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Abstract—A multitenant cloud-application that is designed
to use several components needs to implement the required
degree of isolation between the components when the workload
changes. The highest degree of isolation results in high resource
consumption and running cost per component. A low degree
of isolation allows sharing of resources, but leads to degra-
dation in performance and to increased security vulnerability.
This paper presents a simulation-based approach operating on
computational metaheuristics that search for optimal ways of
deploying components of a cloud-hosted application to guarantee
multitenancy isolation When the workload changes, an open
multiclass Queuing Network model is used to determine the
average number of component access requests, followed by a
metaheuristic search for the optimal deployment solutions of
the components in question. The simulation-based evaluation
of optimization performance showed that the solutions obtained
were very close to the target solution. Various recommendations
and best practice guidelines for deploying components in a way
that guarantees the required degree of isolation are also provided.

Index Terms—Evolutionary computation, cloud-hosted ser-
vices, simulation-based optimization, metaheuristics, deployment
patterns, multitenancy isolation.

I. INTRODUCTION

Software architectures encompass one or many structures
and components that affect the way systems achieve functional
and non-functional requirements. These structures are based
on software elements, relations between them, and proper-
ties of both [1]. Reasoning on optimal software deployment
patterns for multitenant applications in cloud environments
with dynamic resource provisioning is a non-trivial problem
necessitating the consideration of several challenges.

One of the challenges relates to the implementation of
multitenancy, i.e. how to ensure that there is isolation between
multiple components of a cloud-hosted application, when one
of the components experiences high load. This challenge is
hereafter referred to as multitenancy isolation [2] [3]. A high
degree of isolation can be achieved by deploying an applica-
tion component exclusively for one tenant. This would ensure

that there is little or no performance interference between
the components when workload changes. However, because
components are not shared, there might be multiple copies of
the component for each tenant, which leads to high resource
consumption and running cost.

Therefore, in order to optimize the deployment of com-
ponents, the software architect has to satisfy two objectives:
maximize the degree of isolation between components and at
the same time maximize the number of requests that can be
allowed to access the component. This is a multi-objective
optimisation problem that involves run-time optimisation of
several resources used, which means new solving techniques
need to be applied that are capable of taking into consideration
the behaviour of cloud-hosted applications at run-time [4].

Motivated by the stated problem, this paper presents a
simulation-based evolutionary optimisation approach utilizing
metaheuristics that can be used to provide sufficiently near-
optimal solutions for deploying components of a cloud-hosted
application in a way that guarantees multitenancy isolation
and allowing as many requests as possible to access them.
We implemented our approach by first applying an open
multiclass Queuing Network (QN) model to determine the
number of requests allowed to access a component. This
information is used to update a multiobjective optimization
model (derived by mapping our problem to a Multichoice
Multidimensional Knapsack Problem (MMKP)). Thereafter, a
metaheuristic based on simulated annealing is used to find
near-optimal solutions for component deployment.

The proposed approach is evaluated by comparing the
solutions obtained through evolutionary optimisation with the
optimal results obtained from an exhaustive search of the entire
solution space for a small problem. This first step would verify
the viability of the proposed approach. Then, the evolutionary
optimisation metaheuristics will be tuned to figure out the best
way of deploying components of a cloud-hosted application
that guarantees multitenancy isolation. Thus, the main contri-
butions of this paper are:



1. Creating a novel simulation-based approach, optimalSoln,
that combines: (i) an open multiclass QN model; and (ii)
an optimization task, to provide a near-optimal solution for
deploying components of a cloud-hosted application with
guarantees for multitenancy isolation.
2. Developing three variants of a metaheuristic which are
based on a simulated annealing algorithm for solving the
optimization task. These variants were extensively evaluated
and compared.
3. Presenting recommendations and best practice guidelines
based on the experience gained from extensive evaluation and
comparison of the algorithms.

