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Abstract. Siamese Neural Networks (SNNs) are deep metric learners that use
paired instance comparisons to learn similarity. The neural feature maps learnt in
this way provide useful representations for classification tasks. Learning in SNNs
is not reliant on explicit class knowledge; instead they require knowledge about
the relationship between pairs. Though often ignored, we have found that appro-
priate pair selection is crucial to maximising training efficiency, particularly in
scenarios where examples are limited. In this paper, we study the role of informed
pair selection and propose a 2-phased strategy of exploration and exploitation.
Random sampling provides the needed coverage for exploration, while areas of
uncertainty modeled by neighbourhood properties of the pairs drive exploitation.
We adopt curriculum learning to organise the ordering of pairs at training time
using similarity knowledge as a heuristic for pair sorting. The results of our ex-
perimental evaluation show that these strategies are key to optimising training.

Keywords: Deep Learning · Siamese Neural Networks ·Active Learning · Case-
Based Reasoning ·Machine Learning ·Metric Learning

1 Introduction

The Siamese Neural Network (SNN) is a deep learning architecture which trains upon
pairs of input data to learn a metric space in which training instances can be placed.
The expectation of paired learning is that the learned space can better represent salient
relationships between pairs which can then be better captured in Euclidean space. Origi-
nally used in binary classification tasks such as signature verification [2] and face recog-
nition [3], SNNs have recently been generalised to multi-class classification [6].

Central to SNN learning is the use of similarity knowledge to gauge closeness of
data points such that it provides a meaningful matching criterion. The expected outcome
of SNN training is to have instances deemed similar to be mapped closer together. As
SNNs are metric learners that develop a new representation of the original data, in a
classification setting they require a non-parametric learner (such as k-NN) to perform
the explicit classification. However, a benefit of SNNs is that they do not require full
class knowledge during training, as they are learning on the basis of whether pairs meet
the matching criteria, not whether they belong to a specific label. For this reason, recent
work has demonstrated these networks can perform effectively even when working with
extremely limited training data, such as in a one-shot learning environment [6].



Surprisingly, pair selection and ordering have been given little attention in SNNs,
despite showing promising results in the closely-related Triplet Networks (TNs) [17,
20]. Pair selection and ordering directly informs the data relationships that the network
will learn and be trained upon, thereby directly influencing the metric developed by the
network. It is our view that these strategies play an important role in both improving
training time and ensuring high overall performance of SNNs. Pair selection and pre-
sentation order are likely to be particularly relevant in data-budgeted scenarios where
there are only a small number of annotated examples.

In this paper we discuss the importance of pair selection strategies and their effect
on training. We are of the opinion that only by understanding the impact of sample
selection in multiple-input networks can we build upon these ideas for application to-
wards recent advancements in deep metric learners. For this reason we start with SNNs.
Although we limit our scope to SNNs, the contribution from this paper is applicable
to other neural network architectures that learn from multiple examples - particularly
triplet [5] and matching networks [19].

The contributions of this paper are four fold: (1) we demonstrate the importance of
having a pair selection strategy in SNNs; and (2) we introduce several pair selection
strategies, including methods for informed pair selection that optimise pair creation us-
ing explorative and exploitative strategies. Taking inspiration from self-paced learning;
(3) we demonstrate that pair ordering can improve SNN network performance; and (4)
we introduce a pair complexity heuristic for ordering that draws on knowledge about
the neighbourhood properties of pairs1.

This paper is organised as follows: in Section 2 we explore work related to pair
selection and curriculum learning; in Section 3 we formalise pair creation and its role
in SNN learning before we introduce the concepts of pair ordering and informed pair
selection employed in our work; a comparative study of proposed methods appear in
Section 4 with results on the MNIST, Large Movie Review Dataset (LMRD) and Self-
BACK 2 datasets appearing in Section 5; and finally conclusions in Section 6.

