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Abstract 

Textual Case Based Reasoning (TCBR) aims at effective reuse of information 
contained in unstructured documents. The key advantage of TCBR over traditional 
Information Retrieval systems is its ability to incorporate domain-specific knowledge 
to facilitate case comparison beyond simple keyword matching. However, substantial 
human intervention is needed to acquire and transform this knowledge into a form 
suitable for a TCBR system. In this research, we present automated approaches that 
exploit statistical properties of document collections to alleviate this knowledge 
acquisition bottleneck. We focus on two important knowledge containers: relevance 
knowledge, which shows relatedness of features to cases, and similarity knowledge, 
which captures the relatedness of features to each other. The terminology is derived 
from the Case Retrieval Network (CRN) retrieval architecture in TCBR, which is used 
as the underlying formalism in this thesis applied to text classification. 

Latent Semantic Indexing (LSI) generated concepts are a useful resource for 
relevance knowledge acquisition for CRNs. This thesis introduces a supervised LSI 
technique called "sprinkling" that exploits class knowledge to bias LSI's concept 
generation. An extension of this idea, called Adaptive Sprinkling has been proposed to 
handle inter-class relationships in complex domains like hierarchical (e.g. Yahoo 
directory) and ordinal (e.g. product ranking) classification tasks. Experimental 
evaluation results show the superiority of CRNs created with sprinkling and AS, not 
only over LSI on its own, but also over state-of-the-art classifiers like Support Vector 
Machines (SVM). 

Current statistical approaches based on feature co-occurrences can be utilized to 
mine similarity knowledge for CRNs. However, related words often do not co-occur in 
the same document, though they co-occur with similar words. We introduce an 
algorithm to efficiently mine such indirect associations, called higher order 
associations. Empirical results show that CRNs created with the acquired similarity 
knowledge outperform both LSI and SVM. 

Incorporating acquired knowledge into the CRN transforms it into a densely 
connected network. While improving retrieval effectiveness, this has the unintended 
effect of slowing down retrieval. We propose a novel retrieval formalism called the 
Fast Case Retrieval Network (FCRN) which eliminates redundant run-time 
computations to improve retrieval speed. Experimental results show FCRN's ability to 
scale up over high dimensional textual casebases. 

Finally, we investigate novel ways of visualizing and estimating complexity of 
textual casebases that can help explain performance differences across casebases. 
Visualization provides a qualitative insight into the casebase, while complexity is a 
quantitative measure that characterizes classification or retrieval hardness intrinsic to a 
dataset. We study correlations of experimental results from the proposed approaches 
against complexity measures over diverse casebases. 
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Chapter 1 

Introduction 

The White Rabbit put on his spectacles. 'Where shall I begin. please your Majesty?' he 

asked. 'Begin at the beginning. ' the King said, very gravely, 'and go on till you come to 

the end: then stop.' Lewis Carroll, Alice's Adventures in Wonderland. 

The volume of electronically recorded data is growing astronomically. It was estimated 

in 2006 that more data will be produced in 2007 than has been generated during the 

entire existence of humankind (panurgy 2006). Disks are doubling every 18 months or 

so, and that is clearly not enough. The much bigger issue, however, is that human 

ability to absorb and use this growing mass of data has remained constant over the 

years. When data is available in structured form, as in databases or spreadsheets, 

automated approaches can be effective in crunching numbers and symbols, and helping 

us make sense of the data flood. Making sense of unstructured data still remains a 

largely unsolved problem. Examples of such free-form data abound in the form of e

mails, memos, notes from call centers and support operations, news, user groups, chats, 

reports, surveys, white papers, research articles, presentations and Web pages. The 

magnitude of the problem can be appreciated in the light of an estimate by Merrill 

Lynch that more than 85% of all business information exists as unstructured text 

(Bloomberg and Atre 2003). 

An important aspect that characterizes structured data, as distinct from 

unstructured text, is the availability of an unambiguous context for interpreting the 

data. A database entry recording a number 45 under the field temperature, immediately 

elevates the status of the number 45 from data to usable information that can be 
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processed for making inferences and associated meaningfully with other pieces of 

information ("this is the hottest and second most humid day of this summer, clearly 

explaining the discomfort"). In contrast, no such precise reference frame is available 

for handling unstructured data; thus the same fact can be expressed in several different 

ways in free text. Furthermore, the problem is compounded by the fact that natural 

language sentences are often ambiguous and ill-formed. The traditional approach to 

Natural Language Processing (NLP) involved formalizing rules of grammar to break 

sentences down to more meaningful "deeper" representations that capture 

interrelationship between structural elements, like phrases. Examples of phrases are 

noun phrases ("This thesis") and verb phrases ("sounds stupid") are interesting, since 

they usually correspond to natural semantic elements, which can help in constructing 

the meaning of the sentence. While this approach of "deep NLP" has found limited 

success in sentence-level understanding and machine translation, its applicability is 

limited by the fact that it is slow and does not scale well beyond single sentences to 

handle text at a paragraph or discourse level. A second approach to NLP is corpus

based, and relies on a probabilistic, as opposed to logical, model of language. There are 

several advantages of this approach (Russell and Norvig 2003): 

Convenient training from data. Learning is based on simple estimates obtained by 

counting occurrences and co-occurrences. 

Robustness. Statistical approaches can handle ill-formed sentences that do not 

conform to the grammar strictly. While linguistically driven NLP systems reject any 

ungrammatical string, corpus based approaches accept any string, albeit with a low 

probability. 

Disambiguation. Statistical approaches typically assign different probabilities to each 

of the possible interpretations (senses); ambiguity is thus resolved by choosing the most 

likely interpretation. 
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Given huge volumes of unstructured texts, a common task is to look for texts, or parts 

thereof, that are relevant to a certain information need. Information Retrieval (lR) is the 

discipline that studies this problem, and IR models and approaches form the backbone 

for most search systems operational over the web. Risking over-generalization, IR 

approaches can be treated as statistical NLP systems that use large volumes of 

unstructured data to make a priori estimates of term relevances. Most practical IR 

systems use fairly simple models that treat each document as a bag of words (BOW) 

that are independent of each other, and thereby ignore word order and syntactic 

patterns. Clearly, this is quite unlike the way humans deal with text. More often than 

not, irrelevant documents retrieved by such simple approaches far outnumber the 

relevant ones. However, the lack of sophistication is accompanied by efficiency 

advantages, which is critical in the face of extraordinarily large volumes of data, as in 

the web. It should come as no surprise that finding strategies that lead to more effective 

and cognitively sound retrieval while retaining the efficiency edge constitutes an 

important research direction. This sets a platform for collaboration between Artificial 

Intelligence (AI) approaches and IR. An example of such collaboration is Textual Case 

Based Reasoning (TCBR). 

Case Based Reasoning (CBR) is an AI paradigm, inspired by cognitive models of 

human memory. Operationally, CBR is a process of solving new problems based on 

solutions to similar problems encountered in the past. A case is a recorded episode of 

problem solving, and is often structured into a set of feature values to facilitate 

similarity matching with other cases. The similarity measures used to compare cases 

are usually specific to the domain. In (Richter 1998), CBR is seen as relying on four 

knowledge containers, which include the set of cases, the vocabulary used to describe 

the case structure and the similarity measure. In many real-world tasks like helpdesks 

and diagnostics, the records of problem solving are typically textual and not readily 

available in structured form. This motivates the sub-field of TCBR, which strives to 

handle cases directly in the textual form. The challenge here is to automate or semi

automate the process of acquiring the knowledge containers needed for effective 
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problem solving. Broadly construed, this thesis aims to contribute novel approaches to 

address this challenge. A part of our work will specifically address the issue of 

supervised classification domains, where a select set of textual cases, referred to as 

training cases, are accompanied by a class or category label that identifies a broad sub

topic within the collection. In a collection of textual cases on sports news, for example, 

we can have classes such as baseball, cricket, hockey and/ootball. A classification task 

is a variant of the retrieval task that uses the knowledge of training cases to assign class 

labels to unlabelled cases, referred to as test cases. In Section 1.1 and in the next 

chapter, we will identify the scope and assumptions behind our work, and position it in 

the context of other relevant approaches. The rest of this chapter outlines the 

motivation and objectives of this research. 

1.1 Textual Case Based Reasoning in Context 

TCBR attempts to strike a middle ground between simple and fast IR approaches 

founded on BOW and more knowledge rich approaches as inspired by AI techniques. 

The downside to most real world knowledge-based approaches is the knowledge 

engineering bottleneck, which in the TCBR context refers to the cost of acquiring 

domain-specific knowledge containers. Traditionally, CBR presupposes that cases are 

structured, such that the similarity between two cases can be obtained by computing 

similarity between their constituent features, and aggregating these feature-specific 

scores. In contrast, TCBR must do away with the assumption that cases are neatly 

structured. The absence of structure and a well-defined feature space makes 

comparison of textual cases harder. Even when a hypothetical feature space (using 

words as features, say) is constructed to facilitate comparison, it is difficult to ascertain 

that like is compared with like. This is because the surface meaning of text is often 

different from the deep or intended meaning, and only certain facets of the deeper 

meaning are meaningful for case comparison. A significant knowledge engineering 
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effort is often involved to compensate for TCBR's non-reliance on readily structured 

cases. In most practical systems, we are interested in striking a tradeoff between the 

quality of retrieval and cost of knowledge acquisition. 

In discussing knowledge acquisition in the context of TCBR, we will primarily 

focus on two knowledge containers: the relevance knowledge, which shows how 

strongly related features are to cases, and similarity knowledge, which captures how 

strongly features are related to each other. This tenninology is derived from literature 

on Case Retrieval Networks (CRNs), a fonnalism to facilitate fast retrieval in CBR 

systems, first presented in (Lenz and Burkhard 1996). Figure 1.1 shows a CRN 

constructed for a simple domain having 4 cases. The cases are described by feature 

values, which are referred to as Infonnation Entities (IEs) in the CRN literature. In our 

example, we have a vocabulary of nine words which act as IEs. Each case is linked to 

its constituent IEs by a relevance arc. IEs are linked to each other by similarity arcs 

which assume a real value in the range of 0 (in which case no arc is shown) to 1. In 

response to a query like "dog licking mirror", a two-step retrieval process is initiated. 

In the first step all IEs having non-zero similarity to the query IEs dog, lick and mirror 

are activated. In our example these IEs are animal, cat, bite and glass. This step is 

alternately referred to as query expansion. In the second step, all cases relevant to the 

expanded set of IEs are activated. Case nodes aggregate incoming activations from IEs, 

and are ranked according to the strengths of their activations. The activation of a case is 

thus a function of the similarity and relevance values defined in the network. While we 

have used binary relevance values in our example, real values can be used to model the 

degree of relatedness of an IE to a case. It is interesting to see that our example query 

leads to the retrieval of the case "animals biting glass", though the case shares no words 

in common with the query. Clearly, the effectiveness of retrieval is critically 

determined by the similarity and relevance knowledge, which have been relatively 

simple to encode in this toy domain, but are difficult to acquire in any realistic TCBR 

application. In their consolidated review paper on retrieval, reuse, revision and 

retention in CBR, Lopez De Mantaras, R. et al. (2005) note that "The approach (CRN) 
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is efficient and flexible enough to handle incomplete case descriptions, but can incur a 

significant knowledge engineering cost in constructing the network." This very briefly 

summarizes the motivation behind the current thesis: proposing introspective machine 

learning techniques that can effectively automate acquisition of similarity and 

relevance for CRNs . 

Cases 

Cat fighting dog Dog licking cat Animals biting glass og breaking mirr 

I nformation Entities 

Figure 1.1 A Case Retrieval Network 

Automated approaches for knowledge acquisition in TCBR systems are founded 

on the idea of moving from word-level representations to concept-level representations. 

Concepts can be interpreted in two ways. Firstly, concepts can refer to linguistic 

entities like phrases or other domain specific grammatical patterns that correspond to 

feature values and can be extracted from texts easily. The field of Information 

Extraction is based on this notion of concepts. The second interpretation of concepts is 

a statistical one, in which word co-occurrence patterns are used as the basis for 

inferring underlying concepts. We can then abstract out mathematical (often 

probabilistic) representations of these concepts, which are more robust indicators of the 

textual content than the words themselves. A simplistic example would be the grouping 

of near-synonymous words car and automobile into a single concept, based on the fact 
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that there is a fair degree of commonality in the words they co-occur with. Once such 

concepts are learnt, a query on cars can retrieve cases dealing with automobiles as well, 

and vice versa. In addition to handling synonymy, statistical approaches are also 

effective in disambiguating polysemous words, i.e. words like bank, which assume 

different meanings based on the context in which they are used. The main strength of 

the statistical approach is that in most cases, concept extraction is automatic, with little 

or no manual intervention. Considerable amount of work has been done outside the 

TCBR community in this direction (Manning & Schutze 1999). In the IR community, 

there has been significant interest in applying statistical machine learning approaches to 

improve retrieval effectiveness; over the last ten years, probabilistic approaches 

inspired by models used widely in the speech recognition community have been 

organized under the broad sub-field of statistical language modelling. Interest in this 

field is reflected by the fact that as high as 30% of papers presented over the last 5 

ACM SIGIR conferences were related directly or indirectly to this task (Smeaton et aI, 

2002). More often than not, concept extraction techniques rely on discovering hidden 

associations between words; so this area overlaps with research interests within the 

Text Mining community as well. In the recent past, several TCBR researchers have 

adapted these methods to their tasks, or presented novel extensions to cater to specific 

TCBR needs (Weber, et al. 2006). 

1.1.1 The Thesis: A Quick tour 

As a starting point for our research we explored the idea of exploiting Latent Semantic 

Indexing (LSI), a well established statistical concept induction approach, to the 

problem of acquiring similarity and relevance knowledge for TCBR tasks. LSI has 

been shown to improve retrieval effectiveness in IR in several independent studies 

(Deerwester, et al. 1990, Dumais 1993). In addition, LSI needs very little manual 

intervention, generates concepts that can be elegantly explicated in terms of underlying 

features as well as cases, and the acquired knowledge integrates easily into the CRN 
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framework. While initial results were promising, we observed that in supervised 

classification tasks, a TCBR system based on knowledge inferred by LSI was 

outperformed by state-of-the art classifiers reported in machine learning literature. We 

hypothesized that this was because LSI relied solely on word co-occurrences and failed 

to take into account the class labels of training cases, while acquiring relevance and 

similarity knowledge. On the other hand, class labels are critical to concept learning in 

most other approaches. This motivated us to propose a supervised LSI technique called 

"sprinkling" that exploits class knowledge to bias the acquired similarity and relevance 

knowledge. Next, we consider more complex classification domains where the classes 

are related to each other. Two examples are hierarchical classes (e.g. Yahoo directory) 

and ordinal classes (e.g. ratings I to 5 in movie review, each rating treated as a class). 

Sprinkling is limited in that it fails to take into account class relationships. This 

motivated us to investigate approaches that can scale up to handle such complex 

classification problems. We next focussed our attention on the problem of mining 

similarity knowledge for CRNs. Most current statistical approaches to address this, 

like association rule mining (Wiratunga et aI., 2005a) or distributional word clustering 

(Baker & McCallum 1998) are, at their roots, founded on the basic idea of estimating 

similarity based on the number of times the two features co-occurred in a given corpus. 

However, this is an inherently restrictive supposition. As an example, if words web and 

browse co-occur in one document, and words internet and browse in another, we can 

infer that web and internet are related to each other, even if they do not co-occur in any 

document. Such a relation is called a second-order association. We can extend this to 

orders higher than two; such associations are called higher order associations. While 

the significance of higher order co-occurrences was noted elsewhere (Lemaire & 

Denhiere, 2006), we have not come across any approach that exploited these 

associations to acquire feature similarity. This motivated us to explore how such 

associations can be mined efficiently from corpuses and how the effects of different 

orders can be aggregated to model similarity between features. We also explored 

extensions of this idea to supervised classification domains. As we will examine later, 
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the effectiveness improvements obtained using knowledge rich retrieval techniques 

founded on statistical approaches like LSI or higher order associations, are 

accompanied by a slowing down of the retrieval. This is a critical concern from a 

practical standpoint. This motivates a novel retrieval formalism presented in this thesis, 

called the Fast Case Retrieval Network (FCRN). The motivation behind FCRN was to 

explore ways of eliminating redundant computations at retrieval time, leading to 

improvements in time performance. Finally, in the course of our experimental 

evaluations over diverse textual datasets, we realized that the applicability and 

effectiveness of approaches was often critically dependent on properties of the 

underlying dataset. In response to this observation, we investigated novel ways of 

visualizing and estimating complexity of textual casebases. Visualization provides a 

qualitative insight into the casebase, while complexity is a quantitative measure that 

indicates the level of difficulty in carrying out effective retrieval or classification over 

the dataset. While the scope of our research as reported in this thesis is restricted to 

making preliminary use of the visualization and complexity measure to explain our 

empirical findings, we believe that our ideas have the potential to be independently 

pursued to other applications such as facilitating knowledge acquisition from experts, 

and periodic maintenance of the casebase. 

1.2 Research Objectives 

This thesis explores techniques to acquire relevance and similarity knowledge for 

TCBR tasks. LSI was to be extended to acquire relevance knowledge for supervised 

classification tasks, and to handle casebases with diverse inter-class interrelationships. 

The intuition behind higher order associations between features was to be incorporated 

in an algorithm for mining similarity knowledge. Retrieval time efficiency implications 

of the proposed approaches were to be addressed, to demonstrate the feasibility of 

applying these techniques to handle real world applications. In order to obtain an 
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insight into how diversity of casebases affects retrieval effectiveness, we also needed to 

make preliminary investigations into novel ways of visualizing and characterizing 

textual casebase complexity. 

Specifically, we address the following five objectives. 

1. Propose supervised extensions of LSI to mine relevance knowledge in 

classification domains. 

2. Propose approaches that extend the scope of LSI to handle situations where class 

inter-relationships are critical, e.g. hierarchical and ordinal domains. 

3. Propose supervised and unsupervised approaches to exploit higher order 

associations to mine feature similarity. 

4. Propose a fast retrieval formalism that can use the acquired relevance and 

similarity knowledge to facilitate effective retrieval while minimizing retrieval time by 

cutting down on redundant computations. 

5. Propose novel approaches to visualize and estimate complexity of textual 

casebases, so that they can be meaningfully compared. 

1.3 Thesis Overview 

In this chapter, we have highlighted challenges in acquiring knowledge for TeBR, 

which serve as motivation for the work reported in this thesis, and also outlined the 

specific objectives of our research. In the next chapter, we will examine more closely 

related work from the fields of TeBR, IR and machine learning that set the backdrop 

for our work. In particular, we will make a comparative study of techniques that 

abstract out concepts from a bag of words, and hence are potentially useful to 
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knowledge acquisition in TCBR. We will also review retrieval formalisms in TCBR, 

and existing methods to visualize and compare textual casebases. This will help us in 

positioning our work in its context more crisply, and lay a foundation for the remaining 

chapters to build on. 

Chapter 3 provides an overview of TCBR problems in specific relation to the 

supervised classification task. We present a simple approach to visualize textual 

casebases, and show how this can be extended to measure and compare complexity of 

casebases. To illustrate our ideas, we use these tools to characterize six experimental 

datasets that are used in our evaluations. We verify predictions from our complexity 

estimates against performances reported by standard classifiers. In later chapters, we 

will attempt to explain empirical findings from approaches proposed in this thesis in 

the light of these complexity estimates. 

Chapter 4 presents an introduction to LSI, and shows how it can be used for 

acquiring similarity and relevance knowledge for TCBR applications. We specifically 

look at mathematical underpinnings of LSI that explain its ability to represent features 

as well as cases in terms of a common set of underlying concepts, making it 

particularly attractive to TCBR. 

Chapter 5 introduces sprinkling, a supervised extension of LSI which is a novel 

contribution of this thesis. We also present Adaptive Sprinkling that extends this idea to 

diverse classification tasks. 

In Chapter 6, we present a novel algorithm for mining feature similarities based on 

higher order associations between features. We also present extensions of this idea to 

supervised tasks. 

Chapter 7 presents experimental evaluation of the ideas presented in Chapters 5 

and 6. The empirical findings are critically analysed both across approaches and in 

relation to dataset complexities estimated in Chapter 3. 

Chapter 8 proposes a novel formalism, FCRN, and shows how it can eliminate 

runtime computations to speed up retrieval. We also present extensions of FCRN to 

facilitate more flexible retrieval. 
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The conclusions in Chapter 9 summarise the contributions of the research, identifY 

some of its limitations, and suggest possible extensions and directions of future 

research. 
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Chapter 2 

Background 

I don't paint things, I paint only the difference between things ... Matisse 1908 

This chapter aims at positioning our work in the context of related research in TeBR. 

In particular, we will address issues associated with knowledge acquisition in TeBR, 

scalable architectures to embed and effectively make use of the acquired knowledge, 

and ways of visualizing this knowledge. Since each of these constitutes broad TeBR 

sub-fields on their own, it will be ambitious to attempt a comprehensive and thorough 

comparison with related work. Rather, our goal will be to cover as much ground as 

motivates and sets in perspective the chapters that follow. 

The organization of this chapter is as follows. The following section identifies key 

challenges in TeBR, and sets the big picture that motivates our research. In particular, 

we highlight the importance of statistical concept learners in automating knowledge 

acquisition for TeBR. Section 2.2 is intended to be a consolidated survey of concept 

induction techniques. Section 2.3 is a review of TeBR architectures in which concept 

learners can be embedded. In Section 2.4 we look at the role of visualization in TeBR. 

In each of sections 2.2, 2.3 and 2.4 we identify limitations of existing approaches, and 

these serve as motivations for the rest of the thesis. Section 2.5 concludes this chapter. 

2.1 Introduction: Challenges in Textual Case Based Reasoning 

A recent survey of TeBR systems by Weber et al. (2006) identifies four major 

challenges in eBR systems: 
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1. assessing similarity between textually represented cases 

2. mapping texts to structured representations 

3. adaptation of textual cases 

4. automatically generating representations for TCBR. 

While such a breakdown facilitates a preliminary grouping of existing TCBR systems, 

we feel that it may be misleading to consider any of these problems in isolation from 

the rest. In particular, challenges 1, 2 and 4 are closely intertwined. Similarity 

assessment (challenge 1) makes sense, only when a representation is chosen and 

methods identified to acquire structured case representations (challenges 2 and 4). 

Also, the richer the underlying representation, the more effective the TCBR system is, 

in problem solving. However, richer representations call for higher manual intervention 

in acquiring the necessary knowledge and structuring this knowledge to facilitate 

effective retrieval. Thus for any given domain, the choice of an underlying 

representation is governed by the domain-specific logistics of attaining a trade-off 

between ( a) the quality of retrieval and (b) cost of knowledge acquisition. We illustrate 

this using the diagram in Figure 2.1, which is inspired by (Brown et aI., 1998). 

Grouped in the bottom left comer of Figure 2.1 are techniques that can be used to 

automatically build textual case representations, but such representations are not rich 

enough to allow sophisticated retrieval. By and large, these approaches are founded on 

Information Retrieval models, a concise survey of which is presented in (Rijsbergen 

1979). An extreme situation is treating a case as a bag of words (BOW), and treating 

each distinct word in the casebase as a feature for indexing. Weights are assigned to 

features, based on how frequently they occur in a case (term frequency), and how 

strongly they discriminate a case from the rest of the cases (inverse document 

frequency). Each case is modelled as a vector in a vector space, with the features 

mapping onto the dimensions. The cosine similarity between two vectors is treated as a 

measure of similarity between the corresponding cases. Though very simple, this 

approach has received considerable attention in the TCBR community (Lenz et aI., 

1998b), possibly because it serves as the building block for more sophisticated systems. 
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As we shall see in Section 2.2, approaches that lead to richer representations can often 

be equivalently regarded as realizing a different weighting on BOW features. 

High 

Low 

Bag of Words + 
Feature Selection 

o 

Bag of Words 

Low 

o Phrases/ 

Deep NLP: Speech Acts + 
Manually Craned Rules 

o 

o 
Manually Engineered 
Training Data for 
Information Extraction 

o Domain specinc glossa ry 

Syntactic Fearures 

Cost of Knowledge Acquisition High 

Figure 2.1: the stress-strain relationship between cost of knowledge acquisition and 

Quality of Retrieval 

Moving slightly away from the BOW extreme in Figure 2.1 are approaches that 

attempt to identify meaningful "infonnation entities" that are semantically richer than 

words on their own. Two examples are: phrases, made of contiguous words and word 

groups, made of related words that are not necessarily adjacent to each other. These 

entities are typically extracted using a combination of "partial" syntactic analysis (as 

opposed to deep NLP) based on part-of-speech-tags and statistical units like n-grams. 

In situations where a domain specific glossary is readily available, this can be a useful 

resource as well. It may be noted that often the resulting representations can again be 

mapped onto a vector space, with the infonnation entities treated as features . An 

example of a TCBR system that belongs to this category is FallQ (Lenz & Burkhard 
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1997}. The use of phrases has had a turbulent history, with several authors (Scott & 

Matwin 1999) reporting no significant performance improvements over BOW. 

At the top right corner of Figure 2.1 are systems that adopt a ''top-down'' 

philosophy in their construction rather than a "bottom-up" one. More specifically, they 

are based on the idea of creating goal-driven indexes. There are two broad ways of 

realizing this. The first approach is to hand-craft the indexes and the underlying 

representation with the objective of maximizing retrieval effectiveness. The second 

approach is to use deep NLP. An example is a recent proposal by Gupta & Aha (2004), 

where a deep natural language understanding approach is used to derive a first-order 

representation of the unstructured texts. The authors envision that feature values can 

also be mined using this framework, but considerable research needs to go into 

foundational building blocks before an implementation of this idea can be realized. 

Brown et al observe that abstract concepts proposed in Speech Acts (Austin 1962) and 

Rhetorical Structure Theory (RST) (Mann & Thompson 1987) can be thought of as 

classical indexes, in the CBR sense, since they attempt to model goals and intentions of 

communicating agents, rather than using surface level text as a medium for such 

communication. The main criticism of the first approach is the prohibitively high cost 

involved in knowledge acquisition, making it infeasible for all but trivial 

demonstrations. In contrast, the second approach is limited by the difficulty in 

grounding the theories in sufficiently crisp rules to allow for automation, even within 

restricted domains. 

The relative ineffectiveness of bottom-up approaches, and the practical bottlenecks 

associated with realizing top-down ones with low manual intervention motivates us to 

investigate the feasibility of a viable middle ground. This is shown as the grey area in 

Figure 2.1, sandwiched between the bottom left and top-right extremes. To date, there 

have been two distinct threads of research in TCBR to attain this middle ground. The 

first is based on Information Extraction (IE), and the second on modelling underlying 

concepts using statistical mining of term associations. 
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The first approach attempts to extract feature value pairs based on structural 

information that can be automatically extracted from documents (Riloff & Lehnert 

1994). Examples of information entities that can be extracted with relative ease are 

dates, locations of events and names of people or organizations. In the terminology 

associated with the MUC series of conferences (MUC 91), these pieces of information 

are referred to as annotations. The annotated document may be used for further analysis 

based on domain specific knowledge, a significant part of which is acquired and 

encoded manually. In (Grishman 1997), templates are used to guide the knowledge 

acquisition process. A template is a set of slots and fillers, not very different from the 

feature-value representations used in CBR. In order to fill a template, the annotations 

are classified as belonging to one or more of the slots in a template. Often this 

classification is supervised, and relies on the presence of training examples in the form 

of unstructured cases that have been mapped to equivalent template representations by 

experts. As a further step, IE systems also attempt to capture domain specific rules 

(Grishman 1997) that allow the system to perform inferencing with the objective of 

filling in missing slots or expanding the user query. In the classification context, 

systems have been built to classify text that rely entirely on a system of handcrafted 

rules (Hayes et aI., 1990). While there have been a few attempts to integrate IE with 

TCBR (Bruninghaus & Ashley 2001), to our knowledge, no TCBR system to date has 

used a combination of annotations and hand-crafted domain rules. 

