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6.1 Introduction and definitions 

Anthropometry is defined as “The scientific procedures and processes of acquiring surface 

anatomical dimensional measurements such as lengths, breadths, girths and skinfolds of the 

human body by means of specialist equipment” (Stewart, 2010).  This approach has altered 

little if at all over the last hundred years, and even in ancient Greece, we hear of systematic 

body measurement in order to produce statues which were appropriately sized to real 

individuals.  Sculptors would have appreciated that this approach demands painstaking detail, 

adherence to best practice and diligence in reducing errors, and few scientists would argue 

with this.  Anthropometry sits within the field of kinanthropometry - “The academic 

discipline which involves the use of anthropometric measures in relation to other scientific 

parameters and/or thematic areas such as human movement, physiology or applied health 

sciences” (Stewart, 2010). However, one of the issues for kinanthropometry, particularly in 

its applications for physical activity and sport, is that the tools have not advanced in parallel 

with those of other disciplines such as sports physiology and biomechanics. Researchers, 

therefore, may be persuaded to think that its relevance is reducing in a contemporary research 

context. Indeed, for publications in two main research journals, the prevalence of 

anthropometry as central to research (estimated from key word searches using similar terms) 

appears to have peaked a generation ago (Olds, 2004).  But perhaps kinanthropometry is on 

the verge of a renaissance for two reasons.  Firstly, the field has now largely embraced tightly 

defined standard procedures and error control, the lack of which previously diminished its 
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ability to convince a research community becoming accustomed to more sophisticated 

methods.  Secondly, recent advances in digital anthropometry, using 3D body scanning, 

enable an unprecedented range of new measurement possibilities. These new measures can 

augment traditional anthropometry, and the combination of manual and digital anthropometry 

may allow new research questions to be addressed. 

 

6.2 Overview of the physical bases of measurement 

6.2.1  Skinfolds  

The skinfold is a manually held, compressed layer of subcutaneous adipose tissue plus skin.  

Most calipers seek to provide a constant compressive force of 10 g●mm-2 at all jaw opening 

distances. While validated against other measurements for fat quantity, several limitations 

have come to light from research evidence which are worthy of note.  Firstly, adipose tissue 

and the fat within it are compressible with a small applied force, and the compressibility 

curve of skinfolds varies both within and between individuals.  This underscores the 

importance of rigour when locating skinfold sites (Hume and Marfell-Jones, 2008), caliper 

orientation and other aspects of technique (Stewart et al., 2011), and the time of compression 

(Himes, Roche and Siervogel, 1979).  Different quantities of connective tissue structures 

embed the adipose tissue, meaning that skinfolds of a given magnitude represent a highly 

variable quantity of fat between individuals.   

6.2.2  Girths  

Girths represent curvilinear distances around a body segment.  As with skinfolds, their 

measured value will differ markedly if the measurement is made in a slightly different 

location (Daniell, Olds and Tomkinson, 2010).  Referred to as circumferences, they are not 

strictly circular but rather, irregular and at best elliptical, with the extent of non-circularity 

varying regionally and by overall body size.  Empirical logic suggests girths may also be 
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affected by hydration status, if significant water loss occurs from fluid compartments, and 

other circulatory responses do not compensate. In the case of thigh girth, for example, 

glycogen together with its bound water molecules can increase the girth value, if exercise or 

dietary intervention has perturbed levels prior to measurement.  Metal tapes used to measure 

girths should not compress the skin surface, and close inspection of the girth should reveal no 

indentation of the skin (Stewart et al., 2011).  In practice this is straightforward if the 

anthropometrist’s fingers are used to pin the tape against the skin surface without 

compressing it. Girths should also span concavities – such as the lower back when measuring 

the waist.  This does make girths measured by tape shorter than the equivalent surface 

distance –this may be an important distinction with three-dimensional (3D) scanning which 

generally identifies the surface distance.  Tapes which are made of cloth may stretch and 

generally lack sufficient rigidity for easy measurement, and all tapes should have a stub 

beyond the zero value which can be held by the measurer.  

6.2.3 Segment lengths, skeletal breadths and anatomical heights 

Linear distances between points on the body surface, or from the standing or sitting surface to 

key landmarks, provide valuable information of the body’s proportions.  The approach 

requires that landmarks can be located visually and in a systematic manner.  The majority of 

landmarks are identified from the underlying skeletal structure, such as the anterior superior 

iliac spine (ASIS) and acromiale.  Others are identified from soft tissue structures, such as the 

omphalion (midpoint of the naval) and tragion (the notch structure in the outer ear).  Bony 

landmarks require palpation and it is paramount that these are marked once the skin has 

returned to its ‘resting orientation’.  In addition, tight clothing being moved to facilitate the 

marking may displace the skin surface by several centimetres, so care is required to ensure 

such marks are made appropriately.  Segment lengths and heights are usually measured using 

a segmometer, large sliding caliper or traditional rod anthropometer. Anatomical heights are 
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best measured to an anthropometric box, rather than the floor, for ease of measurement.  Care 

is required when placing the instrument on the landmarks to ensure correct alignment, to 

check for slippage and to avoid compression of the skin.  For skeletal breadths, compression 

of the overlying tissue is required, demanding a firm grip so the soft tissue contributes only 

minimally to the recorded measure.  This means traditional anthropometric measurements are 

not compatible with 3D scanning, in which breathing and postural artefacts can affect some 

measurements. 

6.2.4. Volumes and areas 

Three dimensional photonic scanning creates a digital shell of the body which can be 

interrogated for such measurements as surface distance, cross sectional area, surface area, and 

segmental and total volumes.  Certain mathematical assumptions are necessary with the 

different approaches to geometric calculations for body shape.  Methods for acquiring scans 

vary, but typical ‘booth’ scanners have footprints to guide participants when orienting 

themselves appropriately.  With portable scanners, it is useful to capture a horizontal floor 

section which can be used to locate and rotate an “xyz positioning tool”, which can then 

describe all landmarks and subsequent measurements in a standardised way.  Identifying 

areas and segmental volumes vary by software options, with more primitive versions 

constraining sub-analyses to orthogonal axes.  More sophisticated software can depict the 

body at any angle by defining a slice plane based on a minimum of three points.  So for 

example, to replicate the waist girth or area, a landmark will be placed onto the torso and 

positioned to comply with the required waist protocol (Stewart et al., 2010).  With more 

advanced software, tilting the waist plane is possible so that it could be made perpendicular to 

the torso, and thus comply with the minimum waist as identified by the International Society 

for the Advancement of Kinanthropometry (ISAK). 
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6.3 Seminal contributions to the field of kinanthropometry 

6.3.1 Matiegka’s anatomical prediction of body composition 

The first systematic body composition study was in 1921, when Jindrich Matiegka developed 

a validated method of quantifying bone, muscle and adipose tissue, together with residual 

mass using a geometric anthropometric approach (Matiegka, 1921). He applied this to 

quantify tissue components amongst different professional groups including barbers, 

blacksmiths, hairdressers and gymnastics instructors. Although his imperative was to 

examine the capacity of the body for physical work, which was an important consideration in 

the aftermath of World War I, Matiegka’s approach spearheaded many other research efforts 

in body composition using anthropometry.  