2 Related Work

Employing informed selection for training data is increasingly gaining attention for
deep learning architectures. Both optimising for batch size and the order in which train-
ing examples are processed have shown to be effective for achieving performance im-
provements [1, 10]. Typically network loss is exploited to create ranking heuristics with
significant speed-up gains observed when processing harder examples first. Training on
an increasing ratio of ’hard’ samples can be seen as adopting an ’exploitation’ strategy
where focus is maintained on known ’hard’ problems. It is interesting to note that meta-
learning strategies, such as boosting, do precisely this with weak learners; whereby

1The code associated with this paper is publicly accessible from https://github.com/RGU-
AI/Informed-Pair-Selection

2The SelfBACK project is funded by European Union’s H2020 research and
innovation programme under grant agreement No. 689043. More details available:
http://www.selfback.eu. The SelfBACK dataset associated with this paper is publicly accessible
from https://github.com/selfback/activity-recognition



model learning is focused on examples that were incorrectly solved previously [18].
However such a strategy alone in the context of informed sample selection can be detri-
mental, if ’exploration’ of the space of possible problems is ignored [10]. We study how
both exploration and exploitation strategies can be utilised for informed pair selection.
Specifically we consider budgeted learning scenarios associated with learning an em-
bedding function [9], where it has been shown that picking more suitable examples will
return greater results in circumstances where labeled data is limited [4].

Paired examples in relation to triplet networks (TNs) [5] help learn useful feature
embeddings (representations) by distance comparisons [20, 17]. Like SNNs, the goal
of training is to develop an embedding function which minimises distance between
the positive examples and the query examples, while maximising the distance between
the negative example and the query. Unlike with SNNs, TNs form a triplet instance
from a negative and positive pair given a query. Heuristics that are static (neither ex-
ploratory or exploitative) based on initial similarity (relevance) alone were found to
perform poorly [20]. Using heuristics that continually update to reflect the triplets the
network is likely to find difficult in the next iteration, such as exploiting according to the
loss value, was found to give superior performance [17]. However, loss information is
not available from the start of training so the network must complete an initial ’dry run’
to retrieve this information. In our work we consider how heuristics that utilise sim-
ilarity knowledge calculated from the most recent network embedding can contribute
towards formulating a more dynamic ranking heuristic for training examples.

Curriculum Learning (CL) is the concept of introducing examples to a network in
a meaningful order, most often by difficulty from ’easy’ to ’hard’. The idea is that by
ranking so that the network is initially exposed to simpler examples and then gradually
introduced to more complex examples, the network will converge faster [1]. Though
a simple concept, CL has demonstrated excellent generalisability, showing success in
areas such as motif finding, noun phrase conference [7] and multi-task learning [14].
Research has also shown that self-paced CL where the ordering of examples is based
on feedback from the network itself (dynamic), rather than a (static) curriculum set by a
teacher [7], results in model improvements. In this way, the order in which examples are
presented to the network is continuously updated, such that the curriculum presented at
the start and that presented at the end of training may be vastly different. In our work we
apply self-paced learning to sequence the presentation of training examples to SNNs.

3 Training and Testing with Pairs in a SNN

The SNN architecture consists of two neural networks that share identical weights and
are joined at one or more layers [2]. SNNs receive pairs of examples as input to during
both training and testing to develop similarity knowledge at an object-to-object level.

We first introduce the notation used in this paper to assist presentation of the dif-
ferent pair creation strategies. Let X be a set of labeled examples, such that example,
x ∈ X and y(x) is a function that returns the class label, y, of x. P is a set of pairs
(p1, ...pn) that form the paired training batches for input to the SNN (see Figure 1).
Each training pair, p ∈ P , consists of a pair of examples, p = (x̂, x′), where x̂ is a
pivot example whose relationship to passive example x′ dictates whether the pair is of
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Fig. 1: The SNN learning process

class genuine, or impostor. Here the pair’s relationship class is easily established by
comparing class labels y(x̂) with y(x′). For this we use function, Y (p) or Y (〈x̂, x′〉),
which returns, p’s relationship class label, such that Y (p) = 0 when y(x̂) = y(x′),
and Y (p) = 1 when y(x̂) 6= y(x′). Typically x̂, x′ are randomly selected, to form the
genuine and impostor relationship pairs for training.

