

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Iterated racing algorithm for simulation-optimisation

of maintenance planning

Benjamin Lacroix

School of Computing and Digital Media

Robert Gordon University

Aberdeen, Scotland

b.m.e.lacroix@rgu.ac.uk

John McCall

School of Computing and digital Media

Robert Gordon University

Aberdeen, Scotland

j.mccall@rgu.ac.uk

Jérôme Lonchampt

Industrial Risk Management Department

EDF Lab

Chatou, France

jerome.lonchampt@edf.fr

Abstract—The purpose of this paper is two fold. First, we
present a set of benchmark problems for maintenance optimisa-
tion called VMELight. This model allows the user to define the
number of components in the system to maintain and a number
of customisable parameters such as the failure distribution of the
components, the spare part stock level and every costs associated
with the preventive and corrective maintenances, unavailability
and spare parts. From this model, we create a benchmark
of 175 optimisation problems across different dimensions. This
benchmark allows us to test the idea of using an iterated racing
algorithm called IRACE based on the Friedman statistical test, to
reduce the number of simulations needed to compare solutions in
the population. We assess different population size and truncation
rate to show that those parameters can have a strong influence
on the performance of the algorithm.

Index Terms—Maintenance optimisation, racing, statistical test

I. INTRODUCTION

Maintenance planning is an optimisation problem which

consists in maximising the Net Present Value (NPV) of the

maintenance strategy of an asset or multi-component systems.

A maintenance strategy can go from a simple scheduling of

maintenance operations [1], maintenance intervals [2] or a

more holistic approach taking into account spare part stock

management and logistics [3].

It is a highly trending topic in the field of Engineering Asset

Management (EAM) and industries of all kind recognise it as

a major challenge for reducing their operation costs. In the

recent review [4], the authors list recent research in the domain

of maintenance optimisation. It however appears that most

research in this is domain is done by the EAM community and

little interest is given to it by the computational intelligence

community. As a consequence, these research focus on the

modelling side of maintenance problems more than on the

ways to solve them. Search algorithms commonly used are

based on classic schemes such as Genetic Algorithms [5] or

Simulated Annealing [6].

The cost function of these problems is based on models able

to evaluate the integrity of a proposed strategy. These models

simulate the life cycle of a system going through a series of

discrete events such as failures, maintenances and spare parts

This project is funded the Fondation Mathematique Jacques Hadamard
through the PGMO program

acquisition. These models are usually driven by a stochastic

events such as the component failures.

Most metaheuristics are developed to optimise deterministic

cost functions where the comparison of solutions is straight-

forward. Little work exist on the optimisation stochastic prob-

lems.

In this context, two solutions have been identified. The first

one called the direct method consists in using a statistic of

Monte Carlo simulations (mean, median) [7]–[9]. The problem

with this approach is the uncertainty of its computational cost.

Indeed, it requires a large number of simulations which can

sometimes be very computationally expensive and requires

an insight on number of simulations needed. This leads to

a large effort being wasted in the early stage of the search

process on poor solutions. The second approach, the indirect

method, uses surrogate functions to approximate the stochastic

code [10], [11]. Here again, the reliability of the meta model is

questionable. Generally speaking, the main issue when dealing

with stochastic code in a cost function is to know if the

comparison of two solutions or a population of solution is

reliable and cost effective.

To tackle this problem, we propose to use statistical tests

to compare solutions in an evolutionary framework. The

advantage of such test in the context of simulation optimi-

sation is that they can be performed iteratively. Indeed, the

random sample issued from the simulation can be augmented

iteratively until statistical difference is reached. This ensures

that the minimum number of simulations is performed to detect

statistical difference to support solution selection.

Based on this idea, we propose in this paper to use iterated

racing as the selection method. Racing was initially proposed

in [12] for model selection in machine learning and was

later developed in a successful search algorithm for off-line

parameter tuning in IRACE [13].

In order to test the proposed method, we also present a new

generic benchmark developed in collaboration with Élecricité

de France (EDF) and based on a simplified version of the

simulation tool VME presented in [14] called VMELight. We

generate 175 instances of the VMELight problem by randomly

varying the parameters of the failure probability distribution

of the components at hand.

This paper is organised as follows. In Section II, we present

the VMELight maintenance optimisation and the benchmark

proposed for the experiments of this paper. In Section III, we

explain the IRACE algorithm used for maintenance planning.