In the 1980s our understanding of the anatomical model championed by Matiegka was 

considerably advanced with the advent of the Brussels Cadaver Study. This project involved 

full anatomical dissection of 25 cadavers, with the separate tissue compartments fully 

dissected and weighed. The magnitude of this effort was enormous and perhaps only truly 

appreciated by those who have undertaken whole body dissections.  The multiple 

anthropometric measurements made on the cadavers greatly enhanced our understanding of 

the nature of the skinfold (Clarys, Martin, Drinkwater and Marfell-Jones, 1987) and enabled 

the estimation of muscle mass (Martin, Spenst, Drinkwater and Clarys, 1990) and skeletal 

mass (Drinkwater and Ross, 1980). 

6.3.2 Lindsay Carter -  somatotype, critical skinfold zone and more 

J.E. Lindsay Carter is perhaps best recognised as the protagonist of the Health-Carter 

somatotype method in 1967.This method effectively brought the physique analysis schema, 

collectively referred to as “the somatotype”, into a convincing and utilitarian process which 

rated physique according to degrees of adiposity, musculoskeletal robustness and linearity.  

This concept was to prove more popular than any before or since, partly because it enabled 
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anthropometrists with a basic training in 10 measurements to become somatotype raters.  

Later, the somatotype concept was extended to provide reference ranges for a large number 

of different sporting groups, children, the elderly and those of varying ethnicity (Carter and 

Heath, 1990).   

During the Olympic Games in Mexico City in 1968 and Montreal in 1976, Dr Carter was 

instrumental in conducting systematic surveys of the Olympic athletes, reporting somatotypes 

and a range of other anatomical measurements.  These landmark surveys would become some 

of the largest measurement endeavours ever undertaken, assessing nearly 2000 individuals in 

total.  The breadth and depth of this athletic sample was unprecedented and is not likely to be 

repeated, due to greater logistical and security challenges facing measurers at public events.  

Dr Carter’s data led him to espouse a ‘critical skinfold zone’, which identified the optimal 

and critical levels of skinfolds observed in athletes.  This he related, subsequently, to a simple 

biomechanical model, firstly by suggesting that the human body comprises “productive 

mass” which contributes to movement (muscles, bone, nerve tissue, blood and essential 

regulatory organs) and “ballast” (excess fat) which adds to the cost of movement (Carter, 

1985).  Such an approach, while differing from contemporary understanding of adipose tissue 

as an endocrine organ (Kershaw and Flier, 2004), was based on a very large number of 

observations which have been replicated by others since, and represents the biomechanical 

imperatives which continue to inform conditioning approaches in sport.  

6.3.3 The development of validated prediction equations for body composition 

Over 100 prediction equations exist for adults, and specific subgroups by ethnicity, age, 

athletic status or medical condition. These use skinfold values and are modelled (e.g. using 

linear, logarithmic or quadratic equations) to predict fat as determined by another method, 

which has historically been underwater weighing.  Some of the early generalised equations 

from the 1970s had very limited accuracy (standard error of the estimate ~ 5% fat, as 
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determined by underwater weighing). In other words, if a person was measured at 15% fat, 

then the measurer could only be 68% confident of the true value falling between 10% and 

20% fat, or 95% confident of the actual value falling between 5% and 25% fat.  Furthermore, 

this fails to consider the possibility that the reference method itself may not be accurate, as 

Adams et al. (1982) demonstrated for underwater weighing in Canadian football players.   

Sinning et al. (1985) revealed that the vast majority of generalised fat prediction equations 

were of very limited use for assessing athletes because they have less fat and distribute it 

differently from non-athletes. Furthermore, the reference methods often required 

unsupportable assumptions such as the constant density of the fat-free mass (Martin et al., 

1986).  Most equations in common use during the latter part of the 20th Century were of 

unacceptable accuracy for use with athletes, except for equations by Jackson and Pollock 

(1978) and Jackson et al. (1980). Crucially, these equations were validated as part of the 

original study, unlike those of Durnin and Womersley (1974) which by comparison, 

systematically overestimated fatness.  This may be due, in part, to differences in the precise 

technique - descriptions of which left room for variable interpretation.  In addition, Lohman 

(1992) observed that systematic differences of 3-4% fat were obtained using different types 

of caliper.   

Lohman had previously developed a robust procedure for cross validation of equations 

(Lohman, 1992).  This outlined several key principles including reporting standard errors of 

the estimate (SEE), total error (TE) = [∑(reference method fat mass - predicted fat mass)2/n], 

where n is the number of participants, and fitting curvilinear lines to data. Perhaps more than 

any other individual, Lohman shaped the progress of kinanthropometry by this approach, 

together with steps towards standardisation of technique, which led to the Anthropometric 

Standardization Reference Manual (Lohman, Roche and Martorell, 1988).  He also 

recognised that too many researchers were developing new equations, many of which were 
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no better than existing ones.  As a result, Lohman recommended combining data from 

different studies, altering intercepts from existing equations and only publishing new 

equations if they outperformed existing ones (Lohman, 1992).   

One study which did fulfil these criteria was that of Stewart and Hannan (2000) who 

predicted fat mass and fat-free mass from skinfolds in 106 male athletes from a wide variety 

of sports. The authors used dual X-ray absorptiometry (DXA) as the reference method and 

achieved a standard error of the estimate of 1.7 kg.  This study utilised a stepwise regression 

method to select the optimal skinfolds from a total of 19 sites across different body regions, 

and concluded that appropriate skinfold selection is a crucial element in the accuracy of a 

prediction equation for a specific population. Using a random sub-sample of 82 to develop 

the equation and the remaining 24 to validate it, the following equation was produced:  

fat mass (g) = 331.5(abdominal) + 356.2(thigh) + 111.9M - 9108   

(R2=0.81; SEE=1732 g; TE=2.9%, P<0.001), where M is body mass in kg; skinfolds in mm. 

With increased heterogeneity in a sample, the greater the scope for generalisation of an 

equation, but this leads to poorer accuracy (i.e. a greater standard error). Researchers need to 

balance the capability for an equation to apply to other groups, with a low error. However, 

equations with a low SEE may still not be effective for fat prediction; it is also important to 

consider total error (TE).   