This paper is a revised and expanded version of our previous
work [5]. In this current study, we have included mathematical
equations for the optimization model, the open multiclass
queuing network(QN) model and a new algorithm that com-
bines the optimization model and the QN model to provide
optimal deployment solutions for guaranteeing multitenancy
isolation. The experiments have been expanded by increasing
the sizes and dimensions of the problem instances and the
number of runs and iterations.

To the best of our knowledge, this study is the first to
present an evolutionary computation approach that combines
a simulation-based model with metaheuristic techniques to
provide a near-optimal solution for deploying components of a
cloud-hosted application necessitating multitenancy isolation.
The rest of the paper is organized as follows: Section II
formalises the optimization problem, presents the optimalSoln
algorithm that drives the proposed approach, and explains the
metaheuristics used. Section III is devoted to the evaluation
of the proposed evolutionary computation approach, while
Section IV draws conclusions and speculates possible future
work.

II. PROBLEM FORMALIZATION AND NOTATION

The recent advances in evolutionary simulation-based opti-
mization have allowed for several different fields of science to
benefit from computational simulation in experimental studies.
In [6], the authors developed a hybrid evolutionary algorithm
for task scheduling and data assignment to process data-
intensive workflows within a cloud computing environment.
Their main concern was to optimize a transfer of a large
amount of data from one virtual machine to another. The usage
of Genetic Algorithms to match services and cloud resources
was advocated in [7]. Various resource provision algorithms
in cloud computing are surveyed by [8], some of which -
metaheuristic-based and greedy strategies - are applied in this
work.

This section formalises the problem to be addressed, de-
scribes how it is mapped to a Multichoice Multidimensional
Knapsack Problem (MMKP), and presents the open multiclass
queuing network model used for simulation-based optimiza-
tion.

A. Mapping the Problem to a Multichoice Multidimensional
Knapsack problem (MMKP)

For a cloud-hosted service that can be designed to use
or be integrated with several components in N different
groups, and with m resource constraints (see Figure 1),
the problem of providing optimal solutions that guarantee
multitenancy isolation can be mapped to a 0-1 multichoice
multidimensional knapsack problem (MMKP). An MMKP is
a variant of the Knapsack problem which has been shown
to be a member of the NP-hard class of problems [9]. Our
problem is formally defined as follows:

Definition 1: Optimal Component Deployment Problem -
Suppose there are N groups of components (c1,..., cN ) with
each having li (1 ≤ i ≤ N) components that can be used
to design (or integrate with) a cloud-hosted application. Each
application component is associated with: (i) the required
degree of isolation between components (Iij); (ii) the arrival
rate of requests to the component λij ; (iii) the service demand
of the resources supporting the component Dij (equivalent to
Dc,k in the QN model); (iv) the average number of requests
that can be allowed to access the component Qij (equivalent
to Qc,k in the QN model); and (v) m resources which are
required to support the component, rαij = r1ij , r

2
ij ,..., r

m
ij . The

total amount of available resources in the cloud required to
support all the application components is Rα (α = 1,...,m).

Fig. 1. System Model of a Cloud-hosted Service with multiple groups of
components

An aggregation method is used to transform the multiob-
jective problem into a single objective problem by a linear
combination of two objectives, (i.e., maximizing the degree of
isolation (g1) and the number of requests (g2)) into a single
maximization function (G). The particular aggregation strategy
used is the priori single weight strategy which consists of
defining the weight vector to be selected based on domain
knowledge and the preferences of the decision maker [10].
This approach has been widely used in literature for various
metaheuristics, such as for instance, genetic algorithm and
simulated annealing [11].

Therefore, the goal is re-stated as follows: to provide an
optimal solution for deployment to the cloud in such a way



that meets the system requirements and also provides the best
value for the optimal function, G. G is defined by a weighted
sum of single objectives including the degree of isolation
and the average number of requests allowed to access the
component. A penalty measure is applied for solutions that
violate the existing constraints.

