

AUTHOR:

TITLE:

YEAR:

OpenAIR citation:

OpenAIR takedown statement:

 This work is made freely
available under open
access.

This ǘƘŜǎƛǎ is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

This work was submitted to- and approved by Robert Gordon University in partial fulfilment of the following degree:

Deep Learning Based Approaches for
Imitation Learning

Ahmed Hussein

A report submitted as part of the requirements for the degree

of PhD in Computing: Artificial Intelligence

at the School of Computing

Robert Gordon University

Aberdeen, Scotland

May 2018

Supervisor Dr. Eyad Elyan

Abstract

Imitation learning refers to an agent’s ability to mimic a desired behaviour by learn-

ing from observations. The field is rapidly gaining attention due to recent advances

in computational and communication capabilities as well as rising demand for intelli-

gent applications. The goal of imitation learning is to describe the desired behaviour

by providing demonstrations rather than instructions. This enables agents to learn

complex behaviours with general learning methods that require minimal task specific

information. However, imitation learning faces many challenges. The objective of this

thesis is to advance the state of the art in imitation learning by adopting deep learning

methods to address two major challenges of learning from demonstrations.

Firstly, representing the demonstrations in a manner that is adequate for learning. We

propose novel Convolutional Neural Networks (CNN) based methods to automatically

extract feature representations from raw visual demonstrations and learn to replicate

the demonstrated behaviour. This alleviates the need for task specific feature extrac-

tion and provides a general learning process that is adequate for multiple problems.

The second challenge is generalizing a policy over unseen situations in the training

demonstrations. This is a common problem because demonstrations typically show the

best way to perform a task and don’t offer any information about recovering from sub-

optimal actions. Several methods are investigated to improve the agent’s generalization

ability based on its initial performance. Our contributions in this area are three fold.

Firstly, we propose an active data aggregation method that queries the demonstrator in

situations of low confidence. Secondly, we investigate combining learning from demon-

strations and reinforcement learning. A deep reward shaping method is proposed that

learns a potential reward function from demonstrations. Finally, memory architectures

in deep neural networks are investigated to provide context to the agent when tak-

ing actions. Using recurrent neural networks addresses the dependency between the

state-action sequences taken by the agent.

The experiments are conducted in simulated environments on 2D and 3D navigation

ii

tasks that are learned from raw visual data, as well as a 2D soccer simulator. The pro-

posed methods are compared to state of the art deep reinforcement learning methods.

The results show that deep learning architectures can learn suitable representations

from raw visual data and effectively map them to atomic actions. The proposed meth-

ods for addressing generalization show improvements over using supervised learning

and reinforcement learning alone. The results are thoroughly analysed to identify the

benefits of each approach and situations in which it is most suitable.

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude to Dr. Eyad Elyan for his mentor-

ship, motivation and support throughout my PhD. I would also like to thank the rest of

my supervisory team Dr. Mohamed Medhat Gaber and Prof. Chrisina Jayne for their

continuous guidance and enthusiastic support. I thank my fellow labmates for their

stimulating discussions, moral support and for the long and fun nights we shared at

the lab. I would like to particularly thank Jeremy Close and Pamela Johnston for their

kind support during this thesis. Last but not least, I would like to thank my parents

whose guidance and love have helped me throughout the PhD as they do in life.

iv

Declaration

I confirm that the work contained in this PhD project report has

been composed solely by myself and has not been accepted in any

previous application for a degree. All sources of information have

been specifically acknowledged and all verbatim extracts are distin-

guished by quotation marks.

Signed .. Date

Ahmed Hussein

v

Contents

Abstract ii

Acknowledgements iv

Declaration v

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Problem Definition . 5

1.4 Challenges . 6

1.5 Contributions . 7

1.5.1 List of publications . 8

1.6 Used Frameworks . 9

1.7 Chapter List . 11

1.8 Summary . 12

2 Background 13

2.1 Problem formulation and Notations . 13

2.2 Deep Learning . 16

2.2.1 Convolutional Neural Networks 19

2.2.2 Recurrent Neural Networks . 21

2.3 Summary . 22

3 Related Work 23

3.1 Direct Imitation . 24

3.1.1 Classification . 24

3.1.2 Regression . 25

3.1.3 Hierarchical Models . 27

3.2 Self Improvement . 28

vi

3.2.1 Reinforcement Learning . 28

3.2.2 Optimization . 32

3.2.3 Transfer Learning . 34

3.2.4 Inverse reinforcement learning . 35

3.2.5 Data Aggregation . 37

3.2.6 Active Learning . 37

3.3 Applications . 43

3.3.1 Multi-agent Imitation . 45

3.3.2 Model-based learning and Planning 47

3.4 Conclusion . 48

4 Learning Representations from raw visual data 50

4.1 Introduction . 50

4.1.1 Autonomous Navigation . 52

4.1.2 Deep Learning . 53

4.2 Proposed Method . 54

4.2.1 Representing Demonstrations . 55

4.2.2 Deep convolutional Neural network 56

4.3 Conclusion . 57

5 Active Data Aggregation 58

5.1 Introduction . 58

5.2 Proposed Method . 59

5.3 Experiments . 61

5.3.1 Tasks . 61

5.3.2 Setup . 63

5.3.3 Implementation details . 64

5.3.4 Results . 64

5.4 Conclusion and Future Directions . 67

6 Combining Learning from Demonstrations and Experience 69

6.1 Introduction . 69

6.2 Proposed Method . 70

6.3 Experiments . 72

6.3.1 Grid Navigation Task . 73

6.3.2 Inter-process Communication . 74

6.3.3 Results . 75

6.4 Conclusion and Future Work . 78

7 Reward Shaping from Demonstrations 79

vii

7.1 Introduction . 79

7.2 Method . 80

7.3 Experiments . 84

7.3.1 Experimental Setup . 84

7.3.2 Results . 86

7.4 Conclusion and Future Work . 88

8 Deep Imitation Learning from Sequences 89

8.1 Introduction . 89

8.2 Related Work . 91

8.3 Method . 92

8.4 Experiments . 96

8.4.1 robocup . 96

8.4.2 Half-Field-Offence . 96

8.4.3 Experimental Setup . 97

8.4.4 Results . 98

8.5 Conclusion and Future Work . 101

9 Conclusion and Future work 102

9.1 Summary . 102

9.2 Discussion . 104

9.3 Future Directions . 105

Bibliography 107

viii

List of Tables

3.1 Imitation learning methods for navigation 39

3.2 Imitation learning methods for object manipulation 40

3.3 Imitation learning methods for robotics 41

3.4 Imitation learning methods for games 42

3.5 Imitation learning methods for simulations 43

4.1 Neural network architecture . 57

5.1 A comparison of deep learning agent approaches 61

5.2 Direct Imitation results . 65

5.3 “Eat all disks” results . 66

6.1 Direct Imitation vs RL . 76

6.2 “Eat all disks” results . 76

7.1 Neural network architecture . 84

8.1 A comparison of machine learing approaches for rocbocup 95

8.2 HFO results for the hand crafted teacher 98

8.3 MLP data aggregation results with shuffling 100

8.4 MLP data aggregation results without shuffling 100

ix

List of Figures

1.1 Illustration of the Grid Navigation Task 10

1.2 Illustration of the Soccer simulator Task 11

2.1 Example of an artificial neural network showing connections between the

nodes in different layers. 17

2.2 Convolution operation on a 2D input using a 3x3 filter 20

2.3 Example of an artificial neural network showing connections between the

nodes in different layers. 20

2.4 Example of a recurrent neural network unit. 21

2.5 Example of an LSTM unit. 22

3.1 learning methods from different sources 23

3.2 Example of hierarchical learning of actions 27

4.1 Features representations and their relationships. Raw features can be

manually manipulated to extract tailored features. While manually tai-

lored or raw features can be automatically processed to extract feature

representation. 52

4.2 Workflow of the learning representation process. The process starts by

a teacher providing demonstrations on a given simulator. The demon-

strations are collected and processed into a dataset that is fed into a

deep convolutional neural network. The network learns high level rep-

resentations of the raw input features as well as mapping to the action

space. 54

4.3 Example of observations captured during demonstration 55

4.4 Architecture of the neural network used to train the agent 56

5.1 sample images from “Reach the flag” . 62

5.2 sample images from “Follow the line” . 62

5.3 sample images from “Reach the correct object” 63

5.4 sample images from “Eat all disks” . 63

x

5.5 Dataset Collection Flowchart . 64

5.6 Imitation Agent Playing Flowchart . 65

5.7 Results for active learning on “follow the line” task 66

5.8 Results for “reach the flag” task with increasing time limits 67

6.1 Illustration of the Grid Navigation Task 73

6.2 Reinforcement learning Flowchart . 74

6.3 DQN and A3C results on the Grid Navigation Task 75

6.4 Results for DQN on Navigation tasks in MASH simulator 76

6.5 Results for A3C on Navigation tasks in MASH simulator 77

6.6 Results for combining learning from demonstrations and experience on

“Reach the flag” . 78

7.1 Illustration of the Grid Navigation Taks 85

7.2 Adaptive vs static network updating . 86

7.3 Reward shaping vs DQN, adaptive updating 87

7.4 Reward shaping vs DQN, freeze parameter = 500 87

7.5 Reward shaping vs DQN, ε = 0.4 . 87

8.1 Illustration of LSTM units . 93

8.2 Re-segmenting the demonstrated sequences into arbitrary sequences . . 94

8.3 Illustration of the Half-field-offence environment 97

8.4 Results for robocup half field offence. The outcomes presented in the

graph are: Goal: The offensive agent scored a goal, Defence: The ball

was captured by the defence, Bounds: The ball went out of bounds,

Time: A time limit was reached before any of the other outcomes 99

8.5 Scoring percentage for MLP with data aggregation 100

xi

List of Algorithms

1 Active Learning Algorithm . 60

2 Learning from demonstration and experience 72

3 DQN with Deep Reward Shaping from Demonstrations 83

xii

Chapter 1

Introduction

In recent years, the demand for intelligent agents capable of mimicking human be-

haviour has grown substantially. Advancement in robotics and communication tech-

nology have given rise to many potential applications that need artificial intelligence

that can not only make predictions, but is able to perform sequences of actions that

reflect robust, intelligent behaviour. Many future directions in technology rely on the

ability of artificial intelligence agents to behave as a human would when presented with

the same situation. Examples of such fields are self-driving vehicles, assistive robots

and human computer interaction

Most applications are dynamic and involve many variables and are therefore not suit-

able for manually designed policies. For examples, self driving cars should be able to

robustly act in real urban conditions, where the roads are shared with other vehicles

and pedestrians that can behave unexpectedly. It is not feasible to take into account

all the possibilities that may face the autonomous vehicle when manually programming

a policy. It is also difficult to break down and articulate how humans perform tasks

in order to program intelligent agents to replicate this behaviour. Sticking with the

autonomous vehicle example, it is hard for an experienced driver to describe to another

human how to drive well. A more intuitive and effective method of imparting this

knowledge is to show the student examples of good driving.

Imitation learning, also called learning from demonstrations, is a paradigm where an

intelligent agent is taught to mimic human behaviour by supplying the agent with

demonstrations provided by a teacher rather than instructions. By learning from

demonstration, the agent does not require explicit knowledge about the task or the

environment such as objectives or constraints. Rather, a general learning process is ad-

vocated where all needed information is inferred from the provided demonstrations. For

1

example, an autonomous vehicle doesn’t require knowledge of how the vehicle works,

how the other agents in the environment are modelled or that it shouldn’t drive over

the pavement. Instead The policy learns to operate the vehicles controls as demon-

strated by the teacher without knowing the underlying mechanics of these controls or

the rules of the road; and learns to adapt to the dynamic environment by observing

the interaction between the teacher and the environment through the demonstrated

behaviour. This thesis explores deep learning approaches for training intelligent agents

from demonstrations.

1.1 Motivation

Learning by imitation has gained a lot of attention due to its relevance to a wide range

of potential applications where machines are required to behave intelligently (like a

human would). Inspired by neuroscience, this field aims to mimic the process of learn-

ing by imitation in humans and animals [1] and is regarded from early stage as an

integral part of machine intelligence [2]. Several other approaches exist for learning

intelligent behaviour, commonly formulating the desired task as an optimization prob-

lem. These are goal oriented methods where the agent is required to achieve a certain

target behaviour without any information about how to do it. However, it has become

widely accepted that having prior knowledge provided by an expert is more effective

and efficient than searching for a solution from scratch [2, 3, 4, 1].

While Learning from experience can produce robust policies that generalize to dynamic

scenarios, finding a solution through trial and error may take too long. Especially in

problems that require performing long trajectories of actions with delayed rewards,

which is common in many real life applications. In such cases it may be extremely

difficult to reach rewards by chance; and the time to learn a policy to maximize the

rewards exponentially increases. For example in a game of football, the target is to

score more goals than your opponent. However, scoring a goal requires a complicated

sequence of actions, taking into account the other agent’s in the environment. It is

therefore extremely unlikely that a goal will be scored using trial and error alone.

Demonstrations of how the game is played provides invaluable information for the agent

in this case. Such information can be imparted in other ways than demonstrations,

such as rules or sub goals but may lack the generalization and simplicity to generate

of demonstrations. Moreover, learning through trial and error may result in a policy

that solves the problem differently to how a human would. Performing a task in a

manner that is intuitive to a human observer may be crucial in applications where

humans and intelligent agents interact together in an environment [5]. Nass et al [6]

2

suggest that humans view computers interacting with them as social agents and that

humans interact with them in a manner derived from their experiences interacting with

other humans. Therefore, even with the conscious knowledge that an agent is not a

human, interaction is improved when the agent behaves in a way that is familiar to

its human counterpart. This also emphasises that it is intuitive for humans to provide

demonstrations to teach intelligent agents.

On the other hand learning from demonstrations may result in faster learning and

produce a policy that follows the teacher’s way of solving the task. However, learning

a direct mapping between observation and action can commonly result in a policy that

generalizes poorly to unseen scenarios. The supervised policy only learns to deal with

situations covered in the demonstrations. Since demonstrations only cover the optimal

trajectory, if the agent deviates even slightly from that trajectory at any point, it finds

itself in an unseen situation not covered by the training data [7]. For example, if an

autonomous vehicle trained to drive in the middle of the lane veers slightly towards

the lane line (which is expected in a machine learning application), the agent has

no information on how to recover this error. A more pronounced case is unexpected

behaviour on the road such as an accident up ahead or any of the countless cases that

may not have been included in the demonstrations. The agent has no information on

how to behave in such situations. So essentially the policy is trained using samples from

a distribution that is different to the one it is evaluated on. Therefore, in many cases,

policies need to be refined based on the performance of the initially learned policy.

Moreover, supervised learning needs a sufficient number of demonstrations; which for

deep network architectures may be large. These cases highlight the limitations of

imitation learning; in that it depends on the demonstrations. The demonstrations may

not be sufficient or contain faults. The pros and cons of learning from experience and

demonstrations motivate combining both approaches; which is not dissimilar to how

humans and animals partly learn [3].

Both learning from demonstrations and experience approaches aim to create a general

learning process that requires minimal task specific information. In contrast to hand

crafted methods, ideally all the information needed by the learner would be incorpo-

rated in the demonstrations or the reward function. One aspect of learning that usually

requires knowledge of the task is creating the feature representations used for learning.

Features are engineered to best represent a specific task or environment. Manually de-

signing features is time consuming and can be in efficient if we need to apply the agent

in different environments. Deep learning methods have shown great success in learning

from high dimensional raw data in a variety of applications. Automatically extract-

ing feature representations can greatly facilitate creating general learning processes for

3

learning from demonstration. Thus, the same network architecture can extract relevant

features for different situations depending on the provided demonstrations.

1.2 Objectives

The main objective of this thesis is to expand the state of the art in autonomous agents

through novel imitation learning methods. To achieve this target, sub-objectives are

specified that dictate the directions taken in this body of work.

• The first objective is to review imitation learning methods for autonomous agents.

Imitation learning is a multi-disciplinary field and the literature is filled with

diverse approaches that consider the challenges of intelligent autonomous agents

from different points of view. This survey aims to categories learning methods

that utilize demonstrations and bridge gap between the various methods that

tackle the same problem from different perspectives. Reviewing related literature

helps identify important research areas and promising directions.

• Representing demonstrations is a key challenge in imitation learning. We aim

to create general methods for creating feature representations from raw sensory

information without requiring task specific knowledge. In particular we target

demonstrations from visual information and sequences.

• Generalization is another important challenge as the agent is required to adapt be-

yond the provided demonstrations. This thesis investigates several approaches to

improve generalization. The target is to create autonomous agents that demon-

strate robust behaviour in dynamic environments by using the agent’s perfor-

mance in the environment to refine its policy and allow it to generalize to situation

not covered in the demonstrations.

• Deep reinforcement learning is gaining a lot of attention as an approach for teach-

ing autonomous agents. At this point in AI research we find it is important to

perform comparisons between imitation learning and reinforcement learning ap-

proaches to highlight the advantages and challenges of each approach. Such stud-

ies can help identify when these approaches are most suitable; as well as evaluate

the benefits of combining learning from demonstrations and experience compared

to using only one approach.

• Reproducibility is an integral part in emerging research fields. The easy repro-

duction of results and comparison of state of the art methods can substantially

expedite the rate of research advancement. I this thesis we aim to conduct all

4

experiments on open-source benchmarks that can be used for both imitation and

reinforcement learning. The applications should have clear evaluation criteria

and the challenges and the relevance of each task should be explicitly stated.

The experiments are implemented in a general design that allows interchanging

learning methods easily. The implementations are uploaded on Github to allow

other researchers to easily reuse, compare and expand our proposed methods.

1.3 Problem Definition

The process of imitation learning is one by which an agent uses demonstrations of

performed actions to learn a policy that replicates the demonstrated behaviour.

Definition 1 An agent is defined as an entity that autonomously interacts within an

environment towards achieving or optimizing a goal [8]. An agent can be thought of as

a software robot; it receives information from the environment by sensing or communi-

cation and acts upon the environment using a set of actuators.

Definition 2 A policy is a function that maps a state to an action. It is what the

agent uses to decide which action to execute in any given situation.

Definition 3 A state is a representation of world at a given point in time. The state

describes details about the agent such as pose, position and internal parameters as well

as its surrounding environment. States are feature representations and should include

all features relevant to learning the task at hand. This information can be captured by

the agent’s observations or can be provided from any source.

Definition 4 An action is a decision made by the agent to interact with the envi-

ronment. The set of actions available to the agent may be discrete, continuous or

parametrized (a set of discrete actions where each action may have one or more con-

tinuous parameters).

An action u(t) can often be represented by a vector rather than a single value. This

means that the action is comprised of more than one decision executed simultaneously;

such as pressing multiple buttons on a controller or moving multiple joints in a robot.

Actions can also represent different levels of autonomous control such as low level

actions and high level macro actions [9].

5

1.4 Challenges

Imitation learning problems pose a variety of challenges at different stages of the train-

ing process.

• Capturing demonstrations whether from sensors on the learner or the teacher, or

using visual information, can be challenging. A discrepancy between the agent’s

perspective and the perspective from which the demonstrations are captured is

challenging to deal with. Therefore acquiring demonstrations should be designed

to minimize such discrepancies. Moreover, the captured signals are prone to noise,

synchronization and sensor errors.

• Similar problems arise during execution when the agent is sensing the environ-

ment. Noisy or unreliable sensing will result in erroneous behaviour even if the

model is adequately trained.

• A key issue concerning demonstration is the correspondence problem. Corre-

spondence is the matching of the learner’s capabilities, skeleton and degrees of

freedom to that of the teacher. Any discrepancies in the size or structure between

the teacher and learner need to be compensated for during training. Often in this

case a learner can learn the shape of the movement from demonstrations, then

refine the model through trial and error to achieve its goal.

• A related challenge is the problem of observability where the kinematics of the

teacher are not known to learner. If the demonstrations are not provided by a

designated teacher, the learner may not be aware of the capabilities and possible

actions of the teacher; it can only observe the effects of the teacher’s actions and

attempt to replicate them using its own kinematics.

• The quality of the demonstrations can also greatly affect the performance of the

policy. Sub-optimal demonstrations will degrade the learned policy as they are the

only source of information. Moreover, in many tasks behaviour can be subjective

and using a limited number of teachers can restrict the ability of the policy to

execute the given task. Another common issue is that in most cases only good

demonstrations can be provided, while in machine learning having negative and

positive examples can be very beneficial.

• The learning algorithms also face challenges as traditional machine learning tech-

niques do not scale well to high degrees of freedom. Imitation learning methods

typically need to deal with high dimensional sensory input as well as high dimen-

sional multivariate predictions.

6

• Unlike typical machine learning applications that assume independent and identi-

cally distributed (i.i.d.) samples, motor behaviours consist of sequences of depen-

dent decisions. This makes autonomous agents prone to accumulation of error.

Therefore, the learned policy must be able to adapt its behaviour based on pre-

vious actions and make corrections if necessary. The policy must also be able

to adapt to variations in the task and the surrounding environment. The com-

plex nature of imitation learning applications dictate that agents must be able to

reliably perform the task even under circumstances that vary from the training

demonstration.

The scope of this thesis focuses on the last two challenges that directly concern learn-

ing a policy, while maintaining real-time execution of the policy. The sensor-based

challenges are bypassed by utilizing simulators for our experiments. The simulators

provide tasks where we can control observability, perspective and sensor noise. We now

elaborate on two major challenges that are directly addressed in this thesis: 1- Creating

adequate feature representations for learning from high dimensional data. 2- Learning

a policy that generalizes to unseen situations. Feature representations are required to

encode the demonstrations in a way that the agent can learn from and also to represent

how the agent perceives its environment from its sensory data. The representations

must be adequate for learning as well as be suitable for real time processing. Man-

ually designing suitable features for imitation learning is an arduous task as different

representations must be tailored for each task or environment. Especially in dynamic

settings where the representations must be robust against various scenarios. General-

ization to unseen scenarios is also a challenge because of the dynamic nature of the

tasks. This is a common problem because demonstrations typically show the best way

to perform a task and do not offer any information about recovering from sub-optimal

actions. Therefore approaches are required that can generalize beyond demonstrated

behaviour without extensive feedback from a teacher or the environment.

1.5 Contributions

The aim of this thesis is to expand the state of the art by proposing novel deep learning

approaches to leverage imitation learning methods.

• The first contribution of this thesis is to survey and categories the imitation learn-

ing literature. Imitation learning is a relatively new field, however it has been

contemplated from early stages of AI research and is approached from various

perspectives. Therefore, a modern survey is needed categorize the learning meth-

ods for imitation problems and perform in-depth analysis to compare the different

7

approaches and highlight their similarities and differences.

Following, we mainly address two aspects of imitation learning: representing the state

of the agent using adequate feature representation and improving the agent’s ability to

generalize to unseen situation.

• To create feature representations, we propose the use of a deep convolutional

neural network (CNN) to automatically learn features suitable to the task from

the provided demonstrations and directly map them to actions. The proposed

deep network is modular and is used in several experiments throughout this thesis

in conjunction with other contributions.

To address the generalization challenge in imitation learning we propose the following

contributions:

• Firstly, A deep active data aggregation method is proposed to improve the adapt-

ability of the agent. Based on an initial policy trained using supervised learning,

the agent queries the teacher for additional demonstrations in situations of uncer-

tainty. Active data aggregation significantly improves the generalization of the

agent using relatively few additional samples.

• Secondly, different methods for utilizing demonstrations to guide reinforcement

learning are investigated. A comprehensive comparison and analysis is carried

out between the proposed methods, state of the art deep reinforcement learning

and our deep active imitation method.

• Thirdly, learning from demonstrations is used to shape a reward function for

reinforcement learning. Both the supervised and reinforcement learning policies

learn using the proposed learning representations approach. Shaping the reward

from demonstrations provides a more general alternative to the standard method

of tailoring shaped rewards and provides a significant performance improvement

over using reinforcement learning alone.

• Finally, proposes a method for imitation learning from sequences in a multi-agent

setting. The demonstrations are represented as sequences of state action pairs

which keep the temporal relation between the decisions taken by the teacher. A

stacked long short term memory network is used to learn a policy that takes past

experiences into consideration when making a decision at each time step. The

network automatically maps raw sensory data from the agent’s perspective to

multivariate parametrized atomic actions.

8

1.5.1 List of publications

The contributions of this thesis have resulted in the following publications.

• Hussein, A., Gaber, M. M., & Elyan, E. (2016, September). Deep active learning

for autonomous navigation. In International Conference on Engineering Applica-

tions of Neural Networks (pp. 3-17). Springer, Cham. [10].

• Hussein A, Gaber MM, Elyan E, Jayne C. Imitation Learning: A Survey of

Learning Methods. ACM Comput Surv. 2017 Apr;50(2):21:121:35. Available

from: http://doi.acm.org/10.1145/3054912. [11].

• Hussein A, Elyan E, Gaber MM, Jayne C. Deep imitation learning for 3D navi-

gation tasks. Neural computing and applications. 2017;p. 116. [12].

• Hussein A, Elyan E, Gaber MM, Jayne C. Deep reward shaping from demonstra-

tions. In: Neural Networks (IJCNN), 2017 International Joint Conference on.

IEEE; 2017. p. 510-517. [13].

• Hussein A, Elyan E, Jayne C. Deep Imitation learning with memory for Robocup

Soccer Simulation. Submitted for review to the International Conference on En-

gineering Applications of Neural Networks (EANN 2018).

1.6 Used Frameworks

The proposed approaches in this thesis are demonstrated on a number of applications

that pose various key challenges. Firstly a simple 2D navigation task is designed to

evaluate learning navigation from raw visual data. The task is formulated as a grid

navigation problem. The agent makes a decision given an image representing its current

state. Although this task makes a number of simplifications, it poses a number of

challenges common in real navigation applications. Specifically, learning from raw

visual observations and performing long trajectories without intermediate feedback.

This application is used to evaluate the ability of learning from demonstrations and

experience approaches to deal with these challenges. Figure 1.1 illustrates the task on

a 5× 5 grid. The visualization shows the starting cell of the agent marked by the blue

cursor, and the target cell marked by the green cursor. The agent is able to move in

the four cardinal directions one cell at a time. For each cell, the state is represented by

an image that shows the number of the cell as illustrated in the figure. This task can

be performed with a grid of any arbitrary size.

9

Figure 1.1: Illustration of the Grid Navigation Task

Moreover a 3D simulator, MASH simulator [14], is also used to evaluate navigation

from visual data. The 3D environment is more realistic and poses extra challenges

such as randomizing the shape and lighting conditions of the agent’s surroundings as

well as the positions of relevant objects. Another challenge that is shared with real

applications is that the observations are captured from the point of view of the agent.

In a 3D setting, a small movement from the agent can dramatically change the visual

observations and so it is harder to keep track of relevant information. MASH simulator

is used to evaluate navigation on 4 different tasks. All the approaches evaluated learn

from raw pixels and therefore do not need any task specific information to learn the

different tasks other than the rewards provided by the environment or demonstrations

provided by a teacher.

Finally, we use a benchmark soccer simulator to evaluate multi-agent scenarios.

Robocup [15] is a popular benchmark and is used in competitions for hand crafted

agents as well as machine learning research. In this application, the agent needs to

perform a long trajectory of actions while at the same time reacting to the actions of

other agents. The observations are presented to the agent in the lowest level possible

and can depend on the agent’s perception. Moreover, the actions available to the agent

are atomic parametric actions. This means that at the lowest level of decision making

the agent need to generate continuous value as parameters along with the chosen action

(such as kicking angle and force). The delayed terminal rewards inherent in a game

of soccer are especially challenging for reinforcement learning agents. Figure 1.2 show

a visualization of the robocup simulator. The figure shows a football field with the

team names and scores illustrated. The visualizer also has playback controls to rewind,

pause and speed up the the action. The figure shows a 2 vs 1 match being played in

10

half the field.