More recently, researchers have had access to four-compartment reference methods which 

separately divide the fat-free mass into bone mineral, water and other tissue.  These 

components represent the best available criterion against which anthropometric predictions 

can be made, and contribute more valid equations for use in kinanthropometry.  However, the 

costs for such investigations may limit the likelihood of them being repeated elsewhere.  One 

example of excellent practice is the work of Evans et al. (2005) who studied collegiate 

athletes of both sexes and mixed ethnicity.  Their resulting equation thus had separate gender 
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and ethnicity terms in the regression, and yielded a prediction of body fat with a total error of 

3.8% - which is lower than the equations from Jackson and Pollock (1978) and Jackson et al. 

(1980) developed using underwater weighing alone.  Interestingly, the final regression that 

used only three skinfolds (abdominal, thigh and triceps) had comparable accuracy as the one 

involving seven sites.   

6.3.4. The standardisation of anthropometry and the emergence of International Society 

for the Advancement of Kinanthropometry (ISAK) 

Historically, routine anthropometric measurements have been employed in the fields of 

nutrition, medicine, sport and ergonomics.  Their use in diverse academic disciplines 

throughout multiple countries has led inevitably to different approaches, nomenclature and 

practices, which represented a barrier to progress in the fields of application. 

ISAK was founded in Glasgow, UK at a conference in 1986 from interested practitioners in 

the field, and members of the previous international working group in kinanthropometry, 

seeking to standardise practice.  In the same year, a consensus conference in Virginia, USA 

sought to do the same.  Both were motivated by the same drivers – the need for better 

standardisation in measurement description, protocols and practice, and accuracy.  Both were 

ultimately successful in achieving these aims, although their approaches differed.  In USA 

during the 1980s the strong research base for clinical body composition covered a range of 

technologies, and anthropometry took its place alongside them. The standardisation manual 

(Lohman et al., 1988) was a culmination of previous research and was, therefore, less didactic 

and constraining than the ISAK scheme which was influenced more by the disciplines of 

sport, exercise science and human biology.  By contrast, ISAK’s approach was to introduce a 

teaching and practice structure, which was subsequently manifest in a new qualifications 

scheme in 1996. It was heavily influenced by practitioners at the Australian Institute of Sport, 

with the first steps towards its definitive manual being chapter 2 of the Anthropometrica book 
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(Norton and Olds, 1996) which systematically detailed protocols and applications of 

anthropometric measures in an accessible and unprecedented way.  Comparing these two 

approaches reveals significant differences in perspective.  The Lohman et al. (1988) manual 

provides a rich literature, strong evidence base, and relevant clinical detail, for instance in the 

different contribution of various superficial fat depots to health risk (p55).  However, it 

suggests that the location of skinfold sites need not be marked on the participant as a general 

rule, making exceptions for inter-caliper differences, and the combination of skinfolds with 

girths to estimate limb cross sectional areas.  This contrasts with the strict adherence to the 

protocol for marking landmarks using the ISAK method for skinfolds, which considers it 

fundamental to anthropometric measurement.  Moreover, the actual marking itself defines the 

orientation and precise alignment of the index finder prior to the fold being raised.   

Perhaps the main reason for increased popularity of the ISAK approach is not its stance on 

land marks, but the adoption of a 4-level hierarchy of practitioner licencing, based on 

competence assessed by practical exam.  Crucially, ISAK requires that all measurers be 

licenced, even the examiners, who are required to examine one another’s measurements. 

Such a comparison requires all measurers to pass error control targets in terms of 

reproducibility in a standardised setting.  This includes inter-measurer as well as intra-

measurer reliability, and represents a great advance for the methodology. While other 

schemes might be able to demonstrate reproducibility within a single laboratory, the ISAK 

protocols provide an indication of the comparability with others from various laboratory 

settings.  Indeed, where technique, instruments and protocols vary, there will inevitably be 

considerable inter-laboratory variability; discussion of which has been conspicuously absent 

from the publication record.  In contrast, adhering rigidly to the same protocol and 

quantifying error enables data to be pooled between laboratories with more confidence, and 

reference ranges to be constructed.  ISAK has also championed the adoption of using raw 
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data scores as opposed to conversion into % fat values, made possible only by strict protocol 

definitions and quality assurance of individual measures.  In addition, the need for 

practitioners to have a measurement licence has fostered the automatic re-skilling of 

practitioners, and enabled a forum for scrutiny and practice of protocols and technique.  Such 

scrutiny and feedback resulted in small but significant changes to the teaching manual, now 

in its 3rd revision (Stewart et al., 2011). This manual has been translated into several 

languages for use across the globe.  Even in the USA where body composition research has 

been strongest, and the Lohman et al. (1988) manual has received widespread acclaim and 

usage, ISAK as a concept is being adopted, albeit more slowly than elsewhere in the world.  

The ISAK approach is not the only way of performing manual anthropometric measurements, 

but it continues to flourish, and is used more than any other protocol with elite athletes 

(Meyer et al., 2013). 

6.3.5 The advent of three dimensional photonic scanning (3DPS) 

The advent of 3D photonic scanning has enriched the tools available for describing the body.  

Referred to in some circles as ‘digital anthropometry’, 3DPS has made a vast contribution to 

body measurement. It has the capability for measurements which include total volume, 

segmental volume, curved surface distances, direct distances, perpendicular planar distances, 

surface areas and cross sectional areas.  Not only have these become valuable quantities in 

their own right, they have informed novel approaches to quantifying the body that are not 

possible with traditional anthropometry. The term ‘scanning’ is used by medicine and 

industry to acquire a vast array of measurements.  In humans, 3DPS involves approaches to 

acquiring the body shape which most commonly include structured light, class 1 lasers and 

more recently, depth cameras. 

Structured light is projected onto the body to produce patterns distorted by the surface 

contour.  Similarly, class 1 (eye-safe) lasers can project onto the body and for both, digital 
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cameras placed around the body detect the deformed light stripe against a 3D reference grid, 

and individual points are calculated via triangulation.  More complex approaches, such as 

stereo photogrammetry and others, are necessary when using handheld scanners which are 

not constrained to horizontal array beams.  Depth cameras, by contrast, acquire a single 

image and project an infra-red speckle pattern onto the participant, while the sensor captures 

its deformation. This deformation, together with accurate distance sensing and RGB colour 

enable a 3D image to be acquired.  For single depth cameras, software approaches include 

libraries of images to estimate the ‘blind side’ data obscured from view.  As yet, depth 

cameras lack the resolution and accuracy of structured light and laser scanners, although the 

technology is rapidly developing. 

