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Abstract. Musculoskeletal Disorders have a long term impact on in-
dividuals as well as on the community. They require self-management,
typically in the form of maintaining an active lifestyle that adheres to pre-
scribed exercises regimes. In the recent past m-health applications gained
popularity by gamification of physical activity monitoring and has had a
positive impact on general health and well-being. However maintaining
a regular exercise routine with correct execution needs more sophistica-
tion in human movement recognition compared to monitoring ambula-
tory activities. In this research we propose a digital intervention which
can intercept, recognize and evaluate exercises in real-time with a view
to supporting exercise self-management plans. We plan to compile a het-
erogeneous multi-sensor dataset for exercises, then we will improve upon
state of the art machine learning models implement reasoning methods
to recognise exercises and evaluate performance quality.

Keywords: Deep Learning · Privileged Learning · Exercise Recognition
· Exercise performance Quality

1 Introduction

Maintaining a regular self-managed exercise routine is an essential component
when living with Musculoskeletal Disorders(MSDs). Specifically for elderly and
people with chronic conditions, it is important to maintain active lifestyle and
importantly to adhere to correct execution of exercises. Research on finding
technological solutions to support either the prevention or self-management of
MSDs has emerged over the last few years. A digital intervention which cap-
tures exercises and provides feedback on performance quality at real-time will
contribute towards motivating the user to adhere to a regular exercise routine.
An effective Digital intervention for self managing MSDs should consist of three
main components: intercepting exercises in real-time; recognising exercises; and
evaluating performance quality to facilitate personalised feedback generation. In
this research we plan to explore each component to design an a optimal digital
intervention for self-management of exercises.

Simple sensors on a smart phone are able to identify simple ambulatory ac-
tivities [11]. Datasets in recent research on HAR [4, 12], Gesture recognition [1],
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gym exercises [13] and Activities of Daily Living(ADL) [2] use sensors such as
inertial sensors, object sensors, pressure sensors and depth sensors. Exercise is
a sequence of independent movements of multiple body parts; specifically exer-
cises recommended for low back pain require capturing greater ground surface
compared to ADL or ambulatory activities. Hence a smart watch on the wrist is
not able to capture an exercise with the level of precision required. Furthermore
a wrist sensor is susceptible to noise (due to high freedom of movement) and
could temporarily loose data. Aforementioned datasets do not consider these
limitations, rendering them inadequate for this research; and it is evident that
exercises require capturing different perspectives from multiple sensors. Accord-
ingly we emphasise the need for a data collection in order to identify which
sensors can intercept exercises efficiently.

Exercise recognition can be viewed as a special case of Human Activity Recog-
nition (HAR). Research in HAR involves the use of machine learning methods
and more recently, deep learning algorithms to reason with sensor data. Many
researches shows that deep learning techniques outperform traditional machine
learning techniques that use hand-crafted features [10, 11]. Notably most recent
research [8, 5, 17] use combinations of deep learning architectures and yield com-
paratively improved performance. Sensor fusion has been attempted with deep
fusion architectures to classify video [6, 9] and reconstruct video and audio [7]
by experimenting fusion in different levels of abstraction. Exercise recognition
is not widely seen in literature but we find [13] using traditional methods such
as Dynamic Time Warping (DTW) and peak counting. Exercise recognition has
not been attempted with heterogeneous data streams and with deep learning
techniques to the best of our knowledge. Accordingly we first evaluate afore-
mentioned techniques and learn their transferability to the domain of exercises.
Next we select advantages techniques from above experiments to build a com-
prehensive solution for exercise classification with multi-modal data.

Efficient deployment is an important characteristic in any health care digital
interventions with direct impact on user acceptance. In this problem domain,
the main restriction is the number of sensors. More sensors force the user in
to a more restricted setting hence less efficient. We plan to investigate concept
Privileged Learning (PL) [14] in order to improve the deployability of reasoning
models. PL mimics how humans learn with a teacher; in HAR we interpret PI as
deploying a model with less sensors compared to number of sensors available at
training. These techniques should contribute towards building robustness in to
models to handle missing modalities in real-time which improves usability and
efficient deployment.

