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Abstract. The automated classification of text documents is an active research
challenge in document-oriented information systems, helping users browse mas-
sive amounts of data, detecting likely authors of unsigned work, or analyzing
large corpora along predefined dimensions of interest such as sentiment or emo-
tion. Existing approaches to text classification tend toward building black-box
algorithms, offering accurate classification at the price of not understanding the
rationale behind each algorithmic prediction. Lexicon-based classifiers offer an
alternative to black-box classifiers by modeling the classification problem with a
trivially interpretable classifier. However, current techniques for lexicon-based
document classification limit themselves to using either handcrafted lexicons,
which suffer from human bias and are difficult to extend, or automatically gener-
ated lexicons, which are induced using point-estimates of some predefined prob-
abilistic measure in the corpus of interest. This paper proposes LEXICNET, an
alternative way of generating high accuracy classification lexicons offering an
optimal generalization power without sacrificing model interpretability. We eval-
uate our approach on two tasks: stance detection and sentiment classification. We
find that our lexicon outperforms baseline lexicon induction approaches as well
as several standard text classifiers.

Keywords: text classification, lexicon induction, sentiment analysis, stance clas-
sification

1 Introduction

Text classification is a core task in natural language processing, with applications rang-
ing from web search to author detection. For example, support vector machines [11],
a common and extremely powerful classification algorithm [10] have helped improve
document navigation tasks by categorizing web search results [4], analyzed corpora
to identify anonymous authors [7], and are used to identify spam e-mails [8] at large
scale. However, supervised classification algorithms suffer from not providing predic-
tions that can be explained. Understanding the reason behind a classification allows us
to establish trust in further predictions, which can have far-reaching consequences in
algorithms deployed in production systems such as search engines and document cate-
gorization pipelines. Lexicons attend to this need by offering a white-box approach to
text mining. They do so by using an additive model, where the probability of an instance
belonging to a class is a weighted sum of the probabilities of each term belonging to
that class.
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A lexicon prediction can thus be interpreted by observing the terms that are con-
tained in the instance and the terms which have contributed the most to the prediction,
and it is possible for a human agent to modify the model in order to correct a mistake
without restarting the learning process entirely. Figure 1 illustrates the explanation step
with an example.

However, current techniques used to build those lexicons are lacking in many re-
spects compared to standard supervised text classifiers. This paper attempts to conciliate
lexicon-based classification and traditional classification models by defining a simple
and effective training procedure that can generate lexicons with a classification accu-
racy that is competitive with modern classification algorithms. Firstly, they use point
estimates of text statistics (such as raw co-occurrence or mutual information) in order
to build a lexicon that is susceptible to overfitting. Secondly, they perform significantly
worse than black-box models.

Example 1. In a binary sentiment classification setting, for a
given sentence “I love horror books”, a lexicon L referred on the
figure, the lexicon could find an aggregated score of f(love) ×
1.0+ f(horror)× 0.3+ f(books)× 0.5 = 1.8 for the Positive
class, and f(love)×0+f(horror)×0.7+f(books)×0.5 = 1.2
for the Negative class, where f is a function measuring some no-
tion of local term frequency. The decision functionD would then
return the class with the maximum value, i. e., Positive. A human
reader can read the sentence and identify that the term “love”
is responsible for tipping the classification towards the Positive
class.

Example Lexicon

Term Positive Negative

love 1.0 0.0
horror 0.3 0.7
books 0.5 0.5

Fig. 1: Classification and explanation with a sentiment lexicon

We first formalize the concept of lexicons and explore the state of the art in the
domain of lexicon-based classification. We then detail our contribution, formalizing
lexicon-based classification as a form of computational graph and inducing optimal
weights using a regularized objective function. We then detail our evaluation protocol
on two classification tasks: stance detection and sentiment classification. We perform an
evaluation against standard lexicons and baselines found in the literature and report that
our approach significantly outperforms standard text classification techniques. Finally,
we analyze and discuss our results, before exploring the next steps of our work.

2 Related works

Despite its widespread use in real-world applications, text classification heavily relies
on black-box models offering little if any explanation on their predictions [21]. Lexicon-
based classifiers overcome this limitation by constraining the classification to a simple
model: each term/class pair is linked to a score, and a new instance gets assigned a score
for each class corresponding to a sum of those scores weighted by the frequency of the
corresponding term.