Definition 2: Optimal Function - Given an isolation value
of a component I, and the average number of request Q that
can be allowed to access the component:

gij = (w1 × Iij) + (w2 ×Qij)− (w3 × Pij) (1)

The penalty, P , for violating constraints of a component is:

Pij =

m∑
j=1

Rjmax

{
0,

(
Rj −Rmaxj

Rmaxj

)}2

(2)

where w1, w2, w3 are the weights for isolation value (w1=100),
number of requests(w2=1) and penalty(w3=0.1). The weights
are chosen based on problem-specific knowledge so that more
importance or preference is given to the isolation value and
number of requests, which are the parameters to be maximised
in our model. The degree of isolation (Iij) for each component
is set to either 1, 2, or 3 for shared component, tenant-
isolated component and dedicated component, respectively.
The penalty function, Pij , is subtracted from the optimal
function to avoid excluding all infeasible solutions from the
search space. The expression Rj − Rmaxj in the penalty
function shows the degree of constraint violation, which is
divided by the resource limit and squared to make the penalty
heavier for violating any constraint.

Thus, the optimization problem faced by a cloud architect
for deploying components of a cloud-hosted application due
to workload changes is expressed as follows:

Maximize G =

N∑
i=1

∑
j∈Ci

gij .aij

subject to
N∑
i=1

∑
j∈Ci

rαij .aij ≤ Rα(α = 1, 2, ...,m)

N∑
j∈Ci

aij = 1

aij ∈ 0, 1(i = 1, 2, ..., N), j ∈ Ci

(3)

where aij is set to 1 if component j is selected from group
Ci and 0 otherwise. The notation rij = r1ij , r

2
ij ,..., r

m
ij , is the

resource consumption of each application component j from
group Ci. The total consumption of all resources rαij of all
application components must be less than the total amount
of resources available in the cloud infrastructure Rα (α =
1,...,m).

To calculate the number of requests, Qij that can be allowed
to access the component, an open multiclass QN model has

to be applied [12] for each component using the arrival
rate of each class of requests, and the service demands of
each resource required to support the component (i.e., CPU,
RAM, Disk capacity, and Bandwidth). Section III describes
how the average number of requests allowed to access each
component is computed. There are unique features in our
problem that lend to solving it using an MMKP and an open
multiclass problem. For example, the resources supporting
each component are mapped to the resources required by the
object in MMKP and are also mapped to the service centres
of each class in the open multiclass QN [13].

B. Open Multiclass Queuing Network Model

Definition 3: (Open Multiclass Queuing Network Model):
Assume there are N classes in a model, where each class c is
an open class with arrival rate λc. The vector of arrival rates
is denoted by

−→
λ ≡ (λ1, λ2, ... λN ). The utilization of each

component of class c at centre k is given by:

Uc,k(
−→
λ ) = λcDc,k (4)

In our QN model, it is assumed that a component represents
a single open class system with four service centres (i.e.,
the resources that support the component CPU, RAM, Disk
capacity and Bandwidth). The average number of requests at a
particular service centre (e.g., CPU) for a particular component
is:

Qc,k(
−→
λ ) =

Uc,k(
−→
λ )

1−
∑N
i=1 Ui,k(

−→
λ )

(5)

Therefore, to obtain the average number of requests that would
access this component, the queue length of all requests that
visit all the service centres (i.e., the resources that support the
components - CPU, RAM, Disk capacity and Bandwidth) are
added together.

Qc(
−→
λ ) =

K∑
k=1

Qc,k(
−→
λ ) (6)

C. OptimalSoln Algorithm and Metaheuristic Search

The optimalSoln algorithm, presented as Algorithm 1, is
used to find a new optimal solution for deploying components
with the highest degree of isolation and the highest number
of supported requests every time there is a change in the
workload on the cloud-hosted service. When a request arrives
indicating a change in workload, the algorithm uses the open
multiclass QN model to determine for each class the queue
length (i.e., the average number of requests allowed to access
a component) as a function of the arrival rates (i.e., λ) for each
class (lines 7-14). The average number of requests is used to
update the properties of each component (i.e., mmkpFile) (line
15). Then a metaheuristic search is run to obtain the optimal
solution for deploying the component with the highest degree
of isolation and the highest number of requests allowed per
component (line 17).