In Section IV we provide the results obtained by IRACE on the

benchmark problems along with an analysis of the behaviour

of the algorithm. Finally, we conclude with a list of open

questions and future works.

II. MAINTENANCE OPTIMISATION

In this section, we describe the problem used for the

experiment presented in this paper. We first describe the life

cycle model used to evaluate maintenance plans and how we

generate instances of this problem to create the benchmark.

A. The maintenance problem

For this paper, we use the simplified version of the sim-

ulation tool called VME presented in [14]. We refer to this

problem as VMELight. The objective is to find the mainte-

nance dates P ∗ = {p∗
1
, p∗

2
, ..., p∗n} ∈ R

n that maximise the

Net Present Value (NPV) of the maintenance strategy of n
components. The failure probability of each asset follows a

Weibull distribution.

The simulations are driven by the event model shown in

Figure 1. The decision variables P are defined in the green

event box and the probabilistic event of failures in the red

event box. When a maintenance (replacement) event occurs,

the model checks for the availability of a spare part. If

not available, then a spare part is supplied. Planned and

corrective maintenances assume a complete rejuvenating of

the component by replacing it with a spare part in stock. If

the stock is empty a spare part is acquired which causes a

delay in the maintenance. Each event has a cost and a time

frame as explained in the following section.

Fig. 1: Event model of VMELight

The NPV is calculated by comparing the proposed plan P
against a reference strategy which consist in never performing

any planned maintenance. For each simulation, the failure

times of each component are generated independently from

the given failure probability distribution of each components.

We call this a failure scenario T = {t1, ..., tn} where ti =
W (λi, βi, γi) where W is a Weibull distribution which defines

the reliability of a component. The Weibull distribution is a

common choice for this kind of problem.

Figure 2 illustrates the comparison between the reference

strategy and an assessed strategy P = {p1, p2} given a a

failure scenario T = {t1, t2}. Since we consider that the

a preventive maintenance reset the state of the component

to as good as new, if a preventive maintenance pi occurs

before a failure on component i (i.e. pi < ti), the new

failure time t∗i is shifted by t∗i = ti + pi. In this example,

the planned maintenance on the second component shifts the

failure beyond the life span of the asset, preventing it to occur.

failure t1

failure t1
*Preventive Maintenance	p1

Reference

strategy

Assessed

strategy

failure t2

failure t2
*

Preventive Maintenance	p2

Reference

strategy

Assessed

strategy

Life	Span

Fig. 2: Simulation example for two components

In the example provided by EDF on which this paper is

based, the n components are equally used in two separate

systems (n/2 components per system), see Figure 3. As a

consequence, if the failure of a component will cause a own

time of the whole system. If another component fails while

its system is down, the failure will have no additional effect

on the NPV. In this problem every component share the same

spare part stock.

B. The benchmark

An instance of the VMELight problem is defined by the

following parameters:

• Number of components n
• The failure probability follows Weibull distribution for

which the parameters are defined in the following ranges:

– Λ = {λ1, ..., λn} ∈ [0.01, 0.1]n

– B = {β1, ..., βn} ∈ [1, 4]n

– Γ = {γ1, ..., γn} always equal to 0

• Components age at t = 0 is set to zero, which means

that when we start the simulation, each component is

considered as new.

Fig. 3: Dependencies between components

• Time horizon is 40 years. Hence, the search space is

defined in Ω ∈ [0, 40]n ∈ R
n.

• Stock level is the number of spare parts available at the

beginning of the simulation.It is set to 0.25n
• Yearly cost of unavailability: Cunavailable = 10000
• Failure cost Cfailure = 1000
• Maintenance cost Cmaintenance = 100
• Spare part cost Cspare = 10
• Storage cost per year: Cstorage = 1
• Time to buy a spare part after failure tfailure = 1
• Preventive maintenance time tmaintenance = 1
• Actualisation rate is 0.075.

Each of this parameter can be modified at will to reflect

a specific case. In practice, failure probability distribution

parameters are either provided by the manufacturer or can

be fitted on past failure events. For this paper, we use the

values indicated above and varied only the failure distribution

parameters of the components by uniformly generating random

values for the λ and β parameters. The decision of keeping the

same values for costs is driven by the wish to ease the compar-

ison between the different problems and different dimensions.