Lexicon Induction for Interpretable Classification 3

, those scores get weighted according to the frequency of that term in the instance
and then added together, and finally the class with the highest total score for a given
instance is chosen as the prediction. Such a classification model offers the flexibility
of transparency: each prediction can be explained trivially by analyzing the terms that
were present in the text, and any domain expert could revise the model manually with
a simple text editing software. This transparency however comes at the cost of some
classification accuracy, due to the simplistic nature of its inference scheme.

2.1 Lexicon-based classification

Lexicons are linguistic tools for the automated analysis of text. Their most notorious
uses are classification and feature extraction [5, 2]. They can take many forms, the most
common of which is a simple list of terms associated to a certain class of interest. Clas-
sification is done by counting the number of terms belonging to each list in a given
unlabeled instance, and returning the class associated to the list with the most occur-
rences. Optionally, the terms can be weighted according to their strength of association
with a given class. Some lexicons also contain additional contextual information in or-
der to help their users build more complex models [17], but they all share the same
architecture:

Definition 1 (formal classification lexicon). A classification lexicon Lex is a tuple
Lex = 〈L,A,D〉 where:

L : T × C 7→ IR
A : IRn 7→ IR
D : IRn 7→ IR

For a given dictionary of terms T and set of classes of interest C, L is a mapping
function that assigns an unbounded value to each pair (t, c) where term t ∈ T and
class c ∈ C. The function A is an aggregation function that accumulates scores and
returns one value, and D is a decision function that selects and returns a single one
of these aggregated values. Concretely, the mapping determines an evidence score for
each term using a look-up list (the lexicon), propagates it to the aggregation function
which aggregates the evidence into one cumulative score per class. Finally, the decision
function evaluates each score to select the one that is the most likely. Figure 1 provides
an example of the classification process.

We therefore define a core challenge in lexicon-based classification: the lexicon
induction problem. The next section reviews techniques traditionally used to solve the
lexicon induction problem.

Definition 2 (lexicon induction problem). The lexicon induction problem is the esti-
mation, given aggregation function A and decision function D, of the optimal function
L so that the resulting lexicon Lex = 〈L,A,D〉 minimizes its classification errors on
unseen data.
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2.2 Lexicon induction techniques

Research in lexicon induction outlines multiple families of techniques that can be used
to produce a computational lexicon. Those techniques are either built on an extensive
lexical resource such as an ontology, or on an estimation of strength of association be-
tween each term and a class in a reference corpus. Research has shown that merging
multiple lexicons produces a reliable feature extractor to augment an existing classi-
fier [27], but using those lexicons for direct classification was not explored.

Traditional hand-crafted lexicons (THCL) Due to the computational cost of building a
lexicon from text, early lexicons were hand-crafted by domain experts [24] and while
higher performance in automated classification tasks has been shown using modern
techniques, there still exist handcrafted lexicons in use to this day such as the Linguistic
Inquiry and Word Count lexicon [20]. The strengths of these approaches are that they
generalize well and are highly interpretable due to their human (and not algorithmic)
origin. Conversely their weakness are that they tend to be small due to the human labor
involved in generating them, and less effective than other methods due to their focus on
human interpretability. However they can provide a commonsense knowledge back-up
in hybrid lexicons [16] with some degree of success.

Ontology-based lexicons (OBL) OBL learning techniques use a few human-provided
seed words for which the class is known, and leverage some external relationship (typi-
cally synonymy, antonymy and hypernymy) in a semantic graph such as WordNet [15]
to propagate class values along that graph [9]. Because this family of techniques is ex-
tremely foreign to the one we are proposing, we do not evaluate against it and only refer
to it for the sake of exhaustiveness.

Corpus statistic-based lexicons (CSBL) CSBL learning techniques use a labeled corpus
of interest in order to learn a domain-specific lexicon. The two main statistics used for
this purpose are the conditional probability (equation 1) of observing a term given a
class, and the pointwise mutual information (PMI, equation 2) between the observation
of a term and the observation of a class. These approaches are flawed in that they can
overemphasize spurious correlations between terms and classes. For example, if a non-
class specific term such as "Monday" accidentally co-occurs too often within one class,
it will be misconstrued as being indicative of that class, and the lexicon will overfit.
Bandhakavi et al. [1] describe a method for building conditional probability-based lexi-
cons and Turney [25] an approach using PMI and an external search engine to compute
lexicon scores. Other works [6] have shown some improvement using the normalized
PMI measure (NPMI, equation 3) on a stance classification task.