The optimization problem described in Section II-A is an
NP-hard problem which has been known to have a feasible



Algorithm 1 optimalSoln Algorithm
1: optimalSoln (workloadFile, mmkpFile)
2: opSoln← null
3: Accept workload from SaaS users
4: Load workloadFile, mmkPfile; populate global variables
5: repeat
6: /*Compute No. of req. using QN Model*/
7: for i← 1, NoGroups do
8: for i← 1,GroupSize do
9: Calculate Utilization /*see Equation 4*/

10: Calculate No. of req. /*see Equation 5*/
11: Calculate Total No. of req. /*see Equation 6*/
12: Store fitValue, Isol, qLength of optimal soln.
13: end for
14: end for
15: Update the mmkpFile with qLength
16: /*Run Metaheuristic*/
17: SA(GREEDY)( )
18: /*Display optimal solution for deployment*/
19: until no more workload
20: Return (optimalSoln, fitValue, Isol, qLength)

state space that grows in a combinatorial way [13]. An efficient
heuristic is needed to find an optimal solution to the opti-
mization problem, which must be solved by our simulation-
based approach, and provided to the SaaS customer (or a
cloud deployment architect) in almost real-time. Algorithm 1
shows the optimalSoln combined with SA(Greedy), a variant
of simulated annealing algorithm, to find an optimal solution
to the stated optimization problem (line 17 of Algorithm ).

We developed four variants of a metaheuristic solution as
summarised below [5]:
(i) SA(Greedy): This algorithm combines simulation annealing
and a greedy algorithm to find an optimal solution to our
optimization problem, which has been modelled as an MMKP.
The algorithm loads the MMKP problem instance, populates
the global variables, and then a greedy solution is created as
an initial solution. The simulated annealing process improves
the greedy solution, and provides the optimal solution for
deploying components to the cloud.
(ii) SA(Random): In the SA(Random) variant, a random solu-
tion is generated (instead of constructing a greedy solution)
and passed to the simulated annealing process to become the
initial solution. The two variants based on simulated annealing
algorithm (i.e, SA(Greedy) and SA(random)) can be converted
to a local search based on the hill-climbing algorithm by
setting the initial temperature to zero (i.e., T=0).
(iii) HC(Greedy): In HC(Greedy), a greedy solution is con-
structed first and then used as the starting point in the search.
(iv) HC(Random): The HC(Random) uses a randomly gener-
ated solution as the initial solution to run the algorithm.

III. EVALUATION AND RESULTS

The dataset used for conducting our experiments with
the optimization model were based on a simulation testbed.

TABLE I
PARAMETER VALUES USED IN THE EXPERIMENTS.

Open Multiclass QN Model Value
λ (offered load) [0,4]
Isolation Value [1,2,3]
No. of Requests [1,10]
Resource consumption [1,10]
Service Demands [0.15, 0.24]
SA(Greedy) Algorithm
No of Iterations N=1000000
No. of Runs 20
Temperature T0 = st. dev of N randomly

generated solutions (N=no. of
groups)

Cooling Schedule Ti+1 = T0 + (A− T0)

We randomly generated problem instances of different sizes
and densities. The instances generated were tailored on the
instances widely cited in literature (e.g., the OR benchmark
Library [14]. The benchmark format was transformed to a
multiobjective case by associating each component with two
different profit values: isolation values and the average number
of requests [15].

The specification of the machine used for experiments is
summarised as follows: SAMSUNG Laptop installed with In-
tel(R) CORE(TM) i7-3630QM running Windows 8.1 operating
system at 2.40GHZ, with 8GB memory and 1TB swap space
on the hard disk. The experimental parameters are shown in
Table 2. The workload associated with each instance is used
to run the algorithm as shown in the table.