We have generated 25 instances for seven different numbers

of components n = {4, 8, 12, 16, 20, 30, 40}, corresponding

to the dimension of the problem. This provides us with a

benchmark of 175 instances.

III. ITERATED RACING FOR MAINTENANCE PLANNING

OPTIMISATION

In this section, we present our version of the iterative racing

algorithm called IRACE. Racing is a comparison method used

when the cost function requires multiple simulations. In the

case of machine learning, as it was originally proposed, racing

is used to select the best models for a training set [12]. In

algorithm configuration [13], racing is used to compare sets

of parameters for an optimisation algorithm against a set of

problems or instances of a problem. In this case, we use racing

to compare maintenance plans against a set of failure scenarios

obtained from the different characteristics of a system and its

components to maintain.

A. Iterated racing

IRACE is a generational EA which originality lies in the

truncation mechanism which aims at using the minimum

number of replications in simulation optimisation where the

cost function is stochastic or a statistic of a set of replications.

Search algorithms and particularly metaheuristics are all based

on the evaluation and comparison to support decisions on

whether discarding them or using them to generate new

solutions.

IRACE starts by uniformly sampling an initial population P
of k solutions from the decision space Ω and a set of M failure

scenarios T from the failure distribution of the n components

defining the problem.

The truncation phase is called a race. At each step i of

the race, each remaining solutions j in the population is

evaluated on a given failure Ti by f(Pj , Ti). It consists in

iteratively evaluating each solution on the failure instances

previously generated until statistical difference is obtained.

When a solution is considered significantly worse than the

rest of the population, it is removed from the population and

the race carries on with the remaining ones. We consider two

stopping criterion for a race:

• The truncation rate µ: given an initial population size k,

the race stops when the population size |P| is reduced to

µk
• The maximum number of failure scenario M : In order

to prevent races to stall if for instance the population

has converged, it is best to set a maximum number of

replications per solution. Once this number is reached,

we can assume that the number of replications done is

sufficient to use the mean NPV as a reliable indicator to

discard the remaining extra solutions from the population.

An example of a race is illustrated in Figure 4. In this example,

a race between eight solutions takes place. After the simulation

of the fifth failure scenario (T5), the three solutions P6,P7 and

P8 are considered significantly worse and are discarded. The

race carries only simulating the remaining solutions until only

two solutions survive (µk = 0.25× 8).

! "# "$ "% "& "' "(") "* F

!# =

!$ =

!% =

!& =

!' -

!(-

!) =

!* =

!+ -

!#, =

!## =

!#$ =

!#% -

!#&

Fig. 4: Example of a race for a population size of k = 8 and

a truncation rate of µ = 0.25

At the end of each race, new solutions are generated

from the surviving ones to reset the population to its initial

value k. Solutions surviving from the previous generation are

carried on to the next one. It allows the algorithm to save

simulations in further generations. In this work, we use a

simple Univariate Marginal Distribution Algorithm (UMDA)

which samples each parameter of new solutions from a normal

distribution obtained from the mean and standard deviation of

the remaining solutions in the population N (pi, σ(pi)).

Algorithm 1 EA based on racing selection

Require: k : population size

µ : truncation rate

m : minimum number of simulations before running

statistical test

M : maximum number of simulation per race

Ω : the search space

1: Generate initial population at random of k maintenance

plans P = {P1, ...Pk}
2: Generate set of failure scenarios T = {T1, ...TM}
3: while termination criterion not reached do

4: while |P| > µk AND i < M do

5: i = i+ 1
6: for j in 1 to k do

7: Evaluate NPVij = f(Pj , Ti)
8: end for

9: if i ≥ m then

10: Perform statistical test on NPV
11: Remove from P all individuals pj if significantly

worse than the ”best” individual in P
12: end if

13: end while

14: while |P| > µk AND i < M do

15: Remove solution with the lowest NPV
16: end while

17: Generate new population from P
18: end while

This model only uses two parameters, k, the population size

and µ the truncation rate. For the rest of this paper, we use the

notation IRACE(k+µ) to denote the iterated racing algorithm

used in the experiments

B. Statistical test

In this paper, as it is recommended in [13], we use the

Friedman’s non-parametric two-way analysis of variance by

ranks [15] as the statistical test. The Friedman test is based

on the rankings of each solution on each failure scenario.