Figure 1.2: Illustration of the Soccer simulator Task

The approaches used throughout this thesis are designed to be as general as possible

and require minimal task specific information. They are by no means limited to the

demonstrated applications. This is shown within the thesis to some extent by using

the same methods for various tasks within one application, but they can be used for a

variety of other applications as well.

1.7 Chapter List

The remainder of the thesis consists of the following chapters.

Chapter 2 This chapter provides background information that is necessary for the

remainder of the thesis. Problem formulation and notations for imitation learning are

defined, and an introduction to deep learning is given.

Chapter 3 This chapter surveys related work in the literature. It provides a review

and categorization of imitation learning methods.

Chapter 4 This chapter addresses learning state representations from raw sensory

data using deep learning. It details the processes of acquiring the demonstrations,

formulating the data for training, and the training model used to learn from the data.

This chapter focuses on the generality of the learning method while maintaining the

effectiveness of the learned representations.

Chapter 5 This chapter presents the proposed method for deep active data aggrega-

tion. Active learning is employed improve a learned policy’s performance, especially

11

it’s generalization ability. Active learning is combined with the deep learning of the

policy by iteratively aggregating additional training samples based on the confidence

of the policy.

Chapter 6 This chapter addresses combining learning from demonstrations and expe-

rience. Two methods are proposed to train a deep neural network using both demon-

strations and reinforcement learning. The proposed methods are compared to state of

the art reinforcement learning methods as well as direct imitation and the active data

aggregation method proposed in chapter 5.

Chapter 7 This chapter proposes a novel reward shaping method to learn reward

functions from demonstrations. The shaped reward is learned from raw demonstrations

using a deep neural network and added to the reward signal to train a reinforcement

learning policy. Experiments demonstrate that the augmented reward signal provides a

significant improvement in performance over state of the art deep reinforcement learn-

ing.

Chapter 8 This chapter presents the proposed method to learn sequences of actions

by utilizing memory in deep neural networks. Temporal dependencies in the task are

captured by representing demonstrations as a sequence of state-action pairs and using

a long short-term memory network to learn a policy from demonstrations. The results

show that utilizing memory while learning significantly improves the performance and

generalization of the agent and can provide a stationary policy.

Chapter 9 This chapter concludes the thesis. It summarizes the contributions and

findings of this work and discusses these conclusions in the context of the state of the

art in autonomous agents. Future direction are and recommendation are discussed to

highlight potential next steps.

1.8 Summary

This chapter provides and introduction to this thesis, by defining the problem of imita-

tion learning and briefly stating the purpose of this thesis. The challenges and problems

addressed are identified and motivation is provided for the proposed methods. The

contributions of this thesis are listed and the chapters describing the contributions are

outlined. Finally, we describe the problems to which the proposed methods are applied.

12

Chapter 2

Background

This chapter provides a background to the topics discussed in this thesis. Namely the

process of training autonomous agents is formally described and an introduction to

deep neural networks is provided. Two types of deep neural networks, convolutional

neural networks (CNNs) and long short-term memory (LSTM) networks, that are used

in this thesis are described in further details.

2.1 Problem formulation and Notations

In this section we formalize the problem of imitation learning and introduce some

preliminary notations and definitions. Moreover, we define the process of learning from

experience which can be used on its own or in conjunction with imitation learning to

train an autonomous agent.

The aim of imitation learning is to map observations of the current state to a behaviour

based on a set of demonstrations. The behaviour consists of a set of actions dictated

by the learned policy. In order for the learning process to be general, it is preferable

that agents interact with the environment using atomic actions. That is, the lowest

level of decisions available in this application. A high level action policy determines the

immediate plan of the agent such as (’open the door’ or ’kick the ball’). This approach

requires sub-policies to break down these decisions into a sequence of atomic actions.

In robotics, a popular way of representing actions is using Motor primitives.

Definition 5 Motor primitives are simple building blocks that are executed in sequence

to perform complex motions. An action is broken down into basic unit actions (often

13

concerning one degree of freedom or actuator) that can be used to make up any action

that needs to be performed in the given problem.

These primitives are then learned by the policy. In addition to being useful in building

complex actions from a discrete set of primitives, motor primitives can represent a

desired move in state space, since they can be used to reach any possible state. As in

MDPs described above, the transition from one state to another state based on which

action is taken is easily tracked when using motor primitives. In this case the output

of the policy can represent the change in the current state [16] as follows:

ẋ(t) = π(x(t), t, α) (2.1)

Where ẋ(t) is the change in the environment’s state that is affected by the policy. x is

the feature vector, t is the time and α is the set of policy parameters that are changed

through learning. While the time parameter t is used to specify an instance of input

and output, it is also input to the policy π as a separate parameter. In the context

of imitation learning, a policy is trained using a set of collected demonstrations. The

demonstrations may come from a designated teacher or another agent. The demonstra-

tions provide the optimal action to a given state, and so the agent learns to reproduce

this behaviour in similar situations. This makes demonstrations suited for direct policy

learning such as supervised learning methods. More formally:

Definition 6 A demonstration is presented as a pair of input and output (x, y). Where

x is a vector of features describing the state at that instant and y is the action performed

by the demonstrator.

It is clear from this formulation that learning from demonstration does not require the

learner to know the cost function optimized by the teacher. It can simply optimize

the error of deviating from the demonstrated output such as the least square error in

supervised learning. More formally, from a set of demonstrations D = (xi, yi) an agent

learns a policy π such that:

u(t) = π(x(t), t, α) (2.2)

Where u is the predicted action. So the change in state is represented by an action with

which the agent affects the environment. This representation allows for direct policy

learning by using observation-label pairs for training. Moreover, it is difficult to model

state change in dynamic environments. It is important to note that in this context, the

teacher’s behaviour is referred to as the optimal policy as it is the goal to reach human

14

level behaviour even if this policy does not achieve the best possible performance.

For the rest of this thesis, the expert’s behaviour and optimal behaviour are used

interchangeably. Such direct policy learning however, is prone to poor generalization.

Since the agent’s interaction with the environment can change its state, the assumption

that predictions are independent and identically distributed is not valid. Indeed most

applications require the agent to perform a sequence of dependent actions to achieve a

goal. Therefore even a small prediction error can lead the agent to an unfamiliar state.

Since demonstrations only provide the optimal action trajectories, a suboptimal policy

will be presented with states that are not represented in the demonstrations. More

formally the agent is presented with states drawn from a distribution different to the

distribution from which the training set D = (xi, yi) was sampled.

A policy for autonomous agents can alternatively be learned from experience. The

experiences uses for learning may be the agent’s own or may come from a different

agent. While learning from experience does not require examples of good behaviour

to imitate, a reward function is required to evaluate the performance of the current

policy in order to optimise it. Reinforcement learning uses the actions performed by

the agent, which may not be optimal, along with the reward (or cost) of performing

that action given the current state, to learn a policy that maximizes its overall reward.

More formally:

Definition 7 An experience is presented as a tuple (s, a, r, s′) where s is the state, a

is the action taken at state s, r is the reward received for performing action a and s′ is

the new state resulting from that action.

Learning from experience is commonly formulated as a Markov decision process (MDP).

MDPs lend themselves naturally to motor actions, as they represent a state-action

network and are therefore suitable for reinforcement learning. In addition the Markov

property dictates that the next state is only dependent on the previous state and action,

regardless of earlier states. This timeless property promotes stationary policies. There

are different methods to learn from experience through reinforcement learning that are

out of the scope of this thesis. For a survey and formal definitions of reinforcement

learning methods for intelligent agents, the reader is referred to [17]. Note that both

learning paradigms are similarly formulated with the exception of the cost function; the

feature vector x(t) corresponds to s, u(t) corresponds to a and x(t+ 1) corresponds to

the resulting state s′. It is therefore not uncommon (especially in more recent research)

to combine learning from demonstrations and experience to perform a task.

Definition 8 A policy that uses t in learning the parameters of the policy is called a

non-stationary policy (also known as non-autonomous [16]) i.e. the policy takes into

15

consideration at what stage of the task the agent is currently acting.

Definition 9 A stationary policy (autonomous) neglects the time parameter and learns

one policy for all steps in an action sequence.

One advantage of stationary policies is the ability to learn tasks where the horizon (the

time limit for actions) is large or unknown [18]. While non stationary policies are more

naturally situated to learn motor trajectories i.e actions that occur over a period of time

and are comprised of multiple motor primitive executed sequentially. However, these

policies are difficult to adapt to unseen scenarios and changes in the parameters of the

task [16]. Moreover, this failure to adapt to new scenarios, at one point in the trajectory,

can result in compounded errors as the agent continues to perform the remainder of

action. In light of these drawbacks, methods for learning trajectories using stationary

policies are motivated. An example is the use of structured predictions [19] where the

training demonstrations are aggregated with labelled instances at different time steps

in the trajectory – so time is encoded in the state. Alternatively, [20] learns attractor

landscapes from the demonstrations, creating a stationary policy that is attracted to

the demonstrated trajectory. This avoids compounded errors as the current state is

considered by the policy before executing each state of the trajectory.

2.2 Deep Learning

Deep learning is a sub-field of machine learning that is concerned with training large

neural networks termed: deep neural networks. Deep neural networks are distinct from

traditional neural network in that they consist of more layers which allows them to

learn more complex models. Deep learning can be thought of as hierarchical feature

learning. Each layer learns a higher level representation of the data from the previous

layer thus uncovering deeper insights into the data. Recent advances in deep learning

algorithms and computational technology have made it possible to effectively train very

large and complex neural networks. This section provides a background on deep neural

networks. We start by presenting multi-layer perceptrons, describing how they are

constructed and how they learn. Following two types of deep neural networks that are

used in this thesis are described, namely, convolutional neural networks (CNN) and

recurrent neural networks (RNN).

Definition 10 Artificial neural networks are computing systems inspired by biological

neural networks in the brain. Neural networks act as a function approximator that

learns a function that maps a given input x to a corresponding output y. Thus providing

a function f : X → Y for any input x ∈ X

16

Figure 2.1: Example of an artificial neural network showing connections between the
nodes in different layers.

Neural networks are composed of layers each with a given number of nodes. Figure 2.1

provides an illustration of a neural network with an input layer, a hidden layer and an

output layer. Connections between the nodes provide parameters that are optimised

to learn the required function. This is achieved using two steps: A forward pass and

a back propagation step. The forward pass goes through the network from the input

layer to the output layer performing the following computation at each node:

yj = a(
I∑
i=1

wijxi + bj) (2.3)

Where y is the output of the node, xi is an input to the node from node i, wi is the

weight assigned to the connection with node i, b is a scalar bias and a is an activation

function which transforms the weighted sum of the inputs linearly or non-linearly.

Activation functions define the structure of the function being estimated.

Common activation functions used in neural networks are the hyperbolic tangent (Tanh)

function:

a(x) = tanh(x) =
2

1 + e−2x
− 1 (2.4)

rectified linear unit (ReLU):

17

a(x) =

0 for x < 0

x for x ≥ 0
(2.5)

and the logistic sigmoid function:

a(x) =
1

1 + e−2
(2.6)

It is clear from the feed forward that neural networks are inherently regressors as the

output is a continuous value. However, neural networks are commonly used for classi-

fication by using activation functions that transfer the node outputs towards discrete

decisions. The neural network learns the function estimation by tuning the values of the

weights w and bias b to minimize a cost function of the final output from the forward

pass and a given ground truth. The choice of cost function is also an important distinc-

tion between classification and regression using neural networks. Mean square error

is commonly used for regression problems, to calculate the cost between continuous

targets and the output of the network.

C =
1

I

I∑
i=1

(ui − yi)2 (2.7)

Where C is the cost, ui and yi are the networks output and the target for instance

i respectively and I is the number of instances. Cross entropy is a common cost

function for classification problems, usually with softmax activations. They calculate

the likelihood of the neural network choosing the correct class.

C = −1

I

I∑
i=1

J∑
j=1

yijlog(uij) (2.8)

Where uij and yij are the networks output and the target respectively for instance i

and class j, I is the number of instances and J is the number of classes.

Back propagation works in reverse order from the output layer towards the input layer,

calculating the changes that need to be made to the parameters in each layer. These

changes are based on the gradient of the cost function with respect to the parameters.

Intuitively, back propagation calculates how much of the cost can be attributed to

each parameter and uses gradient descent to iteratively move towards minimizing the

gradient of the cost. More formally ∆wij , the change made to weight of the connection

18

between nodes i, j is calculated as:

∆wij = γCa′(
I∑
i=1

wijxi))xi (2.9)

Where γ is a constant learning rate, C is the cost, a′(
∑I

i=1wijxi) is the derivative of

the activation function and xi is the input from connection i. The chain rule 2.10 is

used to find the gradient of the error starting from the output of the final layer of the

network and propagating back through the layer. To calculate the gradients all through

the network, the activation functions and cost function need to be differentiable.

∂C

∂w
=
∂C

∂yj

∂yj
∂wij

(2.10)

2.2.1 Convolutional Neural Networks

A Convolutional neural network is a type of deep neural network that takes advantage

of spatial relations between features to learn high level representation. Inspired by the

visual cortex in animals, Convolutional networks apply convolution filters to restrict

the connections between nodes. By limiting the number of connections, convolutiuonal

layers allow for creating deep networks with fewer parameters. This makes CNNs very

effective in learning from images, but they have also shown great potential in learning

from other signals where spatial relations between features can be exploited, such as

text and audio data. Automatically learning feature representation alleviates the need

to hand engineer features which is a major challenge in many applications. Therefore

CNNs achieve state of the art performance in a number of domains and are considered

one of the most popular neural network classes for modern application.

Definition 11 The convolution operation applies a filter (or kernel) to a section of the

input and is defined as the sum of the element wise product between the filter and the

section of the input.

A convolution layer applies a number of filters to the image using a sliding window.

The result is a 3D structure (assuming a 2 dimensional input) where the width and

height are a reduction of the original dimensions of the input signal, and the depth is

the number of filters used. This can be considered as producing a feature vector for

each sub section of the input. Figure 2.2 illustrates applying a convolution filter to an

input signal. By segmenting the input signal using the convolutional filters, the number

of connections between the nodes is greatly reduced.

19

Figure 2.2: Convolution operation on a 2D input using a 3x3 filter

We now present the convolution process. Applying kernel K to input I at point i, k is

given as:

conv(I,K)i,j =

M∑
m

N∑
n

I(i−m, j − n)K(m,n) (2.11)

Where M and N are the dimensions of the kernel. Deep convolutional networks usu-

ally consist of a number of stacked convolutional layers followed by a fully connected

hidden layer, to map the extracted features to the output layer. The output of the last

convolutional layer is flattened into a vector and connected to the hidden layer. The

forward pass of the fully connected layer is the same as eq. 2.3. Figure 2.3 illustrates

a full convolutional neural network.

Figure 2.3: Example of an artificial neural network showing connections between the
nodes in different layers.

20

The backward pass in convolutional networks starts with output layer and propagates

through the network calculating the gradient for the fully connected layers and then the

convolutional layers in sequence using the chain rule 2.10. The convolution operation

is differentiable, therefore, the back propagation process is unaffected.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks are a group of neural networks that take advantage of

temporal relations in the data by keeping track of previous samples during learning.

Recurrent units retain an internal memory which allows them to process sequences of

data such as speech and text. Recurrent units unlike typical feed-forward nodes, recur-

rent units can have looping connections, thus providing feedback that contributes to

the processing of the next time step. Figure 2.4 illustrates how the recurrent connection

can be viewed as a sequence of nodes where each node provides an additional input to

the next node. In other words, a recurrent node receives the current input in addition

to its decision for the previous time step as shown in the following equation.

hjt = a(
I∑
i=1

wijxit + ujhjt−1) (2.12)

Where hjt is the hidden state of node j at time step t, a is the activation function, wij

is the weight of the connection between nodes i and j and similarly, uj is a weight on

the recurrent connection between node j and its hidden state at the previous time step

hjt−1.

Figure 2.4: Example of a recurrent neural network unit.

Back propagation in RNNs seeks to optimise the values of the weight matrices W and

21

U . Learning values for U allows the network to learn temporal relationships within

sequences of learning. The backward pass in RNNs is dubbed as back propagation

through time as the gradient is calculated for the last members of the sequence first and

then back propagate to the earlier examples. Since RNNs can have long term temporal

dependencies, they are prone to suffer from vanishing and exploding gradients. This

occurs because the calculation of the gradient passes through multiplication processes

at each step in the chain rule. Therefore the gradient for parameters that are far

removed from the cost can become exponentially small or large rendering them useless

for learning. Long-short-term-memory (LSTM) networks [21] deal with this issue by

including gates in the node that dictate when to hold information in the networks

memory and when to forget it. Figure 2.5 shows an LSTM unit containing: a forget

gate that controls retaining or forgetting the current cell state; and input gate that

controls the current input signal; and an output gate that controls what is output from

the node.

Figure 2.5: Example of an LSTM unit.

2.3 Summary

This chapter provides a background to the topics discussed in this thesis. An introduc-

tion to training autonomous agents is provided and the processes of training such agents

from demonstrations and experience are formally defined. Following a background to

deep learning is presented. Two types of deep neural networks which are used in this

work (Convolutional neural networks and recurrent neural networks) are described, as

well as a general overview of neural networks.

22

Chapter 3

Related Work

This chapter presents the main works in the literature related to this thesis. It provides

an overview on different imitation learning methods but focuses on methods that employ

deep learning and that integrate learning from experience. We also highlight notable

works in applications similar to the ones used in this thesis, namely navigation and

multi-agent applications. We categorize imitation learning into policies that directly

copy behaviour from demonstrations and policies that self-improve based on its current

performance. This literature review is published in the following survey paper [11].

Figure 3.1: learning methods from different sources

Intelligent agents can learn behavioral policies from different sources. Each case needs

appropriate learning methods that can best utilize the data source. Figure 3.1 shows a

Venn diagram outlining the sources of data employed by different learning methods. An

agent can learn from dedicated teacher demonstrations, observing other agent’s actions

or from experience through trial and error. Active learning needs a dedicated oracle

that can be queried for demonstrations. While other methods that utilize demonstra-

tions can acquire them from a dedicated expert or by observing the required behavior

23

from other agents. RL and optimization methods learn through trial and error and

do not make use of demonstrations. Transfer learning uses experience from old tasks,

or knowledge from other agents to learn a new policy. Apprenticeship learning uses

demonstrations from an expert or observation to learn a reward function. A policy

that optimizes the reward function can then be learned through experience. The meth-

ods proposed in this thesis focus on learning from dedicated experts and the agent’s

own experiences. We now review the learning approaches for direct and self-improved

imitation.

3.1 Direct Imitation

Direct imitation, also known as behaviour cloning [22], is using demonstrations to

learn mapping between observations and actions. It is the most straight forward way

to learn a policy from demonstrations and usually learns via supervised learning, where

the action provided by the expert acts as the label for a given instance. The model

is then capable of predicting the appropriate action when presented with a situation.

Supervised learning methods are categorized into classification and regression.

3.1.1 Classification

Classification is a popular task in machine learning where observations are automati-

cally categorized into a finite set of classes. A classifier h(x) is used to predict the class

y to which an independent observation x belongs; where y ∈ Y , Y = {y1, y2 . . . yp} is

a finite set of classes, and x = {x1, x2 . . . xm} is a vector of m features. In supervised

classification, h(x) is trained using a dataset of n labelled samples (x(i), y(i)), where

x(i) ∈ X, y(i) ∈ Y and i = 1, 2 . . . n.

Classification approaches are used when the learner’s actions can be categorized into

discrete classes [9]. This is suitable for applications where the action can be viewed

as a decision such as navigation [23] and flight simulators [24]. In [23], a Gaussian

mixture model (GMM) is trained to predict navigational decisions. Meta-classifiers

are used in [18] to learn a policy to play computer games. The base classifier used

in this paper is a neural network. “Super Tux Kart” is a kart racing game where the

analogue joystick commands are discretized into 15 buckets, reducing the problem to

a 15 class classification problem. So the neural network used had 15 output nodes.

“Mario Bros” is a platform game that uses a discrete controller. Actions are selected

by pressing one or more of 4 buttons. So in the neural network, the action for a

frame is represented by 4 output nodes. This enables the classifier to choose multiple

24

classes for the same instance. Although the results are promising, it is argued that

using an Inverse Optimal Control (IOC) technique [25] as the base classifier might

be beneficial. In [19] the experiments are repeated this time using regression (see

regression section 3.1.2) to learn the analogue input in “Super Tux Kart”. For Mario

Bros, 4 Support Vector Machine (SVM) classifiers replace the neural network to predict

the value of each of the 4 binary classes. Classification can also be used to make

decisions that entail lower level actions. In [26] high level decision are predicted by

the classifier in a multi-agent soccer simulation. Decisions such as ‘Approach ball’

and ‘Dribble towards goal’ can then be deterministically executed using lower level

actions. An empirical study is conducted to evaluate which classifiers are best suited

for the imitation learning task. Four different classifiers are compared with respect

to accuracy and learning time. The results show that a number of classifiers can

perform predictions with comparable accuracy, however, the learning time relative to

the number of demonstrations can vary greatly [26]. Recurrent neural networks (RNN)

are used in [27] to learn trajectories for object manipulation from demonstrations.

RNNs incorporate memory of past actions when considering the next action. Storing

memory enables the network to learn corrective behaviour such as recovery from failure

given that the teacher demonstrates such a scenario.

3.1.2 Regression

Regression methods are used to learn actions in a continuous space. Unlike classifi-

cation, regression methods map the input state to a numeric output that represents

an action. Thus they are suitable for low level motor actions rather than higher level

decisions. Especially when actions are represented continuous values, such as input

from a joystick [19]. The regressor I(x) maps an independent sample x to a continuous

value y rather than a set of classes. Where y ∈ R, the set of real numbers. Similarly

the regressor is trained using a set of labelled samples (x(i), y(i)), where y(i) ∈ R and

i = 1, 2 . . . n.

A commonly used technique is locally weighted regression (LWR). LWR is suitable

for learning trajectories, as these motions are made up of sequences of continuous

values. Examples of such motions are batting tasks [28] [29] (where the agent is required

to execute a motion trajectory in order to pass by a point and hit a target); and

walking [30] where the agent needs to produce a trajectory that results in smooth stable

motion. A more comprehensive application is table tennis. [31] use Linear Bayesian

Regression to teach a robot arm to play a continuous game of table tennis. The agent

is required to move with precision in a continuous 3D space in different situations,

such as when hitting the ball, recovering position after a hit and preparing for the

25

opponent’s next move. Another paradigm commonly used for regression is artificial

neural networks (ANN). Neural networks differ from other regression techniques in that

they are demanding in training time and training samples. Neural network approaches

are often inspired by biology and neuroscience studies, and attempt to emulate the

learning and imitation process in humans and animals [1]. The use of regression with a

dynamic system of motor primitives has produced a number of applications for learning

discrete and rhythmic motions [20] [32] [33], though most approaches focus on direct

imitation without further optimization [34]. In such applications, a dynamic system

represents a single degree of freedom (DOF) as each DOF has a different goal and

constraints [32].

Dynamic systems can be combined with probabilistic machine learning methods to reap

the benefits of both approaches. This allows the extraction of patterns that are im-

portant to a given task and generalization to different scenarios while maintaining the

ability to adapt and correct movement trajectories in real time [35]. In [35] the estima-

tion of dynamical systems’ parameters is represented as a Gaussian mixture regression

(GMR) problem. This approach has an advantage over LWR based approaches as it

allows learning of the activation functions along with the motor actions. The proposed

method is used to learn time-based and time-invariant movement. In [36] a similar

GMM based method is used in a task-parametrized framework which allows shaping

the robot’s motion as a function of the task parameters. Human demonstrations are

encoded to reflect parameters that are relevant to the task at hand and identify the

position, velocity and force constraints of the task. This encoding allows the frame-

work to derive the state in which the robot should be, and optimize the movement of

the robot accordingly. This approach is used in a Human Robot Collaboration (HRC)

context and aims to optimize human intervention as well as robot effort. Deep learning

is combined with dynamical systems in [37]. Dynamic movement primitives (DMP)

are embedded into autoencoders that learn representations of movement from demon-

strated data. Autoencoders non-linearly map features to a lower dimensional latent

space in the hidden layer. However, in this approach, the hidden units are constrained

to DMPs to limit the hidden layer into representing the dynamics of the system.

In both classification and regression methods, a design decision can be made regarding

the learning models resources. Lazy learners such as kNN and LWR do not need

training but need to retain all training samples when performing predictions. On the

other hand, trained models such as ANN and SVM require training time, but once a

model is created the training samples are no longer needed and only the model is stored,

which saves memory. These models can also result in very short prediction times.

26

3.1.3 Hierarchical Models

Rather than using a single model to reproduce human behaviour, a hierarchical model

can be employed that breaks down the learned actions into a number of phases. A

classification model can be used to decide which action or sub-action, from a set of

possible actions, should be performed at a given time. A different model is then used

to define the details of the selected action, where each possible low-level action has a

designated model. Figure 3.2 illustrates an example of hierarchical actions. [38] use

a hierarchical approach for imitation learning on two different problems. The first is

Air Hockey which is played against an opponent, and the objective is to shoot a puck

into the opponent’s goal while protecting your own. The second game is marble maze;

the maze can be tilted around different axis to move the ball towards the end of the

maze. Each task has a set of low level actions called motor primitives that make up

the playing possibilities for the agent (e.g., Straight shot, Defend Goal, and Roll ball to

corner). In the first stage, a nearest neighbour classifier is used to select the action to

be performed. By observing the state of the game the classifier searches for the most

similar instances in the demonstrations provided by the human expert, and retrieves

the primitive selected by the human at that point. The next step is to define the goal

of the selected action, for example the velocity of the ball or the position of the puck

when the primitive is completed. The goal is then used in a regression model to find

the parameters of the action that would optimize the desired goal. The goal is derived

from the k nearest neighbour demonstrations found in the previous step. The goals

in those demonstrations are input in a local weighted regression model to perform the

primitive. In a similar fashion, [39] use a classifier to make decisions in a sorting task

consisting of the following macro actions (wait, sort left, sort right and pass). Each

macro action entails temporal motor actions such as picking up a ball, moving and

placing the ball.

Figure 3.2: Example of hierarchical learning of actions

27

3.2 Self Improvement

It is often the case that direct imitation on its own is not adequate to reproduce

robust, human-like behaviour in intelligent agents. This limitation can be attributed

to two main factors: (1) errors in demonstration, and (2) poor generalization. Due to

limitations of data acquisition techniques, such as correspondence problem, sensor error

and physical influences in kinesthetic demonstrations [9], direct imitation can lead to

inaccurate or unstable performance, especially in tasks that require precise motion in

continuous space such as reaching or batting. For example, in [40] a robot attempting to

walk by directly mimicking the demonstrations would fall because the demonstrations

do not accurately take into consideration the physical properties involved in the task

such as the robot’s weight and centre of mass. However, refinement of the policy

through trial and error would take these factors into account and produce a stable

motion.

