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Abstract. Imitation learning is a field that is rapidly gaining attention
due to its relevance to many autonomous agent applications. Provid-
ing demonstrations of effective behaviour to teach the agent is useful in
real world challenges such as sparse rewards and dynamic environments.
However, most imitation learning approaches don’t retain a memory of
previous actions and treat the demonstrations as independent and iden-
tically distributed samples. This neglects the temporal dependency be-
tween low-level actions that are performed in sequence to achieve the
desired behaviour. This paper proposes an imitation learning method to
learn sequences of actions by utilizing memory in deep neural networks.
Long short-term memory networks are utilized to capture the temporal
dependencies in a teacher’s demonstrations. This way, past states and
actions provide context for performing following actions. The network
is trained using raw low-level features and directly maps the input to
low-level parametrized actions in real-time. This minimizes the need for
task specific knowledge to be manually employed in the learning process
compared to related approaches. The proposed methods are evaluated on
a benchmark soccer simulator and compared to supervised learning and
data-aggregation approaches. The results show that utilizing memory
while learning significantly improves the performance and generalization
of the agent and can provide a stationary policy than can produce robust
predictions at any point in the sequence.

1 Introduction

Recent years have seen a rise in demand for autonomous intelligent agents. Imita-
tion learning [7] is a promising approach for teaching agents intelligent behaviour
by providing demonstrations performed by an expert. Providing demonstrations
by performing a task is substantially easier than articulating how the task should
be performed and explicitly programming the agents. Moreover, learning from
demonstrations is suitable for realistic training scenarios which impose restric-
tions on learning from experience such as sparse rewards and dynamic environ-
ments. Imitation learning approaches commonly deal with demonstrations as
discrete instances of state and action pairs. Although most autonomous appli-
cations involve performing sequences of actions to achieve a goal, most learning
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methods process instances separately as independent and identically distributed
(i.i.d.) samples. These methods rely on the hypothesis that the observed state
contains enough information to make an accurate decision; and that performing
a series of accurate independent decisions will accumulate to effective behaviour.
This hypothesis overlooks the dependencies between actions which can be key
in planning long trajectories of actions. This is especially sensitive in imitation
learning as the teacher might inherently be relying on memory, without this in-
formation being presented to the learning agent. Even if an accurate decision can
be made from the current state alone, the teacher might choose a different course
of action based on previous experience. If this additional information is not pre-
sented to the agent, it won’t be able to learn from the demonstrated behaviour
[6]. Moreover, even if sampling the training data is dependent on previous ac-
tions such as data aggregation methods, the learning algorithm doesn’t take
temporal relationships between these observations into account. Using memory
of past events as context, allows the policy to learn different reactions to similar
observations in different point along the trajectory [11]. It is therefore neces-
sary to represent training demonstrations as sequences and learn to reproduce
dependent action trajectories.

Recurrent neural networks have shown great success in learning from se-
quences [2,12]. They capture temporal dependencies by having looping connec-
tions so the nodes consider previously processed samples along with new input
to produce a decision. However, most RNN applications involve processing the
sequence in its entirety before producing a decision or generating an output se-
quence [19]; which is not suitable for real time autonomous agents. Some appli-
cations such as handwritten text generation utilize RNNs to generate a sequence
one step at a time [3]. However, these sequences are generated in isolation from
other factors while autonomous agents are required to react mid trajectory to
dynamic environments. For that, imitation learning requires new RNN based
methods that can learn from long sequences of dependent actions and react
based on real time observations of the environment.

This paper proposes a novel approach which includes representing demonstra-
tions as sequences of dependent state-action pairs and using a long-short-term-
memory network (LSTM) to learn a policy. The LSTM network learns a mapping
between states and actions while taking into consideration memory of previous
events and actions and the temporal dependencies between these instances. This
approach is demonstrated on the “robocup soccer simulator” [9]; a multi-agent
soccer simulator. The multi-agent setting provides a dynamic environment for
which generating static sequences is not suitable as the policy is required to react
to the other agents’ actions. This makes the simulator a popular benchmark for
intelligent agents. Unlike most machine learning methods, the proposed LSTM
network learns from raw low-level sensory data, without the need for engineered
feature extraction. Similarly, the policy performs low-level parametrized actions
that making a decision as well as predicting continuous values for the actuators
simultaneously. Performing sequences of these low level actions makes up the de-
sired behaviour without manually engineering high level strategies. To evaluate
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the proposed LSTM approach its performance is compared to the hand-crafted
teacher policy, and policies learned via neural networks without memory (MLP).
To evaluate the generalization ability of RNNs in imitation learning, the pro-
posed approach is further compared to a data aggregation method [16] conducted
on the MLP agents.