Although the objective is to maximise the mean NPV, and

though a statistical test based on this indicator (such as the

Student t-test) could be more appropriate, it has not been

proven that the NPV distribution of the cost function follows

a normal distribution. It would make the test unreliable and

thus the use of a non-parametric test is essential.

IV. EXPERIMENTS

In this section, we present the experiments performed and

the results obtained, providing an analysis on the behaviour of

IRACE with respect to the different parameters applied.

A. Experimental setup

As explained in Section II, experiments in this paper are

based on a benchmark of 175 instances of the VMELight

problem. We test IRACE(k + µ), using the parameters listed

in Table I. The purpose of these experiments is to analyse

the effect of the population size and the truncation rate. We

allow 500,000 simulations per run and we replicate each run 25

times. Each run has a different set of failure scenarios which

remains consistent between the different parameter settings.

The performance comparison is only done at the end of the

run. When the 500,000 simulations are used, every solution

in the population is evaluated by 10,000 simulations and the

solution returned is the one with the highest mean NPV. Using

the mean NPV to compare appears to be a common practice

in EAM.

TABLE I: IRACE(k + µ) parameters

Parameter Description Value

k Popoulation size {20, 50, 100}
µ Truncation rate {0.25, 0.5, 0.75}
m Minimum number of iterations per race 20

M Maximum number of iterations per race 5000

B. Results

In this section We present the results obtained by the

different versions of IRACE(k + µ). We first analyse the

behaviour of the search by analysing the effect of the different

parameters on the racing and the evolution of the population’s

diversity along the search. We then study the effect on the

final results obtained by each configuration.

1) Diversity: Figure 5 shows the evolution of the diversity

of the population along a run. The diversity measure used is

the average pairwise Euclidean distance between solutions in

the population. the evolution of the diversity is plotted against

the number of simulations performed in the search. We only

show here the convergence of the population for problems in

dimension 40 to avoid redundant information as every other

dimensions gives similar results. the diversity is averaged over

every problem and every run for n = 40. First, we note that the

population size has the most influence on the diversity. Smaller

population sizes lead to a faster convergence of the population.

Then, as we could expect, larger truncation rates maintain a

higher diversity in the population while small truncation rate

impose a strong selective pressure on the population causing

a faster convergence.

2) Racing effect: To analyse the effect of racing on the be-

haviour of the algorithm, we record the number of generations

each search goes through (Figure 6a) and the number of new

solutions evaluated (Figure 6b) for the different configurations.

Given the stopping criteria of a race (the population is reduced

with respect to the truncation rate), races may use different

number of simulations to complete. This affects the number

of races done during a run and hence, the number of solutions

explored.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
2
0

4
0

6
0

Number of simulations

D
iv

e
rs

it
y

IRACE(20+0.25)

IRACE(50+0.25)

IRACE(100+0.25)

IRACE(20+0.5)

IRACE(50+0.5)

IRACE(100+0.5)

IRACE(20+0.75)

IRACE(50+0.75)

IRACE(100+0.75)

Fig. 5: Average diversity in the population through the runs

for n = 40

The analysis of the race length and its effect on the number

of solutions explored can bring an insight on the behaviour of

the algorithm and the characteristics of the problem.

The truncation rate has a strong influence on the number

of simulations needed to obtain statistical differences between

the µ best solutions and the 1−µ worse solutions. Indeed, the

larger the truncation rate, the lesser the best solutions have to

compete with each other. As a consequence, less simulations

are needed to discard the 1 − µ worse solutions as it can be

seen in Figure 6a. Where for every dimension, truncation rates

of µ = 0.75 (dotted lines) produces more races (generations)

than µ = 0.5 (dashed lines) and µ = 0.25 (solid lines).

It is also interesting to note that the number of generations

increases with the dimension despite the fact that the same

number of simulations is allowed in each run. It can be

explained by the fact that larger problems boast more disparity

in their fitness landscape leading to an easier discrimination

between solutions.

3) NPV: Based on the observation, we analyse the effect of

the parameters on the final results obtained by each configura-

tion. In Figure 7a, we show the mean NPV obtained by each

version of IRACE on all 15 instances of each dimension and

over each of the 25 runs. Figure 7b shows the mean ranking

obtained by each configuration for each dimension.