P (t; c) =
p(t|c)∑|C|

i=0 p(t|ci)
(1)

PMI(t; c) =
log(p(t; c))

p(t)p(c)
(2)

NPMI(t; c) =

log(p(t;c))
p(t)p(c)

− log [p(t; c)]
(3)
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3 Lexicon induction by backpropagation

CSBL learning techniques traditionally use point estimates of some statistical values on
a corpus. Assuming Fn×1 is a n× 1 matrix containing the frequencies of each of the n
terms in instance x and W c×n is a c× n matrix indexed by a class c and containing an
association score for each term-class pair, we define the classification step of a lexicon
in the following way:

Prediction(x) = ArgMaxc (Wc · F ) (4)

We can observe that a standard lexicon is a computational graph, i. e., a compo-
sition of functions, as shown in figure 2 illustrating the network topology of a binary
classification lexicon. This allows us to use gradient-based learning techniques such
as backpropagation in order to solve the lexicon induction problem. The details of the
network topology and the training protocol are explained in the following sections.

Fig. 2: The LEXICNET network topology

3.1 The Lexicon network topology

The lexicon network topology corresponds to a shallow network with linear units (the
lexicon layer), where one regressor is trained per class and the output of each regres-
sor (the aggregation layer in figure 2) is fed into a SoftMax normalization layer (the
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decision layer in 2) so as to produce a probability distribution as a final output, which
is necessary to backpropagate the error gradient to find the optimal lexicon weights. In
this section we review each layer of the neural lexicon and their function.

The vocabulary input layer The input layer feeds term frequencies into the network.
The output of this layer is a n× 1 matrix F (see equation 4) where n is the number
of terms in the lexicon. The inputs can be logarithmically scaled to smooth out the
differences in input length using the ScaledFrequency function where RawFrequency
corresponds to the number of times a term has appeared in the current input. More
complex scaling functions are typically applied in text classification

ScaledFrequency(t) = Log(1 + RawFrequency(t)) (5)

The lexicon layer The lexicon layer maps a term to its respective class-dependent
scores. This layer is represented by a c× n matrix W (see equation 4) where n is
the number of terms in the lexicon and c the number of classes.

The aggregation layer The aggregation layer adds up evidence towards a class from a
list of units in the previous layer by performing an inner product between n× 1 matrix
F and c× n matrix W . The output of this layer is a 1× c row vector O containing the
aggregated scores for each of the classes.

The decision layer The decision layer transforms the row vector O into a probability
distribution using the SoftMax function [3] and returns it as the output of the network.
At testing time, the decision layer returns theArgMax of the probability distribution in
the output in order to compute the accuracy of the current model. At training time, it re-
turns only the probability distribution since the ArgMax function is not differentiable,
which is a required feature for the backpropagation algorithm.

3.2 Lexicon network training

We train the LEXICNET network using an Elastic Net-regularized average cross-entropy
error function. In this section we detail our training procedure and cost function.

Cost function and regularization The backpropagation algorithm relies on reverse-
mode differentiation in order to train the network in a computationally efficient way,
by updating the weights of the units based on the error gradient with respect to those
weights. We transform the label of each instance into a probability distribution vector
of length n where Yi = 1 for the relevant class and Yi = 0 otherwise in order to use the
average cross-entropy cost function (function E detailed in equation 6).

E(Y, Ŷ ) = − 1

m
·

m∑
i=1

n∑
j=1

(
Yi,j × log(Ŷi,j) + (1− Yi,j)× log(1− Ŷi,j)

)
(6)
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Given a set of predictions Ŷ and their corresponding ground truth labels Y , the av-
erage cross-entropy function iterates over each pair (y ∈ Y ; ŷ ∈ Ŷ ) where both y and ŷ
are probability distributions over n classes and computes their cross-entropy, which is
then averaged over the m instances. However, optimizing over a direct function of the
error with a large amount of free parameters (number of classes × number of lexicon
entries) will lead to overfitting on the training data and poor performance on the test
data, which indicates the need to regularize our training process. To counter that effect
a regularization term is added to the optimization process using Elastic Net regulariza-
tion [30] which has been shown to work on neural networks architectures [13].

The cost function J resulting is shown in equation 7.