In our experiments, we test the applicability and effect
of the different variants of the metaheuristics in driving the
optimalSoln algorithm. The performance evaluation will be
presented in terms of the quality of solution, robustness
and computational effort of the optimalSoln algorithm when
combined with any of the four different variants of meta-
heuristics:(i) HC(Random) - Hill climbing with a random
solution as the initial start; (ii) HC(Greedy) - Hill climbing
with a greedy solution as a starting point; (iii) SA(Random) -
Simulated Annealing with a random start; and (iv) SA(Greedy)
- Simulated Annealing starting with a greedy solution.

The solutions obtained from running the optimalSoln algo-
rithm was compared the optimal solutions obtained by running
the optimalSoln algorithm with the exhaustive search of a
small problem size. The machine used to run the algorithm
could not cope with large instances due to limitations in the
hardware specification of the machine (i.e., CPU and RAM).
As a result of this, we challenged the metaheuristic with small
instances (i.e., C(4,5,4)). It was observed that the optimal
solutions produced for all workloads were the same when
tested on all the four variants of the metaheuristic.

As it were not possible to obtain optimal solutions with large
instances (e.g., C(500,20,4)), the results of running the meta-
heuristic were compared to a target solution as proposed by
[10]. In this study, the target solution represents a requirement
defined by the decision maker based on domain knowledge



and the quality of the solutions to obtain. This is expressed
as:

TargetSoln = ((n×max(I)× w1) + e) (7)

where e is expressed as 0.05× (n×max(Q)× w2)), n is
the number of groups, max(I) is the maximum isolation
value, max(Q) is the maximum possible number of requests
(calculated using the upper limit of the arrival rate), and w1

and w2 are the weights assigned to I and Q respectively. This
equation, when used to compute the target solution of C(4,5,4)
with arrival rate of 2.7 requests/sec, gives 1219.2, which is
very close to the optimal solution. The rest of the experiment
were conducted with an arrival rate of 3.9 requests per second.

The simulation was executed for 1000000 functions evalua-
tions so that reliable results would be produced. It is therefore
expected that the success rate would be nearly 100% based
on the corresponding performance rate as the optimal solution
would have converged. As a result of this, the evaluation of
the optimization model was expanded to cover scenarios where
there is: (i) limitation in available resources or a requirement to
optimise resources that are available while providing optimal
solutions; and (ii) limitation in the time required to provide
optimal solutions, for example, when the algorithm can be run
for limited number of iterations (e.g., 1000 iterations).

1) Measuring the Quality of Solutions: The quality of the
solutions was measured in terms of the percent deviation from
the target solution [10]. As shown in Table II, the standard
deviation (STD) for all the variants of the metaheuristic was
the same. It was noticed that the percent deviation of solutions
is lower when the number of components per group is high.
For instance, the percent deviation for C(500,5,4) is 3.5 when
the number of components is 5. But when the number of
components is increased to 20, the percent deviation reduces
to 1.49. This means that the quality of solutions is dependent
on the number of components per group. The more choices
of a particular type of component are available, the better
the possibility of achieving attaining an optimal configuration.
This is especially essential for large open-source projects that
are either designed to utilize a large number of components
within the cloud-hosted service or can be integrated with
several components residing in other locations.

2) Measuring the Robustness of the Solutions: In measuring
robustness, we checked how sensitive the solutions are to
small deviations in the size of the instances (i.e., from small
instances of C(10,20,4) to large instances of C(1000, 20,4)).
The lower the number of function evaluations it takes to
attain the target solutions, the better the robustness. Having
carefully analysed the number of function evaluations (FE)
it takes to reach the target solution, it was observed that the
function evaluations for SA(Random) and SA(Greedy) was
larger than that of HC(Random) and HC(Greedy), especially
for large instances. For example, as shown in Table III, it takes
13,169 for SA(Random) to attain the target solution, whereas
HC(Greedy) required only 1,986 evaluations. For small in-
stances above C(70,20,4), Table III shows that SA(Greedy)
was slightly better than other variants.