The second approach towards striking the middle ground in TCBR is using 

statistical techniques to facilitate the journey from a bag of words to a set of underlying 

concepts. The underlying hypothesis is that these set of concepts are better descriptors 

of the underlying content, than the surface word-level representation. A critical 

problem in dealing with text is the problem of word choice variability, or different 

surface representations that achieve the same communication goal. Two common 

problems highlighted in this context are synonymy and polysemy. Thus a textual 

representation in the form of bag of words is at best a noisy representation of the 

underlying knowledge content. The central thesis motivating statistical techniques is 
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that textual cases are less "noisy" when modelled in terms of concepts rather than 

words. The main strength of this approach is that in most cases, the concept extraction 

is automatic, with little or no manual intervention. This has inspired a significant 

amount of research within Text Mining and IR communities, much of which has later 

been adapted for TCBR tasks. Instead of attempting to discuss each technique 

individually, we organize these techniques into a taxonomy and present a unified view 

in Section 2.2, which allows us to compare and contrast these approaches. 

To summarize, there are two broad trends towards attaining the middle ground: the 

first is based on Information Extraction and relies strongly on linguistic knowledge; the 

second is based on abstraction of words to concepts, and is founded on statistical 

principles. In this thesis, we focus on the latter. However, it is important to note that 

these two philosophies of achieving a middle ground are not necessarily in competition 

with each other; in fact they can complement each other in more ways than one. Firstly, 

instead of operating directly over a bag of words, statistical approaches can use phrases 

or attribute values extracted by IE techniques as staring points for concept learning. 

Mao and Chu (2007) show that concept learners operating over domain specific 

keyphrases achieve significantly higher accuracy in classification tasks compared to 

using words on their own. Secondly, statistical learning techniques can facilitate 

automating Information Extraction tasks, or at the least assisting domain experts in 

such tasks as well. Several IE approaches model IE as a token classification task 

(Kushmerick et al. 2001). The text is split into several tokens, and standard 

classification algorithms are employed to assign these tokens to one of the slot fillers. 

Several other subtasks of IE like phrase extraction, identification of contextually related 

word groups and extraction of attribute value pairs employ statistical approaches well. 

In Section 2.2 we review statistical approaches to concept learning, and argue that 

factor analytic approaches like LSI are favourably positioned amongst existing 

techniques, in alleviating the knowledge acquisition bottleneck associated with TCBR. 

We also make a critical note of LSI shortcomings that motivates much of our work 

reported in later chapters. In Section 2.3 we provide a comparative analysis of 
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architectures that facilitate effective and efficient retrieval in TCBR. In particular, we 

highlight some advantages associated with Case Retrieval Networks in this context. We 

also identify weaknesses of CRNs in the presence of non-sparse textual representations, 

that motivates work reported in Chapter 8. Finally, we take a quick look at existing 

visualization approaches that may allow users and experts to interpret the acquired 

knowledge easily. We identify shortcomings of these approaches that inspire our 

preliminary research reported in Chapter 3. 

2.2 From Words to Concepts 

While the traditional BOW paradigm has been the easiest prescription for building 

most text retrieval applications, it is crippled with several limitations, most of which 

stem from the fact that BOW fails to exploit associations between words and fares 

badly in handling both synonymy and polysemy. Thus a query on "operating systems" 

may fail to retrieve documents on Windows XP or Linux if the words "operating" or 

"system" are not present in those documents, and polysemous words like "Jaguar" 

cannot be effectively disambiguated based on usage context. In classification tasks, 

using BOW results in very poor generalization over the knowledge present in training 

data. Furthennore, infrequent words that are representative of one case are often 

filtered out, if they do not occur frequently in the rest of the corpus. These limitations 

of BOW have motivated research into modelling textual content using concepts rather 

than words. From a statistical machine learning perspective, the thesis is that 

combinations of words can be abstracted out to fonn concepts, which are more 

representative of the underlying meaning thus facilitating more effective retrieval, or 

more discriminative with respect to the defined categories in the classification context. 

Based on the representation of concepts, statistical techniques that mine concepts 

can be broadly grouped as follows: 
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1. Word Clustering/Distributional Clustering. In this approach, concepts are 

modelled as clusters of related words. One popular version is a probabilistic approach 

called Distributional Clustering, which was introduced in the early nineties for 

automated thesaurus creation, and later found application in text classification (Baker 

and McCallum 1998). In the classification context, the key idea is to extract features 

comprising words that are contextually similar and contribute similarly to 

classification. This has the positive effect of reducing data sparseness and redundancy, 

and facilitating selection of most representative features. Several distributional 

measures have been proposed for measuring similarity between two word distributions, 

the most notable of which is the KL divergence (Manning & Schutze 1999). In the 

TCBR community, researchers have extended this idea to the unsupervised case where 

class labels are not present (Wiratunga et al., 2006, Patterson et al. 2005). The basic 

idea behind these extensions is to substitute the class label by a separate set of seed 

words, against which the distributional similarities of other words are conditioned. 

2. Factor Analysis. Documents are similar when they have similar words, but words 

are similar when they appear in similar documents. Approaches based on factor 

analysis attempt to find a mathematical solution to the above circularity. In the field of 

text retrieval, the most widely researched and used factor analytic technique is Latent 

Semantic Indexing (LSI) (Deerwester et aI., 1990). LSI is founded on a vector space 

representation of documents, which can be mapped onto a term-document matrix. The 

key step in LSI involves subjecting this matrix to Singular Value Decomposition 

(SVD), a linear algebraic technique that extracts a set of orthogonal bases for this 

space. In essence, these basis vectors, also called concepts, are nothing but linear 

combinations of the original terms. These concepts are ranked according to their 

importance. Considering only the most important ones (based on some threshold) and 

ignoring the rest, we can obtain reduced dimensional representations of both words and 

documents. The revised representations using concepts rather than words have been 

shown to improve retrieval performance (Deerwester et aI., 1990). The essential thesis 
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behind LSI is that by representing documents and words in the concept space, we can 

recover from "noise" due to word choice variability, and thus have more robust 

estimates of the underlying meaning. Further technical details are discussed in Chapter 

4. One of the remarkable aspects of SVD is its ability to represent both terms and 

documents in the same "concept space". This distinguishes it from its historical 

precursors based on eigen-analysis that can handle only the term space or the document 

space at a time. While initially designed for unsupervised retrieval, LSI has also been 

applied to supervised classification tasks (Gee 2003, Zelikovitz 2004, Zelikovitz & 

Hirsh 2001), where LSI was agnostic to class-knowledge. The inability to exploit class 

knowledge in supervised tasks is one of the critical drawbacks of LSI. Ever since the 

seminal paper of Deerwester et al. (1995), several approaches and extensions of LSI 

have been proposed that are similar in spirit to the basic idea. Recently, a probabilistic 

version of LSI called PLSI has received much attention in the text mining community. 

Other relatives include Non-Negative Matrix Factorization (NMF) (Lee & Seung 2001) 

and Semi-Discrete Matrix Decomposition Reference (Kolda & O'Leary 1998). 

3. Rule Learners Unlike probabilistic or factor-analytic approaches that generate 

numeric representations of concepts, rule learners produce symbolic concepts. These 

approaches have been widely used for supervised classification tasks. The two broad 

classes of rule learners are decision tree learners and inductive rule learners. A decision 

tree classifier is a tree whose internal nodes are labelled by the terms, each branch 

emanating from a node checks for the presence or absence of that term. Each leaf node 

is assigned a class label. A test document d j is recursively tested for the weights that 

words in internal nodes have in dj , until a leaf is reached, whose class label is assigned 

to dj • A DT is constructed from training examples using a divide and conquer approach: 

( a) check if all training documents have the same class label; (b) if not, choose a feature 

and partition the set into two subsets, such that each subset has the same value for that 

feature (often only presence/absence is considered). The process is recursively 

performed on all subtrees, till each leaf is "pure", i.e. contains documents drawn from 
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one class, which is chosen as the label for that node. The key step here is to choose 

partitioning attributes judiciously; information theoretic measures such as Information 

Gain are often used to identify good choices. For our present discussion, we note that 

we can read out a "rule" induced by a DT, by treating a conjunction of all nodes from 

root to leaf (leaf excluded) as the rule antecedent, and the class label associated with 

the leaf as a consequent. Fully grown DTs often suffer from overfitting; methods to 

prune overly specific branches have been proposed (Breiman et al., 1984). 

Inductive rule learners have the same goal as DT learners, but they tend to 

produce more compact rules. The basic idea is to start from a set of highly specific 

rules that cover all the training data. So, each training document leads to a rule which 

has words in the document in its antecedent, and the class label of that document as the 

consequent. Unsurprisingly, this leads to overfitting; the rule learner now generalizes 

these rules by removing or merging clauses, to maximize rule compactness, while 

retaining "coverage". A further step of pruning is now applied for "global 

optimization" to strike a balance between mimimizing error on the entire rule set and 

maximising generality. RIPPER(Choen & Singer 1999) and Information Extraction 

extraction approaches like TextRise (Nam and Mooney 2001) are founded on this idea. 

Unsupervised variants of rule learners have recently been studied. In Textual CBR, 

(Wiratunga 2006) proposed Propositional Semantic Indexing (PSI), which uses rule 

induction to extract new features that are logical combinations of existing features. 

FEATUREMINE (Zelikovitz 2003) extracts simpler and less granular rules based on 

pairwise comparisons of all feature-pairs. 

4. Formal Concept Analysis (FCA). Founded on a theoretical framework conceived 

in the eighties (Wille 1982), FCA has only recently been applied to mining concepts in 

texts (Cimiano et al. 2003). FCA takes as input a term-document matrix, which is 

referred to as defining the context. The output is a set of concepts. Intuitively, a concept 

is essentially a grouping of a subset of documents, say D, with a subset of terms, say T, 

such that the only terms that documents in D share between them are T, and 
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conversely, the only documents in which all terms in T appear are D ; this is called the 

closure property. The set of all concepts, when ordered by set inclusion, satisfies the 

properties of a complete lattice, which is called a Concept (or Galois) lattice. It may be 

noted that concepts have been alternately referred to as closed itemsets in data mining, 

and maximal bipartite cliques in theoretical computer science. One attractive feature of 

FCA is that clustering is not done separately on the word and document spaces. Rather, 

each concept is defined by a set of words and a set of documents, the former providing 

an explanation for the grouping of the latter, and vice versa. Thus FCA-generated 

concepts can be easily interpreted. However, one critical limitation is that it requires a 

binary-valued term-document matrix as a starting point. Thus relations captured using 

real valued weights or smoothed versions of this matrix cannot be accommodated. 

Furthermore, rigid closure requirements mean that it may fail to identify "approximate" 

concepts, which could be more meaningful and general than the extracted ones. When 

operating over large and sparse term document matrix, this often results in a large 

number of meaningless groupings of terms and documents. Furthennore, unlike LSI, 

the extracted concepts are not ranked according to their importance. It is also not clear 

how to extend this idea to accommodate class knowledge of training instances 10 

supervised tasks. 

5. Implicit Concepts Defined By Hyperplane Separators. In addition to the four 

concept mining approaches described above, there is a family of "black box" 

approaches that include neural networks and kernel methods like the Support Vector 

Machines (SVM). The latter, in particular, has been shown to yield state-of-the-art 

results in supervised text classification tasks (Joachims 1998). These approaches are 

founded on the vector space model, and attempt to learn decision boundaries that 

separate classes in the original feature space (as with neural networks (Mitchell 1997)) 

or a higher dimensional version of the original space, where classes become linearly 

separable (as with SVMs). While the other approaches described so far produce 

concept representations that can be accessed and exploited for various text mining 



24 

applications, neural nets and SVMs represent concepts implicitly using clusters of 

objects (documents) bounded by hyperplane separators, which are linear combinations 

of features that separate classes from each other. Intuitively, a concept could be 

distributed across various regions of feature space, and each region is bounded by a 

complex decision boundary, a polygonal approximation of which is constructed by the 

separating hyperplanes. Thus, the representation of concepts is scattered across a set of 

geometrical surfaces; the concepts are implicitly modelled within the geometry of the 

space to solve the classification task, but cannot be easily interpreted, accessed or 

exploited for other tasks. This can be contrasted against factor analytic approaches like 

LSI, where each concept is a linear combination of features, that can be accessed and 

used for tasks like feature extraction or mining word similarity. Another limitation of 

neural nets and SVM is that they have been tailor-made to handle supervised tasks, and 

do not lend themselves comfortably to unsupervised extensions. 

While the above list is representative of the established techniques, it is by no 

means exhaustive. In particular, it may be noted that all five approaches mentioned 

above start from BOW representations, and thus knowledge of the order in which 

words appear in the text is lost. One approach to address this problem is using syntactic 

phrases based on linguistic knowledge like WordNet (Miller 1995). The five 

approaches mentioned above can be easily extended to mine abstract statistical 

concepts over Bag of Phrases, instead of using BOW as the starting point. 

F or ease of analysis, we present below a taxonomy that groups approaches built 

using the above formalisms, based on nine axes. This allows us to evaluate the relative 

advantages and disadvantages of these approaches, and assess their suitability for a 

given task. 

Axis 1: Class knowledge. Based on how strongly the approach relies on knowledge of 

class labels, techniques may be classified as: 

Supervised. These techniques heavily rely on class knowledge, and some of them 

cannot be easily extended to unsupervised tasks. Examples are neural nets and SVM. 
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Rule learners like RIPPER, decision trees and distributional word clustering 

approaches also belong to this category. 

Unsupervised. These techniques can learn concepts without relying on class labels of 

training data. Examples are factor analytic techniques like LSI, rule learners based on 

association rule discovery, and unsupervised extensions of distributional clustering 

approaches like (Patterson et a12005, Wiratunga et aI2006). 

In addition most supervised concept learners, can also be operated in a "semi

supervised" mode, whereby they use both labeled and unlabeled data for training. The 

strength of such approaches is that they can compensate for lack of sufficient labelled 

training instances, by using unlabelled ones, which are often available aplenty. Two 

approaches are Expectation Maximization (EM) and co-training (Feldman & Sanger 

2007). In EM, as a first step, a model is learnt based on training data. Next, in what is 

called the E step, unlabelled documents are classified by the current model. In the M 

step, the model is trained over the combined corpus. E and M steps are repeated till 

convergence is obtained. Co-training is based on bootstrapping where unlabelled 

documents classified using parts of the training documents (say abstracts or meta-level 

tags) are used for training the classifier based on the remaining parts (say the body), 

and vice versa. Both EM and co-training have shown a reduction of around 60% in the 

amount of training data needed to produce the same classifier performance (Feldman & 

Sanger 2007). 

Axis 2: Knowledge Source. Based on their source of knowledge, concept learners are 

of two types. While introspective techniques rely entirely on the given data (training 

data, in supervised cases), those that use background knowledge can exploit knowledge 

from external knowledge sources as well. Most techniques discussed above can be used 

to accommodate background knowledge, or disregard it; so this is more a classification 

of tools built on these learners, rather than the learners themselves. WordNet has been 

used to provide linguistic knowledge of word associations in TCBR (Chakraborti et aI., 

2003). Recently, the Web, and in particular the Wikipedia has been used to acquire 
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knowledge of "semantic relatedness of words and phrases (Gabrilovich and Markovitch 

2007). A third interesting way of incorporating background knowledge is transductive 

learning, proposed by Zelikovitz and Hirsh (2001) in the context of supervised 

classification tasks. The basic idea is to pool unlabelled documents along with labelled 

ones while doing LSI. In the TCBR context, the use of domain specific knowledge is 

critical to system performance. Mario Lenz (1998) identifies seven knowledge layers in 

TCBR, and surveys TCBR systems that incorporate domain specific glossaries and 

feature values. In the current work, we will focus on introspective approaches alone, so 

that we are free of any underlying assumptions about availability of background 

knowledge. We incur no loss of generality, since linguistic knowledge or knowledge of 

domain specific feature values and their associations, if available, can easily be 

integrated to augment the knowledge mined by the statistical approaches proposed in 

this thesis. 

Axis 3: Knowledge Richness. This is related to Axis 2, but here we are concerned with 

the representation of features within the system, rather than the source from which they 

were derived. At one extreme are knowledge light systems that rely on bag of words; at 

the other extreme are knowledge rich systems that use domain specific feature values 

extracted semi-automatically, typically with significant manual intervention. 

Unsurprisingly, there are several possibilities between these extremes, as exemplified 

by the seven knowledge layers of Mario Lenz. Most statistical concept learning 

approaches make no underlying assumptions about the knowledge richness of features. 

However, not all approaches scale well over the large dimensionality associated with 

BOW (see Axis 9 below). Knowledge rich approaches help reduce dimensionality, and 

also allow for more meaningful concepts to be inferred. This is particularly important 

in the case of techniques like FCA which tend to generate noisy concepts over large 

sparse BOW representations. Furthermore, while most concept learners are aided by 

feature selection strategies using measures like Information Gain (Mitchell, 1997) to 

reduce dimensionality over supervised classification tasks, feature selection over 
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unsupervised domains is less straightforward. In such situations, most learners are 

likely to benefit from availability of knowledge rich features. The disadvantage with 

knowledge rich features is in the additional manual effort involved in acquiring them. 

Given our focus on completely automated knowledge acquisition, we will assume 

BOW as our starting representation throughout this thesis. It is important to note, 

however, that all our approaches will benefit from better domain-specific feature 

engineering. 

Axis 4: Explicitness/lnterpretability. This is determined by the formalism used to 

describe statistically mined concepts. In vector space theoretic approaches, concepts are 

viewed as linear combinations of features (as in LSI), or as combinations of convex 

regions in the vector space bounded by linear decision surfaces (as in neural nets or 

SVM). In Probabilistic models, like distributional word clustering, PLSI, and 

probabilistic mixture models like Latent Dirichlet Allocation, concepts learnt are 

probability distributions over the feature space. Rule-based models, like decision trees 

and DNF learners model concepts as rules whose antecedents are logical combinations 

of features, and consequents are class labels or features in the supervised and 

unsupervised cases respectively. FCA may be alternately viewed as founded on the 

rule-based model, since concepts mined by FCA have their counterparts in closed 

itemsets mined by association rule mining algorithms. The question we ask here is: Can 

the knowledge acquired by the system be interpreted meaningfully by humans? While 

there is an element of subjectivity based on user profiles and representations that they 

are comfortable with, there is not much of a disagreement about the extremes: rule 

based learners are the easiest to interpret, while neural networks and SVM fare 

miserably. Between these "white-box" and "black-box" extremes are approaches that 

we call "grey box". Factor analytic approaches like LSI fall into this category. While 

the numbers involved in the linear word combinations may not be easily understood, 

LSI has the advantage that terms and documents are projected onto the same concept 

space, and this allows for easy visualization. Also the concepts are ranked in 
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accordance with their importance, so a visual inspection of only a top few important 

concepts may reveal interesting patterns that might have otherwise required a large 

number of equivalent rules to elicit. It may be noted that in addition to interpretability, 

some authors (Hilario & Kalousis 1999) identify a second criteria called transparency, 

which refers to whether the principle behind the method (as opposed to the concepts it 

generates) is easily understood. SVM and related kernel approaches are particularly 

hard to grasp, whereas rule based techniques and word clusters are the easiest. LSI and 

neural nets are moderately hard. For the purpose of the current thesis, we do not lay 

much emphasis on transparency, as long as system generated concepts are accessible 

and lead to improvements in system effectiveness. 

Axis 5: Ease of Incremental Update. This is measured by the number of past training 

examples that must be reprocessed to accommodate a new example. Given a new 

training instance, incremental concept learners can update the set of generated 

concepts, without having to run the learner on past examples all over again. While 

incremental learning is often desirable in real world situations where the learner has to 

handle a steady stream of incoming data, non-incremental learners are often more 

effective over batch data, since they can better exploit the global properties of the 

collection to arrive at "enlightened" (Hilario & Kalousis 1999) concept representations. 

Another limitation associated with certain incremental learners is their sensitivity to 

order of presentation of the training instances. SVM, neural networks and decision tree

based learners are all non-incremental. However (Utgoff 1989) and (Brodley & Utgoff 

1995) present incremental variants of univariate and multivariate trees respectively. LSI 

has been typically used in the non-incremental mode, though this limitation has been 

successfully addressed by various fast SVD update strategies; (Berry et aI., 1995) for 

example make a comparative study of six such update algorithms. It may be noted that 

unlike statistically inferred knowledge, linguistic and background knowledge do not 

require frequent updates. 
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Axis 6: Ease of Use. This is characterized by the number and complexity of model or 

runtime parameters that need to tuned by the user. Decision trees require very few 

parameter settings; and SYM has been shown to be fairly robust to parameters under 

certain conditions (Joachims 1998). Neural Networks are possibly the worst, since the 

number of internal nodes which determine the complexity of the learnt decision 

surfaces, as well as the learning rate, momentum and initialization of weights need to 

be tuned to suit the application in question. The case for LSI has no clear consensus. 

While no parameters are involved in the factor analysis process per se, many 

researchers have pointed to the difficulty in choosing the right number of concept 

dimensions. We argue that LSI cannot be singled out in this regard, since a disguised 

version of the same concern is shared by most other approaches as well. For example, 

the support and confidence thresholds in association rule mining, the number of word 

clusters and seed-words that are appropriate in distributional clustering, and the level of 

decision tree pruning to achieve the right generalization, are all parameters that need 

tuning and play a role not very different from the LSI dimensionality setting. 

Alternatively, we can regard this parameter setting as aiming to achieve the right bias

variance tradeoff (Hastie et al., 2001). Low LSI dimensionality corresponds to a high

bias low-variance learner that would generate simple highly constrained models that are 

insensitive to data fluctuations. Using large number of LSI dimensions, on the other 

hand, corresponds to a low-bias high-variance learner that can generate arbitrarily 

complex models, often running the risk of overfitting the data. Another aspect that 

determines the ease of use of a concept learner is the number of underlying 

assumptions. For example using association rules or FCA requires that one starts with 

an integer valued term document matrix, and some additional techniques are required 

to carry out the mapping from real-valued to integer-valued matrices, in a meaningful 

way. SYM is popular since it has the flexibility of handling a large number of 

dimensions, and its performance is not critically dependent on feature selection. 

Current implementations of LSI can scale up comfortably to handle very large number 

of dimensions. 
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Axis 7: Ease of integration with instance based techniques. This is an important 

criterion in relation to TCBR systems. CBR systems are instance based learners that 

support lazy learning, and incremental and local updates to knowledge. In addition they 

are easily interpretable and knowledge maintenance is facilitated by the availability of 

rich competence models. For TCBR tasks, we would prefer concept learners that yield 

representations that maintain these advantages. LSI has a distinct edge here, since it can 

generate revised vector space representations of the underlying cases, either as an 

approximation of the tenn-document representation in the original feature space, or as a 

reduced dimensional representation in the concept space. This will be discussed in 

more detail in Chapter 4. SVM and neural networks are the worst in this regard, since 

they yield no representations whatsoever, that can be exploited by instance-based 

techniques. FCA, decision trees and other rule-based systems are not naturally suited 

for CBR style representations, though the learnt concepts may be mapped indirectly to 

revised case representations, often with loss of infonnation. In the PSI scheme 

(Wiratunga et aI., 2005a) for examples, inferred rules were used for feature 

generalizations, which in tum led to revised cases. 

Axis 8: Support for additional tasks like Word Similarity Mining. In the TCBR 

context, we are often interested in not just revised representations of concepts, but also 

an explicit knowledge of word (feature) similarity. This allows experts to 

independently examine the word similarity knowledge and suggest refinements. While 

techniques like LSI can be tailored easily to mine similarity knowledge, it is less 

straightforward to extract word similarity from rule-based learners like decision trees. 

SVMs are the worst in this regard as they pennit no easy access to their underlying 

concepts, which are critical in detennining how similar words are. 

Axis 9: Efficiency. This is composed of two parts: training time and execution time. 

While actual training times are critically dependent on parameter settings which 
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typically trade off effectiveness against training times, we can still compare approaches 

by expressing training times as a function of n, the number of training instances and p, 

the number of predictive features. Rule based techniques like ID3 have complexity of 

the order of 0(n2p) in the worst case, whereas LSI's complexity mainly arises out of 

the SVD step which has worst-case complexity 0(min(np2,pn2». However, SVD 

implementations can be speeded up considerably, by requiring that only the first few 

important concepts need to be considered, and by exploiting sparseness of the term

document matrices. Neural nets are the slowest in terms of training time. While 

complexity analysis over neural nets is generally problematic because of the difficulty 

in predicting the number of iterations required to converge, it has been shown that the 

worst case complexity is exponential. Hinton approximates training time on a neural 

network to be approximately 0(N3) where N is the number of weights in the network. 

In comparison, SVMs are faster to train, the worst case complexity is O(n\ though 

further extensions reduce the average case complexity (Chin 1998). The execution 

times of different algorithms are less critical for the current comparison, since in TCBR 

the unwritten assumption is that all approaches will finally yield revised case 

representations, which will be processed using near neighbour approaches. 

In Table 2.1, we summarize the strengths and weaknesses of the five concept 

learning approaches, using a subset of the above dimensions as basis for comparison. 

Some dimensions like use of background knowledge or knowledge richness, have been 

excluded for comparison, since they characterize TCBR systems as a whole, as 

opposed to underlying formalisms. In other words, no statistical approach has inherent 

restriction to the use of background knowledge, or of knowledge rich units like phrases 

instead of bag of words. 

In this thesis, factor analytic approaches, in particular LSI, playa substantial role 

in automatic knowledge acquisition for CRNs. The choice of LSI is driven by its ability 

to generate rich representations for both documents and words in terms of a common 

set of underlying concepts thus facilitating acquisition of both relevance and similarity 

knowledge. Thus LSI integrates easily with instance based learners. Other advantages 
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include availability of easy update strategies, efficiency of retrieval, and reliance on 

very few parameters to be tuned. However LSI is limited by its inability to exploit 

class knowledge in supervised classification domains; we address this limitation in 

Chapter 5. In Chapter 6, we present an approach to mine similarity knowledge that 

relaxes certain mathematical constraints imposed by LSI. We show that our new 

approach not only leads to better retrieval effectiveness, but is also better than LSI at 

explaining, as opposed to merely estimating, associations between features. In Chapter 

8, we address run-time efficiency implications of LSI and present novel retrieval 

formalisms that facilitate fast retrieval over relevance and similarity knowledge mined 

using LSI. 

Table 2.1 Comparison of concept learning approaches 

Word Factor Rule FCA Implieit 
ClusteriJtg Analysis Learners Concepts 

(SVM) 
Class Originally U nsup ervis ed Supervised U nsup ervis ed Supervised 
Knowleclge supervis e d, (supervised 

recently extensions 
unsupervised reported) 
extensions 
proposed 

Interpre tability Average Average Very Good Good Poor 
Transparency Average Average Very Good Average Poor 
Ease of Use Average Average Good Average; SVMs 

Lack of very 
support for good, 
real valued Neural 
entries nets the 

worst 
Ease of Average Very Good Average Average Poor 
Integra don 
with instance 
based 
tecludques 
Support for Very Good Very Good Average Average Poor 
Word 
Similarity 
Mining 
Training Average Average Good Average Neural Nets 
Efficiency slowest, 

SVMs 
average 
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2.3 Scalable TCBR Architectures 

It is not enough to have a good representation of textual cases, we also need an 

architecture that embeds the different knowledge containers, and facilitates effective 

and efficient retrieval over these cases. We identify the following characteristics that 

are desirable for a TCBR architecture: 

Efficiency: The architecture must allow for fast retrieval in the face of large number of 

cases, by avoiding exhaustive search over the casebase. In addition, TCBR domains are 

typically characterized by very high dimensionality, originating from the large number 

of words (alternately phrases or word groups) that define the feature space. So it is 

imperative for the system to be able to scale well to counter the "curse of 

dimensionality". 