During training the network develops a multi-dimensional embedding based upon
the input training pairs, P . This is facilitated by having the shared layers; essentially
these layers enable the SNN to generate an embedding for each member of a pair (see
Figure 1). Thereafter members can be compared using a distance metric, DW , which
influences the computation of the two loss components: loss due to pairs being further
apart when they should not be, LG; and loss due to pairs being too close when they
should be further apart, LI . Contrastive loss, L (as in Equation 3), is commonly used to
guide the sub-network weight update for model learning by combining these two losses
- genuine LG and impostor LI [3]. It essentially formulates the pair prediction error
on the basis of genuine and impostor error predictions. The use of both genuine and
impostor error means that the similarity metric can be directly learned by the network
through the comparison of the actual pair label YA (equal to 0 for genuine and 1 for
impostor pairs) and the distance, Euclidean or otherwise, between pair members, DW .

This means that distance between constituents of genuine pairs are minimised over
the course of training, whilst ensuring that impostor pairs maintain at least a set margin
of M distance apart.

LG = (1− YA) ·DW
2 (1)

LI = YA · (max(0, M −DW ))2 (2)
L = LG + LI (3)

The output of the identical neural networks (or ‘sub-networks’) form feature embed-
dings, fθ, for each member of the input pair. During training it is these embeddings that
are used for any distance computations, thereby ensuring iterative model refinement
through contrastive loss based back propagation.

At test time, the SNN can obtain a predicted pair label, YP , by comparing DW with
the margin threshold M . If DW is less than M then the network judges the pair to be
genuine, otherwise it is classified as an impostor. For classification problems, a label for
an unseen test example, xq , can be obtained by pairing it with a representative training
example from each class, (x̄i, ..., x̄m), where m is the number of classes, and x̄i is a



prototypical example for class i. The trained SNN is then used to provide a pair label
prediction for each such pair. We then use a distance weighted voting algorithm to de-
termine the classification of a query example from its nearest class prototype neighbour
(x̄i). Note that only genuine pairings with x̄i contribute to the classification vote:

vote(ci) =

m∑
j=1

wj ∗ [EQ(ci, y(x̄j)) (1− Y (x̄j , xq))] (4)

wj =
1√

(
∑
i |f iθ(xq)− f iθ(x̄j)|2)

(5)

Here EQ compares two parameters and returns 1 when they match or 0 otherwise;
in this case checks for matching class labels. The classification with the highest vote
is deemed to be the classification of xq . The weighting is based on Euclidean distance
between examples using their feature embeddings from the network.

In the following sections we introduce pair creation strategies for SNN training,
with strategies that are informed by knowledge about areas of difficulty (exploitation)
and strategies that balance this with the need for problem space coverage (exploration).

3.1 Explorative Pair Selection

It is important to note that P only represents a small subset of all possible pairs which
can be obtained by exhaustively pairing all examples in the training set (the total size of
which would be |X |2). The result is thatP gives a narrow view of instance relationships.
We can improve this by initiating multiple pair selection sessions throughout training.
Doing so allows us to explore the relationships between examples more thoroughly.
Specifically instead of a static P , as in Section 3, we can create a P for each cycle of
training, where a cycle will consist of a set number of training epochs.

Algorithm 1: Algorithm to create the Explore Set
1 Explore: PRND(n)
2 PI , PG := ∅
3 for i = 1 . . . n/2 do
4 x̂ := rnd selection(X )
5 x′1 := rnd selection(X ) ∧ y(x̂) 6= y(x′1)
6 x′2 := rnd selection(X ) ∧ y(x̂) = y(x′2)
7 PI := PI ∪ p(x̂, x′1)
8 PG := PG ∪ p(x̂, x′2)
9 end

10 Explore := PI ∪ PG

11 return Explore

Algorithm 1 lists the steps involved with random creation of a Explore pair set,
where given n, a call to PRND(n) assigns n pairs to P:= PRND(n). Here x̂ and its



paired members x′1 and x′2 are randomly selected from X with the only condition that
the two pairs formed must provide the necessary genuine and impostor representatives;
such that Y (PI) is 0 and Y (PG) is 1.

