
Models for Solving Permutation-based Problems,” pp. 505–512, 2015.


	coversheetConferences
	latest-analysis-indirect.pdf

	OA: GREEN
	OA Logo: 
	AUTHORS: NEAU, C., REGNIER-COUDERT, O. and MCCALL, J.
	TITLE: An analysis of indirect optimisation strategies for scheduling.
	YEAR: 2018
	Publisher citation: NEAU, C., REGNIER-COUDERT, O. and MCCALL, J. 2018. An analysis of indirect optimisation strategies for scheduling. In Proceedings of Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway: IEEE [online], article ID 8477967. Available from: https://doi.org/10.1109/CEC.2018.8477967
	OpenAIR citation: NEAU, C., REGNIER-COUDERT, O. and MCCALL, J. 2018. An analysis of indirect optimisation strategies for scheduling. In Proceedings of Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway: IEEE, article ID 8477967. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Version: AUTHOR ACCEPTED
	Publisher: IEEE
	Conference: Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil
	ISBN: 
	eISBN: 9781509060177
	ISSN: 
	Set statement: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo: 
		2018-11-23T15:05:42+0000
	OpenAIR at RGU