Once the primary measurement data are obtained in a point cloud, subsequent processing 

involving hole-filling and smoothing is done either manually or automatically via system 

software.  In the case of hand held scanners, images require additional steps to register 

separate scan fragments, and then fusion into a single object.  Analysis can be performed 

either by the user identifying specific measurement locations, or from locations which are 

automatically detected from the shape itself.  These ‘primary’ landmarks frequently include 

the vertex, axilla and crotch and may be used to generate secondary landmarks where specific 

measurements are made.  Landmarks may also be applied via affixed reflective dots or 

triangles on the skin surface. Alternatively, landmarks may be created digitally once the 3D 

scan has been rendered into an object file. Increasingly, computing approaches can derive 

landmarks automatically from edge detection or shape curvature algorithms with minimum 

user involvement.  Lastly, there is also a case for using visible landmarks, such as the Adam’s 

apple, axillary fold and naval, together with maxima and minima positions to describe the 

body.  Some measurements are required to be made when posturally constrained, for example 

in disabled participants, or for ergonomics applications. Maximum and minimum values can 
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contribute to our knowledge of measurement variability in humans, for example at the waist 

(Stewart et al., 2010).   

Greater resolution of 3DPS systems means increasingly dense meshes to describe the body 

shape, at the expense of increasing file size.  For example, early fixed position industrial 

scanners developed for the clothing industry towards the end of the 1990s acquired about 

200,000 points, and subsequent refinement of scanners increased this three or four-fold.  A 

typical adult scan from a Hamamatsu BLS 9036 (Hamamatsu Photonics, Hamamatsu, Japan) 

would have ~700,000 vertices and a file size of 13MB. In contrast, a full body scan acquired 

by the portable Artec L scanner (Artec Group, Luxembourg) would have up to 20 million 

vertices with a corresponding file size of 500MB.   

In conventional anthropometry, there have been attempts to standardise practice for well over 

a century, illustrating a genealogy of protocols used in sports science, clothing, ergonomics 

and health (Kupke and Olds, 2008). Their work continues this process into the realm of 3D 

scanning, and identifies the need for generalised language, dimensional syntax and the means 

to describe anthropometric functions.  A project-specific land marking manual (Olds et al., 

2004) provides better definitions and more information than other standards (BSI 2010; 

Robinette et al., 2002), yet the disparity in what constitutes a standard definition underscores 

the diversity of approach in this new and expanding field.  Efforts to standardise 3DPS are 

still limited by the relatively few scanning facilities for research, together with the rapid 

advancement of this technology.  However, there is a burgeoning interest in professional 

meetings for 3DPS and, with the establishment of professional networks, the steps to 

formalise and standardise practice are imminent. 

Total body volume enables the calculation of body density, and thus an estimate of %fat via 

the 2-compartment method.  Important validation work was carried out by Wang et al. 

(2006), with a C9036 laser scanner (Hamamatsu Photonics, Hamamatsu, Japan) compared to 
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underwater weighing and anthropometry, using both mannequin and a human sample with a 

wide age range (6-83 y). Significantly larger body volumes with scanning were found 

compared with underwater weighing. This may be attributable to the difficulty in exhaling 

completely while standing upright in the scanning pose, the variable density of the fat-free 

mass in the sample, or the possibility that excess body hair causes the scanner to identify a 

false surface in some instances.  The use of the mannequin to compare manual girths and 

those assessed by 3DPS revealed that manual anthropometry yielded mean values which were 

0.87% greater at the waist and 0.55% greater at the hip, but 0.66% lower at the thigh.  This 

difference is within the measurement error anticipated from experienced anthropometrists and 

may reflect minor orientation or positional differences in measurement. This should give 

confidence in the capability of 3DPS to extract valid measurements.  However, like 

conventional anthropometry, hip girths and female chest girths will always be made over 

clothing, and the use of suitable form-fitting apparel is essential, provided it does not 

compress the body shape appreciably.   

While 3D scanning will never be able to replace conventional skinfolds and skeletal breadths 

(due to the compression required to locate the bony landmarks), it offers a range of 

measurement possibilities which augment and enhance conventional anthropometry.  Firstly, 

there is the capability for retrospective measurement of a scan after a participant has left the 

laboratory, which can be subsequently interrogated for data – an approach used in tele-

medicine in remote regions of the world for medical data and investigations.  Secondly, there 

is the opportunity for scan data to be sent elsewhere for analysis, using bespoke software for 

specialist purposes.  Thirdly, there is the opportunity to create a template based approach for 

locating other measurements (e.g. skinfolds or ultrasound fat measurements) in xyz space in a 

composite model.  Lastly, 3DPS allows the possibility of visualisation, for instance in body 

image assessment or somatotyping (Olds et al., 2013), which may extend to novel interfaces 



16 
 

with interactive capabilities, rapid prototyping and the construction of figurines to depict 

individuals or averaged shapes of groups.  Such exciting new terrain will undoubtedly extend 

the applications of anthropometry into uncharted territory.   

6.3.6 The International Olympic Committee (IOC) ad hoc working group on body 

composition, health and performance 

This working party met from 2010-2013 to address concerns related to the health and 

performance of athletes who attempt to modify their body composition using extreme and 

sometimes dangerous methods. This problem was of special concern for the weight sensitive 

sports; where athletes are required to make a weight category, or are judged on aesthetic 

criteria, or where body composition markedly affects performance. The group reviewed 

literature, conducted research and surveyed scientists, coaches and health professionals 

before disseminating their findings. Specifically, the aims and resulting outputs of this 

working party were as follows. 

• To identify medical problems due to unhealthy practices in sport leading to extremes 

of underweight, weight reduction and dehydration – see Sundgot-Borgen et al. (2013). 

• To identify research needs in body composition, health and performance – see 

Ackland et al. (2012); Meyer et al. (2013); Müller et al. (2013a,b); Müller et al. (2016). 

• To identify current practice for body composition assessment globally – see Meyer et 

al. (2013). 

• To develop suggestions for practical strategies capable of solving body composition 

and underweight problems in sports – see Müller et al. (2006). 

• To establish, if practicable, an optimum body composition and/or minimum weight 

values for healthy competition in sports – see Sundgot-Borgen et al. (2013). 
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One of the important advances led by this group has been the development of an accurate and 

repeatable method for sampling the subcutaneous adipose tissue layer using ultrasound 

(Müller et al.,2016). The standard methodology has been published, together with data on 

accuracy and repeatability, so now the group is completing a multicentre trial to assess inter- 

and intra-tester reliability and to compare ultrasound results with DXA, skinfolds and a 

multicomponent model.  

The ultrasound technique provides an accurate measure of the depth of the uncompressed 

subcutaneous adipose tissue (SAT) at several sites on the body surface. For several 

participants with extremely low fat content, measured during the multi-centre trial, revealed 

results which challenged conventional understanding relating to the fat content of skinfolds.  