3.2 Exploitative Pair Selection

Inspired by uncertainty sampling and boosting we can utilise information that we gain
during the previous training cycle to inform pair selection for the next training cycle.
Here instead of only exploring the problem space randomly, we integrate an exploitation
phase such that pair selection will be guided by sampling in areas found to be ’hard’ for
the learner. Specifically for each pi ∈ P we use the network’s predictions, Y (pi) and
associated loss to rank elements in P . We extract the ’hardest’ ranked pairs (i.e. pairs
with the highest loss), from which we generate new pairs to form the exploitation set.
We represent the ratio of exploit to explore as α. The main idea is to use this ratio to
guide pair creation in areas of uncertainty (See Algorithm 2).

Algorithm 2: Algorithm to create the Exploit Set
1 Exploit: PNN (P ′)
2 PI , PG := ∅
3 for pi ∈ P ′ where P ′ ⊂ P and |P ′| = α do
4 p′i = (NN1(x̂), NN1(x

′))
5 if Y (p′i) = 0 then
6 PG:=PG ∪ p′i
7 end
8 if Y (p′i) = 1 then
9 PI := PI ∪ p′i

10 end
11 end
12 Exploit := PI ∪ PG

13 return Exploit

For each selected pair, we find the nearest neighbour of each member within each
pair using function, NNi. By taking the neighbours of the original difficult pair, we
generalise network attention to the complex area of the space without overfitting on
specific examples. These neighbours form the basis for a new pair for our training set.
It is worth noting here that it is possible to develop the entire training set by using the
exploit algorithm and setting α equal to 1. We found this to be detrimental to training,
as the network tended to overfit to specific difficult areas, become trapped and develop
a distorted feature embedding as a result. Hence we suggest using an Explore-Exploit
ratio to prevent this.

3.3 Explorative and Exploitative Pair Selection

A mixed approach that allows the learner to both explore and exploit requires pair selec-
tion that can utilise pairs formed using both strategies from previous Sections 3.1 & 3.2.
We accomplish this by randomly creating pairs to perform early exploration of the fea-
ture space through a ’dry run’ of training the network for a small number of epochs



(typically ten or less) which helps to initialise network weights. Thereafter we use the
ratio α to generate a new set of exploit pairs (as in Algorithm 2); and the rest will consist
of a new set of explore pairs (as in Algorithm 1).

Algorithm 3: Algorithm to combine Explore and Exploit Sets
1 Explore&Exploit: PHY BRID(P)
2 b := α · |P|
3 for pi ∈ P do
4 L:= L.append(L(θ, pi))
5 end
6 P:= P .sort(P , L, <)
7 for i = 1 . . . b do
8 P’ := P’.add(pi)
9 end

10 Exploit := PNN (P ′)
11 Explore := PRND(P \ P ′)
12 return Explore ∪ Exploit

The loss, L, for each pi is maintained in L, which is based on current network
parameters θ. Pairs are sorted in decreasing order of loss and the top α pairs are used for
exploit pair generation and the rest generated through the explore strategy. This process
is repeated multiple times during training, as the areas of the feature space that the
network will find complex will very likely change as the network ’learns’ by refining θ.
Note that NNi’s similarity computations are influenced by feature embeddings on the
basis of the latest θ - i.e. they are based on activations of the last network layer at the
current point in training.

It is also important to note that the suggested algorithms do not sample from a larger
training set than the baseline method. It is merely the way in which instances are paired
that changes. For example, in a data-budgeted scenario where only 1% of a dataset is
available (such as in one of our evaluations later in this paper), these algorithms will
operate within that budget and will not sample additional data from the training set.

3.4 Heuristic Ordering for Self-Paced Learning

To develop a structured ordering method for our pairs, we take inspiration from com-
plexity measures used in neighbourhood analysis for case-based reasoning systems [12].
The basic idea is that an area is considered complex when neighbourhoods of examples
are found to be non-homogeneous in terms of their class labels. We adopt this for com-
plexity analysis C for a given pair p (instead of a single example) as in Equation 6.