Retrieval Effectiveness: This is a broad goal, which encompasses several sub-goals. 

Firstly, the architecture must be flexible, so that the retrieval results can be tailored to 

specific search needs of the user. In IR, precision and recall are most widely used to 

evaluate retrieval effectiveness. The former measures the fraction of the retrieved 

results that are relevant to the query, while the latter estimates the proportion of all 

relevant documents in the collection that were retrieved. At one extreme, a TCBR 

system should be able to support a very focussed (precision-centric) search where all 

search terms or phrases appear in the retrieved documents. At the other end, it should 

also support a lenient (recall-centric) search where even documents that contain none of 

the query terms (say "gulf', "oil" and "war") but are still relevant (say on "Middle

east") are retrieved. Lenz (1999) identifies an additional pair of criteria, namely 

completeness and correctness. The former implies that every sufficiently similar case in 

memory will be found during retrieval, while the latter is ensured through a secondary 
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selection over the retrieved cases. We will not lay strong emphasis on these criteria, 

primarily because in a practical setting, it is extremely difficult to formally evaluate 

systems according to these measures. Moreover, the measures in a sense mandate a two 

step retrieval, the first ensuring completeness and the second correctness, which may be 

restrictive when dealing with techniques that rely on precomputed indices to do a one

shot pruning of the search space. In certain situations it may suffice to obtain an 

appropriate ranking of cases, and the actual similarity scores do not matter; this aspect 

may be used to eliminate redundant computations, thereby improving efficiency of 

retrieval. To sum up, the efficiency of the system should not be at the cost of its 

effectiveness, though concessions may be made specific to the needs of the retrieval 

task at hand. 

Few Underlying Assumptions: Approaches to improve retrieval efficiency often rely 

on assumptions such as triangle inequality, existence of ordered attributes or 

"skewed"ness of data distribution (Chavez et al., 2001). These assumptions restrict the 

applicability of such techniques. We would thus prefer architectures founded on 

formalisms with minimal underlying assumptions. In particular, the architecture must 

support efficient retrieval over commonly used distance metrics like the Euclidean 

Distance and the cosine similarity. 

Explicit Knowledge Containers: The effectiveness of a TeBR system is typically 

governed by two main knowledge containers, similarity and relevance knowledge. 

Keeping in line with the CBR philosophy, explicit access to these knowledge 

containers is desirable. It may be noted that the role of a third eBR knowledge 

container, namely adaptation knowledge, has been of peripheral concern in practical 

TCBR systems, though some approaches towards acquiring adaptation knowledge for 

textual cases have been explored very recently (Gervas et aI., 2005). 
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2.3.1 TCBR Architectures 

We classify the mechanisms explored in CBR to facilitate efficient retrieval into the 

following broad categories. 

Partitioning Methods. Organization of cases in the case-memory is based on 

similarities between cases. Cases similar to each other are grouped in the same 

"bucket" - this can be viewed as a generalization of hashing in one dimension. A k-d 

tree (Wess et at. 1993) is a k-dimensional binary search tree that groups cases into non

overlapping partitions, each partition consists of cases that are similar according to a 

given similarity measure. At retrieval time, only sub-trees likely to contain a 

prospective case are traversed, thus saving on similarity computation with cases distant 

from the query. To ensure that no relevant cases are missed out, similarity bounds are 

computed at run time to decide whether cases in adjacent partitions need to be 

considered. The main limitation of k-d trees is their assumption of ordered attributes; 

also they do not scale well when large number of dimensions are used for indexing. 

Inreca Trees (Bergmann 2002) are an extension of this idea that can handle unordered 

domains and allow for n-ary splits based on attribute values. 

Pivot Based Methods. These approaches were inspired by algorithms conceived in 

early seventies (Chavez et at., 200 I) to speed up near neighbour search in large metric 

spaces. Distances over a metric space obey the triangle inequality, and this property is 

exploited to eliminate redundant computations at retrieval time. The idea is to select a 

few documents as pivots, and pre-compute distances of all remaining documents to the 

pivots. The target case is then compared only with the pivot cases, and triangle 

inequality is used to eliminate distance computations to cases that can never satisfy the 

search criterion. Variants of this idea use a tree data structure where partitions of the 

casebase are assigned to pivots they are closest to, and these partitions are then split 

recursively using further pivots at each intermediate node. The cost of traversing the 
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tree index is referred to as internal complexity, whereas the cost of exhaustive search at 

the leaf nodes is referred to as external complexity. The efficiency improvements 

obtained are critically dependent on the right trade off between these two complexity 

estimates. Two techniques in the CBR literature may be regarded as close relatives of 

pivot-based search. Smyth and McKenna (1999) present a footprint based retrieval 

algorithm where a set of footprint cases act as pivots. Footprint cases are those that 

provide a good "coverage" of the casebase. Intuitively these cases may be treated as a 

small fraction of the cases that can solve the same set of problems as the entire 

casebase. Each footprint case is associated with a set of related cases, that either solve 

the footprint case, or are covered by it. The authors propose a two stage retrieval. First, 

the target cases are compared against the footprint cases. In the second step, the cases 

related to the most similar footprint case are searched. Closely related is the idea of 

Fish and Shrink (Bergmann 2002) where similarities between a subset of cases is pre

computed using the relatedness of what the authors call "aspects". At query time, if a 

case is found to be far away from the target, several neighbours of that case can be 

shown to be ineligible as well, using the triangle inequality. This saves redundant 

computations which is especially significant in this case, since aspect-based similarities 

are computationally demanding. A limitation of most pivot-based approaches is their 

reliance on assumptions like triangle inequality. 

Spreading Activation Spreading activation methods VIew case memory as an 

interconnected network of nodes that capture the association of cases with their 

attribute values. Target attribute values trigger a spreading activation in the network, 

resulting in activation of cases similar to the target. Spreading Activation based 

approaches have been proposed in Brown et al. (1994), Wolverton and Hyes-Roth 

(1994) and Lenz (1996). The CRN belongs to this category, and has been particularly 

favoured by the TCBR community because of several reasons. Firstly, CRNs are 

efficient. Lenz (1996) (also see Lenz et al. 1998) has successfully deployed CRNs over 

large casebases containing as many as 200,000 cases. The applicability of CRNs to real 
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world text retrieval problems has been demonstrated by the F ALLQ project (Lenz et 

aI., 1997). Balaraman and Chakraborti (2004) have also employed them to search over 

large volumes of directory records (upwards of 4 million). More recently spam filtering 

has benefited from CRN efficiency gains (Delany et aI., 2004). Secondly, they are 

flexible and allow different retrieval needs like high precision or high recall to be 

addressed within the same formal framework. Thirdly, they have no underlying 

assumptions about the nature of attributes or distance functions. Finally, both 

knowledge containers of CRNs, namely knowledge about how terms in a domain are 

related to each other (similarity knowledge), and knowledge about relatedness of terms 

to cases (relevance knowledge) are explicit and there is a neat separation between them, 

allowing them to be independently acquired, revised and manipulated. Since much of 

the later thesis is founded on the CRN architecture, we take a closer look at CRNs in 

Section 2.3.2. 

Additional techniques. In addition to the above basic approaches, Stanfill and Waltz 

(1986) have reported significant speed-ups using massively parallel SIMD 

architectures. Their approach uses a brute force sequential search, but parallelizes the 

computations involved. Many commercial CBR systems use smart dynamic SQL 

queries to successively narrow down search space, thereby also exploiting fast indexing 

strategies already built into commercial DBMS systems. Both parallelization and 

database-centric optimizations can lead to better performance of most approaches 

discussed above. 

2.3.2 Case Retrieval Networks 

In this subsection, we take a closer look at CRNs. To illustrate the basic idea we 

consider the example casebase in Figure 2.2(a) which has nine cases comprising 

keywords, drawn from three domains: CBR, Chemistry and Linear Algebra. The 

keywords are along the columns of the matrix. Each case is represented as a row of 
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binary values; a value 1 indicates that a keyword is present and 0 that it is absent. Cases 

1, 2 and 3 relate to the CBR topic, cases 4, 5 and 6 to Chemistry and cases 7, 8 and 9 to 

Linear Algebra. 

Figure 2.2(b) shows this casebase mapped onto a CRN. The keywords are treated as 

feature values, which mapped to Information Entities (lEs). The rectangles denote IEs 

and the ovals represent cases. IE nodes are linked to case nodes by relevance arcs 

which are weighted according to the degree of association between terms and cases. In 

our example, relevance is 1 if an IE occurs in a case, 0 otherwise. The relevances are 

directly obtained from the matrix values in Figure 2.2(a). IE nodes are related to each 

other by similarity arcs (curved arrows), which have numeric strengths denoting 

semantic similarity between two terms. For instance, the word "indexing" is more 

similar to "clustering" (similarity: 0.81) than to "extraction" (similarity: 0.42). While 

thesauri like WordNet can be used to estimate similarities between domain-independent 

terms (pederson et al. 2004), statistical co-occurrence analysis supplemented by manual 

intervention is typically needed to acquire domain-specific similarities. 

To perform retrieval, the query is parsed and IEs that appear in the query are 

activated. A similarity propagation is initiated through similarity arcs, to identify 

relevant IEs. The next step is relevance propagation, where the IEs in the query, as well 

as those similar to the ones in the query, spread activations to the case nodes via 

relevance arcs. These incoming activations are aggregated to form an activation score 

for each case node. Cases are accordingly ranked and the top k cases are retrieved. 

A CRN facilitates efficient retrieval compared with a linear search through a 

casebase. While detailed time complexity estimates are available in (Lenz 1999), 

intuitively the speedup is because computation for establishing similarity between any 

distinct pair of IEs happens only once. Moreover, only cases with non-zero similarity to 

the query are taken into account in the retrieval process, thereby saving redundant 

computations. 
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Figure 2.2 CRN for TCBR retrieval 

CRNs are discussed in further detail in Chapter 8. Retrieval in CRNs tend to slow down 

when the sparseness of the original similarity relations is reduced, as is typical when 

concept learners like LSI are used to generate revised case representations. We propose 

a solution to this problem; the revised formalism is called the Fast Case Retrieval 

Network (FCRN) and forms the central theme of Chapter 8. 

2.4 Visualising textual case bases 

Deployment of a real world textual CBR system involves humans, either as experts or 

as users, and often as both. This makes it imperative to devise ways of effectively 

narrowing down the gap between the system and the human. In situations where the 

underlying similarity or relevance knowledge is mined using statistical techniques and 

encoded into the system as a set of numbers, we need effective ways of gaining access 

to the underlying knowledge. This is where visualization plays an important role. In the 
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context of TCBR, we envisage that visualization can be potentially useful for realizing 

the following goals: 

1. easing knowledge acquisition for experts 

2. visually evaluating goodness of the underlying representation, by displaying 

clusters of mined concepts 

3. maintaining the casebase, by revealing unimportant features or cases, for 

example 

4. providing a qualitative estimate of casebase complexity that allows TCBR 

system designers to make first hand judgements and tell a difficult (hard-to

classify) problem domain from an easier one. 

5. explaining retrieved results to end users 

The first four are concerned with building and maintaining textual casebases, and are 

"off-line" activities in that they do not directly concern retrieval. In contrast, the fifth is 

an "on-line" activity, and is outside the scope of our research. 

2.4.1 A Short Review of Related Work 

Research in TCBR visualization has still not reached its critical mass. However, since 

most of TeBR concerns with regard to visualization are shared by researchers from 

text mining and CBR, it is worthwhile to take a close look at contributions from these 

fields. 

One significant line of research focuses on grouping documents based on their 

similarity and displaying the similarity between the discovered groups (Feldman & 

Sanger 2007). As a first step, one of the classical clustering techniques, like partitional 

or hierarchical clustering is used to group documents having similar content. The 

second step is of displaying these clusters in a meaningful way. In case of partitional 

clustering, the clusters extracted are represented as nodes in a graph, and these nodes 
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are linked together to reflect inter-cluster separation. An optimization technique like 

Simulated Annealing is used to arrive at the final graph configuration Also, each node 

representing a cluster is tagged with the most representative keywords of that cluster 

(Feldman & Sanger 2007). Hierarchical clusters are displayed using dendrograms, but 

they often get crowded with increasing number of documents. One solution is to use a 

hierarchical two-wise K-means algorithm such that each cluster is recursively 

partitioned into two subclusters. The tiling pattern arranges the leaf nodes of this tree 

along with keyword annotations for those nodes. While it provides insight into 

concepts associated with clusters packed close to each other, the arrangement fails to 

portray inter-cluster distances. 

One disadvantage with most cluster visualization techniques is that the 

neighbourhood relations between adjoining clusters is lost. Self-organizing Maps 

address this limitation by mapping neighbourhood relations between high dimensional 

objects (cases) to a low dimensional topology. One prominent work founded on this 

idea is WebSOM (Feldman & Sanger, 2007). A very closely related theme is 

Multidimensional Scaling (MDS) (Hastie et al., 2001). MDS is a procedure to 

"rearrange" objects efficiently in a lower dimensional space, so as to arrive at a 

configuration that best approximates the distances observed between high-dimensional 

objects. The objects are iteratively moved around in the low-dimensional space, 

attempting to maximize the goodness of fit. CBR researchers have adopted a variant of 

this idea, metaphorically called Force Directed Graphs, which has been discussed in 

(Eades 1984), (Mullins & Smith 2001). 

Parallel co-ordinates, conceived by Inselberg (Inselberg 1985) is a third way of 

representing high dimensional cases in two dimensions. In contrast to the Cartesian co

ordinate scheme where attributes are mutually perpendicular, parallel co-ordinates 

assigns a vertical axis to each attribute, and evenly spaces out these axes horizontally. 

The values that an attribute can take are plotted on the corresponding axis. Any given 

case is represented as a polygonal line laid out across the axes, such that each line 

segment connects two attribute values of that case. Viewed as a whole, such a plot is 
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expected to reveal some coherent patterns arising out of correlations between cases, as 

well as features. One limitation in the context of text is the large number of dimensions 

which lead to overcrowding of axes. Moreover, because of data sparseness typical with 

text, most of the plot would be wasted portraying relatively trivial associations. For 

example, two cases may appear similar because 90% of the features are absent in both. 

It may be noted that most of these approaches may be used either to display 

document clusters or word clusters. 

2.4.2 Limitations of Existing Visualization Schemes 

From the TCBR standpoint, we note the following limitations of existing visualization 

mechanisms. Firstly, most approaches display either the feature space or the document 

space, but lack the ability to display both documents and words in the same space. 

Since document similarities can be accounted for by the similarities of their words, 

showing document and word clusters in relation to each other has better explanatory 

power, and enhances the usefulness of the visualization to experts. Secondly, most 

techniques are not very helpful in identifying redundant words or documents that do 

not contribute to casebase competence. Finally, it is not straightforward to gauge the 

complexity of the casebase using most existing visualization schemes. Ideally, we 

would like intuitive visual indicators such that complexity can be compared 

meaningfully across representations of the same casebase, and across different 

casebases. We present an approach to address these limitations in Chapter 3. We also 

present a quantitative measure of casebase complexity that is directly inspired by our 

visualization scheme. 

2.5 Chapter Summary 

We have taken stock of key TCBR challenges and surveyed the broad landscape of 

concept learning techniques that can potentially aid in automated knowledge 
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acquisition. We have identified key dimensions that facilitate meaningful comparison 

of the suitability of these approaches with respect to the TCBR knowledge acquisition 

task. Factor analytic techniques like LSI have been shown to have several advantages 

in mining relevance and similarity knowledge for CRNs. However, their inability to 

incorporate class knowledge in supervised classification tasks is a significant 

drawback. Also, similarity knowledge mined using LSI lacks transparency, and is 

limited in effectiveness by its adherence to a set of mathematical constraints that can be 

relaxed for TCBR. Overcoming these limitations constitutes a key motivation of this 

thesis. We have also reviewed retrieval formalisms that can embed the acquired 

knowledge to facilitate efficient retrieval. In particular, CRNs were studied as a special 

case of spreading activation formalisms. We have seen that techniques like LSI can 

result in loss of sparseness which can, in turn, have adverse effects on efficiency of 

retrieval. This motivates a further contribution of our thesis in terms of retrieval 

formalisms to facilitate efficient retrieval in the face of non-sparse similarity and 

relevance knowledge. Finally, we look at visualization approaches that can help the 

knowledge engineer in having better qualitative insights into the characteristics of the 

domain, and facilitating maintenance tasks. We identify limitations of existing 

visualization techniques that need to be addressed. In the following chapter, we address 

these limitations, and present qualitative as well as quantitative ways of characterizing 

textual casebases. 
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Chapter 3 

Characterizing Textual Casebases 

To be blind is unfortunate indeed but to be without a staff is even worse, for the staff 

does much of the eyes' work. Sri Sri Thakur Anukulchandra (Indian saint) 

The objective of this chapter is to examine factors that affect the effectiveness of TCBR 

approaches, with a special emphasis on classification domains. One important goal is to 

study inherent properties of textual classification datasets that determine how a CRN 

based on bag-of-words performs in relation to state-of-the-art classifiers like SVM. The 

analysis will also lead us to the challenge addressed in subsequent chapters; namely, 

that of acquiring knowledge automatically for CRNs with the goal of elevating their 

effectiveness to make them comparable to, or outperform, competing classifiers. This is 

important in the light of the comparative study in the last chapter, where we noted 

several strengths of instance based approaches relative to other classifiers. To ground 

our discussion, we will focus on six experimental datasets, which we use consistently 

through later chapters for evaluation. These datasets are reflective, if not representative, 

of the diversity encountered in dealing with TCBR datasets in supervised classification 

tasks. 

We need tools in helping us probe into the nature of textual casebases. To date, 

there appears to be no consensus in the TCBR community about what constitutes 

"adequate" characterization of a casebase; most often the issue is closely coupled with 

the task at hand. Classification tasks have inspired work on evaluating classification 

complexity in non-textual CBR (Massie 2006), whereas very recently unsupervised 

measures of textual casebase complexity have been proposed (Lamontagne 2006, 
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Massie et al. 2007). In this chapter, we adopt a two-step approach for characterizing 

casebases. In the first step, we render a visualization of the casebase that reveals the 

broad clustering patterns in terms of the underlying cases and features. The 

visualization provides a bird's eye view of the dataset. In the second step, we use the 

visualization to formulate a compression-based measure that quantifies the complexity 

of the casebase. While the measure itself can be used for unsupervised casebases, we 

will focus more on a version of it that captures the complexity of the classification 

problem associated with each dataset. We evaluate correlation of accuracy results 

obtained from different classifiers against these complexity measures to seek 

explanations on why certain approaches work well over some datasets, but not on some 

others. 

Visualization and complexity evaluation proposed in this chapter are used only to 

the extent of facilitating better insight into the results of our experimental evaluation. 

However, we have seen in the previous chapter that visualization is significant in its 

own right in that it facilitates several TeBR tasks. Evaluating casebase complexity is 

important in facilitating the off-line tasks identified in Section 2.4, in that it provides a 

quantitative basis for assessing the suitability of a representation. While visualization 

and complexity evaluation have often been treated in isolation, our current 

understanding is that they often share similar goals, and may exploit similar 

mechanisms to realize these goals as well. 

The rest of the chapter is organized as follows. Sections 3.1 and 3.2 introduce the 

datasets and classifiers used for our experiments. Section 3.3 presents a novel approach 

called "stacking" to visualize textual casebases. Section 3.4 shows how this approach 

can be extended to evaluate casebase complexity in unsupervised and supervised 

settings. Section 3.5 shows how our complexity metrics for the six datasets correlate 

with the accuracy figures reported by the classifiers described in Section 3.2. We 

highlight insights from this analysis that lead us to intuitions behind the novel 

contributions reported in subsequent chapters. Section 3.6 summarizes the chapter and 

takes stock of its main contributions. 
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3.1 Datasets Used 

For experimental evaluation reported in this thesis, we use six text classification 

datasets. Four of these are email routing datasets created from the 20 Newsgroups 

(Mitchell 1997) corpus. The remaining two are Spam filtering datasets. 

For creating the four routing datasets, one thousand postings of discussions, 

queries, comments etc. from each of the 20 Usenet groups covered by the 

20Newsgroups datasets were chosen at random and partitioned by the news group name 

(Mitchell 1997). Four sub corpuses were created: 

1. SCIENCE from four science related groups 

2. REC from four recreation related groups 

3. HARDWARE from two hardware problem discussion groups, one on MAC 

and the other on PC 

4. RELPOL, from two groups, one concerning religion, the other politics in the 

middle-east 

Thus HARDWARE and RELPOL are binary classification problems, while SCIENCE 

and REC are four-class problems. The HARDWARE domain is interesting in that there 

are many terms like "drive" or "bus" which are shared by both PC and MAC, and 

hence fail to discriminate between the two classes. However "drive" combined with 

"vlb" indicates PC, whereas "drive" combined with "syquest" indicates Mac. It shows 

that class labels of training data must play an important role while inducing the co

occurrence patterns that can help us in disambiguating between the two classes. The 

RELPOL domain, on the other hand, presented challenges of a different kind. While 

bag of words do not yield impressive results, unsupervised approaches that yield 

clusters of features are useful in digging out concepts like "Palestine war" or 

"holocaust" that playa critical role in improving classification accuracy. Compared to 
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HARDWARE, class knowledge has a relatively smaller contribution towards accuracy 

improvements in RELPOL. 

The two spam filtering datasets are 

1. USREMAIL (Delany & Cunningham 2004a) which contains 1000 personal 

emails of which 50% are spam 

2. LINGS PAM (Sakkis, et al., 2003) which contains 2893 messages from a 

linguistics mailing list of which 27% are Spam. 

The datasets were split into equal sized disjoint training and test sets. Each split 

contains 20% of documents randomly selected from the original corpus, and is 

stratified in that it preserves the class distribution of the original corpus. Fifteen such 

train-test splits (alternately called trials) were obtained for each of the six datasets 

mentioned above. It may be noted that the documents were pre-processed by removing 

stop words (noise words) like functional words which are frequent throughout the 

collection and ineffective in discriminating between classes. Punctuations and special 

characters (quotes, commas and full stops) were also removed. Some special characters 

like "!", "@", "%", "$" were retained because they have been found to be 

discriminative for some domains (Sakkis, et al. 2003) Remaining words are reduced to 

their stem by using Porter's algorithm (Porter 1980). We use Information Gain 

(Mitchell 1997) to perform feature selection and use a maximum of 1000 top features 

for evaluation. 

3.2 Classifiers Used 

Sebastiani (2002) carried out a comparative experimental study of several text 

classifiers over five different versions of the Reuters collection, as well as OHSUMED 

and 20 Newsgroups collections. In summarising his findings, he reports that boosting

based classifier committees, Support Vector Machines, example based methods (which 

we refer to as instance based methods in this thesis) and regression methods deliver the 



48 

best performances. They are closely followed by neural networks and online classifiers. 

Based on this study, we select a cross section of classifiers that are broadly 

representative of the best performing classifiers. The first approach is the most basic 

instance based approach that uses a CRN to realize a kNN-based retrieval. The second 

is the Extended Case Retrieval Network (ECRN), a novel approach that exploits a 

neural network style training algorithm to acquire knowledge for CRNs. The third is 

SVM, and the fourth is LogitBoost, a popular boosting-based ensemble approach. We 

then briefly look at using LSI for acquiring knowledge for CRNs, an approach that has 

been covered in detail in the following chapter. We also include for comparison 

Propositional Semantic Indexing (PSI) which has been proposed by Wiratunga, et al. 

(2005a) to acquire and explicate knowledge in TCBR applications. 

1. kNN using CRNs. Instance based classification using k Nearest Neighbours is 

based on the idea of retrieving k cases most similar to a query case, and using the class 

labels of the similar cases to arrive at a prediction for the query (Sebastiani 2002). The 

effectiveness of this approach is largely determined by the representation of cases and 

appropriateness of the distance measure used to evaluate similarity between cases. We 

have seen in Section 2.3 that a CRN can be used to realize fast kNN based retrieval. 

The relevance and similarity knowledge of CRN determine the case representation and 

the relationship between features that comprise the vocabulary. The simplest CRN 

would be one that uses no knowledge of similarity between features, and that which 

uses binary relevance values, with a relevance value assuming a value 1 when a feature 

is present in a case, a value 0 otherwise. Thus, such a CBR system is no different from 

a basic IR system that is founded on the vector space model over BOW, and forms our 

baseline system for comparisons. The choice of binary valued representations is 

governed by the fact that unlike most IR systems operating over very large datasets, we 

use relatively smaller datasets over which frequency-based measures like tf-idf are not 

very robust. There are several distance measures proposed in literature (Manning & 

Schutze, 1999), of which the Euclidean distance and the cosine similarity are most 
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popular. If cases are regarded as points in a vector space, the Euclidean distance 

between two cases is the geometrical (or straight-line) distance between their 

corresponding points. On the other hand, the cosine similarity is measured by 

computing the cosine of the angle between the two vectors representing the two cases. 

Two cases are maximally similar if their vectors are perfectly aligned, leading to a 

cosine similarity of 1. The original work on CRNs does not show how it can be used to 

realize the Euclidean and the cosine measures. In Appendix A.I, we show that such an 

extension can be made while retaining CRN's efficiency advantages .. 

2. ECRN. We proposed Extended Case Retrieval Nets (ECRN) (Chakraborti et. aI., 

2004) to integrate sub-symbolic learning mechanisms as exploited by neural networks, 

into the CRN. ECRN was motivated by the architectural parallels between CRN and a 

Multi Layer Feed-forward Network (MLFN). The name ECRN stems from the fact that 

in addition to the IE nodes and the case nodes present in a CRN, we now have a third 

layer pertaining to class labels of the textual cases. Henceforth we refer to these layers 

as IE, case and class layers respectively. The number of nodes in the IE layer is equal to 

the number of distinct features obtained after feature selection. Figure 3.1 shows a 

schematic of the architecture. 

To initialize the ECRN, the relevance weights connecting IE nodes to case nodes 

are assigned binary values as in the baseline CRN described above. The weights 

connecting the case-layer to the class-layer are assigned binary values based on 

whether the case belongs to that class or not. During training, weights are modified to 

improve classification accuracy of the system. The training cases are fed into the IE 

layer one at a time and the classification output of the system is compared against the 

expected outcome. The desired output is a binary value 0 or I depending on the class to 

which the input case actually belongs. An error signal is computed between the 

observed and desired outcomes. This error is fed back to alter the set of weights that 

connect the IE layer with the case layer nodes. This is done by using a variant of the 

back-propagation algorithm used widely in training Multi-layer Feed-Forward 
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Networks (Mitchell 1997). A sigmoidal weighted aggregation (typical of back

propagation) is used at each node. Now the revised set of weights is used to classify 

the set of training documents again. If the mean squared error of the output layer is less 

than the previous iteration, the current set of weights is retained; otherwise we revert 

back to the old set of weights. The iterative process terminates once there is no 

improvement in accuracy: the set of weights obtained are retained for use in the 

classification phase. Once the ECRN has been trained for classification over training 

data, we evaluate its classification performance over test data. For this the new case to 

be classified is preprocessed - the IEs pertaining to the case are activated and the 

activation is propagated through the case nodes and the class nodes. This can be viewed 

as a two step process: in the first step, the nodes pertaining to cases that are similar to 

(nearest neighbours of) the incoming document are activated - in the second step, the 

activated cases vote for their respective classes via the connections to the output layer, 

and the results are aggregated in the output nodes. The class with the strongest 

activation is returned as the result. 