While generalization is an important issue in all machine learning practices, a special

case of generalization is highlighted in imitation learning applications. It is common

that human demonstrations are provided as sequence of actions. The dependence of

each action on the previous part of the sequence violates the i.i.d. assumption of training

samples that is integral to generalization in supervised learning [18]. Moreover, since

human experts provide only correct examples, the learner is unequipped to handle

errors in the trajectory. If the learner deviates from the optimal performance at any

point in the trajectory (which is expected in any machine learning task), it would be

presented with an unseen situation that the model is not trained to react to. A clear

example is provided in [7] where supervised learning was used to learn a policy to drive

a car. Given that human demonstrations contained only ‘good driving’ with no crashes

or close calls, when error occurs and the car deviates from demonstrated trajectories,

the learner does not know how to recover.

This section discusses indirect ways to learn policies that can complement or replace

direct imitation. The policy can be refined from demonstrations, experience or obser-

vation to be more accurate or to be more general and robust against unseen circum-

stances. We categorize the methods for refining the policy into the following groups:

reinforcement learning, transfer learning, data aggregation, active learning, apprentice-

ship learning and optimization.

3.2.1 Reinforcement Learning

Reinforcement learning (RL) learns a policy to solve a problem via trial and error.

28

Definition 12 In RL, an agent is modelled as a Markov Decision Process (MDP) that

learns to navigate in a state space. A finite MDP consists of a tuple (S,A, T,R), where

S is a finite set of states, A is the set of possible actions, T is the set of state transition

probabilities and R is a reward function. TPsa contain a set of probabilities where Psa

is the probability of arriving at state s given action a and where a ∈ A and s ∈ S. The

reward function R(sk, ak, sk+1) returns an immediate reward for taking an action in a

given state and ending up in a new state ak → sk+1 where k is the time step. This

reward is discounted over time by a discount factor γ ∈ [0, 1) and the goal of the agent

is to maximize the expected discounted reward at each time step.

RL starts off with a random policy and modifies its parameters based on rewards

gained from executing this policy. Reinforcement learning can be used on its own

to learn a policy for a variety of robotic applications. However, if a policy is learned

from demonstration, reinforcement learning can be applied to fine tune the parameters.

Providing positive or negative examples to train a policy helps reinforcement learning

by reducing the search space available [1]. Enhancing the policy using RL is sometimes

necessary if there are physical discrepancies between the teacher and the learner or

to alleviate errors in acquiring the demonstrations. RL can also be useful to train

the policy for unseen situations that are not covered in the demonstrations. Applying

reinforcement learning to the learned policy instead of a random one can significantly

speed up the RL process and avoids the risk of the policy from converging into a local

minimum. Moreover RL can find a policy to perform a task that does not look normal

to the human observer. In applications where the learner interacts with a human, it

is important for the user to intuitively recognize the agent’s actions. This is common

in cases where robots are introduced into established environments (such as homes

and offices) to interact with untrained human users [41]. By applying Reinforcement

learning to a policy learned from human demonstrations the problem of unfamiliar

behaviour can be avoided. In imitation learning methods, reinforcement learning is

often combined with learning from demonstrations to improve a learned policy when

the fitness of the performed task can be evaluated.

In early research, teaching using demonstrations of successful actions was used to im-

prove and speed up reinforcement learning. In [42], reinforcement learning is used to

learn a policy to play a game in a 2D dynamic environment. Different methods for en-

hancing the RL policy are examined. The results demonstrate that teaching the learner

with demonstrations improves its score and helps prevent the learner from falling in

local minima. It is also noted that the improvement from teaching increases with the

difficulty of the task. Solutions to simple problems can be easily inferred without re-

quiring demonstrations from an expert. But as the complexity of the task increases

29

the advantage of learning from demonstrations becomes more significant, and even

necessary for successful learning in more difficult tasks [43].

In [44] Gaussian mixed regression (GMR) is used to train a robot on an object grasping

task. Since unseen scenarios such as obstacles and the variable location of the object

are expected in this application, reinforcement learning is used to explore new ways to

perform the task. The trained system is a dynamic system that performs damping on

the imitated trajectories. This allows the robot to smoothly achieve its target and pre-

vents reinforcement learning from resulting in oscillations. Using damping in dynamic

systems is a common approach when combining imitation learning and reinforcement

learning [45][17].

An impressive application of imitation and reinforcement learning is training an agent

to play the board game ‘Go’ that rivals human experts [46]. This work levers learning

from demonstrations to train an actor-critic reinforcement learning agent. Firstly a

dataset of previous games is used to train a supervised convolutional neural network to

play the game. The weights of the network are used to initialize the actor network used

for reinforcement learning, so the agent starts exploring from a good starting policy.

Secondly a set of recorded games is used to train a network to predict whether the game

will end in a win or a loss given the current state. This evaluation function provides

feedback to the critic in the reinforcement learning algorithm so it can learn from the

estimated consequences of each action. This method significantly outperforms direct

imitation [47] and has shown the ability to beat human experts.

A different approach to combine learning from demonstrations with reinforcement learn-

ing is employed in [48]. Rather than using the demonstrations to train an initial policy,

they are used to derive prior knowledge for reward shaping [49]. A reward function

is used to encourage sub-achievements in the task, such as milestones reached in the

demonstrations. This reward function is combined with the primary reward function to

supply the agent with the cost of its actions. This paradigm of using expert demonstra-

tions to derive a reward function is similar to inverse reinforcement learning approaches

[50].

Policy search methods are a subset of reinforcement learning that lend themselves

naturally to robotic applications as they scale to high dimensional MDPs [17]. Therefore

policy search methods are a good fit to integrate with imitation learning methods.

A policy gradient method is used in [51] to improve an existing policy that can be

created through supervised learning or explicit programming. A similar approach [52]

is used within a dynamic system that was previously used for supervised learning from

demonstrations [29]. This led to a series of work that utilizes the dynamic system in

30

[29] to learn from demonstrations and subsequently use reinforcement learning for self-

improvement [45] [53] [54] [55]. This framework is used to teach robotic arms a number

of applications such as ball in cup, ball paddling [45] [28] and playing table tennis

[31]. In [56] demonstration are used to initialize reinforcement policies. Because RL

agents require a large number of trials before it achieves acceptable performance, using

RL in many real world applications may not be practical. Therefore demonstrations

are used to train an initial policy using supervised loss as well as temporal difference

(TD) loss. DQN is then used to retrain the policy by continuing to optimize the TD

loss. This method shows significantly faster learning than using DQN from scratch,

and outperforms using RL only on a number of Atari games. However, the benchmarks

used in this evaluation can already be solved solely using trial and error.

Rather than using reinforcement learning to refine a policy trained from demonstra-

tions, demonstrations can be used to guide the policy search. In Guided policy search

[57], a model based approach generates guiding samples from demonstrations using

differential dynamic programming (DDP). A model-free policy search algorithm then

uses these sample trajectories to explore areas in which it is likely to be rewarded. By

following the guidance of demonstrations the agent has faster access to rewards, which

expedites learning through reinforcement learning. Recurrent neural networks are in-

corporated into guided policy search in [58] to facilitate dealing with partially observed

problems. Past memories are augmented to the state space and are considered when

predicting the next action. A supervised approach uses demonstrated trajectories to

decide which memories to store while reinforcement learning is used to optimize the

policy including the memory state values.

A different way to utilize reinforcement learning in imitation learning is to use RL to

provide demonstrations for direct imitation. This approach does not need a human

teacher as the policy is learned from scratch using trial and error and then used to

generate demonstrations for training. One reason for generating demonstrations and

training a supervised model rather than using the RL policy directly is that the RL

method does not act in real-time [59]. Another situation is when the RL policy is

learned in a controlled environment. In [60] reinforcement learning is used to learn a

variety of robotic tasks in a controlled environment. Information such as the position

of target objects is available during this phase. A deep convolutional neural network

is then trained using demonstrations from the RL policy. The neural network learns

to map visual input to actions and thus learns to perform the tasks without the in-

formation needed in the RL phase. This mimics human demonstrations as humans

utilize expert knowledge – that is not incorporated in the training process – to provide

demonstrations.

31

For a comprehensive survey of reinforcement learning in robotics, the reader is referred

to [17]

3.2.2 Optimization

Optimization approaches can also be used to find a solution to a given problem.

Definition 13 Given a cost function f : A → R that reflects the performance of an

agent, where A is a set of input parameters and R is the set of real numbers, optimiza-

tion methods aim to find the input parameters x0 that minimize the cost function. Such

that f(x0) ≤ f(x) ∀x ∈ A

Similar to reinforcement learning, optimization techniques can be used to find solutions

to problems by starting with a random solution and iteratively improving to optimize

the fitness function. Evolutionary algorithms (EA) are popular optimization methods

that have extensively been used to find motor trajectories for robotic tasks [61]. EAs

are used to generate motion trajectories for high and low DOF robots [62] [63]. Pop-

ular swarm intelligence methods such as Particle Swarm Optimization (PSO) [64] and

Ant Colony Optimization (ACO) [65] are used to generate trajectories for unmanned

vehicle navigation. These techniques simulate the behavior of living creatures to find

and optimal global solution in the search space. As is the case with reinforcement

learning, evolutionary algorithms can be integrated with imitation learning to improve

trajectories learned by demonstration or to speed up the optimization process.

In [40] a genetic algorithm (GA) is used to optimize demonstrated motion trajectories.

The trajectories are used as a starting population for the genetic algorithm. The

recorded trajectories are encoded as chromosomes constituted of genes representing

the motor primitives. The GA searches for the chromosome that optimizes a fitness

function that evaluates the success of the task. Projecting the motor trajectories to

lower dimension illustrates the significant change between the optimized motion and

the one learned directly from kinesthetic manipulation [40].

Similarly in [66] evolutionary algorithms are used after training agents in a soccer

simulation. A possible solution (chromosome) is represented as a set of if-then rules.

The rules are finite due to the finite permutations of observations and actions. A

weighted function of the number of goals and other performance measures is used to

evaluate the fitness of a solution. Although the evolutionary algorithm had a small

population size and did not employ crossover, it showed promising results over the

rules learned from demonstrations.

32

[7] also used evolutionary algorithms to optimize multiple objectives in a racing game.

The algorithms evolve an optimized solution (controller) from an initial population of

driving trajectories. Evaluation of the evolved controllers found that they stay faithful

to the driving style of the players they are modelled after. This is true for quantitative

measures such as speed and progress, and for qualitative observations such as driving

in the centre of the road.

[67] treat the weights of a neural network as the genome to be optimized. The initial

population is provided by training the network with demonstrated samples to initialize

the weights. The demonstrations are also used to create a fitness value corresponding

to the mean squared error distance from the desired outputs (human actions).

In [68] Particle Swarm Optimization (PSO) is used to find the optimal path for an Un-

manned Aerial Vehicle (UAV) by finding the best control points on a B-spline curve.

The initial points that serve as the initial PSO particles are provided by skeletoniza-

tion. A social variation of PSO is introduced in [69], inspired by animals learning in

nature from observing their peers. Each particle starts with a random solution and a

fitness function is used to evaluate each solution. Then imitator particles (all except

the one with the best fitness) modify their behaviour by observing demonstrator par-

ticles (better performing particles). As in nature an imitator can learn from multiple

demonstrators and a demonstrator can be used to teach more than one imitator. Inter-

active Evolutionary algorithms (IEA) [70] employ a different paradigm. Rather than

use human input to start an initial population of solutions and the optimize them, IEA

uses human input to judge the fitness of the solutions. To avoid the user evaluating

too many potential solutions, a model is trained on supervised examples to estimate

the human user’s evaluation. In [71] fitness based search is combined with Preference-

based Policy Learning (PPL) to learn robot navigation. The user evaluations from

PPL guide the search away from local minima while the fitness based search searches

for a solution. In similar spirit [72] train a robot to imitate human arm movement. The

difference in degrees of freedom (DOF) between the human demonstrator and the robot

obstructs using the demonstrations as an initial population. However, rather than use

human input to subjectively evaluate a solution, the similarity of the robot movement

to human demonstrations is quantitatively evaluated. A sequence-independent joint

representation for the demonstrator and the learner is used to form a fitness function.

PSO is used to find the joint angles to optimize this similarity measure. A different

method of integrating demonstrations is proposed in [73]. Inspired by Inverse Rein-

forcement Learning (see section on inverse reinforcement learning 3.2.4), an Inverse

Linear Quadratic Regulator(ILQR) framework is used to learn cost function optimized

by the human demonstrator. PSO is then employed to find a solution for the learned

33

function instead of gradient methods.

3.2.3 Transfer Learning

Transfer learning is a machine learning paradigm where knowledge of a task or a domain

is used to enhance learning of another task.

Definition 14 Given a source Domain Ds and task Ts, transfer learning is defined as

improving the learning of a target task Tt in domain Dt using knowledge of Ds and

Ts; where Ds 6= Dt or Ts 6= Tt. A domain D = {χ, P (X)} is defined as a feature

space χ and a marginal probability distribution P (X), Where X = {x1, ...xn} ∈ χ. The

condition Ds 6= Dt holds if χs 6= χt or Ps(X) 6= Pt(X) [74].

A learner can acquire various forms of knowledge about a task from another agent

such as useful feature representations or parameters for the learning model. Transfer

learning is relevant to imitation learning and robotic applications because acquiring

samples is difficult and costly. Utilizing knowledge of a task that we already invested

to learn can be efficient and effective.

A policy learned in one task can be used to advise (train) a learner on another task that

carries some similarities. In [75] this approach is implemented on two robocup soccer

simulator tasks, the first is to keep the ball from the other team, and second to score a

goal. It is obvious that skills learned to perform the first task can be of use in the later.

In this case advice is formulated as a rule concerning the state and one or more action.

To create advice the policy for the first task is learned using reinforcement learning.

The learned policy is then mapped by a user (to avoid discrepancies in state or action

spaces) into the form of advice that is used to initiate the policy for the second task.

After receiving advice the learner continues to refine the policy through reinforcement

learning and can modify or ignore the given advice if it proves through experience to

be inaccurate or irrelevant.

Often in transfer learning, human input is needed to map the knowledge from one

domain to another, however, in some cases the mapping procedure can be automated

[76]. For example, in [77] a mapping function for general game playing is presented.

The function automatically maps between different domains to learn from previous ex-

perience. The agent is able to identify previously played games relevant to the current

task. The agent may have played the same game before or a similar one and is able

to select an appropriate source task to learn from without it being explicitly desig-

nated. Experiments show that the transfer learning approach speeds up the process of

learning the game via reinforcement learning (compared to learning from scratch) and

34

achieves a better performance after the learning iterations are complete. The results

also suggest that the advantage of using transfer learning is correlated with the num-

ber of training instances transferred from the source tasks. Even if the agent encounter

negative transfer [74] for example from over-fitting to the source task, it can recover by

learning through experience and rectifying its model in the current task to converge in

appropriate time [77].

Brys et al [78] combine reward shaping and transfer learning to learn a variety of

benchmark tasks. Since reward shaping relies on prior knowledge to influence the

reward function, transfer learning can take advantage of a policy learned for one task

and perform reward shaping for a similar task. In [78] transfer learning is applied from

a simple version of the problem to a more complex one (e.g 2D to 3D mountain car

and a Mario game without enemies to a game with enemies).

3.2.4 Inverse reinforcement learning

In many artificial intelligence applications such as games or complex robotic tasks, the

success of an action is hard to quantify. In that case the demonstrated samples can

be used as a template for the desired performance. In [50], apprenticeship learning (or

inverse reinforcement learning) is proposed to improve a learned policy when no clear

reward function is available; such as the task of driving. In such applications the aim is

to mimic the behaviour of the human teachers under the assumption that the teacher

is optimizing an unknown function.

Definition 15 Inverse reinforcement learning (IRL) uses the training samples to learn

the reward function being optimized by the expert and use it to improve the trained

model.

Thus, IRL obtains performance similar to that of the expert. With no reward function

the agent is modelled as an MDP/R (S,A,T). Instead the policy is modelled after

feature expectations µE derived from expert’s demonstrations. Given m trajectories

{s(i)0 , s
(i)
1 , . . . }mi=1 the empirical estimate for the feature expectation of the expert’s

policy µE = µ(ΠE) is denoted as:

µ̂E =
1

m

m∑
i=1

∞∑
t=0

γtφ(s
(i)
t). (3.1)

Where γ is a discount factor and φ(s
(i)
t) is the feature vector at time t of demonstration

i. A such the outer loop represents the number of demonstrations and the inner loop

35

the length of each demonstration. The goal of the RL algorithm is to find a policy π̄

such that ||µ(π̄)− µE ||2 ≤ ε where µ(π̄) is the expectation of the policy [50].

[79] employ a maximum entropy approach to IRL to alleviate ambiguity. Ambigu-

ity arises in IRL tasks since many reward functions can be optimized by the same

policy. This poses a problem when learning the reward function, especially when pre-

sented with imperfect demonstrations. The proposed method is demonstrated on a

task of learning driver route choices where the demonstrations may be suboptimal and

non-deterministic. This approach is extended to a deep-learning framework in [80].

Maximum entropy objective functions enable straightforward learning of the network

weights, and thus the use of deep networks trained with stochastic gradient descent

[80]. The deep architecture is further extended to learn the features via Convolution

layers instead of using pre-extracted features. This is an important step in the route to

automate the learning process. One of the main challenges in reinforcement learning

through trial and error is the requirement of human knowledge in designing the feature

representations and reward functions [17]. By using deep learning to automatically

learn feature representations and using IRL to infer reward functions from demonstra-

tions, the need for human input and design is minimized. The inverse reinforcement

learning paradigm provides an advantage over other forms of learning from demonstra-

tions in that the cost function of the task is decoupled from the environment. Since

the objective of the demonstrations is learned rather than demonstrations themselves,

the demonstrator and learner do not need to have the exact skeleton or surroundings,

thus alleviating challenges such as the correspondence problem. Therefore, it is easier

to provide demonstrations that are generic and not tailor-made for a specific robot or

environment.

In addition, IRL can be employed rather than traditional RL even if a reward function

exists (given that demonstrations are available). For example, in [81] apprenticeship

learning is used to derive a reward function from expert demonstrations in a Mario

game. While the goals in a game such as Mario can be pre-defined (such as score from

killing enemies and collecting coins or the time to complete the level), it is not known

how an expert user prioritizes these goals. So in an effort to mimic human behaviour,

a reward function extracted from demonstrations is favoured to a manually designed

reward function. The draw back for inverse reinforcement methods is that they can be

inefficient for complex problems as the reinforcement learning step is embedded in the

optimization loop [82].

36

3.2.5 Data Aggregation

Definition 16 Data aggregation allows the agent to perform an initially trained policy

and provide corrections from the optimal policy. These samples provide an extra training

dataset that contains situations that are not present in the original training set, but are

likely to face the agent. This process of data aggregation can be performed iteratively

to refine the policy and improve generalization.

DAGGER [19] formulates the imitation learning problem as a structured prediction

problem inspired by [83], an action is regarded as a sequence of dependent predictions.

Since each action is dependent on the previous state, an error leads to unseen state

from which the learner cannot recover, leading to compounded errors. DAGGER shows

that it is both necessary and sufficient to aggregate samples that cover initial learning

errors. Therefore, an iterative approach is proposed that uses an optimal policy to

correct each step of the actions predicted using the current policy, thus creating new

modified samples that are used to update the policy. As the algorithm iterates, the

utilization of the optimal policy diminishes until only the learned policy is used as the

final model.

[84] propose an algorithm called SIMILE that mitigates the limitations of [19] and

[83] by producing a stationary policy that does not require data aggregation. SIMILE

alleviates the need for an expert to provide the action at every stage of the trajectory

by providing “virtual expert feedback” that controls the smoothness of the corrected

trajectory and converges to the expert’s actions.

Considering past actions in the learning process is an important point in imitation

learning as many applications rely on performing trajectories of dependent motion

primitives. A generic method of incorporating memory in learning is using recurrent

neural networks (RNN) [85]. RNNs create a feedback loop among the hidden layers in

order to consider the network’s previous outputs and are therefore well suited for tasks

with structured trajectories [86].

3.2.6 Active Learning

Active learning similarly adds new training data provided by the optimal policy based

on the agent’s initial performance. However, in active learning, the agent is able to

query an expert for the optimal response to a given state, thus efficiently sampling the

additional training samples.

Definition 17 A classifier h(x) is trained on a labeled dataset DK(x(i), y(i)) and used

37

to predict the labels of an unlabelled dataset DU (x(i)). A subset DC(x(i)) ⊂ DU is

chosen by the learner to query the expert for the correct labels y∗(i). The active samples

DC(x(i), y∗(i)) are used to train h(x) with the goal of minimizing n : the number of

samples in DC .

Active learning is a useful method to adapt the model to situations that were not

covered in the original training samples. Since imitation learning involves mimicking

the full trajectory of a motion, an error may occur at any step of the execution. Creating

passive training sets that can avoid this problem is very difficult.

One approach to decide when to query the expert is using confidence estimations to

identify parts of the learned model that need improvement. When performing learned

actions, the confidence in this prediction is estimated and the learner can decide to

request new demonstrations to improve this area of the application or to use the cur-

rent policy if the confidence is sufficient. Alternating between executing the policy and

updating it with new samples, the learner gradually gains confidence and obtains a

generalized policy that after some time does not need to request more updates. Con-

fidence based policy improvement is used in [23] to learn navigation and in [39] for a

macro sorting task.

In [87] active learning is introduced to enable the agent to query expert at any step in

the trajectory, given all the past steps. This problem is reduced to i.i.d. active learning

and is argued to significantly decrease the number of required demonstrations.

In [88] active learning is employed in human-robot cooperative tasks. The human and

robot physically interact to achieve a common goal in an asymmetric task (i.e. the

human and the robot have different roles). Active learning occurs between rounds of

interaction and the human provides feedback to the robot via a graphical user interface

(GUI). The feedback is recorded and is added to a database of training samples that

is used to train the Gaussian mixture model that controls the actions of the robot.

The physical interaction between the human and robot results in mutually dependent

behaviour. So with each iteration of interaction, the coupled actions of the two parties

converge into a smoother motion trajectory. Qualitative analysis of the experiments

show that if the human adapts to the robots actions, the interaction between them can

be improved; and that the interaction is more significantly improved if the robot in

turn adapts to the human’s action with every round of interaction.

In [89] the teacher initiates the corrections rather than the learner sending a query. The

teacher observes the learner’s behavior and kinesthetically corrects the position of the

robot’s joints while it performs the task. The learner tracks its assisted motion through

its sensors and uses these trajectories to refine the model which is learned incrementally

38

to allow for additional demonstrations at any point.

Tables 3.1-3.5 list previous work that utilize imitation learning in various domains.

The tables show the year of the study, the data and algorithms used for learning

and whether or not self-improvement was employed. The data column describes the

sensory information and representations used for training. It is common to use raw

or low-level sensory data which we refer to in games and simulated environments as

engine data. These are unprocessed features obtained form the engine such as the

positions of objects and the angles of joints. It is also common to process the sensory

data whether from real or simulated sensors to obtain higher level features that are

more useful for training. Engineered features refer to tailor made features that are

extracted using functions specifically designed for a specific application. For example,

in a driving task, a function that returns which lane the vehicle is currently in from

can be calculated from positional data. In Table 3.1 shows imitation learning methods

used in the navigation domain. This can include complicated driving systems as well as

simulated cardinal movement. In navigation applications, it is important to be aware

of the agents surroundings. Therefore, sensory information such as laser scanners and

cameras are common.

Table 3.1: Imitation learning methods for navigation

Paper Data Learning Method Self-improvement

Lin 1992[42] 2D positions Artificial Neural

Networks (ANN)

3

Dixon et al. 2004[90] Laser scanner HMM 7

Saunders et al.

2006[91]

engineered fea-

tures

KNN 7

Chernova et al.

2007[23]

engineered fea-

tures

Gaussian Mixture

Model (GMM)

3

Coates et al. 2008[92] 3D position Expectation Max-

imization (EM)

7

Table 3.2 shows related work in object manipulation tasks. Object manipulation is

a popular application in robotics and deals with grabbing and moving objects using

the robot’s actuators. In this domain it is common to use on-robot sensors to keep

track of the state of the robot’s pose as well as visual or laser sensors to observe the

manipulated objects.

39

Table 3.2: Imitation learning methods for object manipulation

Paper Data Learning Method Self-improvement

Pook et al. 1993[93] on-robot sensors Hidden Markov

Model (HMM),

K-Nearest Neigh-

bor (KNN)

7

Oztop et al. 2002[94] engineered fea-

tures

ANN 7

Nicolescu et al.

2003[95]

sonar,laser,visual graph based

method

3

Asfour et al. 2008[96] extracted visual

features

HMM 7

Saunders et al.

2006[91]

engineered fea-

tures

KNN 7

Guenter et al. 2007[44] on-robot sensors GMR 3

Geng et al. 2011[97] engineered fea-

tures

ANN 7

Levine et al. 2015[60] raw visual data ANN 3

Table 3.3 lists a variety of generic robotic tasks. Robotics is an attractive domain for

AI research due to the huge potential in applications that can take advantage of sensing

and motor control in the physical world. As in the more specific object manipulation

tasks, visual and on-robot sensors are common in this table. Moreover, a number of

studies employ body-worn sensors on the human teacher to obtain data about pose and

joint movement.

40

Table 3.3: Imitation learning methods for robotics

Paper Data Learning Method Self-improvement

Mataric 2000[98] visual features ANN 7

Billard et al. 2001[99] visual/marker

data

ANN 7

Ijspreet et al. 2002[29] worn-sensors Local Weighted

Regression

(LWR)

7

Ude et al. 2004[100] marker data optimization 7

Nakanishi et al.

2004[30]

on-robot sensors LWR 7

Bentivegna et al.

2004[38]

visual/on-robot

sensors

KNN, LWR 3

Schaal et al. 2007[32] worn-sensors LWR 7

Berger et al. 2008[40] on-robot sensors direct recording 3

Mayer et al. 2008[86] visual/on-robot

sensors

ANN 3

Kober et al. 2009 [28] on-robot sensors LWR 3

Ikemoto et al. 2012[88] on-robot sensors GMM 3

Niekum et al.

2013[101]

visual/on-robot

sensors

HMM 3

Rozo et al. 2013[102] on-robot sensors HMM 3

Mulling et al. 2013[31] visual/engineered

features

Linear Bayesian

Regression

3

Vogt et al. 2014[103] visual/engineered

features

ANN 7

Droniou et al. 2014[85] on-robot sensors ANN 7

Table 3.4 surveys imitation learning methods used in games. Games have become a

popular domain for AI research as they have built-in control mechanisms and scoring

measures that can facilitate the design and evaluation of learning methods. Most studies

employ data derived from the games engine, whether using the low-level features or

extracting high level engineered features. However, there has been recent interest in

learning to play games from visual features using the frames displayed on the screen.

41

Table 3.4: Imitation learning methods for games

Paper Data Learning Method Self-improvement

Giesler et al. 2002[104] engineered engine

features

Naive Bayes

(NB), Decision

Tree (DT), ANN

7

Thurau et al.

2004[105]

engine data bayesian methods 7

Togelius et al. 2007[7] engineered engine

features

ANN 7

Munoz et al. 2009[106] engine data ANN 7

Cardamone et al.

2009[107]

engineered engine

features

KNN, ANN 7

Ross et al. 2010[19] visual features Support Vector

Machine (SVM)

3

Munoz et al. 2010[108] engine data ANN 7

Ross et al. 2010[18] visual features ANN 3

Ortega et al. 2013[67] engineered fea-

tures

ANN 3

Silver et al. 2016[46] 2D positions ANN 3

Table 3.5 lists imitation learning efforts in simulated environments. Simulators can

be used to learn real world tasks in a more controlled environment or as prosperously

built benchmarks to facilitate AI research. Simulators alleviate many of the imitation

learning challenges such as data capturing and sensor error; and thus allow development

of new complex learning methods in a controlled and easily reproducible environment.