One Caucasian athlete (soccer) with a skinfold total across the 8 ISAK sites of 31.9 mm, had 

an uncompressed total fat depth of just 6.0 mm – only 19% of the skinfold total.  One Afro-

Caribbean athlete (track and field) whose skinfold total was 36.9 mm, had just 3.8 mm of 

total fat depth – only 10% of the skinfold total.  Strikingly, significant connective tissue was 

apparent in the images of both, but more so in the track and field athlete.  Both participants 

were apparently healthy and hydrated at the time of measurement.  While these results 

require further replication in other centres, they challenge the concept of a minimum skinfold 

total for a certain amount of fatness in athletes, and cast doubt on the value of skinfolds to 

identify fat in extremely lean individuals.   

6.4  Error control in anthropometry 

Error in anthropometric measurement is inevitable.  It relates both to the acquisition of the 

measurement, where equipment calibration, site location and technique are important, as well 

as the biological error, more correctly termed ‘biovariability’, in which the true value changes 

over time.  Biovariability relates to diurnal variation, hydration levels, temperature and other 

metabolic processes. Errors associated with repeated measurements in anthropometry are 
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quantified by the use of repeated measurements on the same testing occasion. Clearly, if 

measurements are made in rapid succession the true value should not have changed. 

However, in the case of skinfolds, some residual compression may remain for up to 2 

minutes, resulting from realignment of fat lobules in adipose tissue, so re-testing within this 

time is discouraged.  When measuring a parameter for the second time, it is important that the 

measurer is blinded to the first measurement scores.  Quantification of the error is commonly 

achieved by the intra class correlation coefficient and the technical error of measurement 

statistics. 

The intra class correlation coefficient is a correlation between successive measurements made 

on the same subject, by a group of measurers.  Although popular, it is sensitive to the sample 

mean and alternatively, the technical error of measurement (TEM) statistic, either as a raw 

score (absolute) or expressed as a percentage of the mean value (relative) may be preferable. 

The absolute TEM is calculated by the expression   

 

Where Σd2 is the sum of squared differences between measurements and n is the number of 

participants measured. The absolute TEM is multiplied by 100 and divided by the ‘variable 

average value’ (overall mean of the means between measurements of each participant for the 

same site) to provide the relative TEM (%TEM) for each site of measurement (Perini, de 

Oliveira, Ornellas and de Oliveira, 2005). 

There exists a 1-2% diurnal variation in stature as a consequence of gravitational forces 

acting on compressible structures within the spine when upright (Tyrell, Reilly and Troup, 

1985).  Coupled with the body’s normal eating and bowel activity, this translates to the 

derived body mass index varying by about 1 kg●m-2 per day for a typical adult, but 

considerably more where dehydration is also an issue, such as for athletes of certain sports. 

Gravity also influences fluid components of the body in other less rigid tissues, such that 
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posture can influence body composition measurements. Cairn-Levy et al. (2008) 

demonstrated such a difference in standing and supine skinfold measures.  This may not 

come as a surprise, but should be considered in certain patient groups.  Extending the logic of 

this finding, we know remarkably little about how the plasticity of tissues under their own 

weight affect the comparability of standing and supine measurements using medical imaging, 

as well as anthropometry.  

6.5 Applications in health 

The categorisation of an individual’s health risk based on simple anthropometric 

measurements has been a ubiquitous front line for health surveillance in medicine for over 

half a century.  While this process assists in channelling resources to where they are most 

required, the candidate measures used to assess body size or relative weight also have the 

potential to mislead.  This is a direct result not only of the variability in body composition 

and body proportions, but the variable susceptibility for disease between different 

individuals.  Increasing use of clinical guidelines and pathways has forced different 

measurements to be made, by different individuals, at different stages of diagnostic and care 

pathways. Simple anthropometric measures such as stature, mass, waist and hip girth may 

engender a risk that the need for training and quality control is overlooked. 

It is surprising, therefore, that the diagnosis of health risk could be based on measurements 

made by individuals whose error control may not have been properly appraised. As discussed 

in section 6.4, precise anatomical location of the measurement site is pivotally important. 

Skinfolds show significant variation by distance at all eight standard sites, but the magnitude 

and direction of the differences varied by site location (Hume and Marfell-Jones, 2008).  

Girths, while not appearing to be critical at the forearm and calf, demonstrate critical 

variation at the more commonly used waist and hip locations and shows slightly greater 

variation in females than males (Daniell, Olds and Tomkinson, 2010). 
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Anthropometric measurements are capable of providing a full fractionation of body mass 

using an anatomical model based on cadaver dissection (Drinkwater and Ross, 1980).  This 

expanded the original work by Matiegka (1921) including the prediction of skeletal, muscle, 

fat and residual masses.  The methodology of subtracting skinfolds multiplied by pi from 

body segment girths was applied as part of this to generate a theoretical lean girth, and this 

approach was applied to predict falling in the elderly using calf girth (Stewart, Stewart and 

Reid, 2002).  However, for most health purposes, such detailed measurement is not 

warranted. Nevertheless, some anthropometric measurements have a valuable role to play in 

health surveillance for appropriate weight and metabolic risk.  In many cases, they may 

represent the first line of defence in flagging individuals for follow up or specific treatment – 

either for undernourishment or excessive fatness.  They represent convenient surrogates for 

health, at an appropriate level of technology and cost for screening initiatives. 

The question of which measures are the most appropriate is a matter of heated debate 

between physicians, epidemiologists and scientists.  A large array of direct measures, derived 

indices or composite indices are available from anthropometry, as illustrated in figure 6.1.  

*** figure 6.1 near here *** 

Total body fatness might be the logical objective to address the obesity research agenda, not 

least because obesity is defined as an excess of bodily fat.  However, there is neither clear 

linkage between fat levels and morbidity and mortality, nor recommended reference ranges of 

body fat which can be generalised with confidence (Gallagher et al., 2000).  The metric for 

defining overweight and obesity – the body mass index (mass●stature-2) does have such 

reference ranges, but is at odds with the fundamental definition of obesity, assuming excess 

weight equates to excess fat.  The BMI’s critics point to the mis-classification of muscular 

individuals as overweight or obese, and the challenges of applying different cut-off values to 

classify different groups, while its supporters will cite that at a population level, more 
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individuals are likely to be heavy due to an excess of fat than muscle. If the body fat content 

can be measured, or predicted from skinfolds, the fat-free and fat masses can be used 

independently to calculate separate indices.  Another improvement over BMI is the mass 

index (Ackland et al., 2012) which is based on the cormic index (sitting height●stature-1) and 

accounts for relative leg length in its scoring. This index is used in rule setting for ski length 

in Olympic ski jumping.  