C(p) =

∑
i

∑
j EQ(Y (p), Y (〈NNi(x̂), NNj(x

′)〉))∑
i

∑
j (1− EQ(Y (p), Y (〈NNi(x̂), NNj(x′)〉))

(6)

The numerator in the complexity ratio counts the number of pairs formed in the
neighbourhood that differ from the class of the original pair and denominator counts
those that are of the same pair label (i.e. is it an impostor or genuine pair). HereNNi(.)



denotes the ith nearest neighbour of a given example. We create all possible pairs be-
tween x̂’s and x′’s neighbourhoods. For any given pair, function Y returns the pair’s
class label (0 for genuine and 1 impostor). With self-paced learning we can use any of
the pair selection strategies and sort pairs by the complexity metric for model training.

4 Evaluation

The aim of our experiments is two fold. Firstly, we aim to investigate the effect of in-
corporating a pair creation method by analysing three variations of pairing strategies:
no strategy, a dynamic strategy (exploration) and an informed dynamic strategy (ex-
ploration/exploitation). Secondly, we aim to investigate the effect of complexity-based
ordering, giving us an unordered and an ordered variation of each strategy and a total
of six candidate approaches:

1. BASE: Pairs are unordered, and are not updated throughout training. As such this
is a static, standard paired-training used for SNNs - the baseline (Section 3).

2. BASE*: As BASE but now with pairs ordered (Section 3.4).
3. DYNE: Pairs are unordered, but pair are updated (hence dynamic) using the explo-

ration algorithm throughout training (Section 3.1).
4. DYNE*: As DYNE but now with pairs ordered (Section 3.4).
5. DYNEE: Pairs are unordered, and are updated (hence dynamic) using the explore

and exploit algorithm according to some α ratio (Section 3.3).
6. DYNEE*: As DYNEE but now with pairs ordered (Section 3.4).

We use the ’*’ postfix to indicate complexity-based ordering over those that have no
ordering. We evaluate these algorithms using two different criteria. First, we perform
a one-tail t-test to establish statistical significance at a confidence level of 95% on
classification accuracy from network output on image classification, sentiment analysis
and HAR tasks. Secondly, we examine each algorithm’s capacity to learn over time by
analysing averaged accuracy on each test set for increasing number of training epochs.

4.1 Datasets

Four datasets were used in our evaluation: MNIST, LMRD, SelfBACK-Thigh and
SelfBACK-Wrist. MNIST has been used extensively for image classification [7, 6, 10]
and the Large Movie Review Dataset is an extension of the popular movie review
dataset [11], whilst SelfBACK is a recent dataset used for Human Activity Recogni-
tion (HAR) focused on muscular skeletal disorders [15].

Image Dataset The MNIST dataset is comprised of 70,000 images of handwritten
single-digit numbers which are 28× 28 pixels and have one of ten classes (the numbers
zero to nine). We split this into 60,000 training and 10,000 test images. We allocated a
budget of 1% of the full training set (600 images) and tested on the full test set.



Sentiment Analysis Dataset The Large Movie Review Dataset (LMRD) is comprised
of 50,000 labeled film reviews scraped from the Internet Movie Database (IMDB) and
evenly split between training and test sets [11]. These reviews are labeled as either
’positive’ or ’negative’ to create a binary classification task. Though the dataset contains
a significant number of unlabeled reviews, we did not use these in our experiments.

We adopted a budget of 10% of the training set (2,500 reviews) and tested against
the full test set (25,000). Reviews were preprocessed before submission to the network
using Word2Vec [13] and averaging the word vectors to form a document vector [8].
This resulted in a single movie review being represented as a vector of 300 features.

HAR Datasets The SelfBACK dataset features time series data collected from 34 users
performing different activities over a short period of time. Data was collected by mount-
ing a tri-axial accelerometer on the thigh and right-hand wrist of participants at a sam-
pling rate of 100Hz [15]. For our experiments, we remove any users that have less than
60 seconds of recorded data per activity, leaving 24 users. Data was split into 3 second
windows, with 900 features per example.

Our goal in the SelfBACK dataset is to classify user activity based on minimal in-
formation pertaining to them. This is important for personalised HAR model generation
to minimise demand on the user for labels [16]. Data is split into training and test sets
within each user so that our training set consists of 4 windows (12 seconds) of data for
each activity and the test set is the remaining data.