Moreover, in a simulation, it is possible to execute policies faster than real-time and

without physical limitations; therefore it is common to use self-improvement through

reinforcement learning in conjunction with learning from demonstrations. Similar to

games, simulation tasks often employ low-level or engineered engine features.

42

Table 3.5: Imitation learning methods for simulations

Paper Data Learning Method Self-improvement

Aler et al. 2005[66] engine data PART 3

Torrey et al. 2005[75] engineered engine

features

Rule based learn-

ing

3

Judah et al. 2012[87] engine data linear logistic re-

gression

3

Vlachos 2012[109] structured text

data

online passive-

aggressive algo-

rithm

3

Raza et al. 2012[26] engineered engine

features

ANN, NB, DT,

PART

3

Brys et al. 2015[78] engine data/engi-

neered features

Rule based learn-

ing

3

3.3 Applications

Advances in imitation learning open the door for a variety of potential applications.

Though commercialization and deployable products of such applications may not yet

be realized, we present some of the directions taken in the literature and their potential

applications. We pay special attention to applications related to the tasks presented in

this work, namely navigation and multi-agent tasks.

Autonomous vehicles have been a popular concept in AI from its early days. And

recently self-driving cars have been gaining a lot of attention from car manufacturers

and tech companies alike. The advancement in sensors and on-board computers in

modern cars have rekindled the interest in producing driverless vehicles commercially.

Early research in imitation learning focused on this problem, proposing a method for

learning to fly an aircraft from demonstrations provided via remote control [24] and

self-driving road vehicles [110]. Since then, many researchers have directed imitation

learning research to navigational or driving tasks [50] [23] [90] [91] [18] [106] [107].

Imitation in autonomous vehicles is not only concerned with low-level control, but

demonstrations can also be used to learn car route selection and planning [79].

Assistive robotics aims to provide intelligent robots that can help elderly or recov-

ering individuals in their day to day activities. Generalization is necessary in most

applications as the human partner is usually untrained, so the robot must be able

43

to behave robustly in unseen situations. The Human-robot interaction is not limited

to physical assistance. Socially assistive robots can offer help with sociological and

mental problems [111] [112] [113]. For robots to be effective in such a social context,

their behavior must be human-like to be intuitively recognized by the human partner.

Therefore, imitation learning has the potential to be an integral part in assistive robots.

The same argument can be made for teaching infants using interactive robots. [88] in-

corporates interaction in the training process to account for the changing behavior of

the human partner. The robot, therefore, can adapt to the human’s reactions, as the

human naturally makes similar adaptations.

Electronic games is a multi-billion dollar industry, and one in which immersion is an

important factor. AI characters that act in a plausible manner within the environment

can add greatly to the sense of immersion. Therefore, there is an ever growing demand

for believable artificial intelligence to enhance gaming experiences [114]. Similar to

Human-robot interaction, the possibilities are too great to consider with explicit pro-

gramming [104], especially in modern games where the player has more freedom and

control and the environments are becoming increasingly complex. A number of studies

investigate the effectiveness of imitation learning in video games such as First Person

Shooters [104] [115] [116], platformers [67] [18] [19] and racing[18] [19] [106] . These

examples are applied to relatively simple problems, with limited action options and few

features to consider from the environment; however, they show promising performances

from imitation agents that could be extended to more complex games in the future.

For instance, the study in [115] showed that not only are imitating agents subjectively

believable, but that they also outperform other hand crafted agents. Electronic games

provide a friendly platform for advancing imitation learning as they do not require ad-

ditional systems such as sensors and hardware; and the cost of faults is low compared

to applications where faults might endanger people or property. They can also be used

as a testbed for artificial general intelligence [117].

Humanoid robots is one of the domains most associated with artificial intelligence.

It is one of the most relatable domains, because many of its potential applications are

quite obvious. The premise of humanoid robots is to replace some of the workload

that humans do. These problems range from specific tasks such as physical chores and

housework, to generic problem solving. Since most of the required tasks are already

performed by humans, humanoid robot applications are inherently suitable for the

concept of learning by imitation. Humanoid robots can learn to perform actions that

only utilize part of their skeleton [99] [29] [103] or the entire body [40] [89] [100]. Since

humanoid robots are commonly used to interact with humans in a social context, it

is important not only to learn how to move but also how to direct its attention to

44

important occurrences. In [118] a robot learns where to look by imitating a teacher’s

gaze and learns to estimate saliency based on the teacher’s preferences.

Another field of robotic applications is automation.It is different from the aforemen-

tioned domains in that automation is more relevant to industrial tasks while the other

domains aim to create AI for personal products and services. However, automation

can still be useful in domestic applications [91]. While automation is not a new con-

cept, learning by imitation introduces generalization and adaptability to automated

tasks [95]. This means that the robot can act robustly in unseen situations such as

the introduction of obstacles or changes in the shape or position of relevant objects.

Generalization diminishes the need for supervision and human intervention between

small tasks. Imitation learning research done in this direction focus on object manip-

ulation, such as sorting and assembly tasks [91] [93] [94] [89] [95]. Another example

of automation is medical procedures. In [86] a robot is trained to automate part of a

surgical procedure from surgeons’ demonstrations.

3.3.1 Multi-agent Imitation

In many real world application, autonomous agents are required to function in an

environment along with other agents or humans, which can result in very dynamic

environments. While most research has focused on single agent tasks, imitation learning

and multi-agent applications can be a good fit. Learning from demonstrations can be

improved in multi-agent environments as knowledge can be transferred between agents

of similar objectives. On the other hand, imitation learning can be beneficial in tasks

where agents need to interact in a manner that is realistic from a person’s perspective.

Following we present methods that incorporate imitation learning in multiple agents.

In [119] implicit imitation is used to improve a learner’s RL model. A multi-agent

setting enables an agent to learn by observing other agents performing a similar task

using similar actions to those possessed by the agent. The mentor agent provides

demonstrations by performing the task to optimize its objectives, so there is no need

for a designated teacher; and the actions of an agent are unknown to other agents. A

learner can observe the state changes resulting from the actions of a mentor agent and

accordingly refine its model. This premise is useful for real applications where multiple

agents act in the same environment. However, this work assumes that the agents are

non-interacting, i.e., the consequences of one agent’s actions are independent of other

agents. Implicit imitation is closely related to transfer learning as a learner acquires

the knowledge learned previously by a different learner. This application corresponds

to a transductive transfer learning setting where the task is the same but the domains

45

of the mentor and learner are different [74]. An interesting aspect of this approach

is that an agent can learn different skills from different mentors. In one experiment

two mentors are acting to achieve different goals; the learner uses observations from

both agents to learn a more difficult task. Note however, that the tasks were designed

so that a combination of the policies used by the mentors form an optimal policy for

the learner’s problem. [119]. This can be considered as an example of hierarchical

transfer learning, where learning solutions to multiple problems can help achieve more

complex tasks [76]. However, in this case the knowledge of the tasks is learned through

observations and imitation.

Multi-agent settings add complexity to the imitation problem in a number of ways.

The learner’s state space can be significantly expanded to include the status of other

agents, as observing the actions of other agents affects its decision. The reward function

is also affected if multiple agents compete or collaborate towards the same goal. The

complexity of reward functions can increase even if the agents do not share the same

goal. In a competitive setting, in addition to maximizing its own reward, an agent aims

to minimize its opponents reward. In a cooperative setting, the total reward of the

team might be taken into consideration. These new complexities can be incorporated

in the learning process at different levels. For example, [119] exploit the presence of

multiple agents to learn from observation, however, robots are non-interacting and act

independently of each other. So, the state space and reward function are not affected.

In [120], multiple agents collaborate as a team to keep ball from other team in a soccer

simulation. The whole team learns through reinforcement learning, but each agent learn

a separate policy as different actions executed by the different agents are rewarded with

the same reward. While in [26], the soccer agents learn different roles that complement

each other to maximize the common goal. In a defensive task, one agent tries to recover

the ball from the attacking opponents while the other falls back to act as a goal keeper.

The roles are interchangeable, so each agent learns both skills as well as when to assume

one of the two roles. In [121] a team of agents is treated as a pattern of policies rather

than individual agents. That is a pattern that connects agents in a team that perform

complementary roles. This method enables a team of agents to be scaled significantly

after training without requiring retraining of different agents for similar roles.

Multi-agent learning from demonstration can however introduce new challenges in terms

of acquiring demonstrations. In [39] where active learning is employed in a multi-robot

environment, the human expert is required to interact simultaneously with multiple

robots. A system is then developed to divide the expert’s time among the learners

based on their need, by attracting the expert’s attention through audio visual cues in

order to query information.

46

3.3.2 Model-based learning and Planning

The methods proposed in this thesis focus on model-free learning approaches that teach

the agent to react to the observed state. However, imitation learning can be applied in

model-based approaches and used for planning.

Definition 18 Model based learning is a paradigm where a model M of the environ-

ment exists that allows us to know the transition probability T (s′|s, a) of future states.

Intuitively, the model provides the result of performing actions before they are executed.

Definition 19 Planning is determining a sequence of actions A = {a1, a2..an} to tran-

sition from an initial state s1 to a target state st. The entire trajectory of actions A is

planned before any actions are executed.

Model based learning is closely related to planning as it allows the policy to plan long

term strategies while knowing the state and the transition probabilities at each step in

the trajectory [122, 42].

In [31] a robot arm is trained to play table tennis against an opponent. A model of

the physics controlling the ball is use to predict the position of the ball in future time

steps. This allows the policy to plan the motions of the paddle to meet the ball. This

task illustrates the leverage that a model provides. A model of the ball’s movement

allows the policy to learn how to hit the ball and prepare for the next hit. A model of

the opponent could additionally allow the policy to plan long-term strategies to trick

the opponent.

However, preliminary planning can be performed without a model. In [40], the entire

trajectory of actions is defined in one shot. This trajectory, while not optimal due to

the dynamic nature of the task, serves as a rudimentary sequence that is optimized

iteratively using genetic algorithms. In each iteration, the genetic algorithm evaluates

the sequence as a whole rather than per action.

A popular approach in autonomous agents is model-based reinforcement learning [123,

124] which provides the next state as well as a reward for a given state-action pair. This

approach can be integrated with learning from demonstrations through model-based

apprenticeship learning [125]. It is especially useful if the model is differentiable as

this allows the policy to be trained directly on the targets using gradient descent with

minimal interaction with the environment [126].

The challenge in model-based methods is acquiring the model, which can require sub-

stantial expert knowledge and effort and is not feasible in many cases. It is important

not to confuse simulators and models as simulators do not predict the state transition

47

before it happens. For example in [87] an active imitation learning approach is used to

replace a model-based IRL approach by utilizing a simulator in the absence of a model.

To alleviate this challenge, there are recent attempts to learn dynamic models through

interaction with the environment [127]. This approach is very attractive as it provides

a general method of creating differentiable models.

3.4 Conclusion

This chapter surveys the relevant literature in the area of imitation learning, with a fo-

cus on methods that employ deep learning and reinforcement learning and that address

relevant applications. Imitation learning methods are categorized into direct imita-

tion methods that learn a supervised policy from demonstrations and self-improvement

methods that improve generalization by refining the policy according to the agent’s

initial performance. There are several different approaches to refine a policy, we cat-

egorize them into reinforcement learning, transfer learning, data aggregation, active

learning, apprenticeship learning and optimization. Reinforcement learning learns a

policy through trial and error based on feed-back from the environment; and thus can

learn a policy from scratch or refine an existing one. Reinforcement learning has shown

very impressive results in various applications, but can still struggle with sparse re-

wards. Moreover, trial and error may not be appropriate in some applications due to

safety concerns or physical limitations. Apprenticeship learning creates a reward func-

tion from the given demonstrations and learns a policy using reinforcement learning.

This approach is especially suitable when it is difficult to define a reward function,

however IRL approaches can be computationally challenging. Optimization methods

such as genetic algorithms and particle swarm methods can be also used to improve a

policy based on a fitness function, if the parameters of the policy can be represented as

an optimization solution. Data aggregation approaches are some of the most common

to enable imitation agents to generalize. By performing the initial policy in a dynamic

environment, the agent is able to collect a new dataset from the expert that is relevant

to the state space visited by the agent. However, like RL approaches, data aggrega-

tion may not be appropriate for application where executing mediocre policies in is

not feasible. Similarly, active learning acquires extra training samples by performing

the initial policy in the environment. However, in active learning the agent queries

the expert for the new samples in order to reduce redundancy and focus on situations

where the current policy is ambiguous. While this alleviates the need for extensive

human intervention, in some tasks it is difficult for the teacher to provide an isolated

action mid-trajectory. Transfer learning allows knowledge from one task to be used

to leverage learning in a different task, such as providing context or an initial policy.

48

Starting with a better than random policy can also alleviate some of the challenges of

RL in physical applications. Model-based learning and planning allow learning complex

strategies over a sequence of actions. These methods are very attractive if a model is

available or is feasible to develop. However, model-free reactive approaches can also

learn long-term strategies for example through delayed rewards or policies that retain

memory of past experiences. Common domains in imitation learning are also surveyed.

Potential real world applications are highlighted as well as common research tasks that

facilitate developing new methods.

49

Chapter 4

Learning Representations from

raw visual data

This chapter described the proposed method for learning representations from raw

visual data. The method details the processes of acquiring the demonstrations, formu-

lating the data for training, and the training model used to learn from the data. The

proposed method is generic, and the network is trained without knowledge of the task,

targets or environment in which it is acting. The approach and network architecture

described in this chapter is used in conjunction with other contributions in chapters 5,

6 and 7 to tackle different tasks in autonomous navigation applications. Experiments

conducted and results to evaluate these tasks are presented in the respective chapters.

The proposed feature representation method is published in [10].

4.1 Introduction

In autonomous applications, representing the state in a way that is adequate to train

the agent is an important challenge. A special case is imitation learning where demon-

strations are provided by an expert, so it is required to represent the demonstrations

as well as the agent’s observations in a manner that is suitable for learning. Part of the

imitation learning processes is to design how the demonstrations are captured and how

to present them to the agent. When capturing data, the important question is: what to

imitate? In most real applications, the environment is often too complicated to be rep-

resented in its totality, because it usually has an abundance of irrelevant or redundant

information. It is therefore necessary to consider which aspects of the demonstrations

we want to present to the learner. This will help decide which sensory data to acquire

50

and from what perspective. Once the demonstrations are captured the next question is

how to represent the captured sensory data as training samples. This includes deciding

the feature vector that describes a single sample.

Raw data captured from the source can be used directly for training. However, these

feature can be very high dimensional and contain a large number of redundant and

irrelevant features. Thus, using raw features for training may be inefficient or infeasible

in many problems. For example, when dealing with high DOF robots, describing the

posture of the robot using the raw values of the joints can be ineffective due to the

high number of dimensions. This is more pronounced if the robot only uses a limited

number of joints to perform the action; rendering most of the features irrelevant. This

issue also applies to visual information. If the agent observes its surroundings using

visual sensors, it is provided with high dimensional data in the form of pixels per frame.

However, at any given point, most of the pixels in the captured frame would probably

be irrelevant to the agent or contain redundant information. It is therefore common to

extract features from raw data for machine learning applications. We make a distinction

between two types of extracted features: manually tailored features which are extracted

according to expert knowledge of the task and automatically extracted features which

are dependant on the data rather than human knowledge. Manually tailored features

are extracted from the sensory data using specially designed functions. These methods

incorporate expert knowledge about the data and application to determine what useful

information can be derived by processing the raw data. Manually designed feature

functions are popular with learning from visual data and play an important part in

computer vision methods that are used to teach machines by demonstration. However,

these features are tailor made for a specific task and sensory input and thus hinder a

general learning from demonstration process. This is because for any new task (or even

a change in the task), an expert is required to design new feature extractors that are

effective for this case. On the other hand, automatic feature extraction can process raw

data to create adequate and efficient feature representations based on the provided data.

The most relevant information is extracted and mapped to a different domain usually

of a lower dimensionality without requiring expert knowledge. While feature extraction

methods such as Principal Component Analysis (PCA) have been used to create feature

representation in robotics [128, 88, 40, 103], deep learning [129] has shown great success

in learning from raw visual data. Learning representations through deep networks can

be particularly effective because the final supervised loss is taken into consideration

. Convolutional neural networks have been shown to surpass even manually designed

features for many computer vision tasks and have the advantage of learning end-to-end

without requiring intervention. Figure 4.1 shows the relations between different feature

representations.

51

Figure 4.1: Features representations and their relationships. Raw features can be
manually manipulated to extract tailored features. While manually tailored or raw
features can be automatically processed to extract feature representation.

Autonomous navigation is an important problem that has been recognized in AI re-

search from an early stage. Navigation is an important skill in various robotic appli-

cations such as household robotics as well as the main problem in applications such as

autonomous vehicles. Learning from demonstrations lends itself to navigation problems

as it is difficult, even for experts, to identify an optimal strategy for agents to follow in

complex environments. Prioritizing different aspects of navigation such as speed, safety

and avoiding obstacles can be better inferred from demonstrations [50]. However, nav-

igation from visual data is challenging as only part of the environment is visible at

a time. Moreover, the view of the agent changes constantly as it moves around the

environment making it more difficult to observe relations between subsequent states

and extract relevant features. This is in contrast for example to object manipulation

tasks where a static view contains all the information needed by the agent, and changes

from one frame to the next can be more easily tracked.

We now review related and relevant work in autonomous navigation and using deep

learning for feature extraction in intelligent agents.

4.1.1 Autonomous Navigation

Navigation is an important skill for intelligent agents due to its relevancy to a variety

of applications. Navigation can be a main task as in autonomous vehicle applications

[130, 131, 132, 133, 134, 135, 136] or as a base skill for other tasks such as humanoid

robots which need to move before performing other tasks [23, 91] An early work [130]

proposed a method for learning autonomous control of an aerial vehicle from demonstra-

tions. Since then several papers have proposed learning autonomous aerial navigation

using demonstrations [137] and reinforcement learning [131][132][58]. In [135] a robot

learns how to navigate through a maze based on its sensory readings. The information

52

available to the robot is a stream from an infra-red (IR) sensor and input from a con-

troller operated by a teacher. The agent learns to map its sensory data directly to the

motor primitives provided by the controller. The IR data provides information about

the proximity of objects. This sensory information does not allow the agent to differ-

entiate between different objects. In [90] a laser sensor is utilized to enable the agent

to detect and identify relevant objects. Instead of mapping the sensory data directly to

motor primitives, the agent learns to identify sub-goals from its observations. A more

detailed representation of the environment can be provided by visual data. High dimen-

sional visual data can be efficiently provided to intelligent agents thanks to advances

in computational resources and communication technology. An agent learns to play

a racing game from visual data in [18]. A teacher plays the game using a controller,

and the controller’s input is captured along with the game’s video stream to create a

training dataset. The video stream is stored as raw pixels and down sampled versions

of the frames are input into a neural network. In [138] a deep reinforcement learning

algorithm is used to teach an agent in a racing simulator from raw visual features. The

learned policy maps the high dimensional visual input to multiple continuous outputs

such as steering and pressing the acceleration pedal. Another racing application is

demonstrated in [106] where the training algorithm uses features extracted from the

simulator (such as the position and speed of the car). It is shown that learning from

demonstration can be used to handle high degree of freedom low level actions, how-

ever, features such as those extracted from the simulator are difficult to produce in

real world applications. Learning from visual information is not limited to the point of

view of the agent. In [133] an imitation learning method is proposed to train a vehicle

to navigate over long distances by learning from overhead data captured from satellite

and aerial footage. Recently, state of the art deep reinforcement learning methods have

been evaluated on 3D navigation tasks [139][140]. However, these benchmark tools are

not publicly released.

4.1.2 Deep Learning

Deep learning approaches can be used to extract features without expert knowledge of

the data. These approaches find success in automatically learning features from high

dimensional data; especially when no established sets of features are available. In a

recent study [141], Deep Q-Learning (DQN), a version of Q-learning that employs deep

neural networks, is used to learn features from high dimensional images. The aim of this

technique is to enable a generic model to learn a variety of complex problems automat-

ically. The method is tested on 49 Atari games, each with different environments, goals

and actions. Therefore, it is beneficial to be able to extract features automatically from

53

the captured signals (in this case screen-shots of the Atari games at each frame) rather

than manually design specific features for each problem. A low resolution (84 × 84)

version of the coloured frames is used as input to a deep convolutional neural network

(CNN) that is coupled with Q based reinforcement learning to automatically learn a

variety of different problems through trial and error. The results in many cases surpass

other AI agents and in some cases are comparable to human performance. Similarly,

[142] use deep neural networks to learn from video streams in a car racing game. Note

that these examples utilize deep neural networks with reinforcement learning, without

employing a teacher or optimal demonstrations. However, the feature extraction tech-

niques can be used to learn from demonstrations or experience alike. Since the success

of DQN, several variations of deep reinforcement learning have emerged that utilize

actor-critic methods [140] [138] which allow for potential combinations with learning

from demonstrations. In [59] learning from demonstrations is applied on the same Atari

benchmark [143]. A supervised network is used to train a policy using samples from

a high performing but non real-time agent. This approach is reported to outperform

agents that learn from scratch through reinforcement learning. In [60] deep learning is

used to train a robot to perform a number of object manipulation tasks using guided

policy search

4.2 Proposed Method

In this section we detail our proposed method for learning feature representations for

navigation tasks from demonstrations. We begin by describing the process of collecting

demonstrations and following the deep neural network model used for training. The

full process is illustrated in figure 4.2. Implementation of this method is available at

https://github.com/ahmedsalaheldin/ImitationMASH.git

Figure 4.2: Workflow of the learning representation process. The process starts by
a teacher providing demonstrations on a given simulator. The demonstrations are
collected and processed into a dataset that is fed into a deep convolutional neural
network. The network learns high level representations of the raw input features as
well as mapping to the action space.

54

https://github.com/ahmedsalaheldin/ImitationMASH.git

4.2.1 Representing Demonstrations

A teacher providing demonstrations may be assumed to be optimizing an unknown

optimal function. Therefore as the teaching policy we use a deterministic optimal policy

π∗ to control the agent. This policy has access to information from the simulator that

is hidden from a human or intelligent agent player such as the position of the agent

and the target in 3D space. This information is used to deterministically calculate the

optimal action at a given time. The expert provides demonstrations by controlling the

agent and performing the task in an optimal manner. In this case the observations

are captured from the first person perspective of the agent. Therefore, the agent will

relate to the captured demonstrations when it attempts to perform the task and is

presented with observations from the same perspective. Figure 4.3 shows examples of

observations captured from the demonstrations.

(a) Screenshot from “reach the flag”
task

(b) Screenshot from “follow the line”
task

Figure 4.3: Example of observations captured during demonstration

For each frame t the view of the agent xt is captured as well as the action yt cho-

sen by the optimal policy. This pair (xt, yt) is added to the dataset of demon-

strations D = (x, y) where xt is a 120 × 90 image captured from the first per-

son view of the agent and yt = π∗(xt) is the action chosen by the expert from a

set of possible actions. In the navigation applications at hand the set of actions is

MoveForward,MoveBackwards, TurnLeft, TurnRight. For each state observation,

only the current frame is used unlike deep reinforcement learning methods [144][141]

that commonly represent the state by a sequence of rendered frames. The assumption

is made that the Markov property holds for the navigation tasks at hand that are for-

mulated as MDPs. That is, at any instance, the current state is sufficient to make a

decision and any previous actions and states need not be included in the representa-

tion of the current state. This assumption is made based on the expert policy, as the

teacher only considers the current state when making a decision. In that case training

an imitation learning policy is reduced to a supervised image classification problem;

55

where the current view of the agent is the image and the action chosen by the teacher

is the label. Subsequently the trained agent will be able to predict a decision (as it

would be taken by the teacher) given its current view. The captured dataset D is used

to train the policy π such that u = π(x, α). Where x is a 120× 90 image and u is the

action predicted by policy π for input x and α is the set of policy parameters that are

changed through learning. The policy is trained using a neural network that extracts

a high level representation of the observation x and maps it to actions.

4.2.2 Deep convolutional Neural network

To learn the policy we employ a deep convolutional neural network. The proposed

network uses several convolution layers to automatically extract features from the raw

visual footage. Each convolutional layer learns a number of kernels that act as fea-

ture extractors to feed a higher level representation to the next layer. Then a fully

connected layer is used to map the learned features to actions. Each convolution layer

is followed by a pooling layer that down-samples the output of the convolution layer.

The convolution layers take advantage of spacial connection between visual features to

reduce connections in the network. The pooling layers reduce the dimensionality to

further alleviate the computations needed.

Figure 4.4: Architecture of the neural network used to train the agent

Our network follows the pattern in [141]. It consists of 3 convolution layers each followed

by a pooling layer. This is a popular architecture that has proven to be effective and

efficient in autonomous agents learning from pixels. The input to the first layer is a

frame of 120× 90 pixels. We apply a luminance map to the coloured images to obtain

one value for each pixel instead of 3 channels, resulting in a feature vector of size 10800.

This transformation allows us to use one channel for grey-scale instead of three channels

for the RGB colours. Using a single channel in place of three significantly reduces

the number of connections in the network and allow training more efficiently. Each

convolutional layer is followed by a pooling layer to further reduce the dimensionality.

Following is a fully connected layer with a rectifier unit activation function and finally

an output layer which directly represents the action available to the agent. Figure 4.4

56

and Table 4.1 show the architecture of the network. The filter sizes for the three layers

are 7 × 9, 5 × 5 and 4 × 5 respectively; and the number of filters are 20, 50 and 70

respectively. The filter sizes and number of filters are set by experimentation that is

restricted according to the size of the input image and the number of pooling layers.

The pooling layers all use maxpool of shape (2,2). Following the last convolution layer

is a fully connected hidden layer with rectifier activation function and fully connected

output layer with three output nodes representing the 3 possible actions. Although

the application allows for 4 actions, the expert policy never used MoveBackwards

in the demonstrations. The training parameters are set through experimentation and

rmsprop optimizer is used to help convergence and avoid over-sensitivity to the training

parameters [145]. Table 4.1 summarizes the architecture of the network.

Table 4.1: Neural network architecture

Layer Size of activation volume

Input 120 * 90

Conv1 7 * 9 * 20

Conv2 5 * 5 * 50

Conv3 4 * 5 * 70

FC 500

Output(FC) 3

.

4.3 Conclusion

In this chapter a novel method for representing demonstrations is proposed. The

method for capturing the demonstrations and representing observations is detailed.

Following, a neural network is used to extract feature representations from the cap-

tured observations and map them to atomic actions. The representation process and

the architecture of the deep convolutional neural network presented in this chapter

are used for multiple navigation tasks in the following chapters. This shows the ef-

fectiveness of the feature representations and generality of the learning process across

several tasks in chapters 5, 6 and 7. The experiments and results for each problem are

presented in the respective chapters.

57

Chapter 5

Active Data Aggregation

This chapter presents the proposed method for deep active data aggregation. To im-

prove the generalization ability of a direct imitation agent, additional training demon-

strations are provided based on the agent’s initial performance in a given task. Active

learning is employed to efficiently and effectively sample the additional training data.

Experiments are conducted on 4 different navigation tasks in a 3D simulated environ-

ment. The results show that active learning can signicantly improve the learned policy

using a relatively small number of training samples. The method proposed in this

chapter is published in [10].