In the context of the current chapter, it suffices to treat ECRN as a neural 

network approach for text classification. However, from a broader standpoint, it is 

worthwhile to take note of significant differences between a traditional neural network 

approach and the ECRN approach. Firstly, hidden nodes and weights of neural 

networks do not carry any specific interpretation with respect to the domain. This has 

led to the "black-box" view typically ascribed to neural networks. In contrast, the 

relevance arcs and all nodes in ECRN have definite correspondence to knowledge in 

the TCBR system. Furthermore, with traditional Neural Networks, the weights would 

have random initializations to start with. However since weights in ECRNs map onto 

relevances, we could launch the ECRN training using relevance weights meaningful to 

the domain. In (Chakraborti et. aI., 2004), we present empirical evidence to show that 

this leads to significant reductions in the training time of ECRN, when compared to 

random initialization. A summary of empirical results obtained with ECRN is presented 

in Appendix A3. The idea of using algorithms like Back-propagation over a neural 
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network initialized with prior domain knowledge is used in KBANN (Mitchell 1997). 

However in the framework of KBANN, the prior knowledge is a domain theory 

consisting of non-recursive propositional Hom Clauses; in contrast ECRN uses a 

knowledge-light initialization based on binary relevance values. This helps us preserve 

the CRN topology while allowing for relevance weight learning. 
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Figure 3.1 A Schematic of the Extended Case Retrieval Network (ECRN) 

3.SVM SVMs are founded on the basic idea of inducing hyperplane separators that 

was briefly discussed in the last chapter. SVMs have been reported to outperform most 

other off-the-shelf classifiers in several experimental studies over diverse text 

classification applications (Drucker et aI., 1999, Dumais et aI. , 1998, Joachims 1998). 

Joachims(1998) argues that SVMs have two advantages in the context of text 

classification. Firstly, feature selection is not needed, as SVMs are fairly robust to 

overfitting and can scale up to very high dimensionalities. Secondly, they need almost 
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no parameter tuning, as there is a theoretically motivated, "default" choice of parameter 

settings, which has been shown to provide the best effectiveness. 

4. LogitBoost Boosting is based on the idea of using an ensemble (committee) of 

diverse "weak" learners that complement each other. In the first step, a prediction 

model is induced from training data and added to the committee. In the next step, the 

weights of the training cases are changed, so that the hard-to-classify cases get higher 

weight relative to the rest of the cases. The next member of the committee focuses 

harder on the difficult parts of the instance space. These two steps are repeated for a 

given number of iterations, leading to several diverse classifiers, whose predictions are 

combined to yield the final classification. The diversity of the classifiers explains why 

boosting works so well in practice (Frank et al., 2002). LogitBoost (Friedman et al., 

2000), like its earlier sibling Adaboost, is based on the statistical estimation procedure 

called additive logistic regression. We have chosen it for our comparative study since it 

has been found to be the most accurate of multi-class boosting methods (Friedman et 

al.,2000). 

5. LSI. This is very similar to the baseline CRN realizing a kNN based classification, 

except for the fact that the relevance knowledge for the CRN is acquired using LSI. We 

have briefly introduced LSI in the previous chapter and seen how it uses ideas from 

factor analysis to model textual cases in terms of their constituent concepts, where a 

concept can be viewed as a linear combination of features. All of the next chapter is 

devoted to an in-depth treatment of LSI with special emphasis in Section 4.3 on how it 

can be used to acquire similarity and relevance knowledge for CRNs. 

6. PSI. PSI (Wiratunga et. aI, 2005a) has goals similar to LSI in that it attempts to 

acquire an indexing vocabulary to describe textual cases, while minimizing noise due 

to word choice variability. However, unlike LSI, PSI extracts new features as logical 

combinations of existing keywords. The underlying thesis is that such logical 
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combinations correspond more closely to natural concepts and are more transparent 

than linear combinations mined by LSI. PSI uses association rule mining to arrive at 

logical combinations of features that are highly discriminatory. As a further step, 

boosting is used to reduce redundancies in the mined feature set, by retaining only 

those feature combinations that have minimal overlap with the rest. Experiments on 

classification domains show that PSI-derived case representations have superior 

retrieval performance compared to the original keyword-based representations. 

3.3 Visualizing Textual Casebases 

Let us consider a set of textual cases, each case consisting of a set of features. For 

simplicity, we treat words in the text as features; the ideas presented can easily be 

extended to deal with more complex features. The domain is unsupervised, so no class 

knowledge is available. Also, we will restrict our attention to the problem side of cases, 

for the moment. To illustrate our ideas, we model the documents in the toy Deerwester 

collection (Deerwester, et al. 1990) as cases. This is shown in Figure 3.2(a). An 

alternate representation is in the form of case-feature matrix shown in Figure 3.2(b); 

elements are 1 when a feature is present in a case, 0 otherwise. It is straightforward to 

map this matrix onto an equivalent image, shown in Figure 3.3(a), where the values 0 

and I are mapped to distinct colours, a lighter shade denoting 1. We refer to this as the 

"casebase image" metaphor. All images in this chapter were obtained using Matlab. 

However the image as it stands, is not very useful. Firstly, it conveys very little 

information about underlying patterns in terms of word or document clusters. Secondly, 

the image is highly sensitive to how the words and documents are arranged in the 

matrix; this is clearly undesirable. Thirdly, and we shall explore this in more detail 

later, the image tells us very little about the complexity of the underlying casebase. 

To address these limitations, we propose an algorithm that does a two-fold 

transformation on the case-feature matrix to yield a matrix where similar cases (and 
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similar features) are stacked close to each other. The output is a matrix, which when 

visualized as an image, captures the underlying regularities in the casebase. Figure 3.4 

shows a sketch of the algorithm. The broad idea is as follows . The first case row in the 

original matrix is retained as it is. Next, we compute the cosine similarity of all other 

cases to the first case, and the case most similar to the first case is stacked next to it, by 

swapping positions with the existing second row. If more than one case is found to be 

equally similar, one of them is chosen randomly. In the next step, all cases excepting 

the two stacked ones are assessed with respect to their similarity to the second case. 

The case that maximizes a weighted combination of similarities to the first and second 

case (with higher weight assigned to the second case) is chosen as the third case, and 

stacked next to the second row. The process is repeated till all rows are stacked. In 

Step 2 of the algorithm, the same process is repeated, this time over the columns of the 

matrix generated by Step 1. 

c1: Human machine interface for Lab ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation at user-perceived response time to error measurement 

m1: The genel"3tion of random, binary, unordered mas 
m2: The Intersection graphs at paths In trees 
m3: Graph minors IV : Widths of trees and well~uasl-ordering 
m4: Graph minors: A survey 

(a) 

c1 : 
c2: 
c3: 
c4: 
c5: 
m1: 
m2: 
m3: 
m4: 

'-

Ii r~ i~ ~ E 
E~!l;EIt~g!·UI" :J:J !o,- '->oEILE 
~1II.5 .. uOl:JEIII~w .. 

1 0 1 0 1 00 000 00 
o 1 0 0 1 o 1 o 1 1 o 1 
00100 o 1 010 1 0 
1 00 0 0 00 010 1 0 
000 0 0 o 1 o 0 1 o 1 
00010 00 000 00 
00010 1 0 0 00 00 
00010 1 0 100 00 
010 001 0 1 0 0 00 

(b) 

Figure 3.2 Documents in the Deerwester Collection 

The weighted similarity evaluation is critical to the working of this algorithm and 

merits a closer look. The general rule for selecting the (k+l) row (case) is to choose the 

one that maximizes 

k L Wi sim(cp c) such that for all 1 ~ i < k , W i+1 > Wi 

i=1 

(3.1) 
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where k is the number of already stacked rows, Cj is the ith stacked case, C is a case 

whose eligibility for (k+ l)th position is being evaluated, sim(cj, c) is the cosine 

similarity between cases Ci and c, and Wi is the weight attached to the similarity of c 

with the ith stacked case. In our implementations, we used 

Wj =lI(k-i+l) (3.2) 

The basic intuition behind this weighting scheme is that we want to ensure a gradual 

change in the way cases are grouped. This has implications for facilitating a meaningful 

display of clusters, and also for the complexity evaluation discussed in Section 3. If 

only sim(clo c) were considered for the stacking process (which is equivalent to 

assigning 0 to all Wi, i :::;: I to k-l) we may have abrupt changes resulting in an image 

that fails to reveal natural clusters. We note that for efficiency reasons, our 

implementation uses an approximation of (2), where we take into account only the 

previous 10 stacked cases and no more, since the weights associated with very distant 

cases are negligible and have no significant effect on the ordering. 

Figure 3.3(a) shows the image corresponding to an arbitrary arrangement of the 

documents in the Deerwester matrix. Figure 3.3(b) shows the image after the rows are 

stacked. Figure 3.3(c) is the final image after column stacking. It is interesting to see 

that the two broad topics within the collection, namely Human Computer Interaction 

(HeI) and graphs are clearly visible in Figure 3.3(c) as two "chunks" of contiguous 

light shades. Also, there is a gradual transition in shades from HCI to graphs. This is 

useful in identifying "bridge words" that can serve to connect two topics; an example is 

word 9 ("survey") in Figure 3.3(c) which is common to HCI and graphs. We can also 

visually identify cases that are in the topic boundaries and deal strongly with more than 

one topic. This is useful for aiding casebase maintenance tasks such as identification of 

noisy cases and redundant features (Massie 2006). We have designed a simple 

interface that allows users to "navigate" the image, and visualize the "topic chunks", 

and words that describe those chunks. 
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(a) (b) (c) 

Figure 3.3 Images from Deerwester collection (a) arbitrarily stacked (b) after row 

stacking (c) after column stacking 

Step 1 (Stack Rows) 

Input : Case-Feature Matrix M 

Output : Case-Feature MatrLx MR which i M stacked by rows 

Method: 

Instantiate first row of Mil to first row of M 

for k = 1 to (noOfRows-l) /*the index of the last case (row) stacked*/ 

for j = (k+ 1) to noOfRows /* check through all candidate ca es*/ 

wsimJ = 0; /* wsim. weighted s imila rity of ith ca e */ 

for i = 1 to k /* a lready stacked rows*/ 

wsimj = wsimj+ wsim/( lI(k-i+l))*sim(c.,c); 

e nd 

end 

choose j that ma ximize wsimJ and interchange rows (k+ 1) and j 

end 

Step 2 (Stack Columns) 

Input: Case-Feature MatrLx MR generated by step 1 

Output : Case-Feature MatrLx Me which is MR tacked by columns 

Method: same as in Step 1 except that col umns a re in te rcha nged (based on feature s imila rity computed 

as co ine s imilarity between columns) instead ofrows. 

Figure 3.4 The Stacking Algorithm 
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3.3.1 Examples of visualizations 

Figure 3.5 shows snapshots of stacked images obtained from the six datasets described 

in Section 3.1. The rows of each image correspond to cases, and the columns to 

features. The case rows are shaded to show the classes to which they belong. It is seen 

that USREMAIL has very neat separability between the classes with cases belonging to 

the same class packed closely to each other. LINGSPAM and RELPOL also display 

regularities with respect to ways cases belonging to the same class are packed. In 

contrast, HARDWARE is clearly a complex domain, with very little separability 

between classes, and very few pronounced topic chunks. As noted in Section 3.1, this is 

because of the presence of large number of features which are shared by classes Apple 

and Mac. To increase effectiveness of classification in HARDWARE, one approach is 

to combine features to extract new features which are more discriminative of the two 

classes. 

3.4 Complexity evaluation of textual casebases 

Complexity of a casebase is independent of classifiers and derived directly from the 

casebase characteristics that are critical to estimating the difficulty of performing 

effective retrieval or classification on that dataset. In this section, we explore how the 

image metaphor can be exploited to obtain a measure of the casebase complexity. For 

completeness, we will digress into the more general problem of complexity evaluation 

over textual casebases, and then show how we can arrive at a complexity measure that 

suits our needs. 

There are two reasons why complexity evaluation is useful. Firstly, we can predict 

difficulty of domains (datasets) for a given choice of representation (feature 

selection/extraction and similarity measures). Secondly, we can compare across 

different choices of representation over a fixed domain and choose the representation 
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USREMAIL LlNGSPAM 

HARDWARE RELPOL 

REC SCIENCE 

Figure 3.5 tacked Images obtain d from the six datasets 



59 

that minimizes complexity. We observe that complexity over a casebase can be defined 

in two ways, namely Alignment Complexity (AC) and Collection Complexity (CC). 

The former measures the degree of "alignment" (Lamontagne 2006) between problem 

and solution components of textual cases. Measuring this helps us in answering the 

question "Do similar problems have similar solutions?" and thereby assessing the 

suitability of CBR (or alternatively the choice of representation) to that task. A special 

case of this problem is seen in classification domains, where the solution is replaced by 

class label. In measuring CC, the distinction between the problem and solution 

components of cases is ignored, and the complexity measure provides a measure of 

clustering tendencies exhibited by the casebase. Thus a casebase with cases uniformly 

distributed over the feature space has a high CC; whereas, one with more well-defined 

clusters has a lower CC (Vinay et aI., 2006). Intuitively, since the stacked image 

captures regularities arising from topic chunks in the casebase, we would expect that, 

all else being equal, stacked images from simpler domains will be more compressible, 

and thus have higher compression ratios, compared to ones from complex domains. 

This is because image compression algorithms typically exploit regularities to 

minimize redundancy in storage. We carry forth this intuition into our discussions of 

AC, since AC can be thought of as an extension of cc. 
Alignment can be interpreted in two different ways. The first interpretation is a 

local one; an example is the case cohesion metric formulated by (Lamontagne 2006). 

Here we look at a case, say C, in isolation, and determine two sets: set SJ, which 

comprises cases whose problem components are closest to the problem component of C 

(based on a threshold), and a set Sb comprising cases whose solution components are 

closest to the solution of C. The overlap between SJ and S2 is used as a measure of 

alignment of C. This is a local metric, in that each case is evaluated on its own, and 

assigned a measure. The second interpretation is a global one based on how well the 

clusters derived from problem components of cases correspond to clusters derived from 

solution components. In other words, a global measure is different from a local one in 

that it is not evaluated "bottom-up" by aggregating complexities obtained by looking at 



60 

each case in isolation. Rather the clustering patterns at a broad level are used as the 

basis for evaluating complexity. Also, a global measure cannot be extended 

comfortably to yield case-specific complexity. In this paper we adopt this second 

global interpretation of alignment. 

Compression approaches used to measure CC can be extended to measuring AC. 

For measuring alignment, we construct two case-feature matrices: one based on 

problem components of cases, the other based on solution components. These two 

matrices are stacked as described in Section 3.3, to yield two images Ip and Is 

respectively. Ip and Is are now independently compressed to obtain compression ratios 

CRp and CRs respectively. The higher the compression ratio, the more pronounced the 

clustering patterns. We note that generating Ip and Is involve reordering the cases, and 

we can read out the new order in which cases are arranged based on problem and 

solution side clustering. For measuring alignment, we compare the ordering of cases in 

Ip and Is. One way of doing this is to create a fresh solution side image Isp by stacking 

solution components of cases using the problem side ordering of cases as read out from 

Ip. We would intuitively expect Isp to be less compressible than Is,.unless the casebase 

is perfectly aligned. Compressing Isp yields a new compression ratio CRsp. The Global 

Alignment MEasure (GAME) is given by CRsp/ CRs. A higher value of GAME 

indicates a better alignment. An alternate measure can be obtained by considering Ips, 

the problem side image with solution ordering imposed on it, instead of Isp. However, 

our choice of Isp over Ips was governed by the observation that in CBR, while we are 

keen on ensuring that similar problems have similar solutions, it is not of primal 

importance that similar solutions necessarily originate from similar problems. Using Isp 

takes care of this asymmetry. 

GAME can be extended to classification domains where the class label is treated 

as a solution. In this case, our interest is in determining whether near-neighbours in the 

problem side ordering (as obtained from Ip) belong to the same class. We obtain a 

string of class labels corresponding to the problems as they appear in the problem side 

ordering. This allows us to do away with the image compression and resort to a simpler 
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string based compression instead. As an illustration, let us consider a two class problem 

of 10 cases in the email domain, where cases C1 through Cs belong to class S (for 

SPAM) and C6 through CIO belong to L (for LEGITIMATE). Let us assume that the 

problem side ordering of the cases after stacking is CIC2C6C4CSC7C3C9CIOCg. 

Replacing each case identifier with its class label, we obtain the class string 

SSLSSLSLLL. The most easily classifiable casebase would have a string 

SSSSSLLLLL, and the most complex would have SLSLSLSLSL. A compression 

algorithm that exploits contiguous blocks (but not compound repeating patterns like 

SL) would thus be ideal; Run Length Encoding (Rosenfeld and Kak, 1982) is one such 

scheme. Using this, the complexity is a direct function of the number of the flips 

(changes from one class label to another, N to S or S to N in the above example). We 

define GAME complexity measure for classification as 

GAME I (fliPSrnax - flipsmin ) I (n-1) - (k-I) ) 
class = og = og ------

flips - flipsmin flips - (k -1) 

where k is the number of classes, n is the number of cases (n > k), flips is the number 

of transitions from one class to another in the class string, flipsmin is the value of flips 

for the simplest possible casebase having n cases and k classes, and flipsrnax is the value 

of flips for the most complex casebase. We note the most complex casebase 

presupposes a uniform class distribution; we then haveflipsmax = (n-i). A higher values 

of GAMEciass corresponds to a simpler domain; the most complex domain has 

GAMEciass = O. Thus we expect positive correlation of GAMEclass to accuracy results 

derived from classifiers. The logarithm has a dampening effect on the large values that 

could result when n » k, flips. As a further detail, a small constant (say 0.01) should 

be added to the denominator to avoid division by zero when flips = flipsmin. 

An important issue that merits more attention is the choice of starting case in the 

stacking process, and its influence on the visualization and complexity measure. A 

theoretically sound way of choosing the starting case would be to perform stacking 

several times, using a distinct case each time as a starting case. When we have 

exhausted all possibilities, we choose the arrangement that yields the highest 
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compression ratio. Further research is needed to find efficient ways of pruning the 

search space to make this process less computationally expensive. Our experiments 

have shown that visualizations are not widely affected by the choice of starting cases, 

except for the shuffiing in the order in which clusters are displayed. 

3.5 GAMEd.55 for the six datasets 

Figure 3.6 shows the GAMEc1ass values obtained over the 15 trials in each of the six 

datasets. Of the binary problems, LINGSPAM and USREMAIL have high GAMEc\ass 

values indicating that they are simpler compared to HARDWARE which has a low 

GAMEc1ass value. Table 3.1 suggests that GAMEc1ass predictions are supported by 

accuracy figures recorded by different classifiers. The current formulation of GAMEc\ass 

allows for more meaningful comparisons between problems when they have the same 

number of classes. So we compared the binary and four-class problems separately. The 

correlation coefficient of the GAMEc1ass score against classification accuracies over the 

four binary problems are shown in Table 3.2. We note a strong positive linear 

correlation of GAMEc\ass to all four classifiers. It is pointless to do correlation over the 

four-class datasets since we have just two of them; however we observe that GAMEc1ass 

declares SCIENCE to be more complex than REC, and this is confirmed by all 

classifiers. SVM being inherently a binary classifier was not applied on the multi-class 
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datasets, though we plan to experiment with multi-class SVM in future. 
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Figure 3.6 GAMEciass values across different datasets 

Table 3.1 GAMEclass and Accuracies obtained by different classifiers 

REC SCIENCE HARDWARE RELPOL USREMAIL L1NGSPAM 

GAMEda .. 1.1629 1.0492 1.0028 2.0358 2.3728 3.2222 

kNN (CRN) 62.79 54.89 59.51 70.51 59.23 85.09 

LSI 79.32 72.55 66.30 91.17 94.67 97.37 

ECRN 69.91 80.18 80.12 93.26 96.50 98.17 

SVM -- -- 78.82 91.86 95.83 95.63 

LogitBoost 87.15 73.77 77.99 79.67 92.67 95.80 

PSI 66.28 76.2 80.1 91.2 94.83 95.8 

Table 3.2 Correlation of classifier accuracies with GAM Eciass 

kNN (CRN) LSI ECRN SVI\1 LogitBoost PSI 

P 0.7685 0.9176 0.9360 0.9023 0.8820 0.9330 
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3.6 Discussion of Related Work 

We have noted in Section 2.4 that visualization techniques in Text Mining have 

typically attempted to display one of word associations or document clusters, but 

seldom both. An approach that comes close to our idea of stacking in terms of the 

generated layout is the Hierarchical Clustering Explorer (HCI Lab, University of 

Maryland 2007) which dynamically generates clusters based on user-defined 

thresholds, and displays the mined document clusters. In addition to the fact that word 

clusters are not displayed, one other limitation of this approach is that there is no clear 

way of choosing the right ordering between several sub-trees under a given node . This 

may lead to discontinuities in the image (some of which are marked by 0 in Figure 3.7) 

and sudden change in concepts. Thus it would fail to reveal patterns revealed by the 

weighted stacking approach. An approach that comes close to showing both words and 

documents in the same space is WEBSOM (Feldman et aI. , 2007). WEBSOM fails to 

preserve the structure of cases as a set of feature values, and is unwieldy for casebase 

maintenance. Furthermore, our approach has the relative advantage of being free from 

convergence problems faced by WEBSOM . 

____ ~~T.:I~. _____ .. _ .. ~~ .... .,... 

i 

Figure 3.7 A snapshot of hierarchical visualization (courtesy HCI Maryland website) 

It would be interesting to explore parallels between ' 'topic chunks" revealed by 

the stacked image, and concepts as mined by Formal Concept Analysis (FCA) (Diaz

Agudo et al. 200 I). While FCA has been applied to TCBR tasks, the inherent 

sparseness of textual data leads to generation of a large number of concepts that are 

brittle and unintuitive. Relaxing the strict closure requirements of FCA could possibly 
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lead to "approximate concepts". Our intuition is that a topic chunk, when interpreted as 

a blurred rectangular version of the actual light shades in close proximity, may be a 

close analog to such an approximate concept. It is worth noting that this blurring 

operation can be viewed as smoothing of cases based on neighbourhood of each cell, 

thus achieving feature generalization. Blurring makes sense only on the stacked image 

since we are assured that neighbouring cells are likely to correspond to similar cases 

and features; it is meaningless on the original image where the arrangement is arbitrary. 

In the next chapter, we show that lower dimensional representations generated by LSI 

can be regarded as blurred versions of the original casebase. This parallel opens up 

avenues for exploring alternatives to LSI that tailor the blurring process to cater to 

specific TeBR goals. Of particular interest in this context is the idea of image 

transforms proposed by Hoenkamp (2003). 

As a final point, we note that casebases are seldom static, so the importance of 

efficient update strategies that can handle additions, deletions or updates of cases (or 

features) cannot be over-emphasized. Though we have not experimented with 

dynamical collections, our current prescription is a lazy strategy that makes quick 

incremental but approximate updates whenever a change happens, and relegates the job 

of making accurate changes at a later "bulk update" stage. This saves the overhead of 

performing stacking each time a change is encountered. The basic idea is to trade off 

accuracy for efficiency, and is similar in sprit to the idea of folding-in (Berry et al. 

1995) which is a popular method for updating LSI based representations. Folding-in is 

briefly described in Section 4.2.2 in the following chapter. 

3.7 Chapter Summary 

In this chapter we have emphasized the importance of characterizing textual casebases 

in explaining the performance of retrieval or classification techniques that operate over 

them. Towards this direction, we have presented novel approaches for visualizing and 

evaluating complexity of textual casebases. The visualization gives a bird's eye view 
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of the domain and helps the expert or knowledge engineer make qualitative judgments 

on its characteristics. We have studied the perfonnance of text classifiers founded on 

well-studied principles over six textual datasets, and analysed the correlation of our 

complexity measure against accuracy figures reported by these classifiers. The six 

datasets that were examined in detail in this chapter will be used in later chapters to 

evaluate novel approaches to acquire relevance and similarity that aim at improving 

retrieval effectiveness. This will help us derive better explanations of experimental 

results in comparison with other classifiers, and particularly in terms of the inherent 

dataset characteristics. 
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Chapter 4 

Latent Semantic Indexing for 

Knowledge Acquisition in CRNs 

Classification is hard, especially for unlabelled cases. I 

In Chapter 2, we have seen several limitations associated with bag of words 

representation for textual cases. To summarize, BOW fails to recover from polysemy 

and synonymy, and hence cannot resolve disparities due to variability in word choice. 

In a study (Furnas et aI., 1987), it has been reported that different people use the same 

keywords for expressing the same concepts only 20 % of the time. As noted before, 

there are two distinct ways of addressing this problem, and most practical solutions use 

a combination of both approaches. The first approach is to use carefully handcrafted 

knowledge sources like domain specific ontologies and rule-bases, or linguistic 

resources like thesauri and Wordnet (Miller 1995). The second approach is to use 

statistical learners to infer "latent" word associations from a document corpus. Given 

our emphasis on reducing manual knowledge engineering overheads, we are more 

interested in the second approach. We have briefly introduced a statistical approach 

called LSI in Chapter 2 and argued that it has certain advantages over other approaches 

in relation to our TCBR goals. To recapitulate, these advantages include: ability to 

position documents and words in the same space and hence generate both similarity 

and relevance knowledge, easy integration with instance based learners because of its 

1 Inspired by Neil Bohr's quote: "Prediction is difficult, especially about the future." 
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grounding on the vector space fonnalism, rich underlying representation of concepts in 

tenns of words or documents allowing for good visualization support, availability of 

easy update strategies, efficiency of retrieval, easy integration of background 

knowledge in the fonn of additional documents to boost retrieval effectiveness, and 

reliance on very few parameters to be tuned. One critical limitation is that LSI fails to 

exploit class knowledge in supervised classification tasks. We address this limitation in 

depth in Chapter 5. In this chapter, we elaborate on the mechanics of LSI with the goal 

of laying a foundation for the following chapters. We also illustrate how LSI can be 

used to mine knowledge for TCBR tasks, and how the acquired knowledge can be 

integrated into the CRN. 

The rest of the chapter is organized as follows. In Section 4.1 we attempt to 

provide an intuitive insight into the mathematics of LSI. In Section 4.2 we relate this 

mathematical understanding to the context in which LSI is actually applied. We also 

examine the rationale behind using a dual mode factor analysis, from different 

standpoints. Section 4.3 shows how LSI can be used to mine similarity and relevance 

knowledge for CRNs. 

4.1 Two Mode Factor Analysis 

LSI was proposed as a technique for concept extraction by Deerwester. The starting 

point for LSI is a tenn document matrix (alternately case feature matrix). The objective 

is to detennine a set of underlying "factors" or concepts, that best explain the 

relationship between the tenns and documents. This is not very different from the goal 

of most factor analytic research from the sixties to the nineties. What distinguishes LSI 

from most earlier approaches is its "two mode factor analysis" which allows it to 

express both words and documents in terms of the same underlying concepts. For the 

sake of completeness, we provide a brief introduction to linear algebraic techniques for 

single-mode factor analysis in Section 4.1.1. In Section 4.1.2 we introduce the Singular 

Value Decomposition, which is at the heart of LSI. 
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4.1.1 An Introduction to the Mathematical Foundation of LSI 

To start with, we have a term document matrix; each element in that matrix is a weight 

showing the relevance of the term to the corresponding document. The first significant 

step in Linear Algebra is to view a matrix such as this as an operator. This means that 

the matrix can act upon a vector (when it is multiplied with that vector), and relocate it 

to a different position. For example, the square matrix2 

[
2 -I I] 

M= -I 2 -1 

I -I 2 

can act on the vector 

and move it to a new location given by M A: 

In the underlying geometry of the space, the action of a matrix M can be viewed as a 

-combination of translation and rotation of A in the general case. We are interested in 

charactering a matrix M formally in terms of its properties that govern its action on 

vectors; the concept of eigenvectors does precisely that. 

We consider all vectors i that, when acted on by M, stretch themselves to a 

different location Ai, where A is a scalar, but do not undergo any rotation. Thus 

2 Note that, unlike the example presented, all entries in a term document matrix are 
usually non-negative. 
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M X = AX (4.1) 

The vectors satisfying (4.1) are called eigenvectors, and each of these eigenvectors is 

associated with a corresponding value of A referred to as an eigenvalue. We rewrite 

(4.1) as (M -)J) x = 0, where I is an identity matrix of dimensions matching M; 

this is called the characteristic equation. Solving it in our example, we have the 

following three eigenvectors 

associated with the eigenvalues Al = 1, A 2 = 1 and A 3 = 4 respectively. 