If the focus is on metabolic health there is clear evidence that health risk relates more to 

centralised fat on the torso and abdomen, rather than total fat (Bjorntorp, 1997).  While logic 

would suggest the waist circumference should thus inform us more of health risk than would 

the body mass index, it us unable to distinguish between subcutaneous (SAT) and visceral 

(VAT) adipose tissue compartments.  Because visceral fat is an independent predictor of 

mortality (Kuk et al., 2006), for two individuals with a similar waist girth, the one with 

greater visceral fat is likely to have an increased health risk relative to the other. The ratio of 

VAT to SAT has been well correlated to cardiometabolic risk (Kaess et al., 2012).  However, 

expensive medical imaging technologies are required to identify visceral fat, usually 

involving equipment found only in hospital facilities.  However, attempts to predict visceral 

fat using anthropometry are valuable because they have the potential to use a low cost 

method to identify higher risk individuals, who may be targeted with appropriate resources 

and treatment.   

Relative girth (as opposed to relative weight) approaches include the well-established waist-

to-hip ratio (de Koning, et al., 2007) and also waist-to-stature ratio (Ho et al., 2003). While 

both can claim justification and are straightforward to measure, the question remains as to the 

likelihood of both numerator and denominator varying to a similar degree.  The magnitude of 

the waist varies by much more than is generally appreciated even in healthy adults - 

approaching 12 % variability in women, and 5% in men across the ‘waist zone’ between the 
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iliac crest and the 10th rib (Stewart et al., 2010).  This not only influences the measurement 

value but also the accuracy of predicting visceral fat (Bosy-Westphal et al., 2009). This is 

due, in part, to protocol differences, but also because the shape of the visceral compartment 

itself varies axially and is prone to under-sampling error (Thomas and Bell, 2003).  Waist 

girth has been shown to have a negative correlation with stature in a large UK sample (Wells, 

Treleaven and Cole, 2007), which is contrary to assumptions made in a range of 

anthropometric models that presume taller individuals have larger waists.  The reality of 

using geometric models with girths is that the contained tissue is predicted using a circular 

model.  In reality, the body is not circular in cross section, and the superficial fat depth is not 

uniform.  Challenges to circular models have been levelled using elliptical approaches 

validated against MRI and have shown them superior to circular models (He et al., 2004).  In 

this, both the total abdominal area, and the visceral compartment area showed very strong 

predictions from anthropometric models.  

Linear measures of skeletal dimensions have helped classify frame size and bodily 

proportions, but are of limited use in assessing health, because soft tissue is more influential.  

As such, the brachial, crural and androgyny indices may be more valuable in identifying 

suitability for sports performance than health concerns.  However, other linear dimensions are 

valuable in a health context. The sagittal abdominal diameter (SAD) at the waist section has 

received increasing attention over recent years.  Several studies have demonstrated its 

association with visceral fat, and its utility in predicting an adverse metabolic profile 

(Valsamakis et al., 2004), and incident diabetes (Pajunen et al., 2013).  While measurement 

standardisation is essential to compare results in different studies (due to postural and 

breathing artefacts), as a single measure, the SAD has much in its favour, either on its own, 

or in combination with other measurements.   
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Other combined measurements have been used to derive composite indices.  The conicity 

index (Valdez, 1991) includes height, weight and waist girth in a theoretical model of 

opposed truncated cones.  The body adiposity index (Bergman et al., 2011) uses body height 

raised to the power of 1.5 and hip circumference, but subsequent work showed it was no 

better than BMI, waist or hip girth at predicting fatness (Freedman et al., 2012). The body 

roundness index considers the eccentricity of the body’s height in relation to waist, and was 

successfully shown to relate to %fat and % visceral adipose tissue (Thomas et al., 2013).  

While this study appears very robust, its assumed circularity of the waist is a limitation, and 

the assumption that waist circumference should increase with stature is at odds with the 

aforementioned observations of Wells et al. (2007). Taken together, there are many 

anthropometric health indices to select from, all of which have their benefits and limitations.  

Although their applicability may be limited in some groups, especially athletes (Santos et al., 

2015), the emergence of newer indices especially those which predict VAT is likely to 

supplant the over-reliance on some of the more traditional indices which have been used 

ubiquitously in the past.  

6.6 Applications in sport   

Body composition is only one of many factors (physical, physiological, genetic and 

psychological) that will determine athletic performance. And while the focus for many 

coaches and support staff is on adiposity of their athletes, it is important to remember other 

aspects of body composition, namely the lean tissue components of muscle, bone, ligaments 

and tendon, also affect sport performance. Many authors have noted that successful athletes 

in certain sports fit closely to an optimal body composition. While weight-sensitive sports 

(Ackland et al., 2012) compel the athlete to minimise body mass, other sports (e.g. contact 

sports) demand robust bodies in a musculoskeletal sense and can generally tolerate athletes 

with higher proportions of fat (e.g. American football linemen). Furthermore, some events 
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(e.g. open water swimming) favour competitors with a degree of adiposity, providing a 

biomechanical advantage of buoyancy and a physiological benefit of insulation against heat 

loss. 

Regardless of their sporting involvement, athletes appear to be in a perpetual state of body 

modification; this may be to gain mass, reduce fat or make a weight category for competition. 

Therefore, it has become increasingly important to monitor the body composition status of 

athletes throughout the pre- and competition phases of the season. A variety of methods, 

involving both laboratory-based and field techniques, have been employed for this purpose. 

Ackland et al. (2012) summarise the current status of these techniques with commentary on 

the validity, repeatability, assumptions, advantages and limitations of each method. 

Meyer et al. (2013) used a 40-item instrument to survey the body composition methods used 

by sport scientists, and medical and health practitioners world-wide for the assessment of 

athletes. The data from 159 respondents were stratified according to demographics, sport type 

and level of competition. While there were different methods favoured in various parts of the 

world, it was clear that the majority relied upon skinfolds (though there was much variation 

in both technique standardisation and post-processing of data) as well as DXA. There was 

also support for Bioelectrical Impedance Analysis (BIA) and Air Displacement 

Plethysmography (ADP) methods. In terms of measurement frequency, a large cohort of 

respondents stated that this depended on the individual athlete and which sport they competed 

in, as well as the general goals of the intervention and phase of the training/competition 

season. Nevertheless, most athletes who were supported by these survey respondents 

appeared to be assessed between two to six times per year. 

Body composition assessments have also formed an important component of large studies of 

elite performers at World and Olympic competitions. These studies have the dual purpose of 

providing contemporary normative data for athlete comparison, as well as to better 
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understand the optimal morphology for a particular sport or event in terms of the athletes’ 

physical and physiological characteristics. The first of these large-scale anthropometric 

surveys of elite performers began at the Rome Olympics with a study of 137 track and field 

athletes (Tanner, 1964). Since this important work, anthropometic and other data have been 

published from the Mexico Olympics (deGaray et al., 1974), Montreal Olympics (Carter, 

1982), and Sydney Olympics (Kerr et al., 2007), as well as various World Championships 

covering many sports. 