First of all, we can see that the mean NPV obtained

increases linearly with the number of components. The popu-

lation size has the most influence in results as the three best

configurations boast a population size of k = 100 (green lines

in Figure 7 followed by k = 50 (blue lines) and finally k = 20
(red lines).

For the rest for this analysis, and in order to simplify

the display of results, we discard the configurations with

population size k = 25 and k = 50, to focus on k = 100.

Following the procedure described in [16], we use Friedman

test and Holm’s procedure to compare the results obtained

by the three truncation rates µ = (0.25, 0.5, 0.75) applied

to a population size of k = 100. In Table II, we show

the mean rankings of the three configurations and apply the

Friedman test. We obtain statistical differences for α = 0.05
in dimensions n = {8, 12, 16, 20, 30, 40}. This allows us to

apply the Holm’s procedure to detect statistical differences

between the best ranked configurations and the two others for

these dimensions.

First, we note that there is no statistical difference be-

tween µ = 0.25 and µ = 0.5 in the lower dimensions

(n = {8, 12, 16, 20}) while IRACE(100+0.75) obtains results

that are significantly worse. This reflects the fact that the

VMELight problem in low dimensions favours IRACE with

a stronger selection pressure and faster convergence. On the

other hand, when increasing the dimension, this tendency

is reversed and configurations with less selective pressure

obtain significantly better results. Indeed, for n = 30, there

is no statistical difference between IRACE(100+0.5) and

IRACE(100+0.75), while IRACE(100+0.25) is significantly

worse than the former. Finally, in the largest dimension tested

(n = 40), IRACE with a truncation size of µ = 0.75 obtains

significantly better results than both lower values of µ. Hence,

when increasing the dimension, VMELight requires a broader

exploration of the search space.

V. CONCLUSION

In this paper, we introduce the idea of using iterated racing

to tackle maintenance optimisation problems. The idea of

using IRACE for this kind of problems aims at removing

the number of replications used in Monte-Carlo simulations

to evaluate a maintenance strategy on a stochastic evaluation

model.

To test the method, we proposed a new set of generic optimi-

sation problem called VMELight. We generated 175 instances

of this problem in seven different dimensions. We used this

benchmark to test and analysed the behaviour of IRACE using

different values for population size and truncation rate param-

eters. We showed that larger population size obtained the best

results regardless of the problem and its dimension. We then

observed that smaller problems preferred faster converging

configurations while larger dimensions preferred explorative

configurations.

VI. FUTURE WORKS

Since maintenance problems have mainly been tackled by

research from the EAM community, their focus was mainly on

the simulation models and little on the search algorithm and

methodology used to optimise these problems. Such problems,

however present many interesting characteristics which should

attract the attention of the computational intelligence commu-

nity.

First, it would be interesting to develop a more flexible

benchmark that will take into account more complex de-

pendencies between the different components and different

spare part stocks. At the moment, VMELight only considers

one configuration (two systems and one shared spare part

stock). This would allow the users to design more realistic

and complex models. The benchmark used here is a first

50

100

150

200

10 20 30 40
n

N
u

m
b

e
r

o
f

g
e

n
e

ra
ti
o

n
s IRACE(20+0.25)

IRACE(50+0.25)

IRACE(100+0.25)

IRACE(20+0.5)

IRACE(50+0.5)

IRACE(100+0.5)

IRACE(20+0.75)

IRACE(50+0.75)

IRACE(100+0.75)

(a) Average number of generations per run

1000

2000

3000

4000

5000

10 20 30 40
n

N
u

m
b

e
r

o
f

s
o

lu
ti
o

n
s
 e

va
lu

a
te

d

IRACE(20+0.25)

IRACE(50+0.25)

IRACE(100+0.25)

IRACE(20+0.5)

IRACE(50+0.5)

IRACE(100+0.5)

IRACE(20+0.75)

IRACE(50+0.75)

IRACE(100+0.75)

(b) Average number of solutions evaluated per run

Fig. 6: IRACE behaviour analysis for each configuration

2000

4000

6000

10 20 30 40
n

M
e

a
n

 N
P

V

IRACE(20+0.25)

IRACE(50+0.25)

IRACE(100+0.25)

IRACE(20+0.5)

IRACE(50+0.5)

IRACE(100+0.5)

IRACE(20+0.75)