We now study the effect of M on any arbitrary vector x 

We can express x as a linear combination of VI' v2 and v3 • The revised position M x 
is now given by 

Mx= M(1v, +2V2 +3v3 ) 

= Mv, + 2Mv2 + 3Mv3 

= AI VI + 2A2 V2 + 3A3 V3 

The interesting aspect of this rewrite is that we can see that the total effect of M on x 
is expressed as a weighted combination of effects due to each eigenvector. 

Eigenvectors having very small eigenvalues associated with them have a small effect 

on the operation of M on X. In the example above, the eigenvector associated with the 

eigenvalue A 3 = 4 will have a more pronounced effect in characterizing M as an 

operator compared to the two other eigenvectors each associated with eigenvalue 1. 

This intuition is critical to our treatment ofSVD below. 
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Moving on to a few more definitions, a family of a finite number of vectors is said 

to be linearly independent if none of them can be expressed as a linear combination of 

the remaining ones. The rank of a matrix M (not necessarily square) is the number of 

linearly independent columns (or rows) in it. It can be shown that the rank of a square 

matrix equals the number of its non-zero eigenvalues, counted with multiplicity. 

We now look at an important result in factor analysis. For a given square real 

valued m x m matrix M with linearly independent eigenvectors, we can obtain a 

factorization 

such that the columns of U are the eigenvectors of M, and A is a diagonal matrix 

whose diagonal elements are eigenvalues of M arranged in decreasing order. This 

result is due to the Matrix Diagonalization Theorem. This result applies to square 

matrices, but not to rectangular ones like the term-document matrix. 

4.1.2 The Singular Value Decomposition 

Previous attempts at factor analysis applied the idea to term-term matrices or 

document-document matrices, which are square. This is referred to as single-mode 

factor analysis. In contrast, a two mode factor analysis starts off with a rectangular term 

document matrix M of dimensions m x n (corresponding to m terms and 

n documents), and rank r. The key apparatus is the singular value decomposition 

(SVD) of M , which is given by: 

M=U"L VT 

where 

U is an mxm matrix whose columns are orthogonal eigenvectors of M MT. 

V is an n x n matrix whose columns are orthogonal eigenvectors of MT M . 
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The eigenvalues A" A,2 , ... , A,r of M M T are the same as eigenvalues of MT M . The 

square root of these r eigenvalues, called singular values, are arranged in descending 

order along the diagonal of the matrix L, all other elements of which are set to o. 
We have seen before that small eigenvalues contribute less to the effect of the 

action of a matrix M on vectors. Extending this intuition to SVD, it is interesting to 

see the effect of considering only the top k singular values, and discarding the rest 

(flipping them to 0). Thus the matrix L is shrunk to a k xk diagonal matrix L k • We 

also delete the columns corresponding to low (and zero) singular values in U and V 

A A A 

to obtain U and V respectively. U, Lk and V can now be combined to yield 

(4.1) 

if is a k-rank approximation to M. This result is pivotal to our discussion of LSI that 

follows in the next section. In the rest of the thesis, we will refer to M as a case-feature 

matrix (with cases as rows and features as columns), excepting situations where we 

refer to equation 4.1 which is formulated with cases as columns and features as rows. 

4.2 Latent Semantic Indexing 

SVD as formulated in Equation 4.1 is at the heart of LSI. In this section, we examine 

the use of SVD for arriving at better textual representations. We show how LSI can be 

made useful in practice, and take specific note of issues that provide a context to 

motivate research reported in the following chapters. 

4.2.1 SVD for LSI 

The following are a few distinct directions from which SVD is interesting from the 

point of view of text retrieval. 
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Firstly, we note that SVD achieves dimensionality reduction. Let M be a case

feature matrix, with each row representing a case. Geometrically, the rows of -0 and 

V are co-ordinates of points corresponding to cases and features mapped onto a k

dimensional space. Typically, the axes are scaled using the k singular values to assign 

more importance to dimensions that are associated with high singular values. These 

reduced dimensional representations can then be compared against each other using the 

dot product or the cosine measure. 
~ 

Secondly, it can be shown that M is the best k-rank approximation to M in the 

least-squares sense. The quality of an approximation M A is measured by the Frobenius 

Norm of the "discrepancy" matrix X = M - M A' which is given by: 

m n 

IIXIIF= IIX/. 
;=1 j=1 

The lower the value of II X II F' the better the matrix M A is, as an approximations to 

M. Viewing the low rank approximation problem as one of constraint optimization, it 

can be shown that, of all approximate matrices that satisfy the constraint that their rank 

is at most k, if is the one that registers a minimum value for II X II F • This conforms 

to our earlier intuition that removing very small singular values does not significantly 

affect M. The important thesis behind LSI is that the small singular values correspond 

to noise due to word choice variability (polysemy and synonymy). if is a less sparse 

representation compared to M that broadly retains the patterns of term association to 

documents, but at the same time "smoothes" it out to eliminate noise. 

Thirdly, we note that the correspondence between low singular values and noise 

due to word choice variation is not accidental. Considering a square matrix M with 

two identical columns, we can eliminate one of these and still retain the same rank. 

This is a trivial case of feature selection. If instead, M had nearly identical columns, it 
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would mean that the two corresponding features would have co-occurred similarly with 

documents. This would be true for closely related features like "Middle East" and "oil" 

which might appear in very similar contexts in a large document corpus. In such a case, 

it is intuitive that we can still go ahead with replacing the two columns corresponding 

to the two features by a new feature (column) that averages or smoothes out the two 

original features. This is exactly what SVD achieves when it constructs a low rank 

approximation. In this context, we make a critical distinction between the "true rank" 

and "effective rank" of a matrix. While the true rank takes into account all non-zero 

singular values, effective rank discards the very small ones. Thus replacing two closely 

related features by a single new feature changes the true rank but maintains the 

effective rank of the matrix. The ability of SVD to identify "latent" co-occurrence 

patterns is the main reason for its improved effectiveness in retrieval tasks compared to 

the plain vector space model based on bag of words. Also, the new features which are 

referred to as "concept" features are expected to be more robust indicators of meaning 

in comparison to the original feature set. This can be viewed as a step of feature 

extraction. It is important to note that extracted features can be expressed as a linear 

weighted combination of original features. There is another notable consequence of 

feature extraction: although LSI deals reasonably well with synonymy, (Deerwester 

1990) observe that the solution it offers to polysemy is at best partial. This is also 

confirmed by the results of their experiments. The problem lies in the fact that LSI 

forces a term to have a single representation in the concept space; thus a word with 

multiple meanings is represented as the weighted average of the different meanings. It 

is possible that none of the "real" meanings is close to the average, leading to a serious 

distortion. We will revisit this idea using a concrete example in Section 4.3. 

Fourthly, both terms and documents are treated in a uniform way by LSI. The 

concept features act as new dimensions, in terms of which both terms and documents 

are represented. In Figure 4. 1 (a), which is an adapted version of Figure 18.3 from the 

online version of (Manning, C. et aI., 2008 expected), we show an example of vectors 

spaces before and after LSI. Figure 4.1 (b) shows how representations of words and 
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documents obtained by LSI can be positioned in the new concept space. This allows us 

to visualize term and document clusters in the same space, and obtain interpretable 

descriptors of these clusters based on neighbouring words. 

Unemployment LSI dimension 2 

o Doc 3 o Doc3 

o Doc 2 

o Doc I 

Hunger 

Unemployment 

o Poverty 

o Doc 2 

o Doc I 

o Hunger 

LSI dimension 1 

(a) Original Feature Space (b) Terms and documents in the LSI concept space 

Figure 4.1 LSI in an example domain 

4.2.2 LSI: Beyond SVD 

In this section, we focus on additional issues that need to be addressed to make LSI 

work in practice. 

Query Transformation. For LSI to be practically useful in a retrieval task, it is 

obviously not enough to represent documents in a low dimensional space; we need to 

map the query to that space as well so that it can be meaningfully compared with the 

documents. This mapping is given by: 



~- 'U~-I q- q k k 
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(4.2) 

where q is the original query and q its representation in the k-dimensional space. The 

post multiplication by ~ k -I has the effect of weighting the dimensions based on the 

singular values. The vector q can now be compared with the document 

representations which can be read out from the rows of V . 

In the TeBR context however, there are situations where we would like to make 

comparisons on the basis of the original feature space, and not in the reduced space. 

This is because the original features are more explicit than the extracted concept 

features. Also, additional background knowledge about term associations can be easily 

incorporated on a representation based on the original feature set; it is not 

straightforward to inject such knowledge into the LSI-generated concept features. For 

this, we can use the formulation in 4.1, which yields a "smoothed" (and less noisy) 

representation of cases in the original feature space. The query can now be directly 

compared against these representations. A relevant case that shared no features with the 

query in the original vector space, may now register a non-zero similarity with the 

query. This is because the smoothed representation of the case generated by LSI is 

likely to reduce the sparseness of the original representation and assign positive 

relevances to words contextually related to those present in the case. This increases the 

likelihood of the case being retrieved in response to a semantically related query that 

uses a different choice of words. This will be illustrated with an example in Section 4.3. 

The choice of dimensionality One critical factor determining LSI performance is the 

choice of k, the number of singular values that need to be considered. There is no 

elegant solution to determining the value that works best. Usually the effectiveness of 

retrieval is evaluated on a subset of documents over which relevance judgments are 

available, and the value of k that works best is used for the entire collection. In 
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supervised classification domains, an appropriate value of k can be obtained using cross 

validation over the training set. Using a very low value of k may result in filtering out 

useful information along with noise; using a very high value may lead to retaining 

noise that ought to be filtered out. In terms of evaluation measures, using a low value of 

k leads to high recall; thus documents even remotely relevant to the query will get 

retrieved. However precision may suffer, since not all retrieved documents may be 

relevant. In contrast, using a very high value of k may result in low recall and high 

precision. An extreme case is using a value of k same as the original number of terms, 

which results in LSI representations that are no different from the original vector space. 

Alternatively, using the measures of completeness and correctness introduced in 

Section 2.3, low values of k favour complete retrieval over correct ones; high values 

favour correctness over completeness. 

Efficient Update When new documents or terms are added to the collection, or 

existing documents or terms removed, the LSI generated representations need to be 

revised to accommodate these changes. Three broad update strategies have been 

proposed in LSI literature: (a) recomputation (b) folding-in (c) SVD update. 

Recomputation involves a brute force SVD computation all over again to generate fresh 

representations, each time a change happens. This is the most straightforward and the 

most inefficient of the three approaches. Folding in terms and documents is a more 

efficient approach, where the new documents (or terms) are mapped to the existing 

representation using a formulation similar to query transformation shown in Equation 

4.2. This obviates the need to compute SVD from scratch, and hence is much more 

efficient compared to recomputation. The downside is that folding-in may not generate 

accurate representations as would be obtained with a fresh SVD on the revised 

collection. For one, the orthogonality of 0 and V are no longer guaranteed. This issue 

is addressed by the approach called SVD-update, which obtains a revised lower rank 

approximation which is comparable in accuracy to the one that would be obtained with 
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recomputation, and also preserves the orthogonality of (; and V. SVD update is 

faster compared to recomputation since it involves only incremental changes to the 

existing representation. However, it is much slower, though more accurate, compared 

to folding in. The choice between SVD update and folding-in is thus driven by the 

tradeoff between accuracy and time performance. Berry et al. (1995) observe that SVD 

update is preferable when changes are more frequent. While update strategies are 

peripheral to the theme of this thesis, we note that these approaches can be directly 

applied to the LSI improvisations suggested in the following chapter. Most realistic 

applications have dynamic collections, hence efficient updates is of critical concern 

from a practical standpoint. 

Using LSI for Classification LSI can easily be extended to supervised text 

classification tasks. The revised representations of the labelled training documents in 

the lower dimensional space are obtained as described before. Alternatively, we can use 

the reduced rank approximations of the training documents in the original feature 

space. The test documents are mapped to either of these spaces, and a weighted k

Nearest Neighbour algorithm is used to identify the nearest neighbours. A class label is 

assigned to the test document based on weighted majority vote. Either cosine similarity 

or Euclidean distance can be used as to compute similarities. As has been observed in 

Chapter 2, a disadvantage with this straightforward extension of LSI to classification is 

that class labels of the training documents play no role in constructing the revised 

document representation. 

Space and Time Efficiency LSI generated representations are more compact compared 

to the original vector space because of reduction in the feature space size. However, 

this does not really translate to reduction in storage space requirements, since 

advantages due to compaction are offset by the fact that LSI destroys the sparseness of 

the original representation. Furthermore, storage requirements are compounded by the 
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fact that relevance values generated by LSI are real numbers, while the original term 

document matrix is typically binary valued. The loss of sparseness has adverse effects 

in terms of retrieval time as well. While the use of an inverted index as common in IR 

applications (Rijsbergen 1979), leads to significant speedups over the original 

representation by restricting the number of cases compared, it is relatively ineffective 

over the LSI generated representation. In Chapter 8, we address the issue of sparseness 

in depth and propose an efficient CRN-based retrieval formalism to facilitate fast 

retrieval over non-sparse representations. 

4.2.3 Why does LSI work? An Empirical Justification 

In Section 4.2.1, we have presented intuitive explanations for improvements in 

performance observed with LSI. In this section, we will look at some interesting 

empirical evidence (Kontostathis & Pottenger 2006) that suggests that LSI's 

effectiveness can be attributed to its ability to model higher order term co-occurrences. 

If two words co-occur in at least one document in the collection, they are said to share a 

first order co-occurrence between them. Examples are "filtering" and "indexing" in the 

casebase shown in Figure 4.2(a). Furthermore, we note that "matrix" and "clustering" 

co-occur in one document, and words ''matrix'' and "differential" in another; thus we 

can infer that "clustering" and "differential" are related to each other, even if they do 

not co-occur in any document. Such a relation is called a second-order association, and 

the word sequence "clustering - matrix -- differential" defines a second order path 

between "clustering" and "differential". We can extend this idea to orders higher than 

2. While we revisit the issue of higher order co-occurrences in more detail in Chapter 

5, here we take note of the main conclusions reached by Kontostathis and Pottenger 

(2006) that will be relevant to our discussion in the following three chapters. 

There is a strong correspondence between the number of higher order co

occurrence paths between two words and the similarity between them as inferred by 

LSI. The authors derive an LSI based term-term similarity matrix as described in 



80 

Section 4.3.2, for several well known corpuses in IR, like MED, CRAN and LISA. 

They also independently mine the number of co-occurrence paths (upto the 6th order) 

corresponding to each pair of terms. The ftrst five orders of association show a bearing 

on the term similarity values. While the individual contribution of very high order paths 

is expected to be small, this is compensated by the fact that there are so many of them. 

In the LISA collection comprising about six thousand documents, the authors found 

around 50,000 pairs with first order associations between them, around 10 million with 

2nd order co-occurrence paths and over 60 million with 3n1 order paths. 

Terms with high LSI similarities are those that have a moderate number of co

occurrences with other terms, and not those that share a huge number of high order 

relationships with other terms. This suggests that the latter is treated as noise by LSI. In 

contrast, second order pairs with many connectivity paths between them are associated 

with high LSI similarity values; those with a moderate number are associated with 

negative values. The authors infer that this points to the fact that second order 

associations are critical to the "latent semantics" emphasized by LSI. 

The authors mathematically prove that a connectivity path (at least one of several 

higher orders) exists between any pair of terms with a non-zero LSI similarity. 

4.3 Using LSI for Knowledge Acquisition in eRNs 

A core motivation for our discussion so far has been to facilitate automated acquisition 

of knowledge for TCBR systems. In this subsection, we illustrate using examples how 

LSI can be used to acquire relevance and similarity knowledge for CRNs. 

4.3.1 Using LSI for Relevance Knowledge Mining 

For mining relevance knowledge, we use the formulation in (4.1), which provides a 
A 

lower rank approximation M corresponding to the original case feature matrix M . As 
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A 

we have discussed in Section 4.2, the rows of M are the new representations of the 

cases in terms of the original feature set. These case representations can in turn be 

mapped to a CRN, where each element in the matrix M defines the relevance of a 

term to a document. 

Figure 

Figure 4.2 Relevance values mined using LSI 
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Figure 4.3 A CRN constructed with the acquired relevance weights 

4.2 (a) shows an example casebase, which is same as the one in Figure 2.2. We have 

nine documents and nine terms representing three broad concepts: CBR, chemistry and 

Linear Algebra. The elements in the matrix that pertain to these concepts are shown in 
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shades of grey. The three elements shown in darker shades are interesting because they 

identify a departure from the norm. These elements relate to the use of the Linear 

Algebra term "matrix" in Case 1 which deals with CBR; the use of the CBR term 

"filtering" in Case 6 which relates to chemistry; and the use of the chemistry word 

"decompose" in Case 9 which belongs to Linear Algebra. In as far as they highlight 

the applicability of these words in more than one context, each of these usages could be 

regarded as polysemous. 

When the case-feature matrix M constructed from Figure 4.2(a) is subjected to 

SVD, the singular values obtained are 3.1873, 2.6940, 2.6185, 1.0786, 0.8071, 0.7094, 

0.4730,0.4306 and 0.0000. It is clear that the top 3 singular values are conspicuously 

bigger than the rest, perhaps pointing to the three main underlying concepts that 

describe this casebase. By retaining the top 3 singular values, and setting the rest to 0, 

we obtain a 3-rank approximation to M , say M . The corresponding document-term 

matrix is shown in Figure 4.2 (b). The new relevances of features to cases can be read 

out from this matrix. 

We now examine some interesting differences between M and if . We focus 

on how the values of the elements highlighted in darker shades in Figure 4.2(b) have 

changed from their original values in M. Thus LSI has inferred that the term 

"indexing" is relevant to case 2, though it is not explicitly present in that case. This is 

because case 2 has terms "filtering" and "clustering" which are strongly associated with 

the underlying concept CBR and the term "indexing" is strongly representative of that 

concept. For similar reasons, the word "sediments" is now associated to case 5, and the 

word "matrix" to case 8, despite the fact that they do not occur in those cases. This 

illustrates the ability of LSI to exploit co-occurrence patterns to infer implicit semantic 

associations within a casebase. We also note that the relevance of polysemous terms to 

their cases have been attenuated by LSI. For example, the relevance of "decompose" to 

case 9 has been diminished from I to 0.67. A possible explanation for this is as follows: 

The meaning of the term "decompose" as used in Case 9, is different from the "average 
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meaning" of the tenn. It may be noted that LSI assigns a unique location (a set of co

ordinates) to each tenn (and each document) in the concept space. This location can be 

intuitively regarded as capturing the global meaning of the tenn, as averaged from 

several local meanings. In our current example, since the word "decompose" has been 

more often used in the context of chemistry than in Linear Algebra, the global meaning 

will show a greater belongingness to the concept of chemistry than to Linear Algebra. 

Since Case 9 is predominantly about Linear Algebra, LSI attempts to strike a balance 

between the following two conflicting requirements: the first that "decompose" 

actually occurs in this case and therefore should be considered relevant, and the second 

that the average meaning of "decompose" is conceptually not aligned to the main theme 

of the case. Figure 4.3 shows how the LSI generated relevance values can be 

implanted into a CRN. 

We can extrapolate our discussion so far to see why M is better suited to 

facilitate retrieval of relevant documents compared to M. When retrieval is perfonned 

over if , Case 2 can be retrieved in response to a query on "indexing", even though it 

does not have that tenn. This is because Case 2 has tenns "filtering" and "clustering" 

which are conceptually related to "indexing", thus resulting in a non-zero relevance of 

"indexing" to case 2, and in consequent retrieval of case 2. We can regard this as an 

"implicit" query expansion (Manning et aI, 2008 (expected», where the query tenns are 

augmented with additional tenns that are semantically similar. 

Figure 4.4 (a) shows an image from the USREMAIL domain, obtained using the 

stacking approach described in Chapter 3, and Fig, 4.4(b) shows its lower rank 

approximation generated by LSI. It is interesting to observe that the LSI image is 

relatively blurred; also the compressed LSI image is approximately 73% the size of the 

original compressed image. 
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Figure 4.4 Stacked images from USREMAIL before and after LSI 

4.3.2 Using LSI for Similarity Knowledge Mining 

The method u ed for acquiring relevance values can easily be adapted for acquiring 

similarity knowledge as well. Each column of the approximation matrix if 
correspond to the repre entation of a feature in terms of its relevance to the ca es. 

Computing word imilarities is thus simple: we take a dot product (or cosine similarity) 

between the corre ponding columns of M . The word similarities thus obtained can be 

compared again t imilaritie derived fro m the original term document matrix M . 

Figure 4.5 hows term imilarities before and after LSI , for the example document 

co ll ection Figure 4.2(a). [t i seen that LSI destroys the sparseness of the original 

similarity matrix. 
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Figure 4.5 Similarities mined using LSI 

A second way of obtaining similarity knowledge is to use revised representations of 

words in the k-dimensional space and compute cosine or dot product similarity between 

these lower dimensional representations. We have seen that the matrix U in the 

decomposition of equation 4.1 contains the revised term representations. These are 
~ 

scaled using the matrix Lk to obtain the term matrix U Lk ' so that dimensions are 

~ 

weighted by the importance of concepts. The rows of U Lk are the new co-ordinates 

for terms. We can compute the dot product (or cosine similarity) between term 
~ 

representations derived from U Lk . It can be shown that these two ways of computing 

word similarities are equivalent in that they produce the same similarity matrix 

(Deerwester et aI. , 1990). 

4.4 Chapter Summary 

]n this chapter, we have looked at the mathematical foundations of factor analytic 

approaches, in particular LS] , to induce concepts from a collection of textual cases. 
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Linear algebraic techniques like matrix decomposition to extract eigenvectors are 

central to the theme. SVD, which is the heart of LSI, is an extension of the idea which 

realizes a dual mode factor analysis, which allows it to create a representation of both 

terms(features) and documents(cases) in terms ofa common set of underlying concepts. 

We have presented intuitive arguments that explain why the revised representations 

yield improved retrieval effectiveness. Several issues of practical concern like choice of 

dimensionality, space and time efficiency, approaches for efficient updates, and using 

LSI for supervised classification tasks have been briefly covered. Finally, we have 

illustrated using examples how LSI can be used to mine relevance and similarity 

knowledge for CRNs in TCBR. 
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Chapter 5 

Supervised Latent Semantic Indexing 

You've got to stop looking at the big picture. Gunnar Grimnes 

In the previous chapter, we discussed how LSI can be used to acquire relevance 

knowledge for CRNs. In this chapter, we focus on using LSI for acquiring relevance 

knowledge in supervised classification tasks. LSI has been used before in classification 

tasks. In (Gee 2003) LSI has been applied to spam classification, and performances 

competitive with Naive Bayes classifier reported. Similarly, in a study by (Zelikovitz & 

Hirsh 2001), LSI-based classifiers have been extended to accommodate background 

knowledge. However, an inherent limitation of LSI when applied to classification is 

that it fails to exploit class knowledge of training documents. If taken into account, 

class knowledge can lead LSI to promote inferred associations between words 

representative of the same class, and attenuate word associations otherwise. In this 

chapter, we present approaches to incorporate class knowledge into LSI to produce 

revised document representations. 

Section 5.1 discusses limitations of LSI in the context of supervised 

classification tasks. We present a novel theoretical framework for understanding LSI 

performance in classification tasks. In Section 5.2, we propose the idea of sprinkling, 

which integrates class knowledge into LSI. Sprinkling is a simple extension of LSI 

based on augmenting the set of features using additional terms that encode class 

knowledge. We present an intuitive analysis of why sprinkling works, and also identify 

factors that playa critical role in determining its effectiveness. Sprinkling is "naive" in 

that it accords equal importance to all classes. Furthermore, when the resulting case 
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representations are used for classification by more than one classifier, sprinkling fails 

to exploit the strengths and weaknesses of these classifiers. Section 5.3 presents a 

principled approach called Adaptive Sprinkling (AS) to address these issues; Chapter 7 

presents empirical results to demonstrate the effectiveness of AS over diverse 

classification tasks including those where classes share ordinal or hierarchical 

relationships. Section 5.4 positions our work in the context of other related works, and 

identifies avenues for future work. Section 5.5 summarizes the main contributions of 

this chapter. 

5.1 LSI in Classification Tasks 

In Section 4.2.2, we showed that applying LSI in supervised classification tasks is a 

straightforward extension of its more commonplace application for retrieval. To make 

our discussion self-contained, we revisit this extension here briefly. We are given a 

collection of labelled training cases, and LSI is used to construct lower dimensional 

representations of these cases. An incoming unlabelled test case is treated as a query, 

and positioned in the space of training cases. This allows us to retrieve the k training 

cases most similar to the test case; since these training cases are labelled, a weighted k 

nearest neighbour (w-kNN) algorithm can be used to arrive at a class assignment for 

the test case. It may be noted that w-kNN is not the only approach that can be used in 

conjunction with LSI; since LSI generated representations are founded on the vector 

space model (VSM), any technique founded on the VSM like the Support Vector 

Machine can be used to carry out the classification. 

Most practical systems using LSI for supervised classification use wkNN over LSI 

generated representations as explained above. However, this approach has several 

shortcomings, all resulting from the fact that LSI fails to take into account class labels 

of training documents while constructing revised case representations. Let us consider 

the simplistic example in Figure 5.l(a) which shows cases originating from two classes 
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distributed over two features. It is clear that Feature 2 is more useful than Feature I in 

discriminating between classes I and 2. However, the variance or spread of the cases 

across Feature 1 is more pronounced compared to Feature 2. Thus, assuming that 

features I and 2 coincide with the orthogonal features extracted by LSI , Feature 1 will 

be assigned more importance (as indicated by a higher singular value associated with 

it) compared to Feature 2. This can be understood intuitively in the light of our 

discussions in Section 4.2.1 , where it was observed that LSI yields the best lower rank 

approximation in the least squares sense. LSI shows a preference for Feature 1, since 

projecting the cases onto Feature 1, will result in lesser " loss of information" than 

projecting them onto Feature 2. 

Ftatu ... 2 

o 0 
o 
O~SS1 

Ftatu ... 1 

(a) 

FNtu ... 2 

Ftature1 

(b) 

Figure 5.1 Hypothetical Case Bases to illustrate LSI ' s preference for dimensions 

To better understand this, we take a simpler example of ten cases in Figure 5.2 that 

mimic the case distribution of the classes in Figure 5.1. The feature values of the five 

cases in Class I are (1 ,1.2), (1.8 ,1.3), (2.5 ,1.1), (3.6,1.2) and (4.5,1.4). The five cases 
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in Class 2 are (1.2,2.3), (1.8,2.2), (2.4,2.4), (3.6,2.1) and (4.4,2.3). The case feature 

matrix is shown in Figure S.2(d). We perform an SVD on this matrix. The singular 

value attached with the first LSI dimension is 10.67, while SVD associated with the 

second dimension is 2.42. When only the first dimension is retained, we obtain the 

approximation shown in Figure S.2(e) Figure S.2(f) shows the approximation when 

only the second dimension is retained. 

Based on the formulation in Section 4.2.1, we compute the Frobenius norm of 

differences between an approximation X and the original matrix as: 

2 10 

E(X)= L L (Xi.\; -Xi.\;)2 
,\:=1 i=1 

where k is the index of features and i the index of cases, Xi.\: and X ik are the 

values of kth feature of the ith case in the original case and in the LSI-generated 

approximation respectively. The errors corresponding to the approximations in Figures 

S.2(e) and S.2(f) evaluate to 2.42 and 10.67 respectively. This confirms that taking the 

first dimension alone leads to a much better I-rank approximation to the original 2-rank 

matrix, compared to taking the second dimension alone. In fact, as discussed in Chapter 

3, we can verify that the approximation obtained with the first SVD dimension alone is 

the best of all theoretically possible I-rank approximations. 