4.2 Experimental Setup

In MNIST and LMRD we performed our evaluation using a 10-fold cross-validation
design, while in SelfBACK we divide each user into their own train and test set and
average the results from all users. Each algorithm is therefore compared based upon the
same initial sample as taken from the dataset, though the way in which this is exploited
to form training pairs differ between algorithms.

4.3 Network Architecture

For the MNIST and LMRD datasets we used a 3-layer perceptron with a batch size of
16 for each of our sub-networks. We then trained these architectures for 100 epochs.
For the SelfBACK dataset, we used a 5-layer convolutional network (as in [15]) with
a batch size of 8 for each sub-network. This architecture was trained for 50 epochs to
prevent overfitting on the smaller dataset. All architectures used ReLU activations and
computations for test classification adopt Euclidean distance on feature embeddings at
the similarity layer. Table 1 provides information on network hyperparameters.

We found that increasing regularization by decreasing batch size improves conver-
gence speed on all methods, likely due to the limited number of examples. Decreasing
the batch size gives DYNEE and DYNEE* flexibility to extract a relevant exploitation
set, and offers more opportunity to update network weights appropriately.



Table 1: Summary of relevant network hyperparameters

Sub-network (layers) Total epochs Exploitation ratio α

MNIST MLP (3 Dense) 100 |P |/6

LMRD MLP (3 Dense) 100 |P |/10

SelfBACK Convolutional (3 Conv., 2 Dense) 50 |P |/4

4.4 Ratio of Exploration to Exploitation

We experimented to understand the impact of the ratio of exploration to exploitation, α,
for each dataset. As identified above, over-exploiting a given dataset can cause overfit-
ting and have negative effects on accuracy. We therefore sampled various α to determine
the optimum for each dataset. We observed that high levels of exploitation are beneficial
at the start of training, but cause overfitting towards the end. Intuitively, this suggests
that exploitation would function optimally as a decay parameter - something we will
explore in future work.

We established optimal α for each dataset: |P |/6 for MNIST, |P |/10 for LMRD
and |P |/4 for both SelfBACK datasets. This means that for DYNEE and DYNEE*, at
every training cycle, this proportion of the pairs were generated based upon exploiting
knowledge from the previous training iterations and the rest of the pairs were sampled
according to the explore strategy. We repeat the pair selection process every five epochs
for DYNE, DYNE*, DYNEE and DYNEE*.

5 Results

Our results demonstrate that using a pairing strategy will improve network performance
on all of the investigated datasets (see Table 2 and Figure 2). On every dataset using
either DYNE or DYNEE boasts faster convergence and greater accuracy than the BASE
method. In one instance (MNIST), DYNEE achieves a statistically significant higher
optima than any other method. Though complexity-based ordering offers mixed results,
we observe that an ordered method (DYNE*) ultimately achieves the greatest accuracy
on three of the four compared datasets. The results for each dataset appear in Table 2
with bold font used to indicate maximum accuracy for a dataset and asterisks indicating
statistical significance with 0.95 confidence.

5.1 Dynamic Informed Pair Selection

On MNIST, we can distinguish that both DYNEE and DYNE begin to outperform BASE
from as little as 15 and 20 epochs respectively. The difference between DYNEE and
BASE is statistically significant from epoch 40 onward. In LMRD we observe that
DYNE and DYNEE reach superior performance to that of BASE with only 60% and 70%
of the training epochs required. Similarly, DYNE and DYNEE demonstrate faster con-
vergence to optima on the SelfBACK-Wrist dataset, though not on SelfBACK-Thigh.