This means that the metaheuristics based on hill-climbing
were more stable and robust than the other variants based on
simulated annealing, especially for large instances; at the same
time, the metaheuristics based on simulated annealing showed
better stability for small instances.
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3) Measuring the Computational Effort: The computational
effort was measured in terms of the estimated execution time
required by each variant of the metaheuristics to reach the
target solution for different instance sizes. It appears from
the experimental studies conducted that the time to compute
the initial greedy solutions does not significantly affect the
overall execution times for HC(Greedy) and HC(Random). As
Figure 2 illustrates, the average number of function evaluations
required by the metaheuristics that starts with greedy solutions
(i.e., HC(Greedy) and SA(Greedy)) is substantially smaller
than those that start with random solutions. Therefore, the vari-
ants of the metaheuristics that start with the greedy solution
use less computational effort irrespective of the metaheuristic
used.

The results of the study can be summarized as follows:
(i) The percent deviation for all metaheuristic variants was
nearly the same, although the percent deviation of variants
based on greedy solutions was smaller and more stable when
applied on large instances;



TABLE II
AVERAGE PERFORMANCE ON DIFFERENT INSTANCE SIZES(M=5; M=20)

Instance
Size

HC
(rn)

HC
(gr)

SA
(rn)

SA
(gr) Gr Instance

Size
HC
(rn)

HC
(gr)

SA
(rn)

SA
(gr) Gr

C(10,5,4) 7.64 7.64 7.64 7.64 10.94 C(10,20,4) 1.38 1.38 1.38 1.38 0.17
C(20,5,4) 0.7 0.7 0.7 0.7 9.39 C(20,20,4) 1.98 1.98 1.98 1.98 4.75
C(30,5,4) 1.44 1.44 1.44 1.44 9.35 C(30,20,4) 0.09 0.09 0.09 0.09 6.83
C(40,5,4) 1.34 1.34 1.34 1.34 4.32 C(40,20,4) 1.39 1.39 1.39 1.39 2.18
C(50,5,4) 3.38 3.38 3.38 3.38 11.41 C(50,20,4) 1.4 1.4 1.4 1.4 3.56
C(60,5,4) 1.99 1.99 1.99 1.99 8.11 C(60,20,4) 2.04 2.04 2.04 2.04 2.46
C(70,5,4) 0.96 0.96 0.96 0.96 4.58 C(70,20,4) 1.03 1.03 1.03 1.03 3.68
C(80,5,4) 4.08 4.08 4.08 4.08 8.29 C(80,20,4) 1.36 1.36 1.36 1.36 3.93
C(90,5,4) 1.62 1.62 1.62 1.62 5.28 C(90,20,4) 2.01 2.01 2.01 2.01 4.47
C(100,5,4) 5.03 5.03 5.03 5.03 9.87 C(100,20,4) 2.11 2.11 2.11 2.11 4.09
C(200,5,4) 3.79 3.79 3.79 3.79 8.04 C(200,20,4) 1.48 1.48 1.48 1.48 4.37
C(300,5,4) 5.22 5.22 5.22 5.22 10.7 C(300,20,4) 1.13 1.13 1.13 1.13 3.61
C(400,5,4) 3.7 3.7 3.7 3.7 8.92 C(400,20,4) 1.29 1.29 1.28 1.28 4.19
C(500,5,4) 3.53 3.53 3.53 3.53 8.03 C(500,20,4) 1.49 1.49 1.48 1.48 4.53
C(600,5,4) 3.36 3.36 3.36 3.36 7.7 C(600,20,4) 1.25 1.25 1.25 1.25 4.99
C(700,5,4) 3.78 3.78 3.78 3.78 8.49 C(700,20,4) 1.25 1.25 1.24 1.24 4.7
C(800,5,4) 3.84 3.84 3.84 3.84 8.91 C(800,20,4) 1.43 1.43 1.43 1.43 3.82
C(900,5,4) 3.44 3.44 3.44 3.44 8.05 C(900,20,4) 1.11 1.11 1.11 1.11 4.39
C(1000,5,4) 4.28 4.28 4.28 4.28 8.99 C(1000,20,4) 1.17 1.17 1.16 1.16 4.1
AVG 3.32 3.32 3.32 3.32 8.39 AVG 1.39 1.39 1.39 1.39 3.94
STD 1.66 1.66 1.66 1.66 1.89 STD 0.44 0.44 0.45 0.45 1.29