Now we take a look at the approximations as plotted in Figure S.2(b) and (c). The 

classes corresponding to the round, and star markers look more separable in Figure 

S.2(c), compared to Figure S.2(b). This hints at the fact that though Dimension 2 is not 

good from the point of minimizing reconstruction error, it is indeed more 

discriminative of features compared to Dimension 1. 

The above example shows that LSI is handicapped in its absence of class 

knowledge and thus may extract features which are not the best from a classification 

standpoint. Extracted features corresponding to the top k singular values correspond to 

class structure only when features from cases belonging to different classes do not 
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overlap. However, more often than not, textual cases pertaining to different classes are 

like ly to share features because of po lysemous and context driven usage of words and 

large word choice variabil ity . Furthermore, infrequent features with high 

discriminatory power may be treated by LSI as noise, and filtered out. 
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Figure 5.2 An Example 
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The features extracted by the LSI seldom coincide with the original set of features; 

Figure 5.1 (b) shows a more realistic situation where the extracted LSI features are 

ditTerent from the original. We observe that the extracted feature 2 is more 

discriminating than the extracted feature 1, which is declared to be more important by 

LSI. Our earlier discussion with reference to the simplified case of Figure 5.1(a) can 

directly be extended to explain the failing of LSI in handling the situation in Figure 

5.1(b). 

The ideas presented above show a stress strain relationship between two, often 

conflicting, goals. The first goal is to preserve the structure of the case feature matrix as 

closely as possible by minimizing the least square error of the approximation with 

respect to the original matrix. The second goal is to prefer extracted features (LSI 

dimensions) that are better in discriminating between classes. LSI satisfies the first 

goal, but ignores the second altogether. In this chapter, we investigate approaches that 

strike a reasonable tradeotTbetween the two goals. We formalize this intuition below. 

In unsupervised clustering literature (Hastie et aI., 2001), the goodness of a 

clustering C obtained over a set of data points (cases) X is measured by the two metrics: 

the within-cluster point scatter W(C,Aj and between-cluster point scatter B(C,X). 

W(C,X) characterizes the extent to which cases assigned to the same cluster tend to be 

close to each other. B(C,X), on the other hand, tends to be large when cases assigned to 

disjoint clusters are far apart. Let each case be uniquely labeled by an integer 

i E {l, ... ,N}.When the set of cases Xis fixed, we simplify the notations W(C,X) and 

B(C,X) to W(C) and B(C) respectively, which are given by 

1 K 
W(C) =-L L Ld(xj,xj') 

2 k=) C(i)=k C(j')=k 
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where d (xi' x;') is the distance between two cases Xi and Xi' as computed using a 

standard distance measure like the Euclidean distance. K is the number of clusters, and 

C(i) returns the class label of the ith case. We can define the total point scatter T as 

T =W(C)+B(C) 

It may be noted that T is constant given a set of cases, irrespective of the cluster 

assignment. A good clustering assignment would be one that maximizes B(C) or 

minimizes W(C), for a given number of target clusters K. 

We will now try to adapt this formulation to deal with the supervised case. The 

class labels are known and can be equivalently thought of as defining a clustering C. 

However, the data points corresponding to the cases Xi are no longer fixed, but decided 

by the choice of our representation. One such representation is the lower-rank 

approximation to the original cases generated by LSI. Feature generalization using 

Association Rule Mining as in Propositional Semantic Indexing (Wiratunga et al., 

2005a) generates yet another representation in the original feature space. Instead of 

evaluating goodness of clustering given a representation, we are now interested in the 

dual of the problem, intuitively stated as: Given a clustering C as enforced by the class 

labels of cases, how good is a given choice of representation in ensuring that cases 

belonging to the same class are close to each other, and cases from disjoint classes are 

far apart. In other words, we are interested in finding X, which represents an 

assignment of data points Xi in the feature space, that leads to minimizing W(C,x) and 

maximizing B{c'X). for a given C. Since C is held constant, we simplify the notations 

W(C.X) and B{C.X) to W(X) and B(X) respectively. In our discussion henceforth, we 

focus on minimizing the function G(X) = W(X)/B(X). though alternative formulations 

are possible. 

It is easily seen that given this problem definition, the "best" representation would 

be one that collapses all cases belonging to a certain class to a single data point, thus 
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resulting in each case in the casebase mapped to one of the K distinct points 

corresponding to each class. This has the effect of minimizing W(X) to O. However, 

this trivial solution is useless for all practical purposes, since it has very poor 

generalization over an unseen test case; also, from a k-NN perspective, the 

representation would be quite useless for retrieval since all knowledge of differences 

between cases within a given class have been lost. Thus the system cannot say which of 

the several cases within a given class is most similar to a given test case. Hence certain 

constraints need to be added to the above definition to tighten up the problem definition 

and make it useful in practice. These constraints come from the need to preserve the 

structure of the original case-feature matrix, and patterns within it. 

We have already defined the error in approximating the original case feature 

matrix in Chapter 4 using the Frobenius Norm. We use this to define the second 

optimization criterion, which we call called E(X); we are interested in minimizing E(X). 

An extreme case of using the original case feature matrix suggests itself, in that it 

makes E(X) = O. However, it has poor generalizability and is unsurprisingly 

unimpressive in its classification effectiveness. On the other extreme, it can be seen 

that the situation described above of collapsing all cases belonging to the class to one 

datapoint results in a very large E(X), suggesting a large departure from the original 

case-feature matrix structure. To sum up, thus, our goal is to opt for a representation X 

that strikes a reasonably good tradeoff between satisfying the conflicting goals of 

minimizing G(X) and minimizing E(X). 

We refer to this as the structure versus class-knowledge dilemma, and in 

conjunction with the well studied bias-variance trade-off (Mitchell 1997), will serve as 

a useful tool in devising our algorithms, and explaining empirical results from 

experimental evaluations. 
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S.2 Sprinkling 

In the last section, we have identified two limitations of LSI in a classification setting. 

Firstly, clusters defmed by extracted features correspond neatly to class structure only 

when there are not many overlapping terms in cases from different classes. Secondly, 

infrequent words with high discriminatory power are watered down. In this section we 

address these issues by directly incorporating class knowledge into the representation 

used as input by SVD, which forms the heart of LSI. 

The basic idea is simple: we generate a set of artificial terms corresponding to the 

class labels of the training cases. These artificial terms are then appended to the feature 

set of the training cases. We refer to this process as 'sprinkling'. The case-feature 

matrix of Figure 5.3(a) has three classes each having three cases as shown. We obtain 

the augmented case feature matrix of Figure 5.3(b) by adding three new features 

corresponding to the three class labels. These features can be thought of carriers of 

class knowledge. 

Figure 5.4 shows a schematic of the processes involved in using the idea of 

sprinkling for classification. To start with, LSI is carried out on the augmented case

feature matrix. Noisy dimensions corresponding to low singular values are dropped and 

a lower-rank approximation of this matrix is obtained as usual. The approximation 

matrix containing the revised case representations has the same dimensionality as the 

augmented matrix. However, we do not know the class labels of the incoming test 

documents. Therefore, to make training document representations compatible with the 

test document, the columns corresponding to additional sprinkled features are dropped 

from the augmented matrix. This step is referred to as "unsprinkling" in Figure 5.4. 

Test documents are now classified using weighted kNN using an Euclidean distance 

metric in the usual manner. From a knowledge acquisition perspective, the relevance 

values in a eRN can be read out from the case representations in the case-feature 

matrix after unsprinkling. 
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Figure 5.4 Classification using sprinkled LSI 

While we have sprinkled only one additional feature per class, in principle 

we can add more than one artificial feature for each class. This gives rise to interesting 

possibilities. We observe that larger the number of sprinkled features per class, the 

more the contribution of the class knowledge of the training cases in the generated LSI 

representations and hence in the consequent classification process. It is illustrative to 

study the singular values associated with the LSI dimensions obtained after the SVD of 

the augmented case feature matrix, and observe how these singular values change as a 

function of the number of sprinkled features. Figure 5.5(a) shows the case feature 
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matrix in Figure 5.3(a); as before, we assume that documents 1,2,3 belong to class 1; 

documents 4,5 and 6 to class 2; documents 7, 8 and 9 to class 3. Figs. 5.5 (b), 5.5 (c) 

and 5.5 (d) shows the augmented matrix after 3, 6 and 18 sprinkled features are added 

to the cases. Figure 5.5 (e) shows line graphs connecting the nine singular values 

obtained in each of these three cases, as well as over the original matrix with no 

sprinkled tenns. We readily observe that with increased sprinkling the top three 

singular values get promoted with respect to the remaining ones. The three top singular 

values are associated with LSI dimensions that capture concepts that characterize the 

three classes. Thus adding larger number of sprinkled tenns has the effect of 

emphasizing the class specific concepts in the LSI representation. However, as we shall 

examine in detail in the following sub-section, this "distortion" is not always without 

added costs. As a final detail, we note that it is possible to simulate the effect of 

sprinkling several columns by augmenting the matrix with a single column of real 

valued elements, and varying these values instead. However, we retain the binary

valued nature of the matrix in the interest of efficiency. 

S.2.1 Why does Sprinkling Work? 

In this section, we examine reasons why we expect sprinkled case representations to 

improve effectiveness in classification tasks. We also examine conditions under which 

sprinkling is expected to perfonn best. 

Structure versus Class Knowledge Argument 

In Section 5.1, we highlighted that a good choice of representations must strike a 

tradeoff between minimizing G(X), defined as the ratio of within-cluster point scatter 

and between-cluster point scatter, and minimizing E(X), which quantifies the distortion 

of the new representation with respect to the original one. 
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We carried out an analysis of the effect of sprinkling on LSI, to verify the hypothesis 

that sprinkling leads to better case representations. To illustrate the idea, we use the 

following toy case-feature matrix: 

1 0 0 0 0 

0 0 0 0 

0 0 0 0 0 0 

0 1 0 0 0 
M= 

0 0 0 1 0 1 

0 0 0 0 0 0 1 

0 0 1 0 0 

0 0 0 0 

This is a binary classification problem. Of the 8 cases, the first four are assumed to 

belong to the first class, and the remaining four to the second. Also we assumed that the 

affiliations of the features to classes are manually identified and hence known in 

advance; this helps us evaluate the impact of sprinkling on the revised representations 

of these features. It is usually not the case that feature memberships to classes are a 

given, though the degree of belongingness of features to classes can be estimated 

statistically. In our example, the first four features are prototypical of the first class, the 

remaining four of the second. We create 4 different representations of M, by sprinkling 

2, 4, 6 and 8 terms, and performing LSI on the augmented case feature matrices. Each 

of these representations is used, in turn, to compute two dissimilarity matrices, the case 

dissimilarity matrix and the feature dissimilarity matrix. Treating each class as a cluster 

and following the procedure outlined in Section 5.1, we compute the within-cluster and 

between-cluster point scatters, which are used to compute G(X). We also compute the 

value £(X) measuring the difference between the revised case-feature matrix and M, 

using the Frobenius norm. 

Figure 5.6 shows that with increased number of sprinkled terms G(X) falls 

conspicuously. However, this is accompanied by the fact that sprinkled LSI distorts the 

original term document matrix D to a class-enriched LSI approximation Ds. We note 

that Ds is no longer the best k-rank approximation to the D in the least-square sense. 

The vertical axes of the graphs in Figure 5.6 show the mean square of errors between D 
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and Ds, given by E(X) . The number alongside each marker point in the line graphs 

shows the number of sprinkled terms. We readily observe that the reduction in G(X) 

achieved by sprinkling is at the cost of losing information on D, as indicated by an 

increase in E(X) . Thus very large number of sprinkled terms may be detrimental to 

classification performance, as it may over-emphasise class-knowledge. Ideally we 

would like a trade off between "under-" and "over-sprinkling", that gives us the best of 

both worlds: improve class-discrimination while not overlooking specific patterns in D. 
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Figure 5.6 Illustrating the tradeoff between reducing W/B ratio (G(X)) and reducing 

the mean square error distortion with respect to the original case feature matrix (£(X)). 

The Higher Order Co-occurrence Argument 

Sprinkling aims to make explicit any implicit associations between terms indicative of 

underlying classes. Since sprinkled features are essentially class labels, including them 

helps to artificially promote co-occurrences between existing terms and classes. More 

specifically, the performance of sprinkled LSI in classification tasks can be explained 
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using empirical observations made in (Kontosthathis & Pottenger 2006), which were 

summarised in Section 4.2.3. Their work reveals a close correspondence between LSI 

and higher order associations between terms. Kontostathis and Pottenger (2006) 

provide experimental evidence to show that LSI boosts similarity between terms 

sharing higher order associations. In the light of this observation, it is interesting to 

note that sprinkled terms boost second-order associations between terms related to the 

same class, hence bringing them closer. This is because two terms TJ and T2 

representing cases of the same class are forced to co-occur with the sprinkled terms 

corresponding to that class. Thus, even if TJ and T2 do not have first order association 

between them, they share a second-order path through the sprinkled terms, which 

boosts their similarity as inferred by LSI. We will examine the role of sprinkling in 

making higher order co-occurrence pathways in further detail in the next chapter on 

similarity knowledge mining. 

5.2.2 Advantages of Sprinkling 

From our discussion so far, we can identify the following advantages of sprinkling: 

Simplicity: The idea is extremely simple, and needs no new algorithms to be 

implemented. Any system currently using LSI can be made to scale up to handle 

supervised domains by a preprocessing step that adds columns corresponding to the 

additional terms to the case feature matrix. The basic apparatus of SVD, and 

incremental update algorithms associated with SVD remain unaffected as a result of 

this change. 

Representation Richness: Sprinkling generates revised case representations that 

integrate well within instance based learners like k Nearest Neighbours. More 

generally, the generated representations can be used by any mechanism founded on the 

vector space model; in Chapter 7 we present empirical results suggesting that SYMs 
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benefit by usmg sprinkled LSI representations instead of the original LSI 

representations. Secondly, sprinkled LSI representations can be used for unsupervised 

tasks like case retrieval, and retrieval quality is expected to benefit from the 

incorporation of class knowledge. Thirdly, as with LSI, sprinkling can lead to revised 

feature representations and feature similarity knowledge that incorporates class 

knowledge. Finally, we note that though sprinkling has been discussed in the context 

of LSI, the idea can be decoupled from LSI and exploited by other learners as well. In 

the following chapter, we show how sprinkling can be used in conjunction with an 

approach that mines similarity knowledge using higher order association between 

features. 

Efficiency: Sprinkled features are typically far fewer in number compared to the size 

of the original feature space. In our experiments reported in Chapter 7, significant 

improvements were obtained when as low as 8 artificial terms were sprinkled to an 

original representation comprising 1000 features. Thus the overheads in terms of SVD 

computation are minimal. Empirical evaluations supporting this are reported in Section 

7.2. 

5.3 Adaptive Sprinkling 

The basic sprinkling approach treats all classes equally. This is a limitation for the 

many multi-class problems with explicit relationships between classes. Two examples 

are hierarchical classes and ordinal classes. An example of hierarchical classification is 

the Yahoo directory, which is a manually created and maintained library of web sites 

organized into categories and subcategories. Subcategories (say dogs) have is-a 

relationships with their parents (say mammals). Ordinal classes are common in 

sentiment analysis domains. In a movie review domain, we may have ratings I to 5, 

each rating treated as a class. Reviews rated I are similar to those rated 2 in that they 

both express a negative polarity, but dissimilar to those rated 5 which carry a positive 
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polarity. Ignoring inter-class relations in both the hierarchical an ordinal scenarios may 

have an adverse effect on the effectiveness of the sprinkled representations. 

Furthermore, even in scenarios where classes have no explicit relationship between 

them, some classes are more easily separable than others, so the number of sprinkled 

terms should depend on the complexity of the class decision boundary. A second 

limitation of sprinkling is revealed when the case representations generated by 

sprinkled LSI are used by other classifiers like SVM. Classes found confusing by a 

kNN classifier could be different from those found confusing by SVM, and ideally the 

sprinkling process should adapt to classifier needs. Adaptive Sprinkling (AS) IS 

motivated by the need to address the aforementioned limitations of sprinkling. 

There are two broad ways of incorporating knowledge of inter-class 

relationships into case representations generated by sprinkling. The first is the explicit 

approach, where the similarity between classes is captured using an explicit 

formulation that captures the inter-class similarity. One can model the relationship 

between classes in a movie review domain by assuming that the distance between 

classes is a linear function of the absolute difference in the ratings (Mukras et al., 

2007). Similarly, for hierarchical classes, we can use one of the several distance 

measures like the Wu Palmer distance, the Resnik distance or the path-length distance 

(Pederson et al., 2004), which can be used to compute similarity between any two 

classes. One way of incorporating the explicit inter-class similarity knowledge into 

classification is to use it to bias the feature selection process; an example is (Mukras et 

al., 2007) where the Information Gain approach is adapted to take into account class 

relationships in ordinal datasets. There are several disadvantages to this approach of 

explicitly modelling interclass relationships. Firstly, most explicit formulations fail to 

take into account asymmetry between classes. Thus in the movie review domain, the 

similarity between classes 1 and 2 will be reckoned to be the same as that between 

classes 2 and 3. This may not be a reasonable assumption, given the fact that classes 1 

and 2 are likely to share more vocabulary given that they are both negative in their 

sentiment orientation, while class 3 is likely to be more diverse in its choice of words. 
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Thus the interclass similarity as formulated by an explicit relation may have little or no 

grounding on the actual overlap of vocabularies between cases originating from 

different classes, and thus fails to recognize that certain pairs of classes are harder to 

separate than some others. Secondly, it is hard to arrive at a right choice of distance 

measure. In the case of the movie review domain, why should we favour a linear 

relationship over say one that uses an exponential decay instead? Similarly, which of 

the several approaches to model hierarchies is expected to work the best? Thirdly, the 

method fails in situations where classes have no explicit relationship between them. 

This is the most common classification scenario, where the classifier chooses between 

one or more of several unrelated classes. Henceforth we refer to such problems as 

orthogonal classification tasks. The name signifies that the classes are considered 

orthogonal with respect to each other, in the absence of any known relationship 

between them. As we noted before, in this case we would like the sprinkled terms to 

have a bearing on the inter-class complexity. 

The second approach of influencing generated case representations using the 

knowledge of inter-class relationships is the implicit one, and this is our main 

contribution in this section. The key idea behind AS is to exploit confusion matrices 

generated by classifiers like kNN and SVM. Confusion matrices implicitly capture a 

wealth of knowledge about how classes are related to each other. A confusion matrix 

compares a classifier's predictions against expert judgements on a class-by-class basis. 

The non-diagonal values in this matrix are indicative of classes that the classifier finds 

hard to separate; the lower the values, the more easily separable the classes. Figure 5.7 

shows a confusion matrix created from nine classes in the 20 NewsGroup text 

collection (Mitchell 1997) using the k-NN classifier. The classes shown are arranged in 

a hierarchy. The two broad trees are eomp for computing and ree for recreation. 

Referring to classification errors in the example confusion matrix of Figure 5.7 we 

readily infer that classes 1 and 9 are easy to tell apart, while classes 1 and 2 are harder 

to discriminate. AS is based on the intuition that relatively more sprinkled terms are to 

be allocated between hard-to-discriminate classes. Interestingly, we found that 
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confusion matrices also implicitly carry information about explicit class relationships 

as in ordinal and hierarchical classes. For example, in Figure 5.7, we see that the two 

shaded regions correspond to confusion between classes within the comp and rec 

subtrees. The confusion between classes from the two disjoint subtrees is smaller. 

1. comp.graphics 130 10 14 18 20 0 5 2 1 

2. eomp.os.ms-windows.misc 31 110 13 19 19 2 3 2 1 

3. comp.sys.ibm.pc.hardware 25 19 111 36 6 1 2 0 0 

4. comp.sys.mac.hardware 15 1 41 130 7 1 3 2 0 

5. comp.windows.xp 34 16 5 6 135 0 2 2 0 

6. rec.autos 19 1 1 7 3 148 16 4 1 

7. ree.motorcycles 13 1 2 5 5 30 143 1 0 

8. ree.sport.baseball 4 4 3 13 6 9 7 143 12 

9. ree.sport .hockey 4 3 2 4 2 2 1 12 170 

classifier's predictions 

Figure 5.7 A Confusion matrix from the hierarchical 20 NewsGroups domain 

AS determines the number of sprinkled terms for each class from the confusion 

matrix. The confusion matrix is generated using the same classifier that will operate on 

the revised representations. Let qij be an element of the confusion matrix Q, showing 

the number of documents of class Cj being misclassified as class c)' We define 

probability POI i) as the probability of class Cj being misclassified as class Cj . This can 

be estimated from the entries in the confusion matrix as: 

We then define the" mutual complexity" between classes Cj and Cj as 

. .) P(i I j) + P(j I i) 
mcc(/, } = 2 
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The asymmetric confusion matrix Q is now transformed into a mutual complexity 

matrix M, which is symmetric. The pseudo-code in Figure 5.8 shows how sprinkled 

terms can be generated based on the matrix M. The maximum sprinkling length MSL is 

empirically determined. In our experiments we used MSL = 8. We note that the mutual 

class complexity values are normalised and used as weights to vary the number of 

sprinkled terms as a fraction of MSL. Thus the influence of class knowledge is greater 

for those classes that are more difficult to discriminate. 

for i = 1 to m-l {!*m is the number of classes*! 

for j = i+ 1 to m { 

} 

1. Compute normalized mutual class complexity between classes Cj and Cj as 

follows: 

(i .)_ mcc(i,j) 
mccnorm ,J - (. .) 

mccmax l,J 
where mccmax (i, j) is the maximum 

mcc (i, j) value in the matrix M 

2. s= LMSL xmccnonn(i,j)J 

3. Sprinkle s terms in all documents belonging to class Cj and s others in all 

documents belonging to Cj. 

Figure 5.8 Pseudo-code for Adaptive Sprinkling 

In Chapter 8, we present experimental evaluations over orthogonal, ordinal and 

hierarchical classification problems. We compare the original confusion matrix with 

the one obtained by trying the same classifier on the case representations generated by 

AS, and also examine the feature similarities before and after sprinkling. 

There are several advantages with using confusion matrices as implicit knowledge 

sources for mining inter class relations. Firstly, the knowledge engineering effort is 



107 

reduced, since we can do away with modelling explicit associations between classes. 

Secondly, the same approach can be used to handle the three categories of classification 

problems: orthogonal, ordinal or hierarchical. We do not need to tailor the algorithm to 

suit these tasks. Finally, unlike explicit approaches, AS exploits inter-class complexity 

specific to a classifier to arrive at richer and more effective revised case 

representations. 

5.4 Discussion and Related Work 

There have been several efforts in the past to extend LSI to text classification tasks. 

Zelikovitz and Hirsh (2001) consider using a set of background texts in addition to the 

training data for use in classification. Background texts are hopefully relevant to the 

text classification domain and are used to find training examples that could not be 

found by a simple comparison between the text example and training set. For example, 

if a piece of background knowledge is found similar to both a training example and a 

test example, the training example is considered similar to the test case, even if they do 

not share any terms. The approach is especially suitable when the training data set is 

small. The significant difference with sprinkling is that instead of using an extended 

corpus for operation, we attempt to integrate additional knowledge using a synthetic set 

of tenns that reflects the underlying class structure. 

Sun et al. (2004) recently presented a technique called SLSI that is based on 

iteratively identifying discriminative eigenvectors from class-specific LSI 

representations. SLSI involves Ian SVD computations, corresponding to k iterations 

over m classes, making it computationally expensive. In their study, no significant 

improvement of SLSI over baseline SVM was reported. In Chapter 8, we will present 

empirical studies demonstrating that sprinkled representations perform significantly 

better than SVM over most of our experimental datasets. 
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Wang et al (2005) have an objective similar to ours; they present a theoretical 

model to extend LSI to capture classification knowledge considering two matrices: a 

term-document matrix and a document-class matrix. While the authors do not present 

any experimental validation for their algorithms, they observe that the algorithm slows 

down in situations where a document can belong to more than one class. In contrast, 

sprinkled terms can comfortably represent affiliations of documents to more than one 

class. This should have no conspicuous adverse effect on time performance. 

Wiener et al. (1995) approach the problem of text classification using LSI by 

conceiving of a local LSI in addition to the global (or the usual) LSI. In local LSI, a 

separate LSI representation is created for each category. The local representations are 

compared separately with an incoming test document. There are two main 

disadvantages to this approach. The first is that since each local LSI representation is 

created separately, the resulting similarities are not easily comparable. The second is 

the computational overhead of making and maintaining several LSI representations and 

the run-time overheads in processing the query separately against each local 

representation. 

Zelikovitz (2004) proposes transductive LSI for text classification. Rather than 

performing SVD only on the training data, they use an expanded term-document matrix 

that includes the test data as well. The classification accuracy improves because more 

data is used. This work can, in effect, be viewed as a special case of (Zelikovitz and 

Hirsh, 2001) where the test data is treated as background knowledge. However, neither 

of these approaches takes into account class labels. 

When compared to Adaptive Sprinkling, a general shortcoming of all of the above 

mentioned approaches is that they fail to take into account relationships between 

classes. A second relative strength of our approach is that it is simple and can easily be 

integrated into existing LSI implementations. Unlike most of the approaches above, the 

time complexity of AS is independent of the number of classes. In all our benchmark 

experiments reported in Chapter 8, computing SVD over an augmented term-document 

matrix takes less than 5% additional time compared to SVD on the original matrix. 
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Finally, it is important to note that sprinkling, though presented in the context of 

LSI, is a fairly general strategy that can be used to benefit other approaches that attempt 

to learn relevance or similarity knowledge. In the next chapter, we see how the idea can 

be used in conjunction with a similarity knowledge mining algorithm to result in 

feature similarity knowledge that respects class knowledge of the training documents. 

We also note that while we have used sprinkling to incorporate class knowledge, it 

would be interesting to see if the basic idea can be extended to incorporate other types 

of knowledge as well. An interesting possibility is the encoding of background 

knowledge as sprinkled features. An example would be to use sprinkling to encode 

feature similarities as obtained from linguistic resources like WordNet (Miller, 1995) or 

case associations as mined from Web resources like Wikipedia (Gabrilovich & 

Markovitch, 2007). This may lead to scenarios where we may not only append artificial 

features to cases, but also artificial cases to features. We envisage that the simple idea 

of sprinkling may give birth to a framework for comprehensively integrating 

introspective and background knowledge. 

5.5 Chapter Summary 

In this chapter, we have presented techniques to incorporate class knowledge into LSI 

with the goal of improving effectiveness in supervised classification tasks. The first 

approach is sprinkling. The basic idea is to augment cases with additional features 

based on class labels, and do SVD on the augmented case feature matrix, so that the 

dimensions extracted by LSI are influenced by class knowledge. Sprinkling is an 

extremely simple approach that can easily be integrated with any existing LSI 

application. Also it is efficient and involves minimal computational overheads. The 

second approach Adaptive Sprinkling extends sprinkling by incorporating knowledge 

of inter-class complexity derived from confusion matrices. This expands the scope of 
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our approach to handle diverse classification problems involving orthogonal, ordinal or 

hierarchical relationships between classes. 
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Chapter 6 

Learning Similarities from Higher 

Order Co-occurrences 

I link therefore I am. SJ. Singer 

Similarity knowledge for CRNs can be acquired either introspectively, or using 

background knowledge. The former relies on inferring similarity relations directly from 

patterns hidden within the given collection of texts, while the latter uses external 

linguistic resources like Wordnet or Roget's thesaurus, or web resources like 

Wikipedia. The approach presented in this chapter is primarily an introspective one, in 

that we rely on statistical properties of the collection and ignore linguistic relationship 

(like syntactical categories) between features. 