The remainder of the paper is organised as follows: Section 2 reviews re-
lated work in the literature. Section 3 describes the proposed methods. Section
4 details the experimental setup and the produced results. Finally, Section 5
concludes the paper and provides directions for future research.

2 Related Work

In this section we present related work that utilize deep reinforcement learning
and describe different methods proposed in the literature to combine learning
from demonstrations and experience.

Recurrent neural networks can be used to generate sequences by considering
the past generated samples. Such an approach is used in [1] to generate con-
tinuous handwriting. An extension to this approach is also proposed in [1] that
allows the generated sequence to be conditioned on a sequence of input text
characters. Clearly, such approaches can be very relevant to imitation learning if
the actions can be formulated as a generated sequence conditioned on a sequence
of observed states. Similarly sequence to sequence learning [19] has been gaining
a lot of attention recently. However, for most applications, the entire input se-
quence is analysed before generating the out sequence, while autonomous agents
are required to act in real time to every sensory input.

An LSTM based system is proposed in [11] to learn how to perform surgical
procedures by controlling a robotic arm. The network is trained on demonstra-
tions by a human expert. Although the static setting of the surgery allows for
policies that replicate manually designed trajectories, this supervised learning
approach provides better generalization.

The robocup simulator is a popular benchmark for intelligent learning meth-
ods as it shares many characteristics with real world applications. A cooperative
defensive task is learned in [15] using demonstrations provided by two human
players simultaneously. Several classifiers are used to learn from the demonstra-
tions and the results are favourably compared to human performance and simple
hand-coded agents. However, this approach employs high level strategies as the
decision to be learned by the agent, such as “approach the ball” or “block at-
tacker’s path” which in turn need to be translated into low level actions through
manual programming. High level actions also enable learning the task through
evolutionary algorithms [14] as the solution space becomes smaller. Similarly, in
[8,18,10] reinforcement learning is used to learn high level actions. It is note-
worthy that each paper employs a different set of macro-actions; so each new
macro-action has to be manually designed. Deep reinforcement learning is used
in [5] to learn an offensive task from raw sensory data. The reinforcement learn-
ing policy is used to predict low-level parametrized actions and thus doesn’t
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require manual policy design. However, the organic reward in this task (scor-
ing a goal) is very sparse and requires performing long trajectories of low-level
actions to reach this state. As reinforcement learning exploration fails to reach
the environment’s reward, this approach employs a manually engineered reward
function that guides the agent to perform desired behaviours. This engineering
requires substantial task knowledge and limits the general application of this
approach.

3 Method

This section presents the proposed method for training agents to play soccer
via deep imitation learning with memory. A recurrent neural network is trained
solely from demonstrations and doesn’t require any explicit tailored engineering.
The proposed method minimizes the need for expert knowledge by utilizing
the low level sensory features and learning a mapping to atomic parametrized
actions. We start by describing the process of data collection and representation.
Demonstrations are provided by a teacher that performs the task for a number
of rounds. For each round the teacher attempts to score a goal; the round ends
with a successful or unsuccessful attempt. A plethora of hand-crafted agents
exist for the ’robocup soccer simulator’ and can serve as the teacher to provide
examples of effective behaviour. Existing agents are also available to control the
opponent to provide a realistic setting for the demonstrations.

Each round is represented as a sequence of state-action pairs. For each frame
t the state of the environment xt is captured along with the action taken by
the teacher yt and are added to the sequence Si = x, y. The state xt represents
low level information about the agent’s surroundings and is captured from the
agent’s point of view using its simulated sensors. So all the information about the
field and the objects and players in it are captured relative to the agent’s position
and status. The action yt is chosen from a set of the low level parametric actions
available to the agent. That is, the agent decides what move to perform from its
list of actuators as well as one or more continuous values that serve as parameters
for the selected actuator. Such atomic actions performed in a sequence construct
a higher level behaviour that is usually identified and modelled manually in
other studies. The captured sequences are used to construct the training dataset
D = S1, S2..Sn is used to train recurrent neural network.