TABLE III
FUNCTION EVALUATIONS TO ATTAIN TARGET SOLUTION

Instance HC(rn) HC(gr) SA(rn) SA(gr)
C(10,20,4) 88 0 97 0
C(20,20,4) 220 102 204 93
C(30,20,4) 613 616 504 2620
C(40,20,4) 361 0 455 0
C(50,20,4) 558 145 459 140
C(60,20,4) 522 0 550 0
C(70,20,4) 884 236 490 262
C(80,20,4) 899 74 940 74
C(90,20,4) 865 103 979 105
C(100,20,4) 1022 0 1019 0
C(200,20,4) 2331 611 2449 816
C(300,20,4) 3679 923 4090 1046
C(400,20,4) 4874 689 4968 788
C(500,20,4) 5763 1055 6154 1217
C(600,20,4) 7416 892 7826 979
C(700,20,4) 8764 1510 9355 1628
C(800,20,4) 8771 1140 9448 1198
C(900,20,4) 11330 2324 12353 2865
C(1000,20,4) 12642 1986 13169 2238

(ii) Metaheuristics which start with greedy solutions reach
the 100% success rate considerably faster (see Figure 3) and
utilized less execution time than those which started with
random solutions.
(iii) There was no significant effect on the robustness and qual-
ity of the solutions produced when applied to small instances.
For large instance sizes, the variants of the metaheuristics that
start with a greedy solution needed fewer function evaluations
to finish the search.
(iv) The percent deviation of instances that had more compo-

nents per group was smaller, thus, leading to a better chance
of producing high quality solutions.

Therefore, the discussion of experimental results can be
summarized as follows: The benefit of our simulation-based
optimization approach is in providing the monitoring, evalua-
tion, adjustment and deployment of cloud-hosted service com-
ponents (especially for large-scale projects) that guarantees
multitenancy isolation when the workload changes. The qual-
ity and robustness of optimal solutions produced for largescale
cloud-hosted services can be significantly improved when the
proposed approached is executed with metaheuristics whose
search starts with a greedy solution (compared to random
solutions). The solutions from hill-climbing metaheuristics
were more stable and robust than that of simulated annealing,
particularly for large instances. However, when there is a
limitation in terms of time and resources, simulated annealing
can produce more robust and stable solutions.

The metaheuristics that start with greedy solutions are more
scalable and require fewer function evaluations with reach the
target solution compared to those that start randomly. Due
to the possibility of encountering components having several
interdependencies with other components or services when
working on large open-source projects, it is advisable to limit
the number of component choices per group, or, better still,
to use a combination of local search with greedy strategies.

IV. CONCLUSION AND FUTURE WORK

This paper presents the implementation of a simulation-
based approach for providing optimal ways of deploying
components designed to use (or be integrated with) a cloud-
hosted service, guaranteeing at the same time multitenancy
isolation. The main aim of this approach is to address the issue



of multitenancy isolation, whilst optimising the deployment of
components that run cloud-hosted services.

The suggested approach works as follows: when a re-
quest arrives indicating that there are workload changes, the
developed system uses an open multiclass QN model to
determine the average number of requests that can access
each component, updates the component configuration file
with this information, and then applies a metaheuristic to
find optimal solutions for deploying components that have the
highest degree of isolation, while at the same time maximizing
the possible number of component access requests.

The simulation-based study revealed that the optimalSoln
algorithm (i.e., the main algorithm that drives the model) when
combined with metaheuristics that starts with an initial greedy
solution (e.g., SA(Greedy)), produces solutions that are robust
and of better quality when compared with the metaheuristic
that starts with random solutions (e.g., SA(Random)). This
suggests that the optimal deployment solutions obtained from
randomly generated initial solutions are more sensitive to
workload changes than those starting from initial greedy
solutions. For large projects, starting the metaheuristics with
a greedy solution can boost the general performance. Also,
for large instances, when there are time (e.g., real-time and
dynamic) and resource constraints, the simulated annealing
metaheuristic produces solutions that are more robust and
stable compared to those of hill-climbing.