The rest of the chapter is organized as follows. Section 6.1 sets out the motivation 

for our research. Section 6.2 explains the concept of higher order associations, along 

with algorithms to mine the same. Section 6.3 describes our model of word similarities. 

Section 6.4 shows how the parameters of this model can be determined automatically. 

In Section 6.5, we present a novel approach of influencing the similarity values based 

on class knowledge, along with empirical results. Section 6.6 shows some examples of 

mined associations. Section 6.7 discusses our work in the context of earlier relevant 

research. We sum up our main contributions in Section 6.8. 
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6.1 Motivation 

Most early IR and TCBR systems were built on the assumption that features are 

independent of each other. While this assumption simplified the design of systems and 

facilitated efficient retrieval, the major downside was its very poor retrieval 

effectiveness. This lead to questioning the status of a word as a standalone unit of 

information, inspiring a family of techniques that use concepts instead of words as their 

building blocks. We have reviewed a cross section of such approaches in Chapter 2. 

While being effective in facilitating better retrieval, statistical concepts are often not 

easy to explain to humans. In this section we will retain words as our choice of 

Information Entities for building CRNs, but do away with the assumption that they are 

unrelated to each other. In other words, we use statistical approaches to model 

similarity between words, with the goal of improving retrieval effectiveness. Unlike 

concept learners that induce concepts which implicitly group related words together, 

our approach is to explicitly model word associations that can be alternately regarded 

as defining concepts over the feature space implicitly. 

Typically statistical approaches model similarity between two words based on the 

number of documents where these words co-occur. Notwithstanding a significant 

amount of both philosophical and pragmatic debate on whether co-occurrence is a 

robust basis for semantic similarity (Jarmasz and Szpakowicz 2003), this simple 

approach works fairly well in the presence of large and representative collections 

(Terra and Clarke, 2003). Also, unlike domain-independent linguistic resources like 

WordNet or Roget's Thesaurus, this approach can be used for estimating domain 

specific word similarities. In this chapter, we show that we can do even better. We 

incorporate the notion of higher-order co-occurrence into our model of word similarity. 

The concept of higher order associations was introduced in Section 4.2.3, and is 

summarized here to make the discussion self-contained. The basic idea is to use 

indirect associations between words, in addition to direct ones. For example if words 

car and chassis co-occur in one document, and words automobile and chassis in 
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another, we can infer that car and automobile are related to each other, even if they do 

not co-occur in any document. Such a relation is called a second-order association. We 

can extend this to orders higher than two. Several interesting examples showing the 

importance of second order associations have been reported in studies on large corpora. 

Lund and Burgess (1996) observe that near-synonyms like road and street fail to co

occur in their huge corpus. In a French corpus containing 24-million words from the 

daily newspaper Le Monde in 1999, Lemaire and Denhiere (2006) found 131 

occurrences of internet, 94 occurrences of web, but no co-occurrences at all. However, 

both words are strongly associated. Their experiments show that higher order co

occurrences can be exploited to infer "semantic relatedness" (Budanitsky, 1999) 

between road and street, and between web and internet. Throughout this paper, we use 

the word "similarity" as a measure of semantic relatedness, as opposed to a formal 

semantic relation (like synonymy or hyponymy). 

This chapter presents algorithms for mining higher order associations between 

words. The strengths of these associations are combined to yield an estimate of word 

similarity. In the next chapter, we empirically test the hypothesis that similarity 

knowledge mined using higher order co-occurrences leads to more effective retrieval 

in comparison to knowledge mined using frrst order co-occurrences alone. 

As we have observed in Chapter 4, LSI can easily be adapted to the problem of 

learning similarity between features. This may make our goal of proposing a novel 

similarity mining approach appear superfluous. Later in this chapter we make a 

comparative study to illustrate the advantages of explicitly capturing higher order 

associations, as opposed to doing so implicitly as in LSI. In addition, we show how the 

similarity knowledge mining approach can be extended to incorporate class knowledge 

in supervised classification tasks. In Chapter 8, we show that a CRN using similarity 

knowledge based on higher order associations augmented with class knowledge can 

outperform state-of-the-art text classifiers like Support Vector Machines (SVM) and 

kNN based on LSI. 
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6.2 Higher Order Associations 

The idea of higher order associations is illustrated through an example in Figure 6.1. 

Terms A and B co-occur in Document 1 in Figure 6.l(a), hence they are said to have a 

first order association between them. In Figure 6.1 (b), terms A and C co-occur in one 

document, and terms C and B in another. In our terminology, A and B share a second 

order association between them, through C. Extending this idea to Figure 6.1 (c), we say 

that A and B share a third order association between them through terms C and D. The 

first order paths that contribute to this third order association are (A. C). (C.D) and 

(D,B). The similarity between two terms A and B is a function of the different orders of 

association between them. This can be depicted as a graph as shown in Figure 6.1 (d), 

where any two nodes sharing a first order co-occurrence relation between them are 

connected by an arc. Each higher order association between any two given nodes A 

and B is represented as a path connecting A and B. (A.C.B) is a second order path and 

(A.C.D,B) is a third order path. Until now, we have restricted our attention to the 

presence or absence of a first order path. A more general formulation of the similarity 

relations would also need to consider the strength of these first order associations. This 

is shown as the weighted graph in Figure 6.I(e). The weight of an arc connecting two 

nodes is proportional to the number of documents in the collection where they co

occur. The strength of the higher order associations is, in turn influenced by the first 

order association weights. In our implementations, we use the scheme in Figure 6.1 (d). 
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Doc 1 Doc 1 Doc 2 Doc 1 Doc 2 Doc 3 

A,B A,C C,B A,C C,D D,B 

(8) (b) (c) 

(d) (e) 

Figure 6.1 Graphical Representation of Higher Order Co-occurrences 

~ c • • j j 0 at at • '! I c c 0 1i )( • ti ;c 'C D- • 1i 'C E !!! • • E E u = I 0 
~ 'a 1; 0 '5 ~ U 'U u ;c .5 ~ u • 0 • u • • ;, 

0 J! c 'a • Do 

1 1 1 1 a a a a 1 a 

2 1 a 1 a a 0 0 a a 

3 1 1 1 a a 0 0 a a 

4 a a 0 1 1 a a a 

5 a a a 1 a 1 a a a 

6 1 0 0 1 1 1 0 0 0 

7 0 0 0 0 0 0 1 1 1 

8 0 0 0 a a 0 1 a 1 

9 a a 0 1 a 0 1 1 1 

Figure 6.2 An Example Domain 
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The approaches presented in this chapter are centred around the basic idea of estimating 

the strengths of different higher order co-occurrences and combining them into a word 

similarity model. Details of our similarity model appear in the next section. To 

estimate higher order strengths, we first tried a simple approach using goal driven 

unification supported by Prolog. The Prolog program has two parts to it: a fact base and 

a set of rules. The fact base was constructed automatically from the non-zero entries of 

the term document matrix, by taking all possible pairwise combinations of terms that 

appear in any document. From the example case-feature matrix of Figure 6.2(a) we 

construct facts such as 

first_order(extraction, indexing). 

fll'st_order(extraction, clustering). 

first_order(extraction, matrix). 

Defming rules for higher order association is straightforward using Prolog. Second and 

third order associations are defined in the following statements: 

second_order(X, Y ,Z) :. first_order<X, Z), first_order(Z, y), X \== Y. 

third_order(X,Y,Z,W) :. second_order(X,W,Z), first_order<W,Y), X \== Y, Z\== Y. 

Often, in addition to the actual words that act as links between words, we are also 

interested in the number of distinct paths linking up words. This is easy in Prolog, as 

well: 

lengthOfListm, 0). 

lengthOfList (L I Tail], N) :. lengthOfList (Tail, NI), N is I + Nl. 

no of 2ord-paths(X,Y,N, List) :. setof(Z, second_order<X,Y,Z), List), lengthOfList(List,N). 

no oC30rd_paths(X,Y,N, List!) ,. setof«K,L), third_order(X,Y,K,L>, List1), 

length OfList(List I,N). 
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One main limitation of Prolog in this task is the combinatorial explosion in the number 

of first order associations that had to be recorded in the fact-base. In realistic tasks over 

several hundreds of documents, our version of Prolog (SWI-Prolog) often ran out of 

memory. To address this limitation, we explored the applicability of matrix operations 

to directly compute the strengths of higher order associations. To start with, we 

implemented an approach reported by Mill and Kontostathis (2004), where the authors 

start by computing a first order co-occurrence matrix. For IWI words in the feature set, 

this is a IWI x IWI matrix which has a value 1 in the iJth element if word i co-occurs 

with wordj in at least one document. For all pairs of words that do not co-occur in any 

document, the corresponding element in the matrix is O. The diagonal values are set to 

zero since we are not interested in trivial co-occurrence of a word with itself. The 

higher-order co-occurrence matrices are calculated using the following steps: 

Step J: The term document matrix A is multiplied with its transpose AT to obtain the 

IWI x IWI matrix To. 

Step 2: All non-zero values of To are set to 1, and the diagonal values are set to zero to 

yield a binary first order co-occurrence matrix T. 

Step 3: The second order co-occurrence matrix T2 can be calculated by squaring T. The 

third order matrix TJ is given as r. Other higher order co-occurrence matrices can be 

calculated similarly. 

Before a matrix is reduced to binary, the value of its iJth element is the number of co

occurrence paths between words i and j. The strength of a first order co-occurrence path 

is the number of documents in which two words co-occur. The strength of a second 

order co-occurrence path between words a and b is the number of distinct words c such 

that a co-occurs with c and b co-occurs with c. In other words, the second order 

strength of an association is the number of distinct second order paths between the 

corresponding nodes in the graph model of Figure 6.1(d). Similarly, the strength of a 
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third order association between words a and b is the number of distinct third order 

paths (via distinct nodes c and d) connecting a and b. 

Implementing the above algorithm revealed a critical shortcoming. Let us consider 

a third order association between terms a and b via terms c and d. Thus pairs a and c, c 

and d, and d and b co-occur with each other. In finding distinct pairs of terms c and d, 

we need to ensure that they are not the same as either a or b. By setting the diagonal 

elements to 0 in Step 2 above, the algorithm ensures that a and c are different, and so 

are d and b. But in addition we also need to ensure that d is not the same as a, and c is 

not the same as b, and this is not taken care of. Thus the strengths of third order 

associations were over-estimated by the algorithm. We propose a correction to the 

algorithm to address this limitation. The brute force approach of explicitly counting 

terms that satisfy the above-mentioned constraint instead of blindly cubing the binary 

matrix T, turned out to be computationally expensive. We present below a technique 

that rewrites this procedure as an equivalent matrix manipulation, which can be 

implemented efficiently in matrix processing environments like Matlab. 

Let T be the matrix of first order connections with diagonal elements set to zero. 

For third-order co-occurrences, we seek to enumerate paths of type i-j-k-I for all i and I. 

Now 

is the total number of such paths, including paths of type i-j-i-I and i-I-k-I, which we 

wish to exclude. Let n; be the number of paths of type i-j-i. This is equal to the total 

number of paths originating from i. We evaluate n; by summing the rows (or columns) 

ofT: 

n;=I/ii 
j 

Now, the number of paths of type i-j-i-I is n;Ti/ and for type i-I-k-/ the count is n,Ti/. If 

Ti/ '* 0, then we have counted the path i-j-i-j twice, so the total number of invalid paths 
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is (nj+nr-I)Ti/. Equivalently, if we construct a discount matrix D whose elements Di/ = 

(nj+nr-l), then the number of invalid paths between words i andj is given by the iJ th 

element of the pointwise product D*T. We use the following procedure: 

(1) Calculate r. 
(2) Enumerate and discount the invalid paths as above. r- D*T is the revised 

third order matrix. 

6.2.1 An Example 

We illustrate the above ideas on a toy casebase comprising 4 terms and 4 documents as 

shown in Figure 6.3. The corrected third order matrix TJ ' says that there are two third

order paths between terms 12 and 13, one third order path between 11 and 12, another 

between terms 11 and 13, and none between tl and 14. A closer inspection of matrix T 

reveals that this is indeed true. Figure 6.4 shows a graphical representation of matrix T, 

where an arc exists between any two nodes iff the corresponding entry in the matrix is 

1, denoting that there is at least one document in the collection that has both of these 

terms. The two third order paths between 12 and 13 are 12-11-14-13 and t2-t4-tl-t3. The 

only third order path between tl and 12 is 11-13-14-12, and between tl and 13 is tl-t2-t4-

13. There are only two possible candidates for a third order path between tl and 14: 11-

12-13-14 and 11-13-12-14. Either would require a first order association between 12 and 13, 

which in our example does not exist, since there are no documents that contain both 12 

and 13. Hence any third order association between tl and 14 is ruled out. 

Now, let us take a closer look at how the discount matrix helps in identifying 

invalid paths. Matrix T3 says that that there are 5 third order links between 11 and 12. 

We enumerate them as follows: 11-/4-11-/2, 11-13-11-12, 11-12-11-12, 11-13-14-12 and 11-/2-

11-/2. Interestingly, excepting tl-13-14-12 all other links are invalid associations of type 

i-j-i-lor i-l-k-l, and need to be discounted. Applying the formulations presented earlier, 

the number of i-j-i-llinks in this case is niTi/ = nITa = 3. The number of i-l-k-llinks is 

niTi/ = n]TI ] = 2. Adding them up, we have 5 invalid links, but we note that we have 
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counted the link 11-12-11-12 twice since it can be treated as an i-j-i-/link as well as an i

I-k-/link. Thus the actual number of invalid links is 4, and this is discounted from the 

exaggerated estimate of 5 in T3 to yield the correct value 1 in matrix T3 '. 

A= 

[: ~ ~ ~l [~~ ~ ~l 
OOII~2021 

I I 0 I 2 2 I 3 

Convert non-zero T = 
values to I and 
diag. values to 0 

Term Doc Matrix Term Term Matrix 

T3= Tl Column Sums ofT O(ij) = n; + nj - I 

1 ~ Order Matrix 

0 = 

[11 ~ ~l 
nl = 3 

-.. n2=2 -.. 
n 3 = 2 

114 = 3 

3'd Order Matrix 

0(1 ,2) = 3+2-1=4 [0 4 4 
0(1 ,3) = 3+2- 1 = 4 4 0 3 
0 (1,4)= 3+3-1=5-" 4 3 0 
D(2,3) =2+2-1 = 3 5 4 4 
D(2,4) = 2+3-\= 4 
0 (3,4) = 2+3-1 = 4 Discount Matrix 

Figure 6.3 An Example 

Figure 6.4 Term-Term Association Graph 

6.3 Modelling Word Similarities 

2nd Order Matrix 

Revised 3'd Order Matrix 
(. is pointwise product) 

Once higher order co-occurrences are mined, we need to translate them into a measure 

of similarity between words. Intuition suggests that very high order co-occurrences do 

not really indicate similarity. In a study of higher order associations in the context of 

LSI (Kotostathis & Pottenger 2006), the authors present experimental evidence to 

confirm that associations beyond an order of 3 have a very weak influence on similarity 

modeled by LSI. In our word similarity model, we ignore the effects of orders higher 



121 

than 3. In the last section, we have defined the strength of a higher order association 

between two terms as the number of co-occurrence paths between those terms. Let 

jirst_order(a,b}, second_order(a,b} and third_order(a,b} denote the strengths of first, 

second and third order associations between terms a and b respectively. The similarity 

between terms a and b can be expressed as a weighted linear combination of the 

strengths of the first three orders of co-occurrence as follows: 

similarity(a, b) = n first_order(a,b) + ~ second_order(a,b) + 'Y third_order(a.b) (6.1) 

Note that the higher the order of association, the larger the number of co-occurrence 

paths (since T';J > T";J' if n>m and if for all T;J #), T;/~ J, which is true in our case), 

and hence the greater the strength of association. Thus, to make n, ~ and 'Y comparable 

to each other, we need to normalize jirst_order(a,b}, second_order(a,b} and 

third order(a.b} to values in [0,1]. In our implementation, we achieve this by dividing 

each of these values by the maximum value between any pair of words corresponding 

to that order. Each distinct choice of n, p and 'Y leads to a different set of similarities 

between terms, which can then be used as similarity arcs in the eRN to perform 

retrieval or classification. In complex domains, we would expect higher order 

associations to play a critical role and hence such domains should show preference for 

higher values of ~ and 'Y compared to simpler ones. 

6.4 Learning Model Parameters Automatically 

Next, we dwell on the problem of determining the value of the weights n, ~ and 'Y 

automatically. We present an approach that uses a Genetic Algorithm (Russell & 

Norvig 2003) to determine these parameters in supervised classification tasks. Since the 

test set is not available, we instead set our objective to optimizing classification 
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accuracy over five-fold cross validation on the training set. The approach is broadly 

illustrated in Figure 6.5. 

Learning the parameters using a Genetic Algorithm: 

Sample of 
parameters 

Evaluate fitness using 
f-------I five-fold cross 

validation 

Next Generation - Replace old 
parameters with new ones 

Select and Reproduce 
(Crossover + Mutation) 

Figure 6.5 Parameter Learning using a Genetic Algorithm 

To start with, we encode the parameters a, P and y, which form the solution 

domain, into a genetic representation. We use a 9 bit string encoding to represent each 

parameter. To encode a value of 0.8, we multiply this by 100 and convert the resulting 

value (80) to its binary equivalent 001010000. This representation allows us to 

represent real valued numbers from 0 to 5.11. We set a to a value of 1, and find values 

of p and y to yield the best combination. The algorithm starts off with an initial 

population of values for the parameters. A sample is randomly drawn from this 

population and the fitness of the parameters is evaluated. This is done by splitting the 

training set into 5 equal disjoint subsets. A cross validation is procedure is then run 5 

times, each time selecting a different one of these as the validation (or test) set and 

combining the remaining 4 subsets for the training set. For each of these cross 

validation procedures, the accuracy of classification on the validation set is calculated, 

using the similarity model derived from the chosen parameters. The average of the five 

accuracy values is the quantity we intend to maximize, and is referred to as the "fitness 

function" . The fittest combinations of parameters are chosen to obtain the next 
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generation. A single point crossover over each of the fittest genes is used to obtain a 

new set of parameters. We also perform mutation (random flipping of bits) to improve 

diversity in the next generation; the mutation probability is set to 1116. Note that 

crossover and mutation are applied to genes corresponding to each parameter 

separately. Thus, we obtain three parameter values at each iteration which together 

determine the value of the fitness function. We terminate the iterations when the 

improvement in fitness over several successive generations consistently falls below a 

threshold E. The selected values of the parameters are now used to obtain a similarity 

model over the entire training set, and its performance over the unseen test set is 

calculated. 

6.5 Incorporating Class Knowledge into Word Similarities 

In a supervised classification context, we have class knowledge of training documents 

in addition to the co-occurrence knowledge. This is ignored in our similarity 

formulation in (I). However, class knowledge can play an important role in boosting 

similarity of features if they occur frequently in cases belonging to the same class, and 

in demoting similarity if they occur in cases belonging to disjoint classes. In this 

section, our goal is to incorporate this class knowledge as part of pre-processing. The 

approach is based on the idea of 'sprinkling' described in Chapter 5, where LSI was 

extended to supervised classification tasks. 

Each case in the training set is padded with additional artificial features that are 

representative of class knowledge. For example in the Hardware domain, all cases 

belonging to Apple Mac are augmented with artificial terms A, B , C and D, and all 

documents belonging to PC are padded with terms E, F, G and H. The padded terms, 

are referred to as sprinkled terms. It is interesting to note how these additional terms 

influence the co-occurrence paths between any given pair of original features. When 

co-occurrences are mined on the new case-feature representation having these 

additional terms, features representative of the same class are drawn closer to each 
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other, and features from disjoint classes are drawn farther apart. This happens because 

the sprinkled terms provide second-order co-occurrence paths between features of the 

same class. Thus using the similarity formulation in (6.1) over the combination of 

existing feature set and artificial terms results in increased similarity between features 

of the same class. The revised similarity values are used to construct a CRN; it is 

important to note that the sprinkled terms only playa role in computing similarities, but 

do not appear as IE nodes in the CRN. Thus, an incoming test document whose class is 

unknown can be processed in the usual manner. Since similarities between the original 

features as captured by the similarity arcs is already biased by class knowledge, 

retrieval over the revised architecture would be influenced by the class affiliations of 

the query features. Most design issues pertinent to our discussion of sprinkling in 

Section 5.2 also apply to our current architecture. For one, we need to decide the 

number of additional terms to be added for each class. While sprinkled terms help in 

emphasizing class knowledge, using too many of them may distort finer word 

association patterns in the original data. This relates to the structure vs. class 

knowledge dilemma outlined in Section 4.1. The approaches and heuristics outlined in 

Section 5.2 to guide the selection of number of sprinkled terms are relevant here. In 

our experiments reported in the next chapter, we used 8 additional terms per class, as 

this was empirically found to yield good results. 

6.6 Examples of Higber Order Associations 

Figure 6.6 shows examples of second and third order associations mined from the 

RELPOL domain. The weighted graph representation of Figure 6.l(e) is used for these 

illustrations. The number alongside each path is the product of first order co

occurrences constituting that path. It is important to note that while these numbers have 

been used to order the paths in the graph visualization, they have no bearing on the 

strengths of higher order paths as computed using the approaches in Section 6.2. 
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Figure 6.6 Examples of associations mined in RELPOL domain 
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6.7 Discussion 

The effectiveness of the similarity mining approach presented in this chapter is 

demonstrated by experimental results in the following chapter, where we show that a 

CRN with similarity knowledge mined using higher order associations outperforms 

both LSI and SVM. However, the important thing to note is the explicit nature of our 

similarity relations as compared to SVM. It is not clear how SVM can be used to mine 

similarity between words, or incorporate expert feedback. The comparison with SVM 

illustrates that our techniques can outperform the best-in-line classifier while being able 

to explicitize its knowledge content, and supporting lazy incremental updates, both of 

which are strengths of CBR. The Prolog-based system described in Section 6.2 has its 

own advantages for visualization. For any given pair of words, all higher order 

associations can be depicted in graphs of the kind shown in Figure 6.6, which may be 

useful for explanation or for initiating expert feedback. 

The approach presented in the chapter can be used to learn feature similarities in 

unsupervised and supervised domains alike. However, the automatic parameter 

learning algorithm needs a fitness function, which has been defined in Section 6.4 for 

supervised settings. One way of evaluating goodness of a TCBR configuration in 

unsupervised domains is to use the GAME measure, described in Section 3.4. 

Alternately, we can use the case cohesion measure proposed by Luc Lamontagne 

(2006), which measures the degree of correspondence between problem and solution 

components of textual cases. Using GAME or case cohesion instead of classification 

accuracy as a measure of the fitness function in our optimization algorithm would be a 

first cut towards applying our approach to unsupervised tasks. 

The importance of modeling similarity using higher order co-occurrences extends 

beyond textual CBR. In the context of recommender systems, several authors have 
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reported problems due to sparseness of user-item matrices (Xue et aI., 2005); Semeraro 

et al (2005) for example, report that 87% of the entries in their user-item matrix are 

zero. Knowledge representations used in collaborative recommenders (like concept 

lattices (du Boucher-Ryan & Bridge, 2006)) do not consider associations beyond the 

flrst order. Higher order associations can help reduce the sparseness and allow for 

better recommendation. In this context, analysis of higher-order associations in user 

item matrices will help discover novel product recommendation rules that would 

normally be implicit in the user ratings. Our approach can also be applied to link 

analysis in social networks (Mori et aI., 2007), for clustering similar words, and 

resolving ambiguity of words spanning several clusters. 

Several works in the past have pointed to the importance of higher order co

occurrence in modeling word similarity. However we have not corne across any work 

that explicitly attempts to obtain a parameterized model of similarity based on these co

occurrences, and learn optimal values of these parameters based on a fltness criterion. 

As noted in Section 4.2.3, the work by Kontostathis and Pottenger (2006) provides 

empirical evidence to show that LSI implicitly exploits higher order co-occurrence 

paths between words to arrive at its revised representations. This provides a fresh 

explanation for improvements obtained using LSI in text retrieval applications. 

Edmonds (1997) examines the role of higher order co-occurrence in addressing the 

problem of lexical choice, which is important to both machine translation and natural 

language generation. Broadly speaking, the goal is to determine which of the possible 

synonyms is most appropriate for a given communication (or pragmatic) goal. The 

authors show that using second order co-occurrence has a favourable influence on the 

performance of their lexical choice program. Recent work by Lemaire and Denhiere 

(2006) makes an in-depth study of the relationship between similarity and co

occurrence in a huge corpus of children's texts. They show that while semantic 

similarity is largely associated with flrst order co-occurrence, the latter overestimates 

the former. Higher order co-occurrences as well as lone occurrences (occurrence of 

word a but not b and vice versa) were used to account for LSI-inferred term 
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similarities. Unlike our work, the authors do not propose an algorithm to arrive at word 

similarities; their approach is more analytic than synthetic. Two other recent 

approaches potentially useful for mining word similarities are distributional word 

clustering (Baker & McCallum, 1998) which has been used recently in TCBR 

(Wiratunga et at., 2006), and Propositional Semantic Indexing (Wiratunga et at., 2005a) 

which mines word relationships using Association Rule Mining (ARM) with the goal 

of feature generalization. However, probability estimates used in the first approach and 

the support and confidence estimates used in the second currently fail to accommodate 

associations beyond the first order. It appears that both approaches can potentially 

benefit from higher-order knowledge. 

6.8 Chapter Summary 

We have presented an approach for exploiting higher-order associations between words 

to acquire similarity knowledge for CRNs. We highlighted the importance of higher 

order co-occurrences in determining word similarity, presented both supervised and 

unsupervised algorithms for mining such associations and proposed a word similarity 

model, whose parameters are learnt using an evolutionary approach. Another 

contribution of the research is to incorporate class knowledge into the process of 

mining higher order associations. Though the work has been presented in the context of 

CRNs, it can be easily extrapolated to learn similarity knowledge over other retrieval 

formalisms. In the next chapter, we will present empirical evaluation of our 

approaches, and make a comparative assessment of its perfonnance versus state-of-the

art approaches like SVM and LSI. 



129 

Chapter 7 

Evaluation 

Who cares how it works. just as long as it gives the right answer Jeff Scholnik 

In this chapter, we report and analyse results of experimental evaluation of the 

approaches presented in Chapters 5 and 6 for mining relevance and similarity 

knowledge in CRNs. The main objective of the experiments is to establish whether the 

acquired relevance and similarity knowledge leads to improvement in the retrieval 

effectiveness in CRNs. We also illustrate the goodness of knowledge acquired, in ways 

that involve the qualitative judgement of the reader, instead of statistical rigour. 

For most of our evaluation, we use text classification datasets, and use 

classification accuracy as a measure of retrieval effectiveness. Using classification 

datasets is a natural choice when evaluating sprinkled LSI, which is engineered 

specifically for supervised tasks. However, this is not so for evaluating the algorithm 

for mining similarity knowledge based on higher order associations, which can be 

applied to unsupervised tasks as well. However, in light of the difficulty in obtaining 

human relevance judgements over unsupervised datasets, we have opted to use 

classification datasets throughout. A note about use of classification accuracy as an 

evaluation metric is in order. While researchers in text classification have used more 

involved metrics based on F-measure or ROC, it was noted in (Gabrilovich and 

Marcovitch 2004) that accuracy is an appropriate and adequate measure in situations 

where each case (document) belongs to not more than one class, and the class 

distribution is uniform. This makes accuracy a suitable measure of effectiveness in our 

experiments. 
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While carrying out empirical studies, it is useful to characterize the datasets used, 

so that the results of experimental studies can be meaningfully interpreted with respect 

to those characterizations. In chapter 3, we introduced six text classification datasets, 

and presented techniques to visualize these datasets and obtain quantitative estimates of 

their complexity. We use these datasets in our experiments here, and study the 

correlations of our accuracy results with the complexity measures, with the objective of 

obtaining better insights into successes or failures on specific datasets. 