Performance quality of an exercise can be defined as how much actual ex-
ecution deviates from correct execution of the exercise performed under the
supervision of a physiotherapist. Measuring the deviation is open to interpreta-
tion. Recent research in this area show that quality assessment is modelled as
a classification task where classes include many wrong executions and a correct
execution [3, 15]. This method can be similar to a rule based system; hence un-
able to locate a problem in real time. We view quality assessment of an exercise
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execution as a similarity comparison task. We plan to employ similarity based
methodologies to compare different representation of exercise executions with
correct execution to locate problem areas.

2 Research Aim

The overall goal is to introduce a sustainable digital intervention for self-managing
exercise routines. Following review of literature we identity following research
questions to achieve aforementioned goal.

1. How to combine multi-modal data streams to improve exercise recognition?
2. How to maintain performance in the presence of noisy and/or missing sensor

modalities?
3. How to analyse exercise performance quality by comparing actual and ex-

pected multi-modal sensor data?

We outline four objectives in order to answer each research question. First is to
compile a multi-modal sensor dataset in the domain of exercises recommended for
low back pain. Secondly we will develop a sensor fusion architecture to recognise
the most effective sensors and/or features then combine to improve recognition
accuracy. Next we implement methodologies to mitigate noise/absence of modal-
ities in deployment. This would enable the network to learn with all modalities
but remain robust even with fewer modalities in real time. Finally we plan to
introduce a similarity based architecture for comparing sensor data to generate a
quality assessment. The resulting solution should localise performance problem
to lower level actions of the exercise.

3 Proposed Plan of Research

Comprehensive multi modal sensor data collection for exercises is crucial if we
are to address each research question mentioned above. Data collection task
will produce a multi-modal sensor dataset for exercise classification and quality
assessment. We have selected accelerometers, pressure sensor and a depth sensor
to bring together three different modalities of heterogeneous data types; and we
have selected seven exercises that are recommended for patients with low back
pain.

To achieve Objective 2 first we will investigate how each sensor modality
contributes towards accurate classification of exercise movement classes. Next we
will explore how a sensor fusion architectures can contribute toward improving
previous results. For this we will look at how informed selection of sensors can
improve performance. The goal is to create an architecture which will identify the
most informative features from different sensors to improve exercise recognition.

Being inspired by the Privileged Learning paradigm [14] we will explore dif-
ferent approaches to address Objective 3. We will investigate how to enforce
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robustness in sensor fusion model to handle missing modalities; and we will ex-
plore generating synthetic data to represent missing modalities at deployment
from available sensors.

To address objective 4 we will define a metric to assess exercise performance
quality. Specifically the deviation between expected and actual performance will
form the basis for this metric. We plan to investigate methods that learn simi-
larities in spatio-temporal data belonging to one classification class to evaluate
quality difference. This will call for similarity measures in different abstraction
levels of feature embeddings. In order to locate differences in finer detail we will
treat exercises as a sequence of primitive actions. Here the idea is to isolate the
differences with respect to a primitive action rather than performing a binary
evaluation(correct or incorrect).

4 Current Progress

We are at the early stages of data collection task where we compile a multi-modal
dataset on exercises for low-back pain. We have identified sensors and exercises
we will use is data collection and obtained ethics approval from university ethics
committee. We are in the process of recruiting volunteers and collecting data
which will continue during the summer of 2018.

A sensor to sensor neural translator for generating missing sensor data was
developed and this work is published in ICCBR2018. This work aligns with Ob-
jective 3 where we try to minimize number of sensors at deployment for effective
deployment. We evaluated this methodology with two datasets (SelfBACK and
PAMAP2),both containing ambulatory activities recorded with inertial sensors.
Translator method successfully learned dependencies from sensors with different
placements and improved k-NN classification accuracy compared to single sen-
sor. These results confirm while we can learn from many sensors, we can re-use
these reasoning models in deployment with fewest sensor.

We explored Zero-shot Learning(ZSL) with Matching networks, work pre-
sented at The SICSA ReaLX Workshop 2018, where we improved Matching
networks[16] to recognise activities never seen during training. We achieve sub-
stantially improved performance with modified matching networks compared to
original. We will further explore ZSL as it enables a pre-trained network to
recognise new activities at deployment. This is desirable when we expand our
work from ambulatory activities to exercises where possible number of classes is
unmanageably high.
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