In one of the most comprehensive studies of aquatics athletes, a team of 33 anthropometrists 

measures full anthropometric profiles of 919 swimmers, divers, synchronised swimmers and 

water polo players attending the 1991 World Aquatics Championships in Perth, Western 

Australia (Carter and Ackland, 1994). For most of the swimming events, 70-80% of all 

competitors were assessed, with a similarly high proportion of finalists measured. The data 

also included 82 divers (80% of the top 10 competitors), 137 synchronised swimmers (100% 

of the top 10 competitors), and 299 water polo players. Selected data for male competitors are 

shown in Table 6.1. According to Drinkwater and Mazza (1994), long distance (open water) 

swimmers were significantly fatter (higher SUM6SF) than sprint and 1500 m swimmers – 

this additional adiposity was thought to aid buoyancy and thermal insulation during the open 

water events. Divers were shorter, lighter and leaner than both swimmers and water polo 

players. There are significant biomechanical imperatives in the sport of diving that demand 

such characteristics from elite performers. With this body morphology elite divers are able to 

minimise their rotational inertia and thereby, maximise somersault and twist velocity whilst 

in flight. The largest players in water polo are the centre forwards and backs. In these 

positions, players are subjected to very heavy contact and body checking, and so demand 

very strong, robust and buoyant bodies. In contrast, the other field position players need to be 
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comparatively lighter and faster as they spend much of the time carrying the ball and setting 

up plays for the centre forward. 

Triathletes (n=71) from 11 nations competing in the 1997 Triathlon World Championships 

were measured on a battery of 28 anthropometric dimensions. A factor analysis (Landers et 

al., 2000) reduced the number of variables to four (robustness, adiposity segmental lengths 

and skeletal mass) and these were used in a linear regression to determine which 

morphological characteristics were important to performance (Table 6.2). With respect to the 

total elapsed time for the event, and with male and female competitors combined, a 

regression equation using the adiposity and segmental length factors accounted for 47% of 

the variance in triathlon duration. The analysis illustrated the importance of low levels of 

adiposity and proportionally long limb segments for elite triathletes, especially in regard to 

total elapsed time, as well as swim time, cycle time and run time treated separately. Higher 

levels of adiposity hampers run times especially because it increases segmental inertia, 

diminishes running economy and impairs heat loss. According to Landers et al. (2000) 

greater adiposity increases the energy demands for an athlete attempting to keep pace with a 

runner of equal body mass, but with reduced fat mass. 

Both male and female light-weight rowers, as we might surmise, have significantly (p<0.01) 

reduced stature, body mass and adiposity compared to their open category counterparts 

(Table 6.3). These data were published for competitors at the Sydney Olympic Games in 

2000 (Kerr et al., 2007), where 273 rowers were measured as part of the OZ2000 project. A 

further analysis compared the ‘best’ crews (top 7 placings) to the ‘rest’. The ‘best’ open male 

crews were taller, heavier and more robust than the ‘rest’, but did not differ in terms of 

adiposity. For open women rowers, however, lower adiposity levels were characteristic of the 

‘best’ performers.  More recently, Schranz et al. (2010) used 3D scanning to capture 

morphology of elite rowers at two consecutive Australian national championships, and 



27 
 

compared these to a control group of the general population.  This insightful study was the 

first if its kind with body scanning, and was able to establish the effect size for a range of 

morphological variables which differed between rowers and controls such as cross sectional 

areas, surface areas and segment volumes, which are not available using conventional 

anthropometry.  As with the Olympic study, these data provide valuable information for 

coaches and support staff when selecting, developing and monitoring elite level crews. 

While there are clear examples of absolute body size being advantageous, most obviously in 

basketball players and racing jockeys, there are subtler examples where the body’s skeletal 

proportions may be influential.  Short track speed skating favours the short limb length, low 

centre of mass and rapid power development.  The dominance of oriental nations such as 

Korea and Japan illustrate this point.  Skeletal proportions are not ‘trainable’, therefore 

athletes can be expected to self-select into sports in which they are likely to excel (Stewart et 

al., 2011).  For example, speed and endurance runners have greater crural indices (tibia:femur 

length ratio) which reduces inertial resistance. This concept extends to the identification of 

sporting talent, which has historically targeted exceptionally tall young rowers, with the 

potential to have long limbs and greater leverage.  Onto this skeletal framework soft tissues 

of muscle and fat respond to the training regimes and can be optimised for gaining and losing 

body weight, in a periodised training cycle.     

The assessment and monitoring of body composition, using both anthropometric and other 

techniques, has become fundamental in the preparation of elite sporting competitors. As 

athletes strive to gain weight, lose weight and make weight for competition, they are 

invariably subject to health risks due to some extreme practices. This is especially poignant 

for those competing in weight-sensitive sports – those sports in which high body weight 

restricts performance (gravitational sports), or where the athlete must meet a weight category 

restriction (weight-class sports), or in which the aesthetics of the performance contributes to 
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the outcome (aesthetic sports). In a recent paper, Sundgot-Borgen et al. (2013) addressed 

some of the behaviours and health risks associated with these weight-sensitive sports and 

provided guidelines for athletes, coaches, support staff and administrators for recognising and 

preventing eating disorders. The authors also provide recommendations for sports 

administrators to consider rule modifications in their sport with a view to minimising or 

eliminating some of the unhealthy behaviours and practices that these rules promote. 

6.7 Applications in ergonomics 

Ergonomic applications of body dimensions relate the human shape and posture to function 

in working and living environments.  The interface between human form and functional 

activity is at the very core of ergonomics, and influences a range of applications and agendas 

related to risk, safety, comfort and productivity.  The science of ergonomics encompasses a 

range of scientific disciplines – including physiology, biomechanics, human behaviour and 

others, all of which relate directly or indirectly to health and function.  Many ergonomics 

challenges relate to such factors as vision, cognition, fatigue and work capacity in complex 

ways, while others relate to body size in a more direct way.   

Indigenous populations vary profoundly in their size and proportions, with the implication 

that size standards in one country may not be applicable in another.  Genetic hybridization 

and secular trends for increase in stature (Cole, 2002) have both influenced current, observed 

body size and bodily proportions, with implications for injury risk such as when operating 

machinery.  The rising prevalence of global obesity (WHO, 2000) has arguably had an 

additive effect which has been more rapid and profound by affecting posture and locomotion 

(Wearing et al., 2006), and compromising movement and effective work in restricted space, 

with consequences for musculo-skeletal health (Gallagher, 2005).   