J(θ,X, Y ) = E(Y, h(X)) + λ ∗

α ∗ m∑
j=0

|wj |+ (1− α) ∗

√√√√ m∑
j=0

w2
j

 (7)

Here we can observe the presence of two different regularization parameters: λ cor-
responds to a regularization weight, which modulates the importance that we are putting
on obtaining a generalizable lexicon against having a low error in the training set and is
selected empirically, α corresponds to the elastic weight which weights the importance
put on minimizing respectively the L1−norm or the L2−norm of the lexicon weights,
wi corresponds to the weight of unit i in the lexicon layer.

Optimization We train our network using Backpropagation and the full batch Gradient
Descent algorithm with Nesterov momentum [18] as described in equation 8, where µ is
the velocity scaling parameter and γ is the learning rate. Nesterov momentum works by
updating each weight in two steps: firstly using a scaled version of their previous update
(conditioned by a fixed velocity parameter), followed by a course correction step using
the error gradient after the first update, mimicking the effect of momentum in physical
objects.

wi ← wi − µ× ui

ui ←
∂J

∂wi

wi ← wi − γ × ui

(8)

4 Experiments

We evaluated our approach using a 10-fold cross-validation [23] on multiple tasks. We
used standard TF-IDF term weighting [22] for the supervised classifiers because of it
is shown to be competitive with more complex weighting methods for text classifica-
tion where there is little to no term filtering [29]. We measured the performance of our
algorithm against standard supervised classifier baselines and lexicon induction tech-
niques using the accuracy performance metric (percentage of test instances correctly
classified). The rest of this section details the datasets and baseline algorithms used in
our experiments.
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4.1 Datasets

We performed our evaluation on two tasks, containing a total of 4 datasets for stance
classification and sentiment analysis. Class statistics for each dataset can be found in
table 1. We describe the tasks and datasets associated in the rest of this section:

– Stance detection is the study of local stance of a document with respect to a topic
or another stance. For example, if the topic of discussion is “death penalty” and a
document d1 is for the death penalty, then a document d2 that is against the death
penalty is said to be in disagreement with document d1, while a document d3 that
is also for the death penalty is said to be in agreement with document d1. Stance
classification is the classification of unseen documents with respect to a topic or an
existing stance. In this work, we consider a reduced version of the stance classifi-
cation task with an unobserved topic, which means that the classifiers do not have
any contextual information.

• The IAC dataset is a subset of the Internet Argument Corpus [26] containing
forum comments crawled from 4FORUMS1 on different topics: e. g., politics,
. . . and labeled on a scale from -5 to 5. A subset of comments that ensured
disjoint class membership (with an average score far from 0) and containing
more than 3 words was binned into 2 classes (agreement and disagreement)
and used for our experiments.

• The CD dataset is a dataset collected from the CREATEDEBATE forum2 dedi-
cated to social argumentation on political and religious topics and labeled using
2 classes (agreement and disagreement).

– Sentiment classification is the study of the sentiment (positive or negative) con-
tained within a piece of text. While many datasets propose finer-grained sentiment
classes (positive, negative, and neutral or numerical gradation of sentiment) we
chose to use a binary sentiment classification task as the object of our study.

• The AYI dataset was collected from Amazon3, Yelp4 and IMDB5 and was
built from individual sentences from product, location and movie reviews (re-
spectively), labeled with a binary positive/negative judgment.

• The AMZ dataset was collected from Amazon user reviews and labeled with
a binary positive/negative judgment. The dataset is provided with preprocessed
unigrams and bigrams. Only the unigrams are used for our experiments, so as
to be more similar to the other tasks and datasets.

1 http://www.4forums.com
2 http://www.createdebate.com
3 http://www.amazon.com
4 http://www.yelp.com
5 http://www.imdb.com
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Dataset

Stance Sentiment

IAC CD AYI AMZ

Number of instances 3,910 4,902 3,000 8,000

Frequency of the agreement/positive class 1,955 2,912 1,500 4,000

Frequency of the disagreement/negative class 1,955 1,989 1,500 4,000

Minimum instance length (in words) 10 10 43 10

Maximum instance length (in words) 3245 6,685 12,220 79

Average instance length (in words) 68.41 74.10 588.84 13.55

Table 1: Class statistics of datasets IAC, CD, AYI and AMZ.