Table 2: Summary of algorithm performance throughout training

Our Contributions

Training BASE BASE* DYNE DYNE* DYNEE DYNEE*

MNIST 25% 57.50 29.19 61.05 27.04 67.00 29.37
50% 68.24 52.96 75.16 59.24 81.93* 69.09
75% 72.03 63.47 80.76 72.78 86.78* 83.12
100% 75.51 70.74 84.53 82.21 90.05* 88.92

LMRD 25% 50.28 50.00 50.00 50.18 50.01 50.16
50% 72.35 78.11 76.87 81.08* 73.08 79.52
75% 83.66 83.56 84.36 84.55 84.10 84.54
100% 83.95 83.32 84.30 84.26 84.13 84.13

SB - Wrist 20% 31.70 40.92* 31.19 28.62 33.38 31.18
50% 58.25 64.82* 62.37 60.46 61.54 57.46
70% 62.39 67.07 66.02 64.58 66.07 65.61
100% 67.32 68.71 68.72 70.49 69.22 67.43

SB - Thigh 20% 40.79 44.46 43.12 43.76 45.31 46.03
50% 60.91 61.24 60.78 61.30 58.11 58.24
70% 66.31 66.84 67.59 69.37 65.71 63.71
100% 71.81 73.89 73.46 75.20 74.39 70.63

On both SelfBACK datasets, the proposed methods ultimately converge to a higher op-
tima than BASE can achieve.

These results suggest that the informed explorative and exploitative pair selection
strategies present greater insight into the space than can be achieved through the static
pairing method of the baseline. They support our hypothesis that a suitable training
strategy can improve the performance of SNNs.

5.2 Heuristic Ordering for Self-Paced Learning

Ordering proves most effective in the LMRD dataset, where all ordered methods sig-
nificantly outperform their unordered counterparts. Both DYNE* and DYNEE* reach
new optima at 65% and 70% of the training epochs required for BASE to converge. In
MNIST, all ordered methods performed comparably worse than their unordered coun-
terparts. However, only BASE* underperforms the baseline and both DYNEE* and
DYNE* outperform BASE from epochs 55 and 80 onwards respectively. On SelfBACK-
Wrist, BASE* demonstrates statistically significant improvements over the BASE method
until epoch 30 and (though DYNE* obtains the best accuracy), converges faster than
other methods. On SelfBACK-Thigh, DYNE* consistently outperforms the BASE method
from very early in training and ultimately achives a much superior accuracy.
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Fig. 2: Results on the MNIST, LMRD and SelfBACK datasets



We take these results as evidence that curriculum learning is effective at dealing
with noisy or complex datasets. MNIST has non-complex class boundaries, suggesting
that ordering will be less effective. However, both SelfBACK datasets have considerable
noise, specifically the wrist dataset, as accelerometers on wrist lead to greater degrees of
freedom in movement and hence is more noisy than the thigh. Additionally we observe
that ordering performs well on LMRD, which is a sentiment analysis dataset. Different
people can have different thresholds for enjoyment and different preferences, meaning
they can describe the exact same event with different sentiments. This means there can
be considerable complexity at the boundary between positive and negative classes.

In summary, the results demonstrate that a pair selection strategy will improve the
performance of an SNN. In every tested dataset, the use of a non-ordered pairing strat-
egy offers faster convergence and enables greater accuracy to be achieved, though se-
lecting the most effective strategy depends on the task. In one domain DYNEE even
allows the SNN architecture to significantly outperform the baseline in terms of clas-
sification accuracy. Furthermore, although ordering is not effective in every scenario,
incorporating a sample ordering based upon neighbourhood-complexity analysis can
speed up convergence on noisy or complex datasets. Specifically, DYNE* operates very
effectively in these situations. This is likely because it is performing an ordered explo-
ration of the feature space, which allows it to gradually improve its knowledge to better
deal with complex areas.

6 Conclusions and Future Work

In conclusion, we have demonstrated the need for a reasoned training strategy for SNNs.
We have presented four contributions towards addressing this need, highlighting the im-
portance of a pair selection strategy and noting both an explorative algorithm, explore-
exploit algorithm and an ordering method for pairs and have shown on four different
datasets that each is suitable in different scenarios. Namely, informed pair selection of-
fers a greater view on the problem space when needed and ordering allows a network
to develop a structured training regime which is robust to dataset complexity. Thus we
conclude that use of an appropriate pairing strategy will improve network performance,
though selecting an optimal strategy is task dependant.

In future work, we aim to further optimise elements of training. We also plan to pur-
sue a method to extend the benefits of curriculum learning further throughout training.
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