Body size is also not the same between different professions within a country, and evidence 

exists that certain professions are associated with larger individuals, including truck drivers 
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(Guan and Hsaio, 2012) and firefighters (Hsaio et al., 2014).  This has implication for 

extrapolating national size data to certain at-risk groups.  As an example, consider the 67,000 

UK offshore workers who are transported by helicopter to and from their work on 

installations in the North Sea.  It was well established from a previous survey that UK 

offshore workers were heavier than UK norms (Light and Dingwall, 1985), but this disparity 

in body weight has trebled since that time, during which the average male worker’s weight 

increased by 19%.  A subsequent study sought to quantify a large number of dimensions in 

relation to this trend for increased size (Ledingham et al., 2015).   

In a recent safety review of helicopter operations, the UK Civil Aviation Authority altered 

seating rules to facilitate compatibility between passenger body size and the window diameter 

on the corresponding seat row.  A recent study (Stewart et al., 2015), using a sub-sample of 

404 offshore workers sampled across the entire weight spectrum, involved egressing through 

a window frame representing the minimum allowable size.  Unsurprisingly, smaller 

individuals were more likely to succeed than their larger counterparts.  Individual 

measurement dimensions obtained from 3D scanning were subjected to binary logistic 

regression to determine the optimal predictive test. Scrutiny of the effect size for the 

dimensional difference between those who passed and failed the egress task revealed any one 

of a number of candidate measurements (see figure 6.2) could be used to inform an intelligent 

seating policy, although some of the measurements would not be practical to undertake for 

the industry.  However, some false positives (large individuals succeeding) and false 

negatives (smaller individuals failing) suggest that body size is not the only predictive 

variable and that other factors such as flexibility and technique could also be influential.  

 

6.8  Conclusion 
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What is the current state of anthropometry within the context of performance and health?  

Some would argue that the emergence of new techniques which are becoming increasingly 

affordable and portable, especially ultrasound and 3D scanning, could spell the end of the 

road for traditional anthropometry. Ethnic groups, children and the elderly, together with 

participants from virtually every sport have already been characterised by anthropometry.  

While some studies of this nature may not be repeated, it is worth recognising that very few 

studies with physical activity and performance or the wider realm of epidemiology do not 

involve some anthropometric measurements.   Although it is hard to understand why the 

advances in standardisation in traditional anthropometry were so long in coming, it is easy to 

recognise their benefits.  The time is now ripe for equivalent standardisation of 3D 

anthropometry (a young and rapidly evolving science by comparison), which will enable 

robust quality assurance of data, and an audit trail of competencies seen across other body 

composition disciplines.  This will be essential if we are to create  integrated composite 

models using a combination of methods, which could use a digital 3D template enriched by 

composition data located in xyz space. Such a ‘holy grail’ could be expanded to include large 

data repositories and sharing arrangements which would help us understand much finer 

morphological detail due to enhanced power to detect small differences, such as the intra and 

inter-personal gradient in physique with sports performance standard, or shape change with 

disease progression with ageing or muscle wasting.   

However, we are not there yet, despite the aspiration of some, and the technological 

competence of many.  First, as anthropometrists and practitioners of body composition we 

need a more complete dialogue and to agree a common language on definitions, standards 

and protocols.  Second, we need to define our aims collectively and build a path and structure 

which will help us towards achieving them.  Neither of these tasks is straightforward, and 

both go well beyond the job descriptions of experts in the field.  However, history will relate 
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the pivotal role of key researchers who have defied the odds in encouraging entire disciplines 

to move in a certain direction.  Individuals might need persuading that such efforts are 

worthwhile, because of the political hurdles in the path of international application and 

implementation.  While there will always be differences on which path it is best to take, 

thanks to modern communication media, never before has such international dialogue been as 

straightforward.   The prominence of anthropometric measurement within wider field of body 

composition throughout history will only be maintained or enhanced if such exchange of 

ideas embraces these new concepts.  However, with the enthusiasm of its practitioners and 

the exciting developments anticipated, anthropometry may expect a promising future. 
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Table 6.1.  Body composition of male aquatic athletes competing at the 1991 World Championships. 

Event n Stature 
(cm) 

Body mass 
(kg) 

SUM6SF 1 
(mm) 

Muscle mass 2 
(kg) 

Skeletal mass 3 
(kg) 

 
Freestyle Swimming 
50 & 100 m 47 186.4 79.8 44.0 57.8 13.3 
200 & 400 m 34 185.2 79.1 50.4 57.0 13.0 
1500 m 10 183.1 74.3 41.8 56.1 13.9 
Long distance 13 179.6 78.1 60.3 56.3 13.0 
 
Diving 43 170.9 66.7 45.9 58.6 12.9 
       
Waterpolo 
Goalkeepers 30 189.1 86.2 60.9 56.6 13.1 
Centre backs 25 189.2 90.2 65.0 56.9 12.7 
Centre forwards 40 188.8 91.4 68.3 55.5 12.6 
Others 95 184.0 82.7 59.9 55.8 12.8 

 
1  Sum of triceps, subscapular, abdominal, supraspinale, front thigh and medial calf skinfolds 
2  Estimated muscle mass calculated from anthropometry according to Martin et al. (1990) 
3  Estimated skeletal mass calculated from anthropometry according to Martin et al. (1991) 
 
 
 
Table 6.2.  Factor B weights and regression coefficients for male and female World Championship 

triathletes. Where x1 = adiposity; x2 = segmental lengths. 

Dependent 
variable (y) B0 B1 B2 R2  F 

(* = sig p<0.01) 
Total time (s) 7434.9 324.8 -180.2 0.688 29.20 * 
Swim time (s) 1232.6 31.9 -44.3 0.549 17.10 * 
Cycle time (s) 3892.6 149.5 -99.9 0.659 24.88 * 
Run time (s) 2201.0 146.2 -- 0.618 40.84 * 

 
Note: general format for the multiple regression equation is: y = B0 + (B1 · x1) + (B2 · x2) + Bn · xn) 
 
 
Table 6.3.  Anthropometric characteristics of Olympic lightweight and open-class rowers. 

Variable 
Male Rowers  Female Rowers 

Lightweight 
(n=50) 

Open-class 
(n=140)  Lightweight 

(n=14) 
Open-class 

(n=69) 
Age (y) 27.1 26.4  26.0 27.8 
Stature (m) 1.82 1.94  1.69 1.81 
Sitting height (m) 0.95 0.99  0.89 0.94 
Body mass (kg) 72.5 94.3  58.5 76.6 
SUM8SF 1 44.7 65.3  59.7 89.0 

 
1  Sum of triceps, biceps, iliac crest, subscapular, supraspinale, abdominal, front thigh and medial calf. 
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Figure 6.1 Schematic framework of anthropometric measurements, derived indices and 

composite indices to describe anatomical factors. 
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Figure 6.2. Comparison of the effect size of body dimensions between those passing and 

those failing a helicopter window egress test (Reprinted from Stewart et al. 2015), with 

permission from Elsevier. 
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