5.1 Introduction

Training a neural network to map raw pixels to actions as presented in chapter 4 can

create an autonomous policy capable of effectively learning navigation tasks. However,

in many imitation learning applications direct imitation is not sufficient for robust

behaviour. One of the common challenges facing direct imitation is that the training

set does not fully represent the desired task. The collected demonstrations only include

optimal actions performed by the teacher. If the agent deviates even slightly from the

optimal trajectory, it arrives at a state that was not represented in its learned policy

[7]. This poses a great generalization challenge, especially in dynamic environments.

Since an agent’s actions dictate the next state of the environment, the assumption that

samples are independent and identically distributed (i.i.d) is no longer valid. Therefore

the problem is prone to propagation of error that could result in the failure of the task

as the agent is essentially presented with samples from a different distribution to the

training set. It is therefore necessary to provide further training to the agent based on

58

its own performance of the task. A popular method to improve generalization is data

aggregation [19], where the agent is allowed to perform the task and the expert provides

the optimal actions for the states visited by the agent to use as additional training

data. The original training set is iteratively augmented with the additional training

samples and the policy is re-trained in each iteration. This method is shown to improve

the generalization of agents in a number of applications, however, providing optimal

actions for each state visited by the agent is inefficient. The augmented data sets are

likely to contain a lot of redundancy and may add to the imbalance in the dataset.

Moreover, using the augmented data set to re-train the model during each iteration

can be extremely slow when dealing with large complex models such as deep neural

networks. Therefore we propose an active data aggregation approach that samples a

small but effective set of samples to augment the training set.

5.2 Proposed Method

Active learning is employed to improve the initial policy learned from demonstrations.

This is achieved by acquiring a new data set to train the agent that emphasizes the

weaknesses of the initial policy. The agent is allowed to perform the task for a number of

rounds. For each prediction the network’s confidence is calculated, and if the confidence

is low the optimal policy is queried for the correct action. The action provided by the

teacher is performed by the agent and is recorded along with the frame image. The

confidence is measured as the entropy of the output of the final layer in the network.

The entropy H(X) is calculated as:

H(X) = −
∑
i

P (xi) log2 P (xi) (5.1)

Where X is the prediction of the network, P (xi) is the probability distribution produced

by the network for action i.

The active samples are added to the training set and used to update the initial pol-

icy. We find that updating a trained network using only the active samples results in

forgetting the initial policy in favour of an inadequate one rather than complementing

it. Therefore the training set is augmented with the active samples collected from the

playing agent. The augmented dataset is used to update the network that was previ-

ously trained. We find that it is easier and faster for the network to converge if it is

pre-trained with the initial dataset than training from scratch. Algorithm 1 shows the

steps followed to perform active learning.

59

Low confidence predictions are mainly caused by situations that were not covered by

the training data. Therefore, for active learning to be effective, it is important that it is

performed in the simulation rather than on a collected dataset. Because by performing

its current policy in the simulation, the agent arrives at unfamiliar situations where it

is not confident in its behaviour and thus utilizes active learning.

Algorithm 1 Active Learning Algorithm

1: Given: A policy π trained on a Data set D = (xi, yi)
Confidence threshold β

2: while Active Learning do
3: x = current frame
4: u = π(x, α)
5: H(X) = −

∑
i
P (ui) log2 P (ui)

6: if H(X) < β then
7: y = Query(x)
8: perform action y
9: add (x, y) to D

10: else
11: perform max(u)

12: Update π using D

Table 5.1 summarizes key differences between the proposed method, Deep Active Imi-

tation (DAI), and other approaches that use deep learning that learn from raw pixels,

Deep-Q-Networks (DQN) [144] and Deep Guided Policy (DGP) [60]. The table shows

differences in the approaches such as the methods used to generalize the policy to

unseen scenarios, the methods used to gather demonstrations and how the states are

constituted from the captured frames. Moreover, it shows differences in the tasks and

environments in which the different approaches are utilized. The viewpoint is the per-

spective from which the state of the environment is captured. Having a fixed point of

view may help keep track of changes in the state while having a dynamic viewpoint

can be more challenging as the scene changes completely with small movements in the

viewpoint. The trajectory refers to the sequence of steps typically needed to success-

fully complete the task. A longer trajectory can be harder to learn as small errors

mid trajectory can propagate and cause failure to reach the target. The environments

refers to the settings in which the experiments are conducted. The environment can be

randomized at every run, so the agent is faced with unfamiliar states. The more ran-

dom the environment, the more the agent’s policy needs to generalize to the changing

circumstances.

60

Table 5.1: A comparison of deep learning agent approaches

Method DAI DQN DGP

Input Pixels Pixels Pixels

Generalization Active learning Q-learning Policy Gradient

State Representation Greyscale frame 4 Greyscale frames RGB frame

Demonstration Source Teacher Reinforcement learning N/A

Viewpoint Dynamic Static Static

Trajectory Long Various Shorter

Environment 3D simulator 2D simulator Real world

Randomization Extensive Extensive Limited

5.3 Experiments

We conduct our experiments in the framework of mash-simulator [14]. Mash-simulator

is a tool for benchmarking computer vision techniques for navigation tasks. The simu-

lator includes a number of different tasks and environments. As learning aids, for each

task the simulator provides a reward system as well as optimal policies for a number

of tasks. Each task also has a scoring system for evaluation. The tasks differ in the

goals that are set, the score system and the failure criteria. The environments differ in

both visual and geometric design. Moreover, for any environment, several features are

procedurally generated such as the dimensions of the environment, lighting conditions

and the positions of relevant objects. All the navigation is viewed from the first person

perspective. The player has 4 possible actions: ‘Go forward’, ‘Turn left’, ‘Turn right’

and ‘Go back’. Although there are 4 possible actions, the action ’Go back’ was never

used in the demonstrations by the optimal policy, as its function can be achieved by the

remaining actions. Therefore the network is only presented with 3 classes in the train-

ing set and thus has 3 output nodes. Implementation of the proposed methods in this

chapter is available at https://github.com/ahmedsalaheldin/ImitationMASH.git

5.3.1 Tasks

The experiments are conducted on the following 4 navigation tasks:

61

https://github.com/ahmedsalaheldin/ImitationMASH.git

Reach the flag

This task is set in a single rectangular room with a flag placed randomly in the room.

The goal is to reach the flag. The task fails if the flag is not reached within a time

limit.

Figure 5.1: sample images from “Reach the flag”

Follow the line

This task is set in a room with directed lines drawn on the floor. The lines show the

direction to follow in order to reach the flag. The target is to follow the line to the flag,

and the agent fails if it deviates from the line on the floor.

Figure 5.2: sample images from “Follow the line”

Reach the correct object

In this task two objects are placed on pedestals in random positions in the room. The

objective is to reach the pedestal with the trophy on it. The task fails if a time limit

is reached or if the player reaches the wrong object. The wrong object has the same

material of the trophy and can take different shapes.

Eat all disks

This task is set in a large room containing several black disks on the floor. The target

is to keep reaching the disks. A disk is ‘eaten’ once the agent reaches it and disappears.

62

Figure 5.3: sample images from “Reach the correct object”

New disks appear when one is eaten. The goal of this task is to eat as many disks as

possible within a time limit.

Figure 5.4: sample images from “Eat all disks”

Figures 5.1 - 5.4 show sample images of the 4 tasks in the 120 × 90 size used in the

experiments.

5.3.2 Setup

To evaluate the proposed methods, the performance of the agent is measured over 1,000

rounds. A round starts when the task is initialized and ends when the agent reaches

the target or a time limit is reached. The number of frames in a round might vary

depending on how fast the agent can reach the target. For all tasks, in each round the

environment is randomized including room size and shape, lighting and the location

of the target and the agent. A time limit is set for each round and the round fails if

the limit is reached before the agent reaches the target. The time limit is measured

in frames to avoid any issues with different frame rates. The time limit is set as the

maximum time needed for the optimal policy to finish the task; which is 500 frames

for ”Reach the flag” and ”Reach the correct object” and 5000 frames for ”Follow the

line”. In “Eat all disks” the task is continuous, so a time limit was set to match the

total number of frames in the other tasks.

63

5.3.3 Implementation details

Inter-process communication is used to communicate data across the different compo-

nents of the testbed. The agent acts as a client and communicates with the simulator

via a TCP connection as follows: The agent requests a task from the server, the server

initiates a round and sends an image to the client. The client sends an action to the

server. The server calculates the simulations and responds with a new image. Figure

5.5 shows a flowchart of the data collection process.

The network used for prediction is also decoupled from the agent. The network acts as

a predicting server where an agent sends frames that it receives from the simulator and

in return receives a decision from the network. The entire process of communication

with both servers occurs in real time. This implementation facilitates experimenta-

tion, as making changes to the network does not affect the client or the simulator

server. Moreover, it is easier to extend this system to physical robots. A predicting

server can be located on the robot or on another machine if the robot’s computational

capabilities are not sufficient. A predicting server can also serve multiple agents si-

multaneously. The agent client is implemented in C++ to facilitate interfacing with

the mash-simulator. The predicting server and the training process are implemented

in python using the Theano deep learning library [146]. Figure 5.6 shows a flowchart

of the agent performing a task.

Figure 5.5: Dataset Collection Flowchart

5.3.4 Results

In this section we present the results of the proposed method. The same network and

parameters are used to learn all tasks. For each task 20,000 images are used for training.

Testing is conducted by allowing an agent to attempt the tasks in the mash-simulator

64

Figure 5.6: Imitation Agent Playing Flowchart

and recording the number of successful attempts. An agent’s performance for the first

3 tasks is evaluated as the percentage of times it reaches the target in 1,000 rounds.

For “Eat all disks”, the performance is measured as the number of disks eaten in 1,000

rounds. We also report the classification error on an unseen test set of 20,000 images

collected from the teacher’s demonstrations.

Table 5.2 shows the results for the first 3 tasks. The success measure is the percentage

of rounds (out of 1000) in which the agent reached the target. While error is the

classification error on the test set collected from the teacher’s demonstrations. The

agent performs well on “Reach the flag” and is significantly less successful in the other

two tasks. “Follow the line” is considerably less fault tolerant than “Reach the flag”.

As a small error can result in the agent deviating from the line and subsequently

failing the round. Whereas in “Reach the flag” the agent can continue to search for

the target after a wrong prediction. In “Reach the correct object” the agent is not

able to effectively distinguish between the two objects. This could be attributed to

insufficient visual details in the training set, as the teacher avoids the wrong object

from a distance. Qualitative analysis of “Reach the flag” shows that the agent aims

towards corners as they resemble the erect flag from a distance. Upon approaching the

corner, as the details of the image become clearer, the agent stops recognizing it as the

target and continues its search. While this did not pose a big problem in the agent’s

ability to execute the task it is interesting to examine the ability of CNNs to distinguish

small details in such environments. It is also worth noting that the teacher’s policy for

”Reach correct object” does not avoid the wrong object if it is in the way of the target

and achieves 80.2% success rate

Table 5.2: Direct Imitation results

Task reach the flag reach object follow the line

success 96.20 % 53.10% 40.70%

error 2.48% 4.06% 0.86%

65

Table 5.3 shows results for the 4th task ”Eat all disks”. The table shows the score of

the agent compared to the score achieved using the optimal policy. The agent is shown

to achieve 97.9% of the score performed by the optimal policy.

Table 5.3: “Eat all disks” results

Task Agent Optimal policy

score 1051 1073

error 1.70% -

To improve the agent’s ability to adapt to wrong predictions and unseen situations,

active learning is used to train the agent on “Follow the line”. In the other tasks where

the agent searches for the target, the optimal policy remembers the location of the

target even if it goes out of view due to agent error. Therefore active learning samples

include information that is not represented in the visual data available to the agent and

thus degrade the performance. This can be rectified by devising a teaching policy that

does not use historical information, or by incorporating past experience in the learned

model.

Figure 5.7 shows the results of active learning on the “Follow the line” task. Active

learning is demonstrated to significantly improve the performance of the agent using

a relatively small number of samples. Comparing the classification error with success

rate emphasizes the point that the errors come from situations that are not represented

in the teacher’s demonstrations.

Figure 5.7: Results for active learning on “follow the line” task

The task in which the time limit affected the performance was “Reach the flag”. As the

agent continues to follow its policy in search of the flag even after performing wrong

predictions. The effect of the time limit is evaluated in Figure 5.8 which presents the

66

success rate of “reach the flag” task with different time limits. The horizontal axis

represents the time limit as a percentage of the maximum time needed by the teacher.

The graph shows that the longer the agent is allowed to look for the target the higher

the success rate.

Figure 5.8: Results for “reach the flag” task with increasing time limits

Overall the results show good performance on 3 out of the 4 tasks. They demonstrate

the effectiveness of active learning to significantly improve a weak policy with a limited

number of samples. Even without active learning the agent can learn a robust policy

for simple navigation tasks.

5.4 Conclusion and Future Directions

This chapter describes a novel method for learning autonomous policies for navigation

tasks from demonstrations using deep active learning. A general learning process is

employed to learn from raw visual data without integrating any knowledge of the task

and active learning is employed to address the generalization issue. The experiments

are conducted on a test bed that facilitates reproduction, comparison and extension of

this work. The results show that CNNs can learn meaningful features from raw images

of 3D environments and learn a policy from demonstrations. They also show that active

learning can significantly improve a learned policy with a limited number of samples.

However, the results also show that data aggregation does not help if the teacher is

sub-optimal. Since the approach completely relies on learning from demonstrations

even for generalization, it is expected that the performance of the agent depends on

the quality of the demonstrations. To alleviate this limitation we propose to address the

generalization challenge by allowing the agent to improve its policy using trial and error.

This is explored in the following chapter by combining learning from demonstrations

67

with deep reinforcement learning.

68

Chapter 6

Combining Learning from

Demonstrations and Experience

This chapter investigates proposed methods for combining learning from demonstra-

tions and experience by using reinforcement learning to refine imitation learning policies

trained using the method described in chapter 4. We investigate using reinforcement

learning to improve an imitation policy as well as using demonstrations to help a re-

inforcement learning policy. The proposed methods are compared to state of the art

reinforcement learning methods as well as direct imitation and the active data aggre-

gation method proposed in chapter 5. The work in this chapter is published in [12]

6.1 Introduction

Relying on demonstrations for learning autonomous polices can lead to generalization

issues as the demonstrations only present a subset of the possible state and action

spaces. Even if data aggregation based on the agent’s performance is employed, this

additional data is still completely dependent on the teacher’s policy. If the teacher is

suboptimal or does not follow the learning policy’s assumptions such as the Markov

property, then the learner’s ability to generalize will suffer. This is highlighted in the

analysis of the results in chapter 5. Moreover, in many applications the teacher is not

able to provide corrective actions mid-trajectory based on the learner’s performance.

For example it is not feasible for a teacher to correct a tennis swing mid-trajectory, as

this is an action that can only be performed in its entirety. Moreover, it is difficult

for teachers to place themselves in the agent’s situation to perform the optimal action.

These limitation for teacher-based generalization motivates employing trial and error

69

to refine and generalize the agent’s policy. Learning from experience alleviates the

restrictions surrounding teacher corrections. Deep reinforcement learning is rapidly

gaining attention due to recent successes in a variety of problems [141, 46, 60, 59, 138,

147]. The combination of deep learning and reinforcement learning allows for a generic

learning process that does not consider specific knowledge of the task and learns from

raw data. Reinforcement learning (RL) is a popular choice for learning motor actions

because most tasks can be modelled as a Markov decision process. Moreover, optimizing

a reward function arguably provides a better description of a task than optimizing a

policy [50]. However, learning through trial and error from scratch can be difficult

when the rewards are sparse and only awarded by the environment after performing

long sequences of actions. Moreover, learning through trial and error can lead the agent

to perform the task in a way that is different from how a human would behave.

Utilizing both taught behaviour and experience in learning aims to mitigate the limi-

tations of each approach. By allowing the agent to explore using trial and error, it is

exposed to new scenarios and is able to generalize without requiring a teacher’s involve-

ment. While demonstrations can provide a starting point to learn more efficiently than

learning from scratch using trial and error. The combined imitation and reinforcement

learning methods are compared to the imitation learning methods presented in chapters

4-5 and two state of the art reinforcement learning methods.

6.2 Proposed Method

In this section we propose methods for combining learning from demonstrations and

experience. The policy is learned using DQN [144] while using teacher demonstrations

to expedite reinforcement learning. While a demonstrated instance is represented as

a pair (x, y), in reinforcement learning additional attributes are added to represent an

instance as a tuple (s, a, r, s′). s describes the current state of the agent in its environ-

ment and corresponds to x in demonstrations. a is the action taken by the agent and

belongs to the same set of possible actions as y. r is a reward provided by the environ-

ment for performing action a in state s and s′ is the resulting new state. Reinforcement

learning assumes the task takes place in an environment Ewhere the agent can interact

using actions, observe states and receive rewards. To combine learning from demon-

strations and experience, the agent is trained using deep reinforcement learning while

demonstrations are used to facilitate the training process. The reinforcement learning

algorithm follows [141] and uses a convolutional neural network to learn discounted

rewards for performed actions. The network optimizes a Q-function Q(s, a) that pre-

dicts an estimated reward for the input state-action pair. The Q-function is learned

70

recursively using the Bellman equation.

Q(s, a) = Es′ E [r + γmaxa′Q(s′, a′)|s, a] (6.1)

Where γ is a discount parameter and maxa′Q(s′, a′) is the largest estimated reward

available to the agent at the next state s′. In the case where s is a terminal state which

ends the task, Q(s, a) = r as there is no future state. This ends the recursive learning

of Q.

The learning method is model free and does not require a working model of the en-

vironment but rather just the experience tuples (s, a, r, s′). The method also learns

off-policy; that is the learned policy is different from the performed policy. Therefore

an optimal policy π∗ which provides the optimal action choice a∗ = π∗(s) can be used

to provide demonstrations through off-policy exploration to guide the agent to reward

dense areas in the search space. We investigate two methods for utilizing demonstra-

tions in deep reinforcement learning. The first is to simply initialize the Q-network with

weights learned from supervised learning with a data set of demonstrations. Supervised

learning is conducted as in chapter 4 on a network with the same architecture as the Q-

network. The last layer uses a linear activation function instead of the softmax function

used for classification in chapter 4 as the Q-network predicts continuous rewards for

each available action. The agent uses random actions and its current policy to explore

the environment, so initializing the network helps the agent explore behaviours similar

to the teacher’s. The second approach is to use demonstrations from the optimal policy

π∗ to guide the agent’s exploration. This way the agent reaches reward dense parts of

the state space earlier and more frequently compared to a typical exploration policy.

This method ensures that the agent reaches the rewards as a policy initialized using su-

pervised learning may still not perform as well as the teacher. The performance policy

alternates between at = π∗(st) and random actions, to encourage exploration beyond

the teacher’s demonstrations. Note that the choice between using demonstrations and

random actions is performed once before each episode not before each action. It is eas-

ier in most applications for the teacher to provide demonstrations by performing the

whole trajectory. This way the teacher is not required to produce an optimal action in

the middle of the trajectory (such as in data aggregation techniques).The performance

policy gradually shifts towards using the learned policy π where at = maxaQ(st, a;π)

i.e. choose the action with the greatest predicted reward according to the trained neu-

ral network. In this approach the information from demonstrations is independent of

the agent’s learning process, while in the first approach the initialized policy changes

with training.

71

Algorithm 2 Learning from demonstration and experience

1: Given: Teacher policy π∗

Exploration factor α

Performance policy π̂ alternates between π∗ and random choice according to

α

Network Q(s, a) with random weights

2: for episodes do

3: for timestep t = 1 : T do

4: a∗t = π̂(st)

5: With probability ε, at = a∗t

6: Otherwise at = maxaQ(st, a;π)

7: Perform at and get rt,st+1

8: Given the tuple (st, at, rt, s
′) train Q(s, a):

9: if si+1 is terminal:

10: yi = ri

11: else

12: yi = ri + γmaxa′Q
′(st+1, a

′; θ) + F (si, ai, st+1)

13: Optimize π using gradient descent for loss = yt −Q(st, at;π)

Algorithm 2 summarizes learning from experience using guiding demonstrations. The

demonstrations are provided as in traditional learning by demonstration problems, by

simply performing the task in an optimal manner. The guided actions of the agent

are recorded as an experience tuple (s, a, r, s′) and used just like traditional unguided

experiences. Unlike [46], no specially designed labelled dataset is needed to pre-train

the value function Q(s′, a′), which makes the training process more generic and stream-

lined. The task is assumed to be an MDP where the current state represents all past

information (no extra context is needed to make a decision). Therefore, a single frame

is used as the agent’s observation and the resulting policy is stationary (i.e. the policy

does not require information about the current position in the trajectory).

6.3 Experiments

The proposed methods are evaluated on the 4 navigation tasks introduced in chapter

5. The experiments compare the proposed methods against using direct imitation and

reinforcement learning on their own. Firstly the two reinforcement learning algorithms

used for comparison are validated on a simplified version of the navigation task.

72

6.3.1 Grid Navigation Task

This task is a simplified representation of navigation tasks which facilitates testing and

analysis of learning algorithms in controlled manner. The environment is constructed

of a grid where each cell is a state in the MDP and the agent is allowed to move

between cells using 4 actions (Go Left, Go Right, Go forward, Go Back). Each state

is represented by an 84× 84 image of the number which reflect the number of this cell

in the grid. These states are automatically generated given the dimension of the grid

in terms of cells. The goal of the agent is to reach a target cell on the grid. Grids of

dimensions 5×5, 15×15 and 30×30 are used in this experiment. This task is simple in

that the environment is static i.e. performing the same trajectory results in the same

outcome. Therefore, the task does not pose the challenges of generalization. Another

simplified aspect is having finite well defined states. However, the task presents other

features which are relevant to real navigation tasks. Namely that it requires learning

from raw visual data and requires long trajectories of dependent actions to achieve the

target. The environment offers no intermediate positive feedback while the agent is

performing the task and only supplies a positive terminal reward when the target is

reached. This is challenging as in a 30 × 30 grid, the shortest path to reach a reward

consists of 57 steps. To give perspective, in a photo-realistic 3D environment which is

used to train deep reinforcement learning agents [139], the shortest path to reach the

reward is typically less than 20 actions. Figure 6.1 illustrates this task on a grid of size

5× 5. The agent’s starting position is shown by the blue marker while the target state

is highlighted in green. This task is open source, and an implementation is available at

https://github.com/ahmedsalaheldin/MashRL.git

Figure 6.1: Illustration of the Grid Navigation Task

73

https://github.com/ahmedsalaheldin/MashRL.git

To evaluate the deep reinforcement learning algorithms DQN and A3C, the agent ex-

plores the environment using trial and error and receives a positive reward (+1) if it

reaches the target and a negative reward (-1) if it selects an action that would take it

out of the grid. In this case the agent’s position is not changed. The algorithms are

run for 1000 epochs, each epoch consisting of 2500 steps. A testing step is conducted

after each epoch where the result is 1 if the agent reached the target within a step limit

and 0 otherwise.

The proposed methods are then evaluated on navigation tasks in a 3D simulator [14].

For details on the tasks and simulated environments refer to chapter 5. Reinforce-

ment learning algorithms are trained for 100 epochs of 250000 steps each. The same

parameters are used for pure reinforcement learning and the proposed methods that

utilize demonstrations. A3C utilizes 8 parallel processes. And frame skipping of 5.

Frame skipping can greatly help reinforcement learning by shortening the trajectory

and enhancing exploration through taking bigger steps. However, delicate navigation

can limit the number of frames to skip. For instance, in the ”Follow the line” task,

navigating the narrow corners of the patterned corridor fails when using high frame

skipping values even while following the optimal policy. For supervised learning, each

task is trained on 20000 samples.

6.3.2 Inter-process Communication

For both Simulators, the agent is decoupled from the simulator and the learning algo-

rithm. This allows for generic independent modules and facilitates interchanging tasks

and learning algorithms. A TCP connection is used to communicate between the dif-

ferent components. The process for collecting demonstrations and supervised learning

is shown in chapter 5. Similarly the reinforcement learning process uses a modular

structure to facilitate using the same agent with different tasks and allows to change

the learning method without affecting how the agent communicates with the simulator.

Figure 6.2: Reinforcement learning Flowchart

74

Figure 6.2 presents the process of learning from experience used in combining reinforce-

ment learning and imitation. The agent communicates with the simulator to receive

the state of the environment and the reward and sends them to the learning network.

The learning network uses this information to decide the next action and update the

policy. The prediction action is sent to the agent which in turn communicates it to the

simulator.

6.3.3 Results

Firstly we present the results for learning from experience on the Grid navigation

problem. Figure 6.3 shows results comparing DQN and A3C on the three grid sizes.

Since success in this task is binary, the score counts how many epochs up to the current

epoch have resulted in successful test sessions. This evaluation method produces a

graph that shows the improvement and stability of the learned policy over training

epochs.

a) 5 X 5 b) 15 X 15 c) 30 X 30

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

Epochs

S
co

re

Method

DQN

A3C

Figure 6.3: DQN and A3C results on the Grid Navigation Task

The results on the Grid tasks show that learning from experience becomes exponentially

more difficult as the size of the grid increases. This is evident in the failure of A3C to

learn on the 30 × 30 grid. This failure stems from the delayed rewards which makes

obtaining feedback less frequent. The agent learns from the more readily available

negative rewards to avoid the edges of the grid but is not able to reach the target.

Following, the results for experiments on the Mash simulator are presented. Table 6.1

shows a comparison between direct imitation as presented in chapter 4 and reinforce-

ment learning approaches. The table shows the success rate out of 1000 rounds for each

method on 3 navigation tasks in the mash simulator. The results for deep reinforce-

ment learning methods are reported after 100 epochs of training. The table shows that

both reinforcement methods are outperformed by direct imitation and ultimately fail

to learn a robust policy to solve any of the 3 tasks. Qualitative analysis shows that all

successful attempts during testing were achieved by chance without any clear pattern

75

in the learned policy. Since ”Follow the line” requires a longer trajectory and is not

as fault tolerant as the other tasks, it is less suitable for random exploration. Thus

reaching the target by chance is more difficult and the success rate is 0%.

Table 6.1: Direct Imitation vs RL

Task reach the flag reach object follow the line

Direct imitation 96.20 % 53.10% 40.70%

DQN 6.40 % 6.00% 0.00%

A3C 7.60 % 8.9% 0.00%

Table 6.2 shows results for ”Eat all disks”. For this task, the evaluation measure used

is the number of disks eaten in 1000 rounds. The table compares the scores achieved

by direct imitation, DQN, A3C and the optimal policy. The results show that direct

imitation achieves 97.9% of the score achieved by the optimal policy while again learning

from experience failed to produce an effective policy.

Table 6.2: “Eat all disks” results

Task Direct Imitation Optimal policy DQN A3C

score 1051 1073 51 45

error 1.70% - - -

We further analyse the reinforcement learning results by observing the trend of success

over the training period. Figures 6.4 and 6.5 show results for the 4 tasks in terms of

rewards received for DQN and A3C respectively over 100 epochs. The test results are

reported every 10 epochs and show rewards averaged over the test rounds. The graphs

show no pattern of improving the performance with the increasing number of epochs.