The training set is used to train a deep recurrent neural network. The network
consists of 3 stacked LSTM layers containing 100, 50 and 6 nodes respectively,
followed by a reshaping layer to present the 6 output values for all samples in
the batch to the loss function. The loss function calculates the error for the
predictions of the entire batch rather than the final prediction only. This is
because unlike most RNN applications we are interested in producing accurate
predictions at each frame rather than optimizing one prediction after reading the
entire sequence. The LSTM layers are used to extract high level temporal features
from the raw input and the context provided by the networks memory. The
LSTM layers utilize hyperbolic tangent (tanh) activation functions. The output
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nodes in the final layer correspond to parametrized actions and are used to
predict continuous values for the 6 possible parameters for the agent’s actuators.
The output layer utilizes linear activations and a mean square error loss function
is used, therefore the network behaves as a multivariate regressor. The actuator
with the highest predicted parameter value is selected for execution by the agent.
This method allows for prediction values for multiple parameters simultaneously.
In many applications the output of the nodes in the final layer is not produced
until the end of the sequence and is only fed into the next time step without
being output as the network’s prediction. In contrast, the proposed network does
not read the entire sequence before producing a decision or generating an output
sequence. Instead, at each instance of the input sequence the network predicts an
output. Thus generating the output sequence step by step with the input, at each
step utilizing all the information available up to this instance. By representing
the demonstrations as sequences, this approach provides context for most of the
samples facing the agent.

However, this makes the prediction dependent on the position of the sample
in the sequence. For example if the agent starts performing the trained policy
mid episode, the current frame will be treated as if it is at the beginning of
the sequence even though it is not. To ensure the stationarity of the agent’s
policy, we train another network on a modified version of the training set D in
which all the sequences S1, S2..Sn are augmented into one list of samples. This
list is subsequently segmented into segments of uniform length that serve as the
new training sequences to be fed into the LSTM network. Figure 1 illustrates
the segmentation of the artificial sequences. This arbitrary creation of sequences
presents different states in different parts of the training sequences while main-
taining a temporal dependency between the consecutive instances in a sequence.
This approach is not expected to outperform training on fully structured se-
quences given that complete sequences are always presented to the agent during
testing. However, it demonstrates that the proposed approach does not depend
on reproducing entire training sequences and that utilizing memory in imitation
learning is beneficial even if the beginning and end of the sequence are unknown.

Table 1 highlights the differences between the proposed method and other
intelligent methods used for “Robocup”. Most methods rely on manually en-
gineering features and high-level actions which require significant task specific
knowledge and engineering which does not allow for a general learning process.
[5] uses deep learning to alleviate the need for engineering features and directly
map raw features to low-level actions. However, designing dense reward functions
to guide the agent require similar effort and produce similar results to manually
engineering the policy. A change in the setting such as the number of players
on the field requires designing new reward functions. This is in contrast with
organic reward functions which are directly provided by the rules of the game.
The proposed approach is general and only receives knowledge about the task
from the demonstrations. Providing new demonstrations for changes in a task
is considerably easier than designing reward functions or low-level policies to
execute the high-level decisions made by the policy.
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Fig. 1. Re-segmenting the demonstrated sequences into arbitrary sequences

Table 1. A comparison of machine learning approaches for rocbocup

Method Learning Features Actions Rewards

Jain et al.[8] Reinforcement
learning

Selected High-level Engineered

Raza et al.[15] Supervised (vari-
ous)

Engineered High-level N/A

Stone et al.[18] Reinforcement
learning

Engineered High-level Organic

Masson et al.[10] Reinforcement
learning

Selected High-level
parametrized

Engineered

Hausknecht et al.[5] Reinforcement
learning

Raw Low-level
parametrized

Heavily-
engineered

Ours Supervised
(LSTM)

Raw Low-level
parametrized

N/A

The proposed LSTM network is compared to a multi-layer perceptron that
doesn’t have a memory and treats all frames as independent and identically
distributed samples. In this case the sequences are augmented to create one
training set, from which batches of samples are drawn. Keeping the sequence of
samples without utilizing memory can be detrimental to training as the samples
in training batches will be too similar and lack diversity. Therefore, when training
the MLP, the entire dataset is shuffled before sampling the training batches to
ensure that they contain diverse samples from a variety of situations. This is
similar to the replay buffer approach used in [13] which is a key factor in the
success of deep reinforcement learning. The architecture of the MLP consists of
3 fully connected layers containing 100, 50 and 6 nodes respectively. The first
2 layers utilize rectifier activation functions and the output layer uses a linear
activation function.

Moreover, to evaluate the generalization of the proposed LSTM approach, it
is compared to a data aggregation approach that is applied during MLP training.
DAGGER [16] is a seminal data aggregation method that aims to enhance gen-
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eralization in imitation learning by providing additional training samples based
on the agent’s initially trained policy. The agent is allowed to perform the task
using the policy trained using the MLP. For each frame the teacher provides the
optimal action for the state observed by the agent and a new training dataset is
collected. The agent stochastically chooses to perform the teacher’s instruction
or the action predicted based on its current policy. The new samples are added
to the original training set and used to train a new agent. The new samples show
states that are likely to be visited by the agent according to its trained policy
and thus improving generalization. This process is repeated iteratively and the
new set of training instances are aggregated into the final training set.