IRACE(50+0.75)

IRACE(100+0.75)

(a) Mean NPV per dimensions

2.5

5.0

7.5

10 20 30 40
n

M
e

a
n

 r
a

n
k
in

g

IRACE(20+0.25)

IRACE(50+0.25)

IRACE(100+0.25)

IRACE(20+0.5)

IRACE(50+0.5)

IRACE(100+0.5)

IRACE(20+0.75)

IRACE(50+0.75)

IRACE(100+0.75)

(b) Mean ranks per dimensions

Fig. 7: Mean NPV and mean ranking for each configurations in each dimension

TABLE II: Mean ranking and Friedman p− value

n IRACE(100+0.25) IRACE(100+0.5) IRACE(100+0.75) p− value
4 2.16 1.84 2 5.27E-01

8 1.8 1.76 2.44 2.63E-02

12 1.6 1.76 2.64 3.94E-04

16 1.68 1.44 2.88 3.45E-07

20 2.04 1.56 2.4 1.18E-02

30 2.92 1.44 1.64 9.98E-08

40 3 1.88 1.12 2.29E-10

TABLE III: Holm’s procedure with α = 0.05

n Reference i Configuration z = (R0 −Ri)/SE p− value α/i Statistical difference?

8 IRACE(100+0.5)
2 IRACE(100+0.75) 2.40 1.62E-02 0.025 Yes
1 IRACE(100+0.25) 0.14 8.88E-01 0.05 No

12 IRACE(100+0.25)
2 IRACE(100+0.75) 3.68 2.36E-04 0.025 Yes
1 IRACE(100+0.5) 0.57 5.72E-01 0.05 No

16 IRACE(100+0.5)
2 IRACE(100+0.75) 5.09 3.56E-07 0.025 Yes
1 IRACE(100+0.25) 0.85 3.96E-01 0.05 No

20 IRACE(100+0.5)
2 IRACE(100+0.75) 2.97 2.98E-03 0.025 Yes
1 IRACE(100+0.25) 1.70 8.97E-02 0.05 No

30 IRACE(100+0.5)
2 IRACE(100+0.25) 5.23 1.67E-07 0.025 Yes
1 IRACE(100+0.75) 0.71 4.80E-01 0.05 No

40 IRACE(100+0.75)
2 IRACE(100+0.25) 6.65 3.00E-11 0.025 Yes
1 IRACE(100+0.5) 2.69 7.21E-03 0.05 Yes

step towards creating an available framework to allow re-

searchers from the computational intelligence community to

study and develop new algorithms to tackle this kind of

problems. Further steps thus include the standardisation of the

evaluation method (number of simulation allowed, dimension,

comparison method) to provide a fair research environment.

Consequently, further development on the pool of algo-

rithms available for these problems is essential. More advanced

and fine tuned heuristics are still to be proposed to improve the

performance and knowledge on stochastic optimisation prob-

lems. For instance, in the context of the proposed algorithm

and instead of the simple univariate model used here to sample

new solutions, it would be interesting to implement different

methods such as CMA-ES or Genetic Algorithms. Further

research can also be done on the use of statistical tests in

existing algorithms. Steady-State Evolutionary Algorithm such

as Differential Evolution or direct search could for example

use the Wilcoxon test for the pairwise comparison in their

replacement. Other paradigm such as swarm intelligence could

also be applied here.

Then, a whole new methodology still needs to be developed

to understand the behaviour of algorithms tackling these prob-

lems, including convergence analysis, parameter sensitivity,

scalability or run length distribution.

Finally, a need for parallelisation is of high interest for these

problems since more complex life cycle models may require

large computational effort. For that matter, IRACE is particu-

larly adapted since simulations can be run independently.

REFERENCES

[1] R. L. Cheu, Y. Wang, and T. F. Fwa, “Genetic Algorithm-Simulation
Methodology for Pavement Maintenance Scheduling,” Computer-Aided

Civil and Infrastructure Engineering, vol. 19, no. 6, pp. 446–455, nov
2004.

[2] D. Edwin, U. Gomez, S. Hennequin, and N. Rezg, “Optimization of
a failure prone manufacturing system with regular preventive mainte-
nance: an ipa approach,” IFAC Proceedings Volumes, vol. 44, no. 1, pp.
10 422 – 10 427, 2011, 18th IFAC World Congress.