−15

−10

−5

0

25 50 75 100

Epochs

R
ew

ar
d

Task

reach the flag

follow the line

reach correct object

eat all disks

Figure 6.4: Results for DQN on Navigation tasks in MASH simulator

76

−5.0

−2.5

0.0

25 50 75 100

Epochs

R
ew

ar
d

Task

reach the flag

follow the line

reach correct object

eat all disks

Figure 6.5: Results for A3C on Navigation tasks in MASH simulator

The two proposed methods for combining learning from experience and demonstrations

are compared to traditional DQN on the “Reach the flag” task. ’Initialized DQN’

initializes the policy network of DQN with the parameters learned from supervised

learning while ’DQN demonstrations’ refers to using demonstrations from the optimal

policy to perform off-policy rollouts. Figure 6.6 shows the average rewards every 10

epochs for 100 epoch. The graph shows that utilizing demonstrations using the two

proposed methods did not enhance the performance of DQN. The initial policy learned

from demonstrations is quickly overwritten and thus provides no benefit to the learning

policy or the rollout policy. This happens as there are no constraints to preserve the

initial policy once DQN training starts. Guiding the agent by utilizing demonstrations

in exploration also did not show any improvement. By looking at the probability

distribution of the output layer of the network, we attribute this failure to the fact that

the cost function used in DQN training does not consider output nodes other than the

performed action. Therefore, when applying a rollout policy of optimal actions, the

probabilities of non-used actions change arbitrarily. A cost function that includes all

actions could be considered, but since DQN uses a periodically updated target network,

the learned parameters for the performed actions will be overwritten with every update.

77

−10.0

−7.5

−5.0

−2.5

0.0

25 50 75 100

Epochs

R
ew

ar
d

Method

DQN

Initialized DQN

DQN demonstrations

Figure 6.6: Results for combining learning from demonstrations and experience on
“Reach the flag”

6.4 Conclusion and Future Work

This chapter investigates novel methods for combining learning from experience and

demonstrations. Demonstrations are used to assist reinforcement learning by initializing

the exploration policy and guiding the agent to reward dense sections of the state space.

The results on 2D and 3D navigation tasks confirm the assertion that learning from

trial and error becomes increasingly difficult as the length of the trajectory to the target

increases. The results also show that the proposed utilization of demonstration failed

to enhance reinforcement learning on the evaluated tasks. Analysis shows that the

initialized policy is forgotten quickly when acquiring new experiences and that guiding

the exploration policy causes an unbalanced reward estimation function. Therefore,

the demonstrations need to be incorporated in a more stable way. Which motivates

the use of reward shaping in the next chapter. Using the demonstrations to learn a

reward function alleviate these issues as the reward signal is persistent and doesn’t

affect experience sampling.

Combining learning from demonstrations and experience is a very promising approach

and warrants further exploration in the following future steps: Firstly, utilizing demon-

strations with policy-based deep reinforcement learning algorithms such as DDPG and

A3C to avoid the restrictions of value based estimations. Moreover, we aim to use

supervised learning to calculate TD error as well as supervised cost following the ap-

proach in [56]. Furthermore adapting the online learning methods in [148] can speed

up retraining while overcoming the catastrophic forgetting phenomenon. This can also

potentially allow one network to learn multiple tasks.

78

Chapter 7

Reward Shaping from

Demonstrations

This chapter proposes a method for reward shaping from demonstrations to expedite

and improve learning through deep reinforcement learning, especially with sparse re-

wards. Demonstrations from a teacher are used to shape a potential reward function by

training a deep supervised convolutional neural network. The shaped function is added

to the reward function used in deep-Q-learning (DQN) to perform off-policy training

through exploration. The proposed method is demonstrated on navigation tasks that

are learned from raw pixels without utilizing any knowledge of the problem. The results

show that using the proposed shaped rewards signicantly improves the performance of

the agent over standard DQN. The approach proposed in this chapter is published in

[13].

7.1 Introduction

Learning from experience can produce robust policies that generalize to dynamic sce-

narios by balancing exploration and exploitation of rewards. However, finding a solu-

tion through trial and error may take too long. Especially in problems that require

performing long trajectories of actions with delayed rewards. In such cases it may be

extremely difficult to stumble upon rewards by chance and the time to learn a policy to

maximize the rewards exponentially increases. This fact is highlighted in the results in

chapter 7 where reinforcement learning methods failed to learn a policy in navigation

tasks where a large number of steps is required to reach the target. Another drawback

is that learning through trial and error may result in a policy that solves the problem

79

differently to how a human would. Performing a task in a manner that is intuitive to

a human observer may be crucial in applications where humans and intelligent agents

interact together in an environment [5]. Nass et al [6] suggest that humans view com-

puters interacting with them as social agents and that humans interact with them in a

manner derived from their experiences interacting with other humans. Therefore, even

with the conscious knowledge that an agent is not a human, interaction is improved

when the agent behaves in a way that is familiar to its human counterpart.

We propose a reward shaping method for integrating learning from demonstrations

with deep reinforcement learning to alleviate the limitations of each technique. Unlike

most reward shaping methods, the reward is shaped directly from demonstrations and

thus does not need measures that are tailored specifically for a certain task. Moreover,

deep learning is used to learn a mapping between raw observations and rewards from

the demonstrations. The proposed method uses a deep convolutional neural network

to learn a reward shaping function from demonstrations performed by a teacher. This

function provides additional rewards based on the teacher’s behaviour that are added to

the rewards from the environment. The augmented reward function is used to train an

agent through Deep-Q-Networks (DQN) [141], a variation of Q-learning that employs

deep learning. Both the supervised reward shaping network and the reinforcement

learning network utilize stacked convolutional layers to learn reward estimates directly

from raw pixels. This approach takes advantage of the extra information provided by

demonstrations to expedite and improve reinforcement learning, while being able to

generalize by learning through exploration and trial and error. Moreover, an adaptive

updating method for the Q-network in DQN is proposed to improve the efficiency and

robustness of the learning process.

7.2 Method

This section presents the proposed method for deep reward shaping from demonstra-

tions. The method uses a deep supervised network to learn a shaping function from

demonstration. The shaped reward is added to the environment reward used by DQN

[144] to speed up and improve policy learning through reinforcement learning. First we

formalize the reinforcement learning and learning from demonstrations approaches.

Reinforcement learning assumes the task takes place in an environment E and is for-

mulated as a Markov Decision Process (MDP). An experience is represented as a tuple

(s, a, r, s′) where s represents the state as observed by the agent, a is the action taken

by the agent at state s, r is the reward received for performing action a and s′ is the

new state resulting from that action. While demonstrations are presented as pairs of

80

input and output (x, y). Where x is a vector of features describing the state at that

instant and y is the action performed by the demonstrator. The pair of observation and

action (x, y) in demonstrations corresponds to (s, a) in the Markov Decision Process.

So the demonstrator can be considered as an optimal policy π∗ which provides the

optimal action choice a∗ = π∗(s)

The reinforcement learning algorithm works by training a deep convolutional neural

network to predict the discounted reward of performing an action. Figure 4.4 illustrates

the architecture of the network. More formally, the agent learns by optimizing Q(s, a)

where Q is an estimation of the return of performing a at state s which uses the recursive

Bellman equation.

Q(s, a) = Es′ E [r + γmaxa′Q(s′, a′)|s, a] (7.1)

Where r is the actual reward for performing a at state s, γ is a discount factor for

potential future rewards and maxa′Q(s′, a′) is the maximum estimated reward possible

at the next state s′. If s is a terminal state (one which ends the task, regardless

of result), then Q(s, a) = r. The function Q(s, a) is learned via a deep convolutional

neural network and is used to provide the agent with actions when presented with a new

state. In practice a second network is used to predict the target rewards Q′(s′, a′) used

in training Q(s, a). The reason for that is to provide a constant target for training while

updating Q(s, a) to stabilize learning. The target network is updated periodically to be

equivalent to Q(s, a). This raises the issue of how long to freeze the target network for

before updating it. A freezing period that is too short will not allow Q(s, a) to converge

to the target rewards and results in unstable learning. A freezing period that is too long

is inefficient since Q(s, a) continues to learn outdated targets. To improve the learning

efficiency we propose an adaptive method to update the target network. Convergence

will occur at different rates for different tasks or even for different batches within the

same task. Therefore rather than a constant freezing period, we set a condition -based

on training loss- for updating the target network. Equation 7.2 shows the updating

condition.

Loss =
(Q(s, a)− [r + γmaxa′Q

′(s′, a′)|s, a])2

2
≤ ε (7.2)

Where ε is a constant indicating how small the loss needs to be before updating the

targets.

The main contribution of this approach is to incorporate reward shaping from demon-

strations with reinforcement learning in a deep learning context. A shaped reward is

81

an extra reward that is derived from extra information and is added to the reward from

the environment. A shaping function F (s, a, s′) is used to generate the shaped reward.

The shaping function is added to the target reward in equation 7.1 yielding:

Q(s, a) = Es′ E [r + γmaxa′Q
′(s′, a′)|s, a+ F (s, a, s′)] (7.3)

Ng et al [49] proved that forming F as function of the transition between states (i.e.

the difference in potential between the states) rather than a function of the current

state-action pair (s, a) maintains the convergence guarantees of reinforcement learning

and preserves the optimal policy. Therefore we express F as the difference between

potential functions for states s and s′.

F (s, a, s′) = γmaxa′P (s′, a′)−maxaP (s, a) (7.4)

Where P (s, a) is a function estimating the potential of the pair (s, a). We use as the

potential function a convolutional neural network trained in a supervised manner on a

set of collected demonstrations D = (x, y). The network has the same architecture as

the network used to learn Q(s, a) and therefore produces an estimated potential for each

action given s. The target outputs y are encoded as one-hot labels, i.e the output is a

vector of possible actions with value one for the performed action and zero otherwise.

The output layer of the network uses a linear activation function instead of the softmax

activation function commonly used in supervised classification problems to avoid sharp

potential estimates for unseen states. So P is used as a multivariate regression network

rather than a classification network and the predicted potential for each action is a

real number. Using a deep network for the potential function has the advantage of

being able to learn from raw data and does not require designing representations of the

demonstrations. Moreover, unlike [48] the demonstrations do not need to be stored or

traversed to calculate the potential for a new state-action pair.

Utilizing this potential based function in equation 7.3 provides extra information from

demonstrations to the reinforcement learning algorithm. This alleviates the challenges

of sparse environment rewards and allows the agent to get more frequent feedback.

Without this extra knowledge, the only policy available for the agent is to explore

randomly until it has sampled enough experiences, which is not efficient when the

rewards are sparse. Reward shaping speeds up reinforcement learning by limiting the

need for extensive random exploration.

Algorithm 3 presents the pseudo code for reinforcement learning with deep reward

shaping from demonstrations.

82

Algorithm 3 DQN with Deep Reward Shaping from Demonstrations

1: given: Teacher demonstrations D = (x, y)
Network Q(s, a) with random weights
Network Q′(s′, a′) with random weights
Network P (s, a) with random weights
Empty replay buffer B
Loss threshold ε for adaptive updates

2: Train P (s, a) on D
3: for episodes do
4: for timestep t = 1 : T do
5: With probability ε, at = random action
6: Otherwise at = maxaQ(st, a; θ)
7: Perform at and get rt,st+1

8: Store the tuple (st, at, rt, st+1) in B
9: Randomly select minibatch of

experiences (si, ai, ri, si+1) from B:
10: F (si, ai, si+1) =

γmaxa′P (si+1, a
′)−maxaiP (si, ai)

11: if si+1 is terminal:
12: yi = ri
13: else
14: yi = ri + γmaxa′Q

′(st+1, a
′; θ) + F (si, ai, st+1)

15: Optimize θ using gradient descent for:

loss = (yt−Q(si,ai;π))
2

2
16: if loss ≤ ε :
17: Q′(s′, a′)← Q(s, a)

83

The teacher provides demonstration as in traditional learning by demonstration prob-

lems. Unlike [46], no specially designed labeled dataset (that includes extra information

other than state and action, such as evaluation measures of the performance) is needed

to pre-train Q(s′, a′) or F (s, a, s′), which makes the training process more generic and

streamlined. The task is assumed to be an MDP where the current state represents all

past information (no extra context is needed to make a decision). Therefore a single

image frame is used as the agent’s observation and the resulting policy is stationary

(i.e does not require information about the current position in the trajectory).

The neural network architecture used to optimize Q and P is a deep architecture

with three convolutional layers that follows the network architecture in [141] with the

exception of using a single frame as input. The convolutional layers are followed by

a fully connected (FC) hidden layer and finally an output layer. A rectified linear

activation function (ReLU) is used for all layers apart from the output layer in which

a linear activation function is used. Table 7.1 summarizes the network architecture.

Table 7.1: Neural network architecture

Layer Size of activation volume

Input 84 × 84

Conv1 8 × 8 × 32

Conv2 4 × 4 × 64

Conv3 3 × 3 × 64

FC 512

Output(FC) 4

7.3 Experiments

In this section we describe the experiments conducted to evaluate the proposed ap-

proach and present the results. Implementation of the proposed method including

the task used for evaluation is available at https://github.com/ahmedsalaheldin/

MashRL.git

7.3.1 Experimental Setup

The proposed method is evaluated on the 2D grid navigation task introduced in chapter

6. The experiments are conducted on grids of size 5×5, 15×15 and 30×30. Figure 7.1

illustrates the navigation task on a 5× 5 grid. The task involves the agent navigating

from the starting state (highlighted in blue) to the target state (highlighted in green)

84

https://github.com/ahmedsalaheldin/MashRL.git
https://github.com/ahmedsalaheldin/MashRL.git

by moving in one of the four cardinal directions. Each state is represented by an image

showing the number of the state as visualized in the figure.

Figure 7.1: Illustration of the Grid Navigation Taks

To evaluate the proposed method we conduct several experiments for each grid size.

Firstly, the adaptive method for updating the target network is evaluated against static

freeze parameters. Typically a large freeze parameter (10000) is used to ensure conver-

gence but smaller values may result in faster training. Adaptive updating is compared

against freezing the target network for 10000, 2500, 500 and 100 steps. The loss thresh-

old ε is set to 0.02. This comparison is done using the DQN algorithm without reward

shaping. The second experiment compares the proposed reward shaping approach with

DQN using adaptive updating for both approaches. The second experiment is repeated

using the best performing static freeze parameter (500) to show that RL can benefit

from demonstrations regardless of the updating method. Finally we compare the pro-

posed approach with DQN while using limited exploration. As mentioned in Section

3, the prior knowledge incorporated through reward shaping from demonstrations pro-

vide a base for the policy to start learning. As such, the need for extensive random

exploration is limited. Exploration is controlled by the parameter ε which decides if

the agent gathers samples randomly or according to the current learned policy. Fol-

lowing [141], the learning rate used is 0.00025 and ε decays to 0.1 over training time.

The supervised training of the potential function P (s, a) is executed on demonstrations

performed by a deterministic optimal policy. The policy performs 5 complete trajecto-

ries of the task to gather enough samples for supervised training. For all experiments,

the agent is allowed to train for 1000 epochs. After each epoch, the agent performs the

85

current policy in a test session and the score is reported. Since success in this task is

binary, the score is defined as the number of successful test sessions up to the current

epoch. Using such an expanding window produces a monotonically increasing graph

that reflects the rate of learning and the stability of the learned policy.

7.3.2 Results

This section presents the results of the proposed method. Figures 7.2, 7.3, 7.4 and 7.5

show the results of the 4 experiments conducted on grids of sizes 5 × 5, 15 × 15 and

30 × 30. The X axis represents the number of epochs used for training. The Y axis

represents the score achieved by the agent at that test session. The score shows how

many training epochs resulted in a policy that successfully solves the problem up to the

current epoch. Figure 7.2 shows a comparison of different static freezing parameters

against the proposed adaptive measure for updating the target network. The graphs

show that adaptive updating achieves better results than all static parameters. For grid

sizes 5× 5 and 15× 15, setting the freezing parameter to 100 produced the second best

results with a very slightly lower curve than adaptive updating. Freezing parameter 500

closely follows, and increasing the freezing parameter results in slower learning. Similar

results are shown on grid size 30 × 30, however, the best performing static parameter

is 500 as using 100 fails to learn completely. This is due to requiring more time to

converge on more complex tasks and highlights the difficulty of choosing static freezing

parameters for different tasks and the advantage of using adaptive updating.

Figure 7.3 evaluates the proposed reward shaping method against DQN. Both ap-

proaches use adaptive updates for this comparison. The graphs show that using re-

ward shaping results in a more stable policy faster than traditional DQN. The same

observations are made in figure 7.4 which uses a static freezing parameter to show

that the reward shaping approach does not depend adaptive updates. These results

demonstrate the benefits of the proposed reward shaping approach over standard deep

reinforcement learning.

a) 5 X 5 b) 15 X 15 c) 30 X 30

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

Epochs

S
co

re

Freeze_param

100

500

2500

10000

Adaptive

Figure 7.2: Adaptive vs static network updating

86

a) 5 X 5 b) 15 X 15 c) 30 X 30

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

Epochs

S
co

re

Method

DQN

Reward Shaping

Figure 7.3: Reward shaping vs DQN, adaptive updating

a) 5 X 5 b) 15 X 15 c) 30 X 30

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

Epochs

S
co

re

Method

DQN

Reward Shaping

Figure 7.4: Reward shaping vs DQN, freeze parameter = 500

a) 5 X 5 b) 15 X 15 c) 30 X 30

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

Epochs

S
co

re

Method

DQN

Reward Shaping

Figure 7.5: Reward shaping vs DQN, ε = 0.4

Figure 7.5 compares the reward shaping approach to DQN using an initial ε of 0.4

instead of 1. This decreases the initial exploration performed by the agent to col-

lect samples and their corresponding rewards. The graphs show that reward shaping

continues to outperform DQN. On the 30×30 grid, the performance of DQN drops sig-

nificantly due to the increased search space, while reward shaping results in faster and

more stable learning. This indicates that the prior knowledge extracted from demon-

strations provides guidance to the sampling policy and results in a learning process that

is more robust to changes in exploration parameters. A noteworthy observation is that

all experiments show that the benefits of the proposed method are more pronounced

the larger the grid size. This is because the challenges addressed in this method in-

crease as the grid becomes bigger. The number of states increases and the number of

steps needed to complete the task also increase which makes the rewards available to

87

the agent even sparser.

7.4 Conclusion and Future Work

This chapter proposes a novel method for deep reward shaping from demonstrations to

improve deep reinforcement learning. Learning from demonstrations allows a generic

approach to reward shaping and learns from raw visual data without requiring specific

information about the task. Moreover, an adaptive approach to updating the target

network is proposed that is shown to benefit deep reinforcement learning whether with

or without the use of reward shaping and alleviates the need to manually select pa-

rameters suitable for the task. The results are conducted on a 2D navigation task and

show that the proposed reward shaping approach speeds up and improves deep rein-

forcement learning and provides increased stability against exploration policies. While

the task is simple, it poses realistic challenges such as sparse rewards and raw high

dimensional input. However, in more realistic applications the environment would be

more dynamic. Therefore, in the next chapter we address the generalization problem in

a multi-dimensional dynamic environment by utilizing deep recurrent neural networks

to keep a memory of performed trajectories. Other future steps include testing the

proposed approach on learning various navigation tasks in a more realistic simulator

[14]. We also aim to incorporate reward shaping from demonstration with A3C [140]

which is considered the current state of the art in deep reinforcement learning.

88

Chapter 8

Deep Imitation Learning from

Sequences

This chapter presents the proposed method to learn sequences of actions by utilizing

memory in deep neural networks. Long short-term memory networks are utilized to

capture the temporal dependencies in a teacher’s demonstrations. This way past states

and actions provide context for performing following actions. The proposed methods

are evaluated on a benchmark soccer simulator and compared to supervised learn-

ing and data-aggregation approaches. The results show that utilizing memory while

learning significantly improves the performance and generalization of the agent and can

provide a stationary policy. The methods and experiments presented in this chapter are

submitted for review to the international joint conference on neural networks (IJCNN

2018).

8.1 Introduction

The methods described in this thesis so far deal with states and actions as discrete

instances. Although most autonomous applications involve performing sequences of

actions to achieve a goal, most learning methods process instances separately as in-

dependent and identically distributed (i.i.d.) samples. These methods rely on the

hypothesis that the observed state contains enough information to make an accurate

decision; and that performing a series of accurate independent decisions will accumu-

late to effective behaviour. This hypothesis overlooks the dependencies between actions

which can be key in planning long trajectories of actions. This is especially sensitive

in imitation learning the teacher might inherently be relying on memory, without this

89

information being presented to the learning agent. Even if an accurate decision can

be made from the current state alone, the teacher might choose a different course of

action based on previous experience. If this additional information is not presented to

the agent, it will not be able to learn from the demonstrated behaviour as highlighted

in Chapter 5. Moreover, even if sampling training data is dependent on previous ac-

tions such as data aggregation methods, the learning algorithm does not take temporal

relationships between these observations into account. Using memory of past events

as context, allows the policy to learn different reactions to similar observations in dif-

ferent point along the trajectory [86]. It is therefore necessary to represent training

demonstrations as sequences and learn to reproduce dependant action trajectories.

Recurrent neural networks have shown great success in learning from sequences [149,

150]. They capture temporal dependencies by having looping connections so the nodes

consider previously processed samples along with new input to produce a decision.

However, most RNN applications involve processing the sequence in its entirety before

producing a decision or generating an output sequence [151]; which is not suitable for

real time autonomous agents. Some applications such as handwritten text generation

utilize RNNs to generate a sequence one step at a time [152]. However, these sequences

are generated in isolation from other factors while autonomous agents are required to

react mid trajectory to dynamic environments. For that, imitation learning requires

new RNN based methods that can learn from long sequences of dependent actions and

react based on real time observations of the environment.

This chapter proposes representing demonstrations as sequences of dependent state-

action pairs and using a long-short-term-memory network (LSTM) to learn a policy.

The LSTM network learns a mapping between states and actions while taking into

consideration memory of previous events and actions and the temporal dependencies

between these instances. This approach is demonstrated on the “robocup soccer sim-

ulator” [15] ; a multi-agent soccer simulator. The multi-agent setting provides a dy-

namic environment for which generating static sequences is not suitable as the policy

is required to react to the other agents’ actions. This makes the simulator a popular

benchmark for intelligent agents. Unlike most machine learning methods, the proposed

LSTM network learns from raw low level sensory data, without the need for engineered

feature extraction. Similarly, the policy performs low-level parametrized actions that

making a decision as well as predicting continuous values for the actuators simultane-

ously. Performing sequences of these low level actions makes up the desired behaviour

without manually engineering high level strategies. To evaluate the proposed LSTM

approach its performance is compared to the hand-crafted teacher policy, and policies

learned via neural networks without memory (MLP). To evaluate the generalization

90

ability of RNNs in imitation learning, the proposed approach is further compared to a

data aggregation method [19] conducted on the MLP agents.

8.2 Related Work

Recurrent neural networks can be used to generate sequences by considering the past

generated samples. Such an approach is used in [153] to generate continuous handwrit-

ing. An extension to this approach is also proposed in [153] that allows the generated

sequence to be conditioned on a sequence of input text characters. Clearly, such ap-

proaches can be very relevant to imitation learning if the actions can be formulated as

a generated sequence conditioned on a sequence of observed states. Similarly sequence

to sequence learning [151] has been gaining a lot of attention recently. However, for

most applications, the entire input sequence is analysed before generating the output

sequence, while autonomous agents are required to act in real-time to every sensory

input.

An LSTM based system is proposed in [86] to learn how to perform surgical proce-

dures by controlling a robotic arm. The network is trained on demonstrations by a

human expert. Although the static setting of the surgery allows for policies that repli-

cate manually designed trajectories, this supervised learning approach provides better

generalization.

The robocup simulator is a popular benchmark for intelligent learning methods as

it shares many characteristics with real world applications. A cooperative defensive

task is learned in [26] using demonstrations provided by two human players simulta-

neously. Several classifiers are used to learn from the demonstrations and the results

are favourably compared to human performance and simple hand-coded agents. How-

ever, this approach employs high level strategies as the decision to be learned by the

agent, such as “approach the ball” or “block attacker’s path” which in turn need to be

translated into low level actions through manual programming. High level actions also

enable learning the task through evolutionary algorithms [154] as the solution space be-

comes smaller. Similarly, in [155, 120, 156] reinforcement learning is used to learn high

level actions. It is noteworthy that each paper employs a different set of macro-actions;

so each new macro-action has to be manually designed. Deep reinforcement learning

is used in [157] to learn an offensive task from raw sensory data. The reinforcement

learning policy is used to predict low-level parametrized actions and thus does not re-

quire manual policy design. However, the organic reward in this task (scoring a goal) is

very sparse and requires performing long trajectories of low-level actions to reach this

state. As reinforcement learning exploration fails to reach the environment’s reward,

91

this approach employs a manually engineered reward function that guides the agent to

perform desired behaviours. This engineering requires substantial task knowledge and

limits the general application of this approach.

8.3 Method

The method proposed in this chapter minimizes the need for expert knowledge by uti-

lizing the low level sensory features and learning a mapping to atomic parametrized

actions. The method learns solely from demonstrations and does not require any ex-

plicit tailored engineering. We start by describing the process of data collection and

representation. Demonstrations are provided by a teacher that performs the task for

a number of rounds. For each round the teacher attempts to score a goal; the round

ends with successful or unsuccessful attempt. A plethora of hand-crafted agents exist

for robocup soccer simulator and can serve as the teacher to provide examples of effec-

tive behaviour. Existing agents are also available to control the opponent to provide a

realistic setting for the demonstrations.

Each round is represented as a sequence of state-action pairs. For each frame t the

state of the environment xt is captured along with the action taken by the teacher yt

and are added to the sequence Si = x, y. The state xt represents low level information

about the agent’s surroundings and is captured from the agent’s point of view using it’s

simulated sensors. So all the information about the field and the objects and players in

it are captured relative to the agent’s position and status. The action yt is chosen from a

set of the low level parametric actions available to the agent. That is, the agent decides

what move to perform from its list of actuators as well as one or more continuous values

that serve as parameters for the selected actuator. Such atomic actions performed in

a sequence construct a higher level behaviour that is usually identified and modelled

manually in other studies. The captured sequences are used to construct the training

dataset D = S1, S2..Sn is used to train recurrent neural network. learn from raw sensory

data.

The training set is used to train a deep recurrent neural network. The network consists

of 3 stacked LSTM layers containing 100, 50 and 6 nodes respectively, followed by a

reshaping layer to present the 6 output values for all samples in the batch to the loss

function. The loss function calculates the error for the predictions of the entire batch

rather than the final prediction only. This is because unlike most RNN applications we

are interested in producing accurate predictions at each frame rather than optimizing

one prediction after reading the entire sequence. The LSTM layers are used to extract

92

high level temporal features from the raw input and the context provided by the net-

works memory. The LSTM layers utilize hyperbolic tangent(tanh) activation functions.

The output nodes in the final layer correspond to parametrized actions and are used

to predict continuous values for the 6 possible parameters for the agent’s actuators.

The output layer utilizes linear activations and a mean square error loss function is

used, therefore the network behaves as a multivariate regressor. The actuator with the

highest predicted parameter value is selected for execution by the agent. This method

allows for prediction values for multiple parameters simultaneously. Figure 8.1 shows

a visualization of LSTM units and illustrates how the proposed network learns from

sequences. At each time step, the node receives the new input xt and the output of

the previous step ht−1 along with its internal state. The node updates its state and

produces an output that is fed back in the next time step.

Figure 8.1: Illustration of LSTM units

In many applications the output of the nodes in the final layer is not produced until

the end of the sequence and is only fed into the next time step without being output

as the network’s prediction. In contrast, the proposed network does not read the entire

sequence before producing a decision or generating an output sequence. Instead, at each

instance of the input sequence the network predicts an output. Thus generating the

output sequence step by step with the input, at each step utilizing all the information

available up to this instance. By representing the demonstrations as sequences, this

approach provides context for most of the samples facing the agent.