4 Experiments

4.1 robocup

The robocup soccer simulator [9] is a 2D simulator that allows for full soc-
cer matches between 11 player teams. The simulator is a popular benchmark
for artificial intelligence as it contains a number of real characteristics and
challenges found in real applications such as a dynamic multi-agent environ-
ment and relative sensory information. A challenge closely related to this study
is the fact that playing soccer requires performing long sequences of actions
that depend on previous actions as well as actions from other agents. Because
soccer is a familiar activity, this application provides extensive evaluation of
the agents’ performance; not only according to the well-established rules of
soccer but also qualitatively analysing the agents’ behaviour through 2D vi-
sualization. Implementation of the proposed methods is available at https:

//github.com/ahmedsalaheldin/RoboCupLSTM

4.2 Half-Field-Offence

This study is conducted on a simplified sub problem of soccer simulator called
Half-field-offence (HFO) [4]. Over the years, researchers have used simplified
versions of the game of soccer to create intelligent autonomous agents in a more
controlled setting [17]. As the name suggests HFO takes place in half the soccer
field and is only concerned with the task of offence. The round is initiated with
the offensive player and the ball randomly placed in the half-field. The objective
of the offence is to score in the opponents goal while the defence tries to intercept
the ball. The round ends if a goal is scored or the defence captures the ball or
the ball goes out of the half-field bounds or if a time-limit is reached. Full details
of the available features and actions can be found in [4]. In our experiments we
use demonstrations provided by the offensive agent to teach an intelligent agent
to play the offensive role. A simple hand crafted agent is used as the teacher to
facilitate communication with the server. More complex higher performing hand
crafted agents can be used to provide demonstrations in the future. Figure 2
shows the visualization of the HFO environment.

https://github.com/ahmedsalaheldin/RoboCupLSTM
https://github.com/ahmedsalaheldin/RoboCupLSTM
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Fig. 2. Illustration of the Half-field-offence environment

4.3 Experimental Setup

The experimental evaluation compares between 4 learning methods. Firstly the
proposed LSTM trained on the captured sequences. This method referred to
as “LSTM episodic” as each episode or round of HFO makes up a training se-
quence. Secondly, “LSTM segmented”, where the LSTM model is trained on the
uniformly segmented sequences. The third method “MLP” trains a supervised
multi-layer perception on the training set. And finally “MLP shuffled” is similar
to “MLP” but shuffles the dataset before training the model. Moreover, data ag-
gregation of 3 iterations is applied to the MLP based approaches. All models are
trained on the same collected demonstrations consisting of 20000 samples. Data
aggregation adds a further 5000 samples for each iteration. The sequence length
used for training “LSTM segmented” is 80 samples. The models are trained of-
fline for 1500 epochs and the trained networks are saved to be later used by the
agent in real time.

We use a client that is decoupled from the learned models to connect to
the simulator server so that the same client can be used to execute any learned
policy. The client communicates with the simulator to receive the raw sensory
data observed by the agent at each frame and send the decisions of the neural
network to control the agent’s actions. The models are evaluated on 1000 rounds
of HFO. Each round can end in one of 4 outcomes. Firstly, a goal is scored, which
is the best possible outcome, followed by the defence capturing the ball, then the
ball going out of bounds and finally running out of time represents the poorest
behaviour by the agent. Table 2 shows the percentage of each outcome achieved
by the teacher used to provide the demonstrations; in 1000 rounds of playing.
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Table 2. HFO results for the hand crafted teacher

Method Goal Defence Bounds Time

Teacher 44.37% 51.43% 4.19% 0%

4.4 Results

Firstly, the results comparing the proposed LSTM approach to imitation learn-
ing without memory are presented. Figure 3 shows the results for the 4 trained
models “LSTM episodic”, “LSTM segmented”, “MLP” and “MLP shuffled”. The
results are shown for 1000 rounds of testing. The graph shows the percentage
of rounds that resulted in the 4 possible outcomes: goal scored, captured by the
defence, ball out of bounds and out of time. The percentage of goals scored is the
most important measure as scoring is the primary objective of the task, however
the other measures show the rest of the picture. The proposed method “LSTM
episodic” has resulted in the highest percentage of goals, similar to the teacher’s
performance and outperforms networks without memory with statistical signifi-
cance. “LSTM segmented” comes in second place also outperforming the MLP
methods with statistical significance, demonstrating that utilizing memory is the
contributing factor in the effectiveness of the learned policy, even if the beginning
and end of the sequence are unknown.