[3] W. Y. Yun, Y. J. Han, and G. Park, “Optimal preventive maintenance
interval and spare parts number in a rolling stock system,” in 2012

International Conference on Quality, Reliability, Risk, Maintenance, and

Safety Engineering, June 2012, pp. 380–384.

[4] A. Alrabghi and A. Tiwari, “State of the art in simulation-based optimi-
sation for maintenance systems,” Computers & Industrial Engineering,
vol. 82, pp. 167–182, apr 2015.

[5] P. Lynch, K. Adendorff, V. Yadavalli, and O. Adetunji, “Optimal
spares and preventive maintenance frequencies for constrained industrial
systems,” Computers & Industrial Engineering, vol. 65, no. 3, pp. 378–
387, jul 2013.

[6] A. Alrabghi, A. Tiwari, and A. Alabdulkarim, “Simulation based op-
timization of joint maintenance and inventory for multi-components
manufacturing systems,” in Proceedings of the 2013 Winter Simulation

Conference: Simulation: Making Decisions in a Complex World, ser.
WSC ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 1109–1119.

[7] M. Marseguerra, E. Zio, and L. Podofillini, “Condition-based mainte-
nance optimization by means of genetic algorithms and Monte Carlo
simulation,” Reliability Engineering & System Safety, vol. 77, no. 2, pp.
151–165, aug 2002.

[8] P. Chootinan, A. Chen, M. R. Horrocks, and D. Bolling, “A multi-
year pavement maintenance program using a stochastic simulation-based
genetic algorithm approach,” Transportation Research Part A: Policy and

Practice, vol. 40, no. 9, pp. 725 – 743, 2006.
[9] J. Lonchampt and W. Lair, “Risk-informed simulation optimization for

engineering asset management,” 01 2014.
[10] A. I. J. Forrester, A. Sbester, and A. J. Keane, Engineering Design via

Surrogate Modelling. Chichester, UK: John Wiley & Sons, Ltd, jul
2008.

[11] T. Browne, B. Iooss, L. L. Gratiet, J. Lonchampt, and E. Remy,
“Stochastic simulators based optimization by gaussian process metamod-
els application to maintenance investments planning issues,” Quality

and Reliability Engineering International, vol. 32, no. 6, pp. 2067–2080,
2016, qre.2028.

[12] O. Maron and A. W. Moore, “The Racing Algorithm: Model Selection
for Lazy Learners,” Artificial Intelligence Review, vol. 11, no. 1/5, pp.
193–225, 1997.

[13] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58,
2016.

[14] J. Lonchampt and K. Fessart, “Investments Portfolio Optimal Planning
for industrial assets management: Method and Tool,” in ANS embedded

meeting on Risk Management for Complex Socio-technical Systems

(RM4CSS), Washington DC, USA, 2013.
[15] M. Friedman, “The Use of Ranks to Avoid the Assumption of Normality

Implicit in the Analysis of Variance,” Journal of the American Statistical

Association, vol. 32, no. 200, pp. 675–701, 1937.
[16] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial

on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and

Evolutionary Computation, vol. 1, no. 1, pp. 3–18, mar 2011.

	coversheetConferences
	PID5350887.pdf

	OA: GREEN
	OA Logo:
	AUTHORS: LACROIX, B., MCCALL, J. and LONCHAMPT, J.
	TITLE: Iterated racing algorithm for simulation-optimisationof maintenance planning.
	YEAR: 2018
	Publisher citation: LACROIX, B., MCCALL, J. and LONCHAMPT, J. 2018. Iterated racing algorithm for simulation-optimisation of maintenance planning. In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation 2018 (CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. New York: IEEE [online], pages 1-7. Available from: https://doi.org/10.1109/CEC.2018.8477843
	OpenAIR citation: LACROIX, B., MCCALL, J. and LONCHAMPT, J. 2018. Iterated racing algorithm for simulation-optimisation of maintenance planning. In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation 2018 (CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. New York: IEEE, pages 1-7. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Version: AUTHOR ACCEPTED
	Publisher: IEEE
	Conference: IEEE congress on evolutionary computation 2018 (CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil
	ISBN:
	eISBN: 9781509060177
	ISSN:
	Set statement: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:
		2018-10-18T12:49:42+0100
	OpenAIR at RGU