However, this makes the prediction dependent on the position of the sample in the se-

quence. For example if the agent starts performing the trained policy mid episode, the

93

current frame will be treated as if it is at the beginning of the sequence even though

it is not. To ensure the stationarity of the agent’s policy, we train another network

on a modified version of the training set D in which all the sequences S1, S2..Sn are

augmented into one list of samples. This list is subsequently segmented into segments

of uniform length that serve as the new training sequences to be fed into the LSTM

network. Figure 8.2 illustrates the segmentation of the artificial sequences. This ar-

bitrary creation of sequences presents different states in different parts of the training

sequences while maintaining a temporal dependency between the consecutive instances

in a sequence. This approach is not expected to outperform training on fully struc-

tured sequences given that complete sequences are always presented to the agent during

testing. However, it demonstrates that the proposed approach does not depend on re-

producing entire training sequences and that utilizing memory in imitation learning is

beneficial even if the beginning and end of the sequence are unknown.

Figure 8.2: Re-segmenting the demonstrated sequences into arbitrary sequences

Table 8.1 highlights the differences between the proposed method and other intelligent

methods used for “Robocup”. Most methods rely on manually engineered features

and high-level actions which require significant task specific knowledge and engineering

which does not allow for a general learning process. [157] uses deep learning to alleviate

the need for engineering features and directly map raw features to low-level actions.

However, designing dense reward functions to guide the agent require similar effort and

produce similar results to manually engineering the policy. A change in the setting

such as the number of players on the field requires designing new reward functions.

This is in contrast with organic reward fucntions which are directly provided by the

rules of the game. The approach proposed in this chapter is general and only receives

knowledge about the task from the demonstrations. Providing new demonstrations for

changes in a task is considerably easier than designing reward functions or low-level

94

policies to execute the high-level decisions made by the policy.

Table 8.1: A comparison of machine learing approaches for rocbocup

Method Learning Features Actions Rewards

Jain et al.[155] Reinforcement

learning

Selected High-level Engineered

Raza et al.[26] Supervised

(various)

Engineered High-level N/A

Stone et al.[120] Reinforcement

learning

Engineered High-level Organic

Masson et al.[156] Reinforcement

learning

Selected High-level

parametrized

Engineered

Hausknecht et al.[157] Reinforcement

learning

Raw Low-level

parametrized

Heavily-

engineered

Ours Supervised

(LSTM)

Raw Low-level

parametrized

N/A

The proposed LSTM network is compared to a multi-layer perceptron that does not

have a memory and treats all frames as independent and identically distributed samples.

In this case the sequences are augmented to create one training set, from which batches

of samples are drawn. Keeping the sequence of samples without utilizing memory

can be detrimental to training as the samples in training batches will be too similar

and lack diversity. Therefore, when training the MLP, the entire dataset is shuffled

before sampling the training batches to ensure that they contain diverse samples from

a variety of situations. This is similar to the replay buffer approach used in [144] which

is a key factor in the success of deep reinforcement learning. The architecture of the

MLP consists of 3 fully connected layers containing 100,50 and 6 nodes respectively.

The first 2 layers utilize rectifier activation functions (ReLU) and the output layer uses

a linear activation function.

Moreover, to evaluate the generalization of the proposed LSTM approach, it is com-

pared to a data aggregation approach that is applied during MLP training. DAGGER

[19] is a seminal data aggregation method that aims to enhance generalization in imi-

tation learning by providing additional training samples based on the agent’s initially

trained policy. This approach is similar to the method proposed in Chapter 4 but

does not utilize active learning as the problem is not as computationally intensive as

3D navigation from pixels. The agent is allowed to perform the task using the policy

trained using the MLP. For each frame the teacher provides the optimal action for the

95

state observed by the agent and a new training dataset is collected. The agent stochas-

tically chooses to perform the teacher’s instruction or the action predicted based on

its current policy. The new samples are added to the original training set and used to

train a new agent. The new samples show states that are likely to be visited by the

agent according to its trained policy and thus improving generalization. This process is

repeated iteratively and the new set of training instances are aggregated into the final

training set.

8.4 Experiments

8.4.1 robocup

The robocup soccer simulator [15] is a 2D simulator that allows for full soccer matches

between 11 player teams. The simulator is used for a worldwide competition since

1997 to create artificial intelligence for soccer agents. This competition is a popular

benchmark for artificial intelligence as it contains a number of real characteristics and

challenges found in real applications. This task provides a dynamic environment where

multiple agents act simultaneously and in real time to accomplish given targets. The

team based setting allows for cooperative and competitive strategies between multi-

ple agents. Moreover, the decision making is decentralized, meaning that each agent

makes it’s own decisions in order to reach the team’s shared goal. This provides an

extra challenge especially as the environment is sensed from each agent’s perspective

and not relative to the world; as well as the availability of sensor and communication

error. More closely related to this study is the fact that playing soccer requires per-

forming long sequences of actions that depend on previous actions as well as actions

from other agents. Because soccer is a familiar activity, this application provides exten-

sive evaluation of the agents’ performance; not only according to the well established

rules of soccer but also qualitatively analysing the agents’ behaviour through 2D vi-

sualization. Implementation of the proposed methods in this chapter is available at

https://github.com/ahmedsalaheldin/RoboCupLSTM

8.4.2 Half-Field-Offence

This study is conducted on a simplified sub problem of soccer simulator called Half-

field-offence (HFO) [158]. Over the years, researchers have used simplified versions

of the game of soccer to create intelligent autonomous agents in a more controlled

setting [159]. As the name suggests HFO takes place in half the soccer field and is only

96

https://github.com/ahmedsalaheldin/RoboCupLSTM

(a) (b) (c)

Figure 8.3: Illustration of the Half-field-offence environment

concerned with the task of offence. The round is initiated with the offensive player

and the ball randomly placed in the half-field. The objective of the offence is to score

in the opponents goal while the defence tries to intercept the ball. The round ends if

a goal is scored or the defence captures the ball or the ball goes out of the half-field

bounds or if a time-limit is reached. Multiple agents can be added to both teams but

for the sake of simplicity we follow the original HFO study [157] and keep the agents

to one per team (an offensive player and a defensive goalie). In our experiments we

use demonstrations provided by the offensive agent to teach an intelligent agent to

play the offensive role. A simple hand crafted agent is used as the teacher to facilitate

communication with the server. More complex higher performing hand crafted agents

can be used to provide demonstrations in the future. Figure 8.3 shows the a sequence

within the HFO environment with the learned policy controlling the offensive agent.

Fig. a) shows the agent approaching the goal with the ball. Fig. b) shows the agent

kicking the ball towards the goal. Fig c) shows the ball crossing the line to score a goal.

8.4.3 Experimental Setup

The experimental evaluation compares between 4 learning methods. Firstly the pro-

posed LSTM trained on the captured sequences. This method referred to as “LSTM

episodic” as each episode or round of HFO makes up a training sequence. Secondly,

“LSTM segmented”, where the LSTM model is trained on the uniformly segmented

sequences. The third method “MLP” trains a supervised multi-layer perception on the

training set. And finally “MLP shuffled” is similar to “MLP” but shuffles the dataset

before training the model. Moreover, data aggregation of 3 iterations is applied to the

MLP based approaches. All models are trained on the same collected demonstrations

consisting of 20000 samples. Data aggregation adds a further 5000 samples for each

iteration. The sequence length used for training “LSTM segmented” is 80 samples.

The models are trained offline for 1500 epochs and the trained networks are saved to

97

be later used by the agent in real time.

We use a client that is decoupled from the learned models to connect to the simulator

server so that the same client can be used to execute any learned policy. The client

communicates with the simulator to receive the raw sensory data observed by the

agent at each frame and send the decisions of the neural network to control the agent’s

actions. The models are evaluated on 1000 rounds of HFO. Each round can end in one

of 4 outcomes. Firstly, a goal is scored, which is the best possible outcome, followed by

the defence capturing the ball, then the ball going out of bounds and finally running out

of time represents the poorest behaviour by the agent. During training, this ranking of

outcome is not taken into consideration as the learning is not reward based, but rather

depends on imitating the provided demonstration. Table 8.2 shows the percentage of

each outcome achieved by the teacher used to provide the demonstrations; in 1000

rounds of playing.

Table 8.2: HFO results for the hand crafted teacher

Method Goal Defence Bounds Time

Teacher 44.37% 51.43% 4.19% 0%

8.4.4 Results

Firstly, the results comparing the proposed LSTM approach to imitation learning with-

out memory are presented. Figure 8.4 shows the results for the 4 trained models “LSTM

episodic”, “LSTM segmented”, “MLP” and “MLP shuffled”. The results are shown for

1000 rounds of testing. The graph shows the percentage of rounds that resulted in the

4 possible outcomes: goal scored, captured by the defence, ball out of bounds and out

of time. The percentage of goals scored is the most important measure as scoring is the

primary objective of the task, however the other measures show the rest of the picture.

The proposed method “LSTM episodic” has resulted in the highest percentage of goals,

similar to the teacher’s performance and outperforms networks without memory with

statistical significance. “LSTM segmented” comes in second place also outperforming

the MLP methods with statistical significance, demonstrating that utilizing memory is

the contributing factor in the effectiveness of the learned policy, even if the beginning

and end of the sequence are unknown.

The results also show that shuffling the training set resulted in significantly more goals.

This corroborates the hypothesis that using dependant sequences of samples to train

models without memory can be detrimental as the training batches lack diversity. The

remaining measures show the robustness of utilized imitation learning methods with

98

small percentages of unwanted outcomes (“out of bounds” and “out of time”) especially

the LSTM based methods. Qualitative analysis of the performance shows that running

out of time is usually the result of the agent getting stuck and constantly performing

the same action. As can be expected the teacher never produced this outcome and it is

considered the poorest behaviour displayed by the imitating agents. Being stuck is an

indication of ambiguity in the agent, and the extremely low percentage of this behaviour

in the LSTM agents demonstrates that utilizing memory significantly improves the

generalization of the learned policy in addition to its effectiveness.

Figure 8.4: Results for robocup half field offence. The outcomes presented in the graph
are: Goal: The offensive agent scored a goal, Defence: The ball was captured by the
defence, Bounds: The ball went out of bounds, Time: A time limit was reached before
any of the other outcomes

Following, the results for data aggregation are presented. Figure 8.5 shows the results

for using data aggregation on the MLP network, with and without shuffling the data.

With “MLP shuffle”, the entire data set is shuffled each iteration, so the training

batches can contain samples from all the aggregated datasets. The graph shows the

percentage of goals scored in 1000 rounds for supervised learning (using the original

training set), and three iterations of data aggregation. The graph shows that for “MLP

shuffle”, there is no significant improvement in the percentage of scored goals. Without

shuffling, we can see an improvement in scoring for the first two DAGGER iterations

but this pattern does not hold for the third iteration. For both methods, the graph

shows no consistent improvement in scoring with increasing the DAGGER iterations

and in all cases does not reach the performance of the LSTM approaches.

Tables 8.3 and 8.4 shows the complete results for data aggregation with multi-layer

perceptrons, with and without shuffling respectively. The results show that aggregat-

ing new samples does not necessarily decrease the percentage of undesirable outcomes.

For both approaches, there does not appear a pattern for decreasing the “out of time”

99

Figure 8.5: Scoring percentage for MLP with data aggregation

percentages with increasing iterations of data aggregation. In “MLP no-shuffle” where

the scoring rate was substantially improved with the first iteration of data aggregation,

we observe that this improvement is accompanied by a huge rise in the percentage of

“out of time” rounds. This emphasises that data aggregation in this study does not

provide a consistent improvement in the agent’s performance. Although data aggrega-

tion utilizes more information, by sampling demonstrations from likely states, it fails

to improve the generalization of the agent compared to the proposed LSTM approach.

Table 8.3: MLP data aggregation results with shuffling

Method Goal Defence Bounds Time

Supervised 38.83% 51.74% 5.02% 4.40%

Aggregate 1 38.17% 55.12% 4.46% 2.23%

Aggregate 2 38.01% 53.09% 5.68% 3.20%

Aggregate 3 38.31% 53.14% 2.98% 5.56%

Table 8.4: MLP data aggregation results without shuffling

Method Goal Defence Bounds Time

Supervised 32.19% 60.12% 4.56% 3.11%

Aggregate 1 38.59% 49.08% 4.27% 7.94%

Aggregate 2 39.81% 54.86% 3.78% 1.53%

Aggregate 3 34.89% 59.89% 3.67% 1.53%

100

8.5 Conclusion and Future Work

This chapter proposed an imitation learning approach for learning from sequences in

a dynamic environment. A demonstration is represented as an ordered sequence of

state-action pairs. The states are represented by a feature vector of low level sensory

information from the agent’s perspective. The actions available to the agent are low

level parametrized actions. A deep Long-short-term-memory network is used to learn

a policy that retains a memory of past experiences and learns from the entire demon-

strated trajectory of actions. The trained model uses memory to provide context to

improve generalization and predicts an action at every frame in real-time. Results on

a multi-agent soccer simulator show that learning from sequences using memory net-

works can significantly outperform learning from i.i.d samples and reach comparable

performance to the teacher. Using the memory to provide context when learning from

sequences outperforms data aggregation methods for improving generalization and is

much faster to train. Moreover, it is also shown that the proposed LSTM method

can be stationary by training on sequences that are arbitrarily segmented from the

demonstrations without a significant drop in performance. Experiments using multi-

layer perceptrons show that if the model has no memory when learning from sequences,

shuffling the training data can result in a significant improvement in performance as

the samples in the training batches become more diverse. In the next step, we aim to

use a number of high performing agents from the robocup competitions to provide the

demonstrations and include more agents in the game. Memory networks are proposed

to learn from partially observed states by keeping track of observations in past frames

when considering the current frame.

101

Chapter 9

Conclusion and Future work

This chapter summarises the main outcomes and conclusions resulting from this body

of work.

This thesis contributes to the advancement of the state of the art in imitation learn-

ing by proposing novel deep learning based approaches. In particular, the methods

proposed in this thesis address two key challenges: 1- Representation of sensory infor-

mation in a manner that is adequate for learning and general enough to be applicable

to various problems. 2- Generalization of the learned policies to new situations.

9.1 Summary

This section summarizes the conclusions made from the studies and experiments in this

thesis.

Firstly, the representation problem is addressed by a novel method that reduces learning

from demonstrations to image classification and utilizes convolutional neural networks

to automatically extract relevant features from raw visual data. This approach is

shown to learn effective policies from pixels in a number of different tasks using the

same network architecture. This conclusion is corroborated by a number of studies that

use similar CNN based methods for learning a variety of problems using reinforcement.

However, treating imitation learning as an image classification problem greatly reduces

the number of training samples required compared to other deep autonomous agent

approaches. Directly imitating the demonstrations however, is shown to be prone to

generalization problems as well as being dependent on the quality of the provided

demonstrations.

102

To address the generalization problem, we propose an active data aggregation method

that is incorporated with the deep imitation learning approach. Deep active imitation

allows the agent to query the teacher for a decision in ambiguous situations. Using ac-

tive learning provides efficient sampling of the added information and can significantly

improve generalization using relatively few aggregated training samples. However, de-

pending on the teacher to improve the agent’s generalization remains restricted by the

teacher’s performance. The teacher can provide suboptimal demonstrations or utilize

information not available to the agent such as memory of past events. Moreover, it

may not be applicable to provide demonstrations mid trajectory for data aggregation.

Therefore, to alleviate the dependency on the teacher, we propose to address the gener-

alization problem by combining imitation learning with reinforcement learning. These

two approaches complement each other as reinforcement learning explores new situ-

ations without supervision while demonstrations provide valuable information about

how to perform the task. Combining learning from demonstrations and experience is

proposed by initializing reinforcement learning policies using supervised learning and

using demonstrations to guide the exploration policy. Although these methods did not

result in good behaviour, guiding exploration through demonstrations is an interesting

direction to follow in future work. We attribute the poor performance to unbalanced

value updates, as the terminal states only provide updates for certain actions. Updating

all action values did not work either as the values are overwritten due to the extended

update freezing period. In the future we propose to alleviate this imbalance by using

policy-based or actor-critic reinforcement learning. A number of very recent studies are

starting to investigate this direction. In [160, 161], the policy based Deep Deterministic

Policy Gradients (DDPG) [138] is used. In [162] an actor-critic method is used where

all action values for the critic are updated, this could perhaps be attributed to quick

updates which were not applicable in our tasks.

A more stable method of levering demonstrations in deep reinforcement learning is

proposed by incorporating knowledge from the demonstrations in the reward signal. A

deep imitation learning policy is used for reward shaping, to create artificial rewards

in non-terminal states based on a teacher’s demonstrations. The benefit of this ap-

proach over the previously proposed combination is two fold. Firstly, it is stable as

the reward signal doesn’t get overwritten and doesn’t affect experience sampling. Sec-

ondly, it ensures frequent rewards based on the similarity of the performed action to the

demonstrated trajectories. The results show that the deep reward shaping approach sig-

nificantly expatiates and improves DQN without requiring any task specific knowledge

as the reward shaping is automatically learned from raw demonstrations. Moreover, a

method for dynamically updating the value network is shown to provide more efficient

103

and robust learning than fixing the updating parameter. This method is evaluated on a

simple task that non the less reflects a number of realistic challenges. Future work will

include applying reward shaping from demonstrations to more dynamic environments.

To tackle a dynamic multi-agent environment, we propose a method that addresses

demonstration representation as well as generalization using recurrent neural networks.

The raw demonstrations are represented as sequences of dependent state-action pairs

rather than i.i.d. samples and used to learn a policy using long-short-term-memory

networks. Thus taking advantage of the temporal dependencies between the samples in

demonstration and execution. This method is shown to be stationary and does not de-

pend on knowing the position of the current instance in the sequence. A stacked LSTM

network is used to learn from raw demonstrations and predict low-level parametrized

actions without requiring any task-based knowledge. This approach is shown to sig-

nificantly outperform memoryless networks that treat demonstration samples as i.i.d

instances. The LSTM approach is also shown to generalize better than data aggregation

which did not consistently improve the generalization of direct imitation policies.

9.2 Discussion

This section provides a closing statement that discusses key conclusions from this thesis

and provides recommendations for future directions.

One of the themes of this thesis is utilizing deep learning methods to deal with the high

dimensional raw data that is commonly associated with imitation learning problems.

Our methods illustrate that deep neural networks whether convolutional or recurrent

greatly facilitate general learning processes.This is demonstrated by the networks’ abil-

ity to learn different tasks without requiring task specific information. Another example

is using the same CNN architecture for direct imitation, reward shaping and reinforce-

ment learning without requiring task specific information. In addition to learning hier-

archical representations, we tap into deep neural networks’ ability to learn multi-variate

regression problems. Thus being able to learn problems that entail high degrees of free-

dom in an end-to end fashion. However, the issue that faces deep neural networks in

imitation learning and other applications alike is lack of interpretability. While the net-

works are designed to learn higher level representations with each layer, it is difficult to

extract what features they learned. This could be especially useful in autonomous agent

applications as it can facilitate transfer learning and allow mixing learning paradigms

that can level from expert knowledge.

This work also highlights the issue of generalization as one of the most important

104

challenges in imitation learning. Even minute supervised error in the machine learning

models can lead to accumulation of error and complete failure of the task. This leads

us to conclude that direct imitation is an unreliable strategy. Addressing generalization

in autonomous agents mainly relies on allowing the agent to perform its current policy

to gather extra information in order to refine the policy. While we show that data

aggregation methods can significantly improve upon direct imitation, the limitations

of data aggregation methods are highlighted in the “Mash-simulator” and “robocup”

experiments. Similar challenges are also evident in other applications [163]. This leads

us to the conclusion that generalization is better achieved by utilizing reinforcement

learning and RNNs. LSTMs are also shown to benefit reinforcement learning [140], so

this motivates using LSTMs with a combination of reinforcement and imitation learning

going forward.

Another theme that is touched upon in this thesis is benchmarking. We argue that

reproducibility is an important factor in autonomous agent research as it facilitates

comparing and improving existing methods. It is common to use robots or simulators

that are not available to other researchers or to design experimental environments that

are difficult to reproduce. Recently a number of games and simulators [143, 164, 15]

are being extensively used as benchmarks to facilitate the reproduction of results and

comparison of different approaches. However, highlighting the challenges and charac-

teristics presented by each individual task can help produce more impactful research

as this provides a basis for choosing the tasks with which the proposed methods are

demonstrated. In addition some state of the art research still employs custom made

simulators that are not available to other researchers. In this thesis we demonstrate

our proposed methods on a number of simulated applications. The simulators used

are open-source and have clear evaluation criteria for benchmarking. Each application

possesses a unique set of challenges and features that make it appropriate for evaluating

a given method. To further facilitate reproducibility, implementations of the proposed

methods are available on Github.

9.3 Future Directions

Intelligent autonomous learning is a relatively young field and a number of promising

future directions are identified to address the challenges of representations and gener-

alization. So far most research assumes the demonstrations are provided from suitable

perspective to the learner, and are only concerned with creating adequate feature rep-

resentations. However, humans learn by watching other people perform tasks from the

third person view and then replicates the task from the first person view. [165] propose

105

to learn a mapping between the two perspectives using generative adversarial networks

(GAN) [166] to create representations seamlessly.

GANs can also be used to address the generalization problem by generating trajectories

that resemble demonstrations by learning a discriminator [82, 167]. This follows the

same motivation as inverse reinforcement learning which aims to alleviate the need to

engineer reward functions. GAN based methods provide a less complex alternative

to inverse reinforcement learning which does not scale well to realistic applications.

However, GAN methods for imitation have also been proven difficult to train [163], so

further research is needed to produce general GAN-based methods that do not require

fine-tuning.

Learning a world model is a trending topic goes beyond generalization through experi-

ence [127], as the policy can predict the outcome without going through the experience.

Learning such a model is a challenging task but it can be learned from examples or

interaction which opens a lot of possibilities for research. This approach would not

only enable agents to predict the outcomes of unseen situations, but can directly learn

a policy form the model if it is differentiable; instead of generating samples from the

model for training.

106

Bibliography

[1] Billard A, Calinon S, Dillmann R, Schaal S. Robot programming by demonstration. In: Springer

handbook of robotics. Springer; 2008. p. 1371–1394.

[2] Schaal S. Is imitation learning the route to humanoid robots? Trends in cognitive sciences.

1999;3(6):233–242.

[3] Schaal S. Learning from Demonstration. In: Mozer MC, Jordan MI, Petsche T, editors. Advances

in Neural Information Processing Systems 9. MIT Press; 1997. p. 1040–1046. Available from:

http://papers.nips.cc/paper/1224-learning-from-demonstration.pdf.

[4] Bakker P, Kuniyoshi Y. Robot see, robot do: An overview of robot imitation. In: AISB96

Workshop on Learning in Robots and Animals; 1996. p. 3–11.

[5] Coyle D, Moore J, Kristensson PO, Fletcher P, Blackwell A. I did that! Measuring users’

experience of agency in their own actions. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM; 2012. p. 2025–2034.

[6] Nass C, Steuer J, Tauber ER. Computers are social actors. In: Proceedings of the SIGCHI

conference on Human factors in computing systems. ACM; 1994. p. 72–78.

[7] Togelius J, De Nardi R, Lucas SM. Towards automatic personalised content creation for racing

games. In: Computational Intelligence and Games, 2007. CIG 2007. IEEE Symposium on. IEEE;

2007. p. 252–259.

[8] Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. 2nd ed. Pearson Education;

2003.

[9] Argall BD, Chernova S, Veloso M, Browning B. A survey of robot learning from demonstration.

Robotics and autonomous systems. 2009;57(5):469–483.

[10] Hussein A, Gaber MM, Elyan E. Deep active learning for autonomous navigation. In: Interna-

tional Conference on Engineering Applications of Neural Networks. Springer; 2016. p. 3–17.

[11] Hussein A, Gaber MM, Elyan E, Jayne C. Imitation Learning: A Survey of Learning Methods.

ACM Comput Surv. 2017 Apr;50(2):21:1–21:35. Available from: http://doi.acm.org/10.1145/

3054912.

[12] Hussein A, Elyan E, Gaber MM, Jayne C. Deep imitation learning for 3D navigation tasks.

Neural computing and applications. 2017;p. 1–16.

[13] Hussein A, Elyan E, Gaber MM, Jayne C. Deep reward shaping from demonstrations. In: Neural

Networks (IJCNN), 2017 International Joint Conference on. IEEE; 2017. p. 510–517.

[14] Mash-Simulator; 2014. https://github.com/idiap/mash-simulator.

107

http://papers.nips.cc/paper/1224-learning-from-demonstration.pdf
http://doi.acm.org/10.1145/3054912
http://doi.acm.org/10.1145/3054912
https://github.com/idiap/mash-simulator

[15] Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E. RoboCup: The Robot World Cup Initiative.

In: Proceedings of the First International Conference on Autonomous Agents. AGENTS ’97.

New York, NY, USA: ACM; 1997. p. 340–347. Available from: http://doi.acm.org/10.1145/

267658.267738.

[16] Schaal S, Ijspeert A, Billard A. Computational approaches to motor learning by imitation.

Philosophical Transactions of the Royal Society B: Biological Sciences. 2003;358(1431):537–547.

[17] Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: A survey. The International

Journal of Robotics Research. 2013;32(11):1238–1274.

[18] Ross S, Bagnell D. Efficient reductions for imitation learning. In: International Conference on

Artificial Intelligence and Statistics; 2010. p. 661–668.

[19] Ross S, Gordon GJ, Bagnell JA. A reduction of imitation learning and structured prediction to

no-regret online learning. arXiv preprint arXiv:10110686. 2010;.

[20] Ijspeert AJ, Nakanishi J, Schaal S. Learning attractor landscapes for learning motor primitives;

2002.

[21] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–

1780.

[22] Cocora A, Kersting K, Plagemann C, Burgard W, De Raedt L. Learning relational navigation

policies. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE;

2006. p. 2792–2797.

[23] Chernova S, Veloso M. Confidence-based policy learning from demonstration using gaussian

mixture models. In: Proceedings of the 6th international joint conference on Autonomous agents

and multiagent systems. ACM; 2007. p. 233.

[24] Sammut C, Hurst S, Kedzier D, Michie D, et al. Learning to fly. In: Proceedings of the ninth

international workshop on Machine learning; 2014. p. 385–393.

[25] Ratliff N, Bradley D, Bagnell JA, Chestnutt J. Boosting Structured Prediction for Imitation

Learning. In: Proceedings of the 19th International Conference on Neural Information Processing

Systems. NIPS’06. Cambridge, MA, USA: MIT Press; 2006. p. 1153–1160. Available from: http:

//dl.acm.org/citation.cfm?id=2976456.2976601.

[26] Raza S, Haider S, Williams MA. Teaching coordinated strategies to soccer robots via imitation.

In: Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on. IEEE; 2012.

p. 1434–1439.

[27] Rahmatizadeh R, Abolghasemi P, Bölöni L. Learning Manipulation Trajectories Using Recurrent

Neural Networks. arXiv preprint arXiv:160303833. 2016;.

[28] Kober J, Peters JR. Policy search for motor primitives in robotics. In: Advances in neural

information processing systems; 2009. p. 849–856.

[29] Ijspeert AJ, Nakanishi J, Schaal S. Learning rhythmic movements by demonstration using non-

linear oscillators. In: Proceedings of the ieee/rsj int. conference on intelligent robots and systems

(iros2002). BIOROB-CONF-2002-003; 2002. p. 958–963.