The results also show that shuffling the training set resulted in significantly
more goals. This corroborates the hypothesis that using dependent sequences
of samples to train models without memory can be detrimental as the training
batches lack diversity. The remaining measures show the robustness of utilized
imitation learning methods with small percentages of unwanted outcomes (“out
of bounds” and “out of time”) especially the LSTM based methods. Qualitative
analysis of the performance shows that running out of time is usually the result
of the agent getting stuck and constantly performing the same action. As can
be expected the teacher never produced this outcome and it is considered the
poorest behaviour displayed by the imitating agents. Being stuck is an indication
of ambiguity in the agent, and the extremely low percentage of this behaviour
in the LSTM agents demonstrates that utilizing memory significantly improves
the generalization of the learned policy in addition to its effectiveness.

Following, the results for data aggregation are presented. Figure 4 shows the
results for using data aggregation on the MLP network, with and without shuf-
fling the data. With “MLP shuffle”, the entire data set is shuffled each iteration,
so the training batches can contain samples from all the aggregated datasets. The
graph shows the percentage of goals scored in 1000 rounds for supervised learn-
ing (using the original training set), and three iterations of data aggregation.
The graph shows that for “MLP shuffle”, there is no significant improvement in
the percentage of scored goals. Without shuffling, we can see an improvement in
scoring for the first two DAGGER iterations but this pattern doesn’t hold for
the third iteration. For both methods, the graph shows no consistent improve-
ment in scoring with increasing the DAGGER iterations and in all cases doesn’t
reach the performance of the LSTM approaches.
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Fig. 3. Results for robocup half field offence. The outcomes presented in the graph
are: Goal: The offensive agent scored a goal, Defence: The ball was captured by the
defence, Bounds: The ball went out of bounds, Time: A time limit was reached before
any of the other outcomes

Fig. 4. Scoring percentage for MLP with data aggregation

Tables 3 and 4 shows the complete results for data aggregation with multi-
layer perceptrons, with and without shuffling respectively. The results show that
aggregating new samples does not necessarily decrease the percentage of un-
desirable outcomes. For both approaches, there does not appear a pattern for
decreasing the “out of time” percentages with increasing iterations of data aggre-
gation. In “MLP no-shuffle” where the scoring rate was substantially improved
with the first iteration of data aggregation, we observe that this improvement
is accompanied by a huge rise in the percentage of “out of time” rounds. This
emphasises that data aggregation in this study doesn’t provide a consistent im-
provement in the agent’s performance. Although data aggregation utilizes more
information, by sampling demonstrations from likely states, it fails to improve
the generalization of the agent compared to the proposed LSTM approach.
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Table 3. MLP data aggregation results with shuffling

Method Goal Defence Bounds Time

Supervised 38.83% 51.74% 5.02% 4.40%

Aggregate 1 38.17% 55.12% 4.46% 2.23%

Aggregate 2 38.01% 53.09% 5.68% 3.20%

Aggregate 3 38.31% 53.14% 2.98% 5.56%

Table 4. MLP data aggregation results without shuffling

Method Goal Defence Bounds Time

Supervised 32.19% 60.12% 4.56% 3.11%

Aggregate 1 38.59% 49.08% 4.27% 7.94%

Aggregate 2 39.81% 54.86% 3.78% 1.53%

Aggregate 3 34.89% 59.89% 3.67% 1.53%

5 Conclusion and Future Work

This paper proposes a novel imitation learning approach for learning from se-
quences in a dynamic environment. A demonstration is represented as an or-
dered sequence of state-action pairs. The states are represented by a feature
vector of low level sensory information from the agent’s perspective. The actions
available to the agent are low level parametrized actions. A deep Long-short-
term-memory network is used to learn a policy that retains a memory of past
experiences and learns from the entire demonstrated trajectory of actions. The
trained model uses memory to provide context to improve generalization and
predicts an action at every frame in real-time. Results on a multi-agent soc-
cer simulator show that learning from sequences using memory networks can
significantly outperform learning from i.i.d. samples and reach comparable per-
formance to the teacher. Using the memory to provide context when learning
from sequences outperforms data aggregation methods for improving generaliza-
tion and is much faster to train. Moreover, it is also shown that the proposed
LSTM method can be stationary by training on sequences that are arbitrarily
segmented from the demonstrations without a significant drop in performance.
Experiments using multilayer perceptions show that if the model has no memory
when learning from sequences, shuffling the training data can result in a signifi-
cant improvement in performance as the samples in the training batches become
more diverse. In the next step, we aim to use a number of high performing agents
from the robocup competitions to provide the demonstrations and include more
agents in the game.
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