The approach presented in this paper assumes that the
resources supporting each component are sufficient to handle
all incoming requests. In the event that this condition cannot
be guaranteed, we suggest using an elastic queue to control
incoming requests. Another option could be to implement
some form of admission control mechanism, for example, re-
stricting the number of requests that are handled concurrently
by each component, to avoid overloads or any degradation in
the component’s performance. The findings of this study are
mostly applicable to components of cloud-hosted applications
developed and deployed using a multitenant architecture. The
approach and the associated algorithms that have been pre-
sented are relevant to cloud-hosted services at the application
level, and so are implemented almost at runtime.

We plan to develop other metaheuritics for use with our
simulation-based approach to handle larger problem instances.
For example, we can integrate other types of metaheuristics
into the optimalSoln algorithm or combine simple and more
advanced metaheuristics. In addition to the work mentioned in
Section II, several researchers have developed metaheuristics
that combine genetic algorithm with simulated annealing. For
example, the authors in [16] came up with a GA-SA hybrid
algorithm for optimization of wideband antenna matching
networks, which can potentially be applied in the domain of
resource allocation in cloud computing.

In future, we plan to continue this research and develop
a Decision Support System (DSS) based on the proposed
approach to semi-automatically suggest near-optimal solutions
for deploying components of a cloud-hosted application, which
guarantees multitenancy isolation. Some work has already

been done in this area [1], but without addressing the issue
of multitenancy isolation. We intend to base the DSS on the
simulation model described in this paper for investigating and
predicting how components and/or cloud-hosted services will
react to workload changes at runtime. In particular, we are
thinking of designing a rule-based system to specify how a
new set of components can be selected for deployment when
the average utilization of either certain components or of the
whole system exceeds a defined threshold. The same method
can be applied for the case of the request arrival rate exceeding
a specified limit. Such decisions can be of benefit and help in
long-term investments in resource provision and in estimating
the running cost of components and cloud services.

ACKNOWLEDGMENT

This research was supported by the Tertiary Education Trust
Fund (TETFUND), Nigeria and Robert Gordon University,
UK.

REFERENCES

[1] N. Tankovic, T. Grbac, and M. Zagar, “Elaco: A framework for opti-
mizing software application topology in the cloud environment,” Expert
Systems With Applications, vol. 90, pp. 62–86, 2017.

[2] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns. Springer, 2014.

[3] E. Bauer and R. Adams, Reliability and availability of cloud computing.
John Wiley & Sons, 2012.

[4] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and R. Reussner,
“A hybrid approach for multi-attribute qos optimisation in component
based software systems,” in Research into Practice–Reality and Gaps.
Springer, 2010, pp. 84–101.

[5] L. Ochei, A. Petrovski, and J. Bass, “Optimizing the deployment
of cloud-hosted application components for guaranteeing multitenancy
isolation.” IEEE Conference Publications, 2016, pp. 77 – 83, 2016
International Conference on Information Society (i-Society 2016).

[6] L. Teylo, U. De Paula, Y. Frota, D. De Oliveira, and L. Drummond, “A
hybrid evolutionary algorithm for task scheduling and data assignment
of data-intensive scientific workflows on clouds,” Future Generation
Computer Systems, vol. 76, pp. 1–17, 2017.

[7] G. Anastasi, E. Carlini, M. Coppola, and P. Dazzi, “Qos-aware genetic
cloud brokering,” Future Generation Computer Systems, vol. 75, pp.
1–13, 2017.

[8] J. Zhang, H. Huang, and X. Wang, “Resource provision algorithms
in cloud computing: A survey,” Journal of Networks and Computer
Applications, vol. 64, pp. 23–42, 2016.

[9] H. Kellerer, U. Pferschy, and D. Pisinger, Introduction to NP-
Completeness of knapsack problems. Springer, 2004.

[10] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley
& Sons, 2009, vol. 74.
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