4.2 Baselines

We used two families of baselines as comparison points with our approach:

Lexicons: Two lexicons used as a baseline are the CPBLEX and the PMILEX, which
are standard methods for building lexicons for other purposes, such as sentiment
lexicons [12]. Section 2.2 on corpus-based lexicons details their implementation.
These algorithms were provided tf-idf normalized raw frequencies, which has been
shown to be a competitive term weighting scheme for text classification [14] ;

Standard classifiers: SVM (with a RBF kernel), which has been shown to perform
well in stance detection tasks by Yin et al. [28] and is a regular top performer
in general classification tasks [10], and NAIVEBAYES and DECISIONTREE which
are two popular baselines for text classification. Parameters for the classifiers were
taken from the default recommendations of the SCIKIT-LEARN6 [19] library. Tf-idf
was also used here due to the disparity in document length shown in table 1.

5 Results and discussion

Table 2 shows that LEXICNET outperforms all the baselines by a statistically significant
margin (on a one-tailed paired T-test, with p < 0.05) except for the AYI dataset where
decision trees are the top performing algorithm and the AMZ dataset where the perfor-
mance improvement comes close to statistical significance but does not reach it. The
parameter values for LEXICNET were determined empirically on a hold-out dataset,
leading to the choice of a lexicon size of 400 words (the 400 most frequent words in the
corpus) and a regularization coefficient (λ) of 0.5, an elastic net weight (α) of 0.4 and
a momentum velocity coefficient of 0.7.

6 http://scikit-learn.org
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Method
Accuracy

Stance Sentiment

IAC CD AYI AMZ

Baseline lexicons
CPBLEX 0.524 0.441 0.528 0.519

PMILEX 0.557 0.529 0.571 0.554

Baseline classifiers
NAIVEBAYES 0.536 0.474 0.665 0.637

SVM 0.589 0.594 0.689 0.671

DECISIONTREE 0.582 0.573 0.742* 0.707

Approach LEXICNET 0.647* 0.642* 0.729 0.718

Table 2: Experimental results

We note from manual examination of the results on stance classification tasks that
a large proportion of the classification errors made by LEXICNET was made on doc-
uments where stance was heavily implied and there is no term used that is heavily
indicative of the class, e. g., “Thus, an important point is raised” (agreement). While
algorithms like SVM manage to draw on their complexity to target higher-order (and
sometimes even coincidental) relationships between sets of words and classes, LEXIC-
NET lacks the expressiveness to do so. On sentiment analysis tasks, we note that a likely
explanation of the poor performance on the AYI dataset is due to the multiple sources
of data: Amazon, Yelp and IMDB. Such diversity would tend to cause a large standard
deviation of input length, something that a lexicon-based classifier is more sensitive to
than a decision tree. We conduct another experiment in order to confirm this hypothesis,
and display the results in table 3.

We can see from table 3 that when separating the AYI dataset in the three domains
a performance improvement can be observed in LEXICNET. However the improvement
does not completely bridge the gap with DECISIONTREE, meaning that other factors at
play influence the algorithm and will be studied in further work.

6 Conclusion and future work

In this work we showed the viability of using elastic net-regularized backpropagation
to learn effective lexicon weights, producing a lexicon that is competitive with standard
classifiers and significantly outperforms baseline lexicon learning techniques in several
datasets.

However we identified two major flaws in the LEXICNET which will be subject to
future work: (1) its lack of expressiveness to capture higher-order relationships between
sets of terms and classes, as well as (2) its deficiencies when dealing with inputs of
varying length, due to the way it models the classification process as a weighted sum of
term-class association strength, which means that a term that only appears in very long
instances will be assigned a lower weight than one appearing only in short texts.
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Method
Accuracy

Amazon Yelp IMDB

Baseline lexicons
CPBLEX 0.545 0.511 0.562

PMILEX 0.557 0.593 0.612

Baseline classifiers
NAIVEBAYES 0.691 0.704 0.728

SVM 0.677 0.692 0.686

DECISIONTREE 0.755* 0.704 0.740

Approach LEXICNET 0.738 0.691 0.742

Table 3: Experimental results after separating domains in the AYI dataset

Our future work will focus on improving the expressiveness of LEXICNET to counter
those issues while keeping it in the form of a human-readable lexicon. Our objective is
to do so by incorporating lexical context such as modifier words (e. g., adverbs) and
topical context (words with multiple meanings with different class values) in the net-
work topology, thus improving accuracy without hurting interpretability.
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