[30] Nakanishi J, Morimoto J, Endo G, Cheng G, Schaal S, Kawato M. Learning from demonstration

and adaptation of biped locomotion. Robotics and Autonomous Systems. 2004;47(2):79–91.

[31] Mülling K, Kober J, Kroemer O, Peters J. Learning to select and generalize striking movements

in robot table tennis. The International Journal of Robotics Research. 2013;32(3):263–279.

[32] Schaal S, Mohajerian P, Ijspeert A. Dynamics systems vs. optimal controla unifying view.

Progress in brain research. 2007;165:425–445.

108

http://doi.acm.org/10.1145/267658.267738
http://doi.acm.org/10.1145/267658.267738
http://dl.acm.org/citation.cfm?id=2976456.2976601
http://dl.acm.org/citation.cfm?id=2976456.2976601

[33] Kober J, Mohler B, Peters J. Learning perceptual coupling for motor primitives. In: Intelligent

Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE; 2008. p.

834–839.

[34] Kober J, Peters J. Learning motor primitives for robotics. In: Robotics and Automation, 2009.

ICRA’09. IEEE International Conference on. IEEE; 2009. p. 2112–2118.

[35] Calinon S, Li Z, Alizadeh T, Tsagarakis NG, Caldwell DG. Statistical dynamical systems for

skills acquisition in humanoids. In: 2012 12th IEEE-RAS International Conference on Humanoid

Robots (Humanoids 2012). IEEE; 2012. p. 323–329.

[36] Rozo L, Bruno D, Calinon S, Caldwell DG. Learning optimal controllers in human-robot co-

operative transportation tasks with position and force constraints. In: Intelligent Robots and

Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE; 2015. p. 1024–1030.

[37] Chen N, Bayer J, Urban S, Van Der Smagt P. Efficient movement representation by embedding

Dynamic Movement Primitives in deep autoencoders. In: Humanoid Robots (Humanoids), 2015

IEEE-RAS 15th International Conference on. IEEE; 2015. p. 434–440.

[38] Bentivegna DC, Atkeson CG, Cheng G. Learning tasks from observation and practice. Robotics

and Autonomous Systems. 2004;47(2):163–169.

[39] Chernova S, Veloso M. Teaching collaborative multi-robot tasks through demonstration. In:

Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Conference on. IEEE;

2008. p. 385–390.

[40] Berger E, Amor HB, Vogt D, Jung B. Towards a simulator for imitation learning with kines-

thetic bootstrapping. In: Workshop Proceedings of Intl. Conf. on Simulation, Modeling and

Programming for Autonomous Robots (SIMPAR); 2008. p. 167–173.

[41] Calinon S, Billard A. A framework integrating statistical and social cues to teach a humanoid

robot new skills. In: Proceedings of the IEEE International Conference on Robotics and Au-

tomation (ICRA), Workshop on Social Interaction with Intelligent Indoor Robots. LASA-CONF-

2008-020; 2008. .

[42] Lin LJ. Self-improving reactive agents based on reinforcement learning, planning and teaching.

Machine learning. 1992;8(3-4):293–321.

[43] Lin LJ. Programming Robots Using Reinforcement Learning and Teaching. In: Proceedings of

the Ninth National Conference on Artificial Intelligence - Volume 2. AAAI’91. AAAI Press; 1991.

p. 781–786. Available from: http://dl.acm.org/citation.cfm?id=1865756.1865798.

[44] Guenter F, Hersch M, Calinon S, Billard A. Reinforcement learning for imitating constrained

reaching movements. Advanced Robotics. 2007;21(13):1521–1544.

[45] Kober J, Peters J. Imitation and reinforcement learning. Robotics & Automation Magazine,

IEEE. 2010;17(2):55–62.

[46] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the

game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–489.

[47] Clark C, Storkey A. Training deep convolutional neural networks to play go. In: Proceedings of

the 32nd International Conference on Machine Learning (ICML-15); 2015. p. 1766–1774.

[48] Brys T, Harutyunyan A, Suay HB, Chernova S, Taylor ME, Nowé A. Reinforcement learning

from demonstration through shaping. In: Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI); 2015. .

109

http://dl.acm.org/citation.cfm?id=1865756.1865798

[49] Ng AY, Harada D, Russell S. Policy invariance under reward transformations: Theory and

application to reward shaping. In: In Proceedings of the Sixteenth International Conference on

Machine Learning. vol. 99; 1999. p. 278–287.

[50] Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement learning. In: Proceedings

of the twenty-first international conference on Machine learning. ACM; 2004. p. 1.

[51] Kohl N, Stone P. Policy gradient reinforcement learning for fast quadrupedal locomotion. In:

Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on.

vol. 3. IEEE; 2004. p. 2619–2624.

[52] Peters J, Schaal S. Reinforcement learning of motor skills with policy gradients. Neural networks.

2008;21(4):682–697.

[53] Kober J, Peters J. Movement templates for learning of hitting and batting. In: Learning Motor

Skills. Springer; 2014. p. 69–82.

[54] Buchli J, Stulp F, Theodorou E, Schaal S. Learning variable impedance control. The International

Journal of Robotics Research. 2011;30(7):820–833.

[55] Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal S. Skill learning and task outcome

prediction for manipulation. In: Robotics and Automation (ICRA), 2011 IEEE International

Conference on. IEEE; 2011. p. 3828–3834.

[56] Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, et al. Learning from Demonstra-

tions for Real World Reinforcement Learning. arXiv preprint arXiv:170403732. 2017;.

[57] Levine S, Koltun V. Guided policy search. In: Proceedings of The 30th International Conference

on Machine Learning; 2013. p. 1–9.

[58] Zhang M, McCarthy Z, Finn C, Levine S, Abbeel P. Learning deep neural network policies with

continuous memory states. In: 2016 IEEE International Conference on Robotics and Automation

(ICRA). IEEE; 2016. p. 520–527.

[59] Guo X, Singh S, Lee H, Lewis RL, Wang X. Deep learning for real-time Atari game play using

offline Monte-Carlo tree search planning. In: Advances in Neural Information Processing Systems;

2014. p. 3338–3346.

[60] Levine S, Finn C, Darrell T, Abbeel P. End-to-End Training of Deep Visuomotor Policies. arXiv

preprint arXiv:150400702. 2015;.

[61] Nolfi S, Floreano D. Evolutionary Robotics: The Biology,Intelligence,and Technology. Cam-

bridge, MA, USA: MIT Press; 2000.

[62] Rokbani N, Zaidi A, Alimi AM. Prototyping a biped robot using an educational robotics kit. In:

Education and e-Learning Innovations (ICEELI), 2012 International Conference on. IEEE; 2012.

p. 1–4.

[63] Min HQ, Zhu JH, Zheng XJ. Obstacle avoidance with multi-objective optimization by PSO in

dynamic environment. In: 2005 International Conference on Machine Learning and Cybernetics.

vol. 5. IEEE; 2005. p. 2950–2956.

[64] Zhang Y, Wang S, Ji G. A comprehensive survey on particle swarm optimization algorithm and

its applications. Mathematical Problems in Engineering. 2015;2015.

[65] Zhang C, Zhen Z, Wang D, Li M. UAV path planning method based on ant colony optimization.

In: 2010 Chinese Control and Decision Conference. IEEE; 2010. p. 3790–3792.

[66] Aler R, Garcia O, Valls JM. Correcting and improving imitation models of humans for robosoccer

agents. In: Evolutionary Computation, 2005. The 2005 IEEE Congress on. vol. 3. IEEE; 2005.

p. 2402–2409.

110

[67] Ortega J, Shaker N, Togelius J, Yannakakis GN. Imitating human playing styles in super mario

bros. Entertainment Computing. 2013;4(2):93–104.

[68] Sun TY, Huo CL, Tsai SJ, Liu CC. Optimal UAV flight path planning using skeletonization and

particle swarm optimizer. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence). IEEE; 2008. p. 1183–1188.

[69] Cheng R, Jin Y. A social learning particle swarm optimization algorithm for scalable optimiza-

tion. Information Sciences. 2015;291:43–60.

[70] Gruau F, Quatramaran K. Cellular encoding for interactive evolutionary robotics. In: Fourth

European Conference on Artificial Life. MIT Press; 1997. p. 368–377.

[71] Bongard JC, Hornby GS. Combining fitness-based search and user modeling in evolutionary

robotics. In: Proceedings of the 15th annual conference on Genetic and evolutionary computation.

ACM; 2013. p. 159–166.

[72] Lin HI, Liu YC, Chen CL. Evaluation of human-robot arm movement imitation. In: Control

Conference (ASCC), 2011 8th Asian. IEEE; 2011. p. 287–292.

[73] El-Hussieny H, Assal SF, Abouelsoud A, Megahed SM, Ogasawara T. Incremental learning

of reach-to-grasp behavior: A PSO-based Inverse optimal control approach. In: 2015 7th In-

ternational Conference of Soft Computing and Pattern Recognition (SoCPaR). IEEE; 2015. p.

129–135.

[74] Pan SJ, Yang Q. A survey on transfer learning. Knowledge and Data Engineering, IEEE Trans-

actions on. 2010;22(10):1345–1359.

[75] Torrey L, Walker T, Shavlik J, Maclin R. Using advice to transfer knowledge acquired in one

reinforcement learning task to another. In: Machine Learning: ECML 2005. Springer; 2005. p.

412–424.

[76] Torrey L, Shavlik J. Transfer learning. Handbook of Research on Machine Learning Applications

and Trends: Algorithms, Methods, and Techniques. 2009;1:242.

[77] Kuhlmann G, Stone P. Graph-based domain mapping for transfer learning in general games. In:

Machine Learning: ECML 2007. Springer; 2007. p. 188–200.

[78] Brys T, Harutyunyan A, Taylor ME, Nowé A. Policy Transfer using Reward Shaping. In: Pro-

ceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems.

International Foundation for Autonomous Agents and Multiagent Systems; 2015. p. 181–188.

[79] Ziebart BD, Maas AL, Bagnell JA, Dey AK. Maximum Entropy Inverse Reinforcement Learning.

In: 23rd AAAI Conference on Artificial Intelligence and the 20th Innovative Applications of

Artificial Intelligence Conference, AAAI-08/IAAI-08; 2008. p. 1433–1438.

[80] Wulfmeier M, Ondruska P, Posner I. Maximum Entropy Deep Inverse Reinforcement Learning.

arXiv preprint arXiv:150704888. 2015;.

[81] Lee G, Luo M, Zambetta F, Li X. Learning a Super Mario controller from examples of human

play. In: Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE; 2014. p. 1–8.

[82] Ho J, Ermon S. Generative adversarial imitation learning. In: Advances in Neural Information

Processing Systems; 2016. p. 4565–4573.

[83] Daumé Iii H, Langford J, Marcu D. Search-based structured prediction. Machine learning.

2009;75(3):297–325.

[84] Le HM, Kang A, Yue Y, Carr P. Smooth Imitation Learning for Online Sequence Prediction.

Proceedings of the 33rd International Conference on Machine Learning. 2016;.

111

[85] Droniou A, Ivaldi S, Sigaud O. Learning a repertoire of actions with deep neural networks. In:

Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2014 Joint IEEE Interna-

tional Conferences on. IEEE; 2014. p. 229–234.

[86] Mayer H, Gomez F, Wierstra D, Nagy I, Knoll A, Schmidhuber J. A system for robotic heart

surgery that learns to tie knots using recurrent neural networks. Advanced Robotics. 2008;22(13-

14):1521–1537.

[87] Judah K, Fern A, Dietterich TG. Active imitation learning via reduction to iid active learning.

arXiv preprint arXiv:12104876. 2012;.

[88] Ikemoto S, Amor HB, Minato T, Jung B, Ishiguro H. Physical human-robot interaction: Mutual

learning and adaptation. Robotics & Automation Magazine, IEEE. 2012;19(4):24–35.

[89] Calinon S, Billard AG. What is the teachers role in robot programming by demonstration?:

Toward benchmarks for improved learning. Interaction Studies. 2007;8(3):441–464.

[90] Dixon KR, Khosla PK. Learning by observation with mobile robots: A computational approach.

In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference

on. vol. 1. IEEE; 2004. p. 102–107.

[91] Saunders J, Nehaniv CL, Dautenhahn K. Teaching robots by moulding behavior and scaffolding

the environment. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot

interaction. ACM; 2006. p. 118–125.

[92] Coates A, Abbeel P, Ng AY. Learning for control from multiple demonstrations. In: Proceedings

of the 25th international conference on Machine learning. ACM; 2008. p. 144–151.

[93] Pook PK, Ballard DH. Recognizing teleoperated manipulations. In: Robotics and Automation,

1993. Proceedings., 1993 IEEE International Conference on. IEEE; 1993. p. 578–585.

[94] Oztop E, Arbib MA. Schema design and implementation of the grasp-related mirror neuron

system. Biological cybernetics. 2002;87(2):116–140.

[95] Nicolescu MN, Mataric MJ. Natural methods for robot task learning: Instructive demonstrations,

generalization and practice. In: Proceedings of the second international joint conference on

Autonomous agents and multiagent systems. ACM; 2003. p. 241–248.

[96] Asfour T, Azad P, Gyarfas F, Dillmann R. Imitation learning of dual-arm manipulation tasks in

humanoid robots. International Journal of Humanoid Robotics. 2008;5(02):183–202.

[97] Geng T, Lee M, Hülse M. Transferring human grasping synergies to a robot. Mechatronics.

2011;21(1):272–284.

[98] Mataric MJ. Sensory-motor primitives as a basis for imitation: Linking perception to action and

biology to robotics. In: Imitation in animals and artifacts. Citeseer; 2000. .

[99] Billard A, Matarić MJ. Learning human arm movements by imitation:: Evaluation of a biologi-

cally inspired connectionist architecture. Robotics and Autonomous Systems. 2001;37(2):145–160.

[100] Ude A, Atkeson CG, Riley M. Programming full-body movements for humanoid robots by

observation. Robotics and autonomous systems. 2004;47(2):93–108.

[101] Niekum S, Chitta S, Barto AG, Marthi B, Osentoski S. Incremental Semantically Grounded

Learning from Demonstration. In: Robotics: Science and Systems. vol. 9; 2013. .

[102] Rozo L, Jiménez P, Torras C. A robot learning from demonstration framework to perform force-

based manipulation tasks. Intelligent service robotics. 2013;6(1):33–51.

[103] Vogt D, Amor HB, Berger E, Jung B. Learning Two-Person Interaction Models for Responsive

Synthetic Humanoids. Journal of Virtual Reality and Broadcasting. 2014;11(1).

112

[104] Geisler B. An empirical study of machine learning algorithms applied to modeling player behavior

in a first person shooter video game. Citeseer; 2002.

[105] Thurau C, Bauckhage C, Sagerer G. Learning human-like movement behavior for computer

games. In: Proc. Int. Conf. on the Simulation of Adaptive Behavior; 2004. p. 315–323.

[106] Munoz J, Gutierrez G, Sanchis A. Controller for torcs created by imitation. In: Computational

Intelligence and Games, 2009. CIG 2009. IEEE Symposium on. IEEE; 2009. p. 271–278.

[107] Cardamone L, Loiacono D, Lanzi PL. Learning drivers for TORCS through imitation using su-

pervised methods. In: Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium

on. IEEE; 2009. p. 148–155.

[108] Muñoz J, Gutierrez G, Sanchis A. A human-like TORCS controller for the Simulated Car Racing

Championship. In: Computational Intelligence and Games (CIG), 2010 IEEE Symposium on.

IEEE; 2010. p. 473–480.

[109] Vlachos A. An investigation of imitation learning algorithms for structured prediction. In: In

Proceedings of the European Workshop on Reinforcement Learning (EWRL). Citeseer; 2012. p.

143–154.

[110] Pomerleau D. Neural Network Vision for Robot Driving. In: Arbib M, editor. The Handbook

of Brain Theory and Neural Networks; 1995. .

[111] Feil-Seifer D, Mataric MJ. Defining socially assistive robotics. In: Rehabilitation Robotics, 2005.

ICORR 2005. 9th International Conference on. IEEE; 2005. p. 465–468.

[112] Bemelmans R, Gelderblom GJ, Jonker P, De Witte L. Socially assistive robots in elderly care:

A systematic review into effects and effectiveness. Journal of the American Medical Directors

Association. 2012;13(2):114–120.

[113] Tapus A, Tapus C, Mataric MJ. The use of socially assistive robots in the design of intelligent

cognitive therapies for people with dementia. In: Rehabilitation Robotics, 2009. ICORR 2009.

IEEE International Conference on. IEEE; 2009. p. 924–929.

[114] Hingston P. Believable bots. Can Computers Play Like People. 2012;.

[115] Gorman B. Imitation learning through games: theory, implementation and evaluation. Dublin

City University; 2009.

[116] Thurau C, Bauckhage C, Sagerer G. Imitation learning at all levels of game-AI. In: Proceedings

of the international conference on computer games, artificial intelligence, design and education.

vol. 5; 2004. .

[117] Schaul T, Togelius J, Schmidhuber J. Measuring intelligence through games. arXiv preprint

arXiv:11091314. 2011;.

[118] Shon AP, Grimes DB, Baker CL, Hoffman MW, Zhou S, Rao RP. Probabilistic gaze imitation and

saliency learning in a robotic head. In: Proceedings of the 2005 IEEE International Conference

on Robotics and Automation. IEEE; 2005. p. 2865–2870.

[119] Price B, Boutilier C. Implicit Imitation in Multiagent Reinforcement Learning. In: Proceedings

of the Sixteenth International Conference on Machine Learning. ICML ’99. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.; 1999. p. 325–334. Available from: http://dl.acm.

org/citation.cfm?id=645528.657625.

[120] Stone P, Sutton RS, Kuhlmann G. Reinforcement learning for robocup soccer keepaway. Adaptive

Behavior. 2005;13(3):165–188.

[121] DAmbrosio DB, Stanley KO. Scalable multiagent learning through indirect encoding of policy

geometry. Evolutionary Intelligence. 2013;6(1):1–26.

113

http://dl.acm.org/citation.cfm?id=645528.657625
http://dl.acm.org/citation.cfm?id=645528.657625

[122] De Weerdt M, Ter Mors A, Witteveen C. Multi-agent planning: An introduction to planning

and coordination. In: In: Handouts of the European Agent Summer. Citeseer; 2005. .

[123] Doya K, Samejima K, Katagiri Ki, Kawato M. Multiple model-based reinforcement learning.

Neural computation. 2002;14(6):1347–1369.

[124] Kuvayev D, Sutton RS. Model-based reinforcement learning. Citeseer; 1997.

[125] Liang Y. Model-based Apprenticeship Learning for Robotics in High-dimensional Spaces. 2014;.

[126] Baram N, Anschel O, Mannor S. Model-based adversarial imitation learning. arXiv preprint

arXiv:161202179. 2016;.

[127] Nair A, Chen D, Agrawal P, Isola P, Abbeel P, Malik J, et al. Combining Self-Supervised Learning

and Imitation for Vision-Based Rope Manipulation. arXiv preprint arXiv:170302018. 2017;.

[128] Curran W, Brys T, Taylor M, Smart W. Using PCA to Efficiently Represent State Spaces. arXiv

preprint arXiv:150500322. 2015;.

[129] Bengio Y. Learning deep architectures for AI. Foundations and trends R© in Machine Learning.

2009;2(1):1–127.

[130] Sammut C, Hurst S, Kedzier D, Michie D, et al. Learning to fly. In: Proceedings of the ninth

international workshop on Machine learning; 1992. p. 385–393.

[131] Abbeel P, Coates A, Quigley M, Ng AY. An application of reinforcement learning to aerobatic

helicopter flight. Advances in neural information processing systems. 2007;19:1.

[132] Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, et al. Autonomous inverted helicopter

flight via reinforcement learning. In: Experimental Robotics IX. Springer; 2006. p. 363–372.

[133] Silver D, Bagnell J, Stentz A. High performance outdoor navigation from overhead data using

imitation learning. Robotics: Science and Systems IV, Zurich, Switzerland. 2008;.

[134] Ratliff N, Bradley D, Bagnell JA, Chestnutt J. Boosting structured prediction for imitation

learning. Robotics Institute. 2007;p. 54.

[135] Chernova S, Veloso M. Confidence-based policy learning from demonstration using gaussian

mixture models. In: Proceedings of the 6th international joint conference on Autonomous agents

and multiagent systems. ACM; 2007. p. 233.

[136] Ollis M, Huang WH, Happold M. A bayesian approach to imitation learning for robot navigation.

In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on.

IEEE; 2007. p. 709–714.

[137] Ross S, Melik-Barkhudarov N, Shankar KS, Wendel A, Dey D, Bagnell JA, et al. Learning

monocular reactive uav control in cluttered natural environments. In: Robotics and Automation

(ICRA), 2013 IEEE International Conference on. IEEE; 2013. p. 1765–1772.

[138] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, et al. Continuous control with deep

reinforcement learning. arXiv preprint arXiv:150902971. 2015;.

[139] Zhu Y, Mottaghi R, Kolve E, Lim JJ, Gupta A, Fei-Fei L, et al. Target-driven Visual Navigation

in Indoor Scenes using Deep Reinforcement Learning. arXiv preprint arXiv:160905143. 2016;.

[140] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, et al. Asynchronous methods

for deep reinforcement learning. arXiv preprint arXiv:160201783. 2016;.

[141] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control

through deep reinforcement learning. Nature. 2015;518(7540):529–533.

114

[142] Koutńık J, Cuccu G, Schmidhuber J, Gomez F. Evolving large-scale neural networks for vision-

based reinforcement learning. In: Proceedings of the 15th annual conference on Genetic and

evolutionary computation. ACM; 2013. p. 1061–1068.

[143] Bellemare MG, Naddaf Y, Veness J, Bowling M. The arcade learning environment: An evaluation

platform for general agents. arXiv preprint arXiv:12074708. 2012;.

[144] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing atari with

deep reinforcement learning. arXiv preprint arXiv:13125602. 2013;.

[145] Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:160904747. 2016;.

[146] Theano Development Team. Theano: A Python framework for fast computation of mathematical

expressions. arXiv e-prints. 2016 May;abs/1605.02688. Available from: http://arxiv.org/abs/

1605.02688.

[147] Heinrich J, Silver D. Deep Reinforcement Learning from Self-Play in Imperfect-Information

Games. arXiv preprint arXiv:160301121. 2016;.

[148] Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, et al. Overcoming

catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences.

2017;p. 201611835.

[149] Graves A, Mohamed Ar, Hinton G. Speech recognition with deep recurrent neural networks. In:

Acoustics, speech and signal processing (icassp), 2013 ieee international conference on. IEEE;

2013. p. 6645–6649.

[150] Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S. Recurrent neural network based

language model. In: Interspeech. vol. 2; 2010. p. 3.

[151] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Advances

in neural information processing systems; 2014. p. 3104–3112.

[152] Graves A, et al. Supervised sequence labelling with recurrent neural networks. vol. 385. Springer;

2012.

[153] Graves A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:13080850.

2013;.

[154] Pietro AD, While L, Barone L. Learning in RoboCup keepaway using evolutionary algorithms. In:

Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation. Morgan

Kaufmann Publishers Inc.; 2002. p. 1065–1072.

[155] Jain D, Shah M, Garg BK. Watchdogs 2D Soccer Simulation;.

[156] Masson W, Ranchod P, Konidaris G. Reinforcement learning with parameterized actions. arXiv

preprint arXiv:150901644. 2015;.

[157] Hausknecht M, Stone P. Deep reinforcement learning in parameterized action space. arXiv

preprint arXiv:151104143. 2015;.

[158] Hausknecht M, Mupparaju P, Subramanian S, Kalyanakrishnan S, Stone P. Half field offense:

An environment for multiagent learning and ad hoc teamwork. In: AAMAS Adaptive Learning

Agents (ALA) Workshop; 2016. .

[159] Stone P, Kuhlmann G, Taylor ME, Liu Y. In: Bredenfeld A, Jacoff A, Noda I, Takahashi

Y, editors. Keepaway Soccer: From Machine Learning Testbed to Benchmark. Berlin, Heidel-

berg: Springer Berlin Heidelberg; 2006. p. 93–105. Available from: https://doi.org/10.1007/

11780519_9.

115

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://doi.org/10.1007/11780519_9
https://doi.org/10.1007/11780519_9

[160] Večeŕık M, Hester T, Scholz J, Wang F, Pietquin O, Piot B, et al. Leveraging demonstra-

tions for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint

arXiv:170708817. 2017;.

[161] Nair A, McGrew B, Andrychowicz M, Zaremba W, Abbeel P. Overcoming exploration in rein-

forcement learning with demonstrations. arXiv preprint arXiv:170910089. 2017;.

[162] Asadi K, Allen C, Roderick M, Mohamed Ar, Konidaris G, Littman M. Mean Actor Critic. arXiv

preprint arXiv:170900503. 2017;.

[163] Liu A. Imitation Learning with THOR;.

[164] Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, et al. OpenAI Gym.

CoRR. 2016;abs/1606.01540. Available from: http://arxiv.org/abs/1606.01540.

[165] Stadie BC, Abbeel P, Sutskever I. Third-Person Imitation Learning. arXiv preprint

arXiv:170301703. 2017;.

[166] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative

adversarial nets. In: Advances in neural information processing systems; 2014. p. 2672–2680.

[167] Fu J, Luo K, Levine S. Learning Robust Rewards with Adversarial Inverse Reinforcement Learn-

ing. arXiv preprint arXiv:171011248. 2017;.

116

http://arxiv.org/abs/1606.01540

	coversheetTheses
	Hussein_Ahmed_PhD_thesis.pdf
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Objectives
	Problem Definition
	Challenges
	Contributions
	List of publications

	Used Frameworks
	Chapter List
	Summary

	Background
	Problem formulation and Notations
	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks

	Summary

	Related Work
	Direct Imitation
	Classification
	Regression
	Hierarchical Models

	Self Improvement
	Reinforcement Learning
	Optimization
	Transfer Learning
	Inverse reinforcement learning
	Data Aggregation
	Active Learning

	Applications
	Multi-agent Imitation
	Model-based learning and Planning

	Conclusion

	Learning Representations from raw visual data
	Introduction
	Autonomous Navigation
	Deep Learning

	Proposed Method
	Representing Demonstrations
	Deep convolutional Neural network

	Conclusion

	Active Data Aggregation
	Introduction
	Proposed Method
	Experiments
	Tasks
	Setup
	Implementation details
	Results

	Conclusion and Future Directions

	Combining Learning from Demonstrations and Experience
	Introduction
	Proposed Method
	Experiments
	Grid Navigation Task
	Inter-process Communication
	Results

	Conclusion and Future Work

	Reward Shaping from Demonstrations
	Introduction
	Method
	Experiments
	Experimental Setup
	Results

	Conclusion and Future Work

	Deep Imitation Learning from Sequences
	Introduction
	Related Work
	Method
	Experiments
	robocup
	Half-Field-Offence
	Experimental Setup
	Results

	Conclusion and Future Work

	Conclusion and Future work
	Summary
	Discussion
	Future Directions

	Bibliography

	OA Logo:
	AUTHOR: HUSSEIN, A.
	TITLE: Deep learning based approaches for imitation learning.
	YEAR: 2018
	OpenAIR citation: HUSSEIN, A. 2018. Deep learning based approaches for imitation learning. Robert Gordon University, PhD thesis.
	Degree: Doctor of Philosophy, School of Computing Science and Digital Media
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:
		2018-09-04T16:31:23+0100
	OpenAIR at RGU