The chapter is organised as follows. Section 7.1 presents an evaluation of the 

effectiveness of LSI -mined relevance knowledge. Section 7.2 evaluates sprinkling, and 

also shows how word similarities are affected by the process of incorporating class 

specific knowledge. Adaptive Sprinkling is evaluated in Section 7.3. AS exploits inter

class relationships, hence additional datasets that involve hierarchical and ordinal 

associations between classes are used. Section 7.4 discussed performances obtained 

using the similarity knowledge mined using higher order associations. We summarize 

our findings in Section 7.5. 

7.1 LSI performance 

In this section, we evaluate the effectiveness of relevance knowledge mined using LSI. 

We compare these values against a baseline Vector Space approach, called BASE, 

whose relevance values are simply binary values showing feature presence or absence 

in a case. We use a weighted kNN with k =3. 

Firstly, we note that LSI performance is critically dependent on the number of 

dimensions chosen for creating the revised representations. Figure 7.1 shows the 

performance of LSI, in terms of classification accuracy, over each of the six datasets at 

different LSI dimensions. The LSI dimensions used in our experiments were 5, 10, 15, 

20,40,60, 80, 100 and 120. All performance figures are obtained after averaging over 

15 test train splits of the datasets described in Section 3.1. The broad pattern that is 
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observed over all datasets is very clear: LSI perfonnance is best when a small number 

of dimensions ranging from 5 to 20 is used. There is a pronounced peaking behaviour 

in both four-class problems REC and SCIENCE. This is possibly because these four

class problems have more diversity in their texts in comparison to the relatively simpler 

spam filtering problems USREMAIL and LINGSP AM. Our complexity analysis and 

visualization in Chapter 3 shows HARDWARE to be the most complex of the binary 

problems. Interestingly, the number of LSI dimensions that yield best perfonnance in 

HARDW ARE is 20, which is conspicuously larger than the best dimensionality in the 

simpler binary problems like RELPOL or the spam filtering datasets. 

Table 7.1 Comparing LSI perfonnance against naive VSM 

Routing Filtering 

REC SCIENCE HARDWARE RELPOL USREMAIL LINGS PAM 

BASE 62.79 54.89 59.51 70.51 59.23 85.09 

LSI 79.32 72.55 66.30 91.17 94.67 97.37 

Table 7.1 shows the peak accuracy results of LSI for each of the six datasets, observed 

at the dimensionality that yielded best perfonnances. We observe that there is a 

statistically significant improvement over the baseline in all datasets. The margin of 

improvement is quite large in all binary datasets excepting HARDWARE. The 

relatively unimpressive gain in HARDWARE can be explained by correlating the 

accuracy results with GAMEclass scores reported in Section. The GAMEc1ass scores and 

LSI accuracies are compared in Table 7.2. We observe a correlation coefficient of 
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Figure 7.1 LSI performance at various dimensions 

0.9176, over the four binary class problems. The high correlation suggests that 

HARDW ARE's inherent complexity, coupled with the fact that LSI fails to take into 

account class knowledge of the training documents, account for the poor performance. 

Comparing LSI performances over the four-class datasets show that SCIENCE 

registers a bener performance than REC, and this corresponds well with the complexity 

scores registered by GAM Eclass' 
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Table 7.2 Comparing GAMEclass with LSI accuracies 

REC SCIENCE HARDWARE RELPOL USREMAIL LINGSPAM 

GAME ..... 1.1629 1.0492 1.0028 2.0358 2.3728 3.2222 

LSI 79.32 72.55 66.30 91.17 94.67 97.37 

While companng peak perfonnances of LSI, it is important to note that in 

practical situations, the best dimensionality setting cannot be detennined precisely 

since the test documents are not available for accuracy evaluation. However cross 

validation over training documents can be used to arrive at a reasonably good setting. 

To summarize our findings, we firstly note that dimensions of LSI as low as 5-20 

often work the best; more dimensions are needed on diverse problems as in multi-class 

datasets, or on complex problems like HARDWARE. Secondly, LSI results correlate 

well with dataset complexity as estimated with GAMEclass. Thirdly, improvements 

achieved by LSI over the baseline are critically dependent on the discriminatory power 

of the features (concepts) extracted by LSI. In the case of RELPOL, the extracted 

features are effective in classification; whereas in HARDWARE, the extracted features 

are likely to have a mix of tenns drawn from the two classes MAC and PC, which are 

likely to share a lot of tenns between them. This bottleneck stems from the fact that the 

class labels of the training documents are ignored by LSI. Supervised versions of LSI 

will attempt to exploit the class labels to learn concepts (extracted features) that are 

better at discriminating between classes. 

7.2 Sprinkling 

We evaluated the effectiveness of sprinkled LSI representations over the six 

classification datasets described in Section 3.1. Ideally, the optimal number of 

sprinkled tenns to be used should be determined based on cross-validation carried out 

over training dataset for each individual trial. However, to simplify evaluation, we used 
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16 sprinkled tenns throughout for our experiments, as this was empirically determined 

to yield reasonably good perfonnances. Thus, each class was represented by 8 

sprinkled tenns in the binary classification problems, and by 4 tenns in the four-class 

problems. 

Figure 7.2 shows graphs comparing LSI perfonnance, in tenns of classification 

accuracy, before and after sprinkling, at various choices of dimensionality. As with 

experiments reported in the previous section, the accuracy Figures are obtained after 

averaging over the 15 trials in each dataset. Firstly, we note that all six datasets benefit 

from sprinkling. The margin of improvement obtained is also large in all datasets, 

excepting USREMAIL and LINGSP AM, which are simple domains with already high 

classification accuracies. Thirdly, the perfonnance of sprinkled LSI peaks at very low 

dimensions in the range of 5-10. In this respect, the difference with LSI is notable, 

especially for the three complex datasets, SCIENCE, HARDWARE and REC. The 

incorporation of the sprinkled tenns helps in "aligning" the extracted dimensions to 

class specific features. Thus the top few dimensions in sprinkled LSI would capture the 

most discriminating features; in unsupervised LSI however, a larger dimensionality 

would be needed to capture these discriminating features. 

In Table 7.3, we report the peak perfonnance results for sprinkled LSI over each 

dataset. We compare these perfonnances against BASE (our earlier VSM baseline), 

peak LSI perfonnances as reported in the last section and Support Vector Machines 

(SYMs). SYM has been chosen for our comparisons since it has been reported to yield 

state-of-the-art perfonnances in text classification, in several independent studies. For 

our SYM experiments we used SYM-Light (Joachims 1998). We used a linear kernel 

since it was observed to be well suited to textual problems (Joachims 1998). SVM 

being inherently a binary classification tool, we have not reported SYM results 

corresponding to the two multi-class problems. However we plan to use multi-class 

extensions to SYM in future over these datasets. We used paired t-tests (p = 0.05) to 

evaluate the significantly better of each 6 pairs originating from the four classification 

problems. The paired data for the t-tests comes from the 15 pairs of observations from 
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the 15 train test splits. Results in bold correspond to best accuracy; in situations where 

there is no significant statistical difference between the best results, all top figures are 

shown in bold. Firstly, we note that sprinkled LSI outperfonns LSI on all six domains. 

With the exception of the simple LINGSP AM domain where classification accuracies 

were already quite high, the differences with and without sprinkling are statistically 

significant throughout. This conclusively suggests that class knowledge plays a critical 

role in arriving at better case representations, leading to higher classification 

effectiveness. Secondly, sprinkled LSI significantly outperfonns SVM in three of the 

four binary classification problems. In USREmail, a relatively simple domain with high 

classification accuracies, Sprinkled LSI accuracy is higher, though the difference is not 

statistically significant. 

Table 7.4 compares peak accuracies of sprinkled LSI against GAMEclass scores. 

Sprinkled LSI perfonnance correlates well with the GAMEc1ass complexity measures. 

For the binary classification problems, the correlation coefficient is 0.9365, which is 

higher than what was observed with unsupervised LSI (0.9176). Perfonnance 

improvement in the complex HARDWARE domain is conspicuous, thus confinning 

our earlier hypothesis that class knowledge is critical here. 

In Table 3.1 of Chapter 3, we presented the accuracy figures of three other 

classifiers, namely PSI, ECRN and LogitBoost. We do not replicate those results here, 

but it is clear that sprinkled LSI outperfonns these classifiers over most datasets, and 

compares favourably in the rest. We also note that sprinkled LSI outperfonns the very 

recently proposed TCBR technique PSI on all six datasets; the margins of difference in 

the multi-class problems REC and SCIENCE are especially conspicuous. 
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Table 7.3 Comparing peak performance of Sprinkled LSI with other classifiers 

Routing Filtering 

REC SCIENCE HARDWARI RELPOl USREMAIL LlNGSPAM 

BASE 62.79 54.89 59.51 70.51 59.23 85.09 

LSI 79.32 72.55 66.30 91.17 94.67 97.37 

SprinkJed 
86.99 80.60 80.42 93.89 96.13 98.34 

LSI 

SVM -- -- 78.82 9l.86 95.83 95.63 

Table 7.4 Comparing GAMEciass measure with LSISPR performance 

REC SCIENCE HARDWARI RELPOL USREMAIl LINGSPAM 

GAME measure l.l629 1.0492 1.0028 2.0358 2.3728 3.2222 

Sprinkled LSI 86.99 80.60 80.42 93.89 96.13 98.34 

Table 7.5 shows similarity between a select pair of features as mined using 

sprinkled LSI on the HARDWARE domain, and compares them with corresponding 

values using unsupervised LSI. The similarities are extracted based on the approach 

outlined in Section 4.3.2. It is clear that sprinkled LSI promotes similarity between 

features belonging to the same class. For example, Words apple and powerbook both 

belonging to the class "apple" are drawn closer together, while the similarity between 

words os and ibm. belonging to distinct classes "apple" and "pc" respectively, is 

attenuated. It is interesting to see that sprinkled LSI conspicuously boosts the 

similarity between "mac" and "macintosh", showing that class information can be 

useful in resolving domain-specific synonymy. The small decrease in similarity 

between apple and mac appears unintuitive, but is possibly a side effect of the LSI

based constrained optimization which favours marginally weakening existing strong 

bonds, with the intent of reinforcing otherwise weak associations. 
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Table 7.5 Word Similarities before and after Sprinkling 

Word 1 Word 1 LSI LSISPR Difference 

Mac powerbook 3.26 4.61 1.35 

Mac macintosh 1.88 3.25 1.37 

App/ macintosh 2.00 2.81 0.81 

App/ powerbook 3.77 4.12 0.35 

App/ mac 19.94 19.02 -0.72 

powerbook ibm 0.17 0.09 -0.08 

macintosh ibm 0.09 0.23 0.14 

Pc macintosh 2.44 1.99 -0.45 

powerbook macintosh 0.71 1.20 0.49 

Os microsoft 2.27 1.80 -0.46 

Os macintosh 2.13 2.34 0.21 

Os powerpc 0.15 0.58 0.44 

Os ibm 2.82 2.31 -0.51 

It is illustrative to compare the association of different terms to classes, before and 

after sprinkling. Considering the two case-feature matrices corresponding to lower rank 

approximations generated by LSI and sprinkled LSI, we can obtain a simple measure of 

prototypicality ("representativeness") of a term to class by adding up relevance values 

that estimate association of that term to cases belonging to that class. Assuming equal 

number of cases in each class, the resulting class memberships can be meaningfully 

compared against each other. Table 7.6 shows the prototypicality of words to each of 

the four classes Electronics, Cryptography, Space and Medicine in the SCIENCE 

domain. The figures in bold show the class to which the word is most likely to be 

assigned by a human, based on knowledge of the domain. We can see clearly that in all 

cases, Sprinkled LSI changes class memberships to make them better representative of 

the concepts underlying each class. The words radio and antenna are relevant to two 

classes Electronics and Space, and Sprinkled LSI correctly boosts the corresponding 
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memberships. Thus, sprinkling exploits class knowledge effectively to make the LSI 

mined representations approximate the expert knowledge ofthe domain more closely. 

Table 7.6 Tenn affiliations to classes in SCIENCE domain before and after sprinkling 

LSI Sprinkled LSI 

>. >. 
~ .c:: ~ .c:: 
Col Q" ~ .!t Q" ~ .... CIIS = CIIS .S = ... ~ .... = ... ~ 

= CIl 
Col Col = CIl CJ CJ ... CIIS .... 

i 
eo .... .... = Q" -= = Q" ~ Col .... 

rI:J ~ .... 
~ Q" 

~ ~ 
rI:J 

~ - ~ -~ ~ 
U U 

encrvot 7.02 95.29 -0.73 -4.09 0.08 110.59 -0.97 -2.25 

secur 3.28 65.55 1.23 -1.29 0.32 68.76 -0.66 -0.70 

chiD 23.30 70.41 3.56 4.59 29.81 80.17 -0.45 4.15 

orbit 6.08 0.73 35.76 2.93 -0.28 0.28 52.95 0.17 

sDace 7.75 11.42 59.54 11.38 5.55 10.34 7B.62 6.22 

algorithm -1.46 44.Bl 0.34 2.91 0.66 49.06 0.49 0.79 

launch 4.65 0.71 32.Bl -0.10 -0.35 1.94 44.40 -1.12 

crypto 5.81 37.05 2.94 -2.07 0.33 41.71 0.29 -0.38 

Drivaci 5.00 36.23 3.03 -0.18 2.19 40.41 -0.78 0.64 

medic 6.65 -0.03 3.05 23.61 -0.18 -0.27 -0.59 36.25 

circuit 21.01 2.01 1.66 0.40 36.BO -0.52 -1.39 -2.02 

doctor 4.69 -0.49 0.85 26.03 0.26 -0.89 -0.52 34.B3 

earth 5.81 0.57 26.51 6.01 5.53 -1.56 40.31 1.15 

moon 4.49 0.91 33.95 3.87 2.33 1.28 40.32 0.76 

nasa 0.03 3.33 34.43 5.70 0.82 2.71 40.13 4.01 

rocket 3.65 0.57 24.43 -0.51 -0.06 0.37 30.49 -0.17 

volta2 19.55 1.29 0.93 1.07 29.70 -1.30 -1.12 -0.49 

public 2.29 51.61 12.68 18.46 0.59 53.55 19.16 16.03 

diseas 1.44 1.50 4.71 20.0B -0.21 0.86 0.91 2B.2B 

shuttl -0.05 0.67 12.90 2.40 -0.38 -0.45 21.52 0.02 

rsa 0.71 22.37 -0.62 1.17 -0.31 22.92 0.36 -0.37 

crvotograph -0.12 21.62 0.70 1.04 0.76 21.71 0.37 -0.07 

health 6.00 1.11 3.84 IB.95 -0.06 0.62 0.85 25.71 

medicin 0.68 0.48 2.29 20.48 1.90 -1.07 1.02 26.24 

flil!ht 2.00 0.85 16.42 5.51 0.44 0.12 23.3B 4.91 

treatment 0.68 -1.15 0.30 17.54 -0.79 -1.44 -0.93 20.80 

lunar 2.16 0.17 11.67 1.42 0.03 -0.24 19.22 -0.16 

electron 13.29 22.15 3.69 0.35 25.38 17.83 1.00 0.82 

patient -0.42 0.19 1.10 10.19 -0.57 -0.17 0.07 14.72 

spacecraft 0.41 -0.28 6.84 1.14 0.22 -0.47 13.0B 0.01 

diet 1.33 0.17 3.98 15.31 0.59 0.48 1.28 18.72 

dro2 1.18 11.53 -0.69 10.09 -1.14 12.11 -0.47 11.B7 

volt 9.29 -0.31 2.28 0.35 13.86 -1.13 0.48 -0.79 

tv 6.39 1.11 1.95 2.37 13.12 0.19 1.38 0.48 

ohm 6.72 1.21 0.34 0.16 11.57 0.17 -0.21 -0.35 

pavload 2.57 -0.16 11.11 -1.01 0.24 0.11 12.02 -0.70 

2.03 0.46 10.01 -0.44 0.01 0.34 11.91 -0.57 
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LSI Sprinkled LSI 
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satellit 1.41 1.49 10.87 1.12 2.99 1.04 15.75 -0.02 
proDuls 0.09 -0.70 10.42 2.47 0.98 -0.11 13.01 0.58 

atmosDher 1.37 -0.29 7.70 1.78 1.20 -0.27 12.67 0.47 
aoollo 0.58 0.97 7.90 0.16 -0.41 0.30 12.27 0.28 

symptom 1.72 -1.32 0.79 10.81 1.09 -0.51 -0.32 13.18 
motorola 7.18 2.74 1.37 2.16 15.00 1.55 1.75 1.27 

homeopathi -0.39 -0.56 0.31 9.03 0.20 -0.61 -1.01 9.75 

sunteri 1.07 -0.27 0.73 5.21 -0.51 -0.05 -0.16 8.80 
aItitud -0.18 -0.03 6.81 -0.05 -0.32 -0.19 8.69 -0.26 

microcircuit -0.37 7.29 -0.94 -0.55 0.18 7.33 -0.83 -0.04 
Dlanet 0.70 0.10 3.53 1.60 0.11 0.04 8.78 1.07 

Dassword 1.92 5.01 0.39 -0.17 0.15 6.65 0.85 -0.45 
physician 0.29 0.30 1.13 2.79 -0.13 0.08 0.88 6.46 

unix 6.35 6.57 2.\0 3.47 \.28 10.00 0.40 3.34 

astronomi 0.23 0.35 2.83 3.15 -0.04 0.09 6.21 4.05 

radio 12.75 4.86 10.08 4.31 19.55 4.55 12.03 3.79 

associ 1.78 6.52 6.91 12.87 1.44 4.37 11.23 14.35 

clinic 1.34 -0.65 0.21 5.77 1.61 -0.41 -0.43 6.48 
planetari -0.16 2.39 3.31 1.19 -0.54 2.14 6.11 0.02 
antenna 1.84 0.05 4.48 0.80 4.13 -0.10 5.42 0.13 
chang 9.85 23.64 15.34 18.66 7.94 24.59 11.88 19.44 

telescop 2.13 0.49 7.04 1.84 1.85 0.54 7.47 2.00 

cancer 0.66 1.43 0.47 6.63 -0.25 1.67 0.87 7.10 

fever -0.13 0.11 0.96 2.65 -0.\6 0.01 2.57 4.06 

We now briefly turn our attention from evaluating effectiveness of mined 

knowledge to examining efficiency implications of sprinkling. The only overhead 

associated with sprinkling is that the size of the case-feature matrix grows because of 

the augmented sprinkled columns. Table 7.7 shows that this overhead is miniscule in 

practical scenarios. For our experiment, we compared time taken for computing the 

SVD of a case-feature matrix having 1000 cases and 1000 features, before and after 

sprinkling. We use the Matlab implementation of SVD over a PC configured with 

Pentium 4 (single-core) processor and 512 MB of RAM, for our experiments. 
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Table 7.7 Time perfonnance overheads with sprinkling 

No. of Sprinkled Terms 0 4 8 16 20 50 100 

Time taken by SVD (ms) 134 134.92 133.13 133.76 134.37 135.35 140.18 

7.3 Adaptive Sprinkling 

Adaptive Sprinkling (AS) is different from sprinkling in that it takes into consideration 

the knowledge of relationships between classes. We evaluated AS on three types of 

classification problems. The first involves hierarchical classes, which have an is-a 

taxonomy defined over them. The second type originates from sentiment analysis 

problems, has an ordinal relationship defined between classes. For example, a textual 

review accompanied by a rating of 1 (on a 10 point scale) is expected to be more 

similar to one rated at 2 than another at 10. Ifnumeric ratings are treated as class labels, 

similarity between classes is a function of this ordering. Finally, we consider 

orthogonal problems where classes bear no explicit relationship to each other. This is 

the most frequent category of problems; the datasets used to evaluate sprinkling have 

flat disjoint classes, and they belong to this category. We used the following datasets in 

our experiments: 

1. Hierarchical dataset: This dataset was fonned from the 20 Newsgroups collection 

(Lang 1995) which has seven sub-trees: comp, rec, talk, alt, misc, soc, and sci. We 

selected the comp and rec sub-trees which contain 5 and 4 classes (corresponding 

to leaf-nodes) respectively. The hierarchy is shown in Figure 7.3. We used 500 

documents (cases) from each of these nine classes. 

2. Ordinal dataset: Classification between ordinal classes is an interesting problem 

in sentiment analysis literature (pang & Lee 2005). However, due to the relative 

youth of the field, no suitable benchmark dataset was readily available. We 



142 

therefore compiled a new dataset from reviews on the "actors and actresses" sub

topic of the Rateital/.com opinion website. Each review contained an integer rating 

(1 to 5 inclusive) assigned by the author. These ratings were used as the class 

labels. We removed all reviews having less than 10 words, and created 5 equally 

distributed classes, each with 500 reviews. 

3. Orthogonal dataset: We used the acq, crude and earn classes of the Reuters-

21578 collection (Reuters 1997) to form this dataset. 500 documents were selected 

from each class, such that each document belongs to at most one class. 

Figure 7.3 Organization of 20 Newsgroups sub-corpus used for evaluating AS over 

hierarchical classes 

All three datasets underwent similar pre-processing. After stop word removal and 

stemming, binary valued term-document matrices were constructed. For each of the 

datasets, Information Gain (lG) was used to select the top 1000 discriminating words. 

For experiments using SVM, we used the SVMmulticlass implementation (Joachims 

1998), with a linear kernel as before. Since we have single labelled documents in each 

dataset, and the all classes are distributed equally, accuracy suffices as a measure of 

effectiveness. For all datasets we performed classification using 10 equally sized train

test pairs, and used the paired t-test to assess significance. 
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7.3.1 Confusion matrices before and after sprinkling 

As described in Section 5.3 high off-diagonal values in a confusion matrix indicate 

classes that the classifier finds hard to separate. This forms the intuitive basis for using 

the confusion matrix to generate the sprinkling codes. In our experiments, as-fold 

cross-validation on the raw training data yields five confusion matrices. These five 

matrices are then used to construct an average confusion matrix Q, each of whose 

elements are obtained by averaging the corresponding elements in the five matrices. 

Sprinkled terms are generated based on Q using the algorithm presented in Section 5.3 

and LSI is performed on the sprinkled representation. The same classifier is then 

applied to the revised representations, yielding a new confusion matrix Q '. Comparing 

Q and Q' provides direct evidence of the quality of the revised representation. 

Figure 7.4 is a qualitative illustration of the effects of AS on the initial confusion 

matrices, which result from applying a kNN classifier to three datasets. Each element of 

the matrix is mapped onto a cell colour. A light colour signifies a high value in that 

cell, a dark colour signify a low value. For a perfect classification, all cells except those 

on the diagonal should be dark, as this indicates total agreement between the expert and 

the classifier. 

In all three datasets, we observe that AS results in a reduction in inter-class 

confusion. The first column in the matrix of Figure 7.4A and the second one of Figure 

7.4C, reveal pairs of classes that kNN fmds hard to classify. Interestingly, AS 

succeeded in reducing inter-class confusion, as is revealed by the near-diagonal 

patterns in matrices of Figures 7.4B and 7.4D. 
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Figure 7.4 Confusion matrices before and after sprinkling 

A closer look at the confusion matrices obtained after sprinkling reveals patterns 

that are consistent with the relationship between classes. In the hierarchical dataset, the 

confusion is mainly between classes within the same sub-tree. There are two broad 

confusion zones, one between the five classes of the camp subtree, the other between 

four classes of rec. Furthermore very closely related classes like those corresponding to 
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PC and MAC hardware, and those relating to autos and motorcycles are hard to 

discriminate, and this is reflected in the lighter shades in the corresponding cells of 

Figure 7.4B. For ordinal classes, the confusion matrix of Figure 7.4D shows that AS 

has implicitly mined the similarity between rating classes and attenuated confusion 

between distant classes. This is evident from the broad pattern of light shades along the 

diagonal, and darker shades elsewhere. This is expected, since adjacent classes of an 

ordinal dataset are the most similar. The orthogonal dataset has the least confusion 

between classes since there is no explicit relationship between them. Figures 7.4E and 

7.4F show that sprinkling has a positive effect in reducing inter-class confusion. In 

particular, the confusion between classes acq and crude has been markedly reduced. 

We sought an empirical explanation for this by studying similarity between terms 

before and after AS, obtained using the approach described in Section 4.3.2. It was 

observed that similarity between words were boosted if they related strongly to the 

same class, and attenuated otherwise. For example, opec and refinery, both relevant to 

the class crude, were drawn closer, while dividend (from earn) and crude (from crude) 

were moved apart. 

7.3.2 kNN performance before and after AS 

To assess the impact of sprinkling we constructed three representations of each dataset: 

the raw term-document matrix (baseline), the LSI-generated reduced dimensional 

representation (LSI), and the approximation of the original matrix generated by 

sprinkled LSI (LSI+AS). 

Effects of sprinkling on kNN: We used two variants of kNN, the first based on the 

Euclidean distance measure (kNNE) and the second on cosine similarity (kNNC). Both 

use a weighted majority vote from the 3 nearest neighbours. Table 7.8 reports kNN 

performances, before and after sprinkling, at the LSI dimension empirically found best. 

These are compared against baseline SVM performance. For each dataset, the 
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performances significantly better (p < 0.05) than the rest, are shown in bold. Firstly, we 

observe that AS leads to sizable improvements in performance of both kNNE and 

kNNC over the respective baselines. kNNE and kNNC performances with LSI+AS are 

significantly better than LSI on all datasets. Secondly, LSI+AS enhances kNN 

performance to be competitive with, and occasionally outperform, baseline SVM. 

At different LSI dimensions: Figure 7.5 shows kNNC and kNNE performances over 

various LSI dimensions. We note that LSI+AS consistently outperforms LSI at all 

dimensions, on both measures. 

The poor performance of all classifiers on the ordinal dataset can be attributed to 

classes that are not neatly separable. This is partly caused by subjective differences 

between reviewers, who use different ratings to express similar judgements. The 

positive impact of AS on confusion matrices in Figure 7.4D suggests that a regression

based technique can fare better than a classifier that attempts to predict a precise rating. 

Furthermore, the IG measure used for feature selection assumes classes to be disjoint 

and needs to be reformulated to accommodate inter-class similarity (Mukras et aI., 

2007). 

7.3.3 SVM performance before and after AS 

Table 7.9 shows the impact of sprinkling on SVM performance. It may be noted that 

the confusion matrix used to generate sprinkled terms reflected weaknesses specific to 

SVM, hence AS should ideally emphasise differences between classes that SVM on its 

own found hard to classify. The results are in line with our expectation, as LSI+AS 

significantly (p < 0.05) outperforms the baseline on all three datasets. There is some 

evidence to suggest that LSI alone improves SVM performance, but the difference is 

not statistically significant except for the orthogonal dataset. 
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Table 7.8 kNN perfonnance before and after AS 

Hierarchical Ordinal Orthogonal 

Baseline 48.02 25.84 93.47 

kNNC LSI 49.53 29.08 94.80 

LSI+AS 60.40 31.00 95.20 

Baseline 20.80 25.40 78.60 

kNNE LSI 35.73 29.00 91.87 

LSI+AS 59.38 30.16 93.80 

SVM Baseline 65.47 30.12 94.27 

The likeness in perfonnance between LSI and LSI+ AS on the orthogonal dataset is 

indicative of the fact that class knowledge plays a less critical role here, in comparison 

to the ordinal and hierarchical cases. 

Table 7.9 SVM perfonnance before and after Sprinkling 

Hierarchical Ordinal Orthogonal 
Baseline 65.47 30.12 94.27 

SVM LSI 65.71 31.12 95.27 
LSI+AS 66.33 32.08 95.27 

7.3.4 AS versus sprinkling 

We carried out experiments to compare the effectiveness of AS against sprinkling on 

the multi-class orthogonal datasets REC and SCIENCE. Table 7.10 shows the accuracy 

figures obtained after averaging over 15 trials. Over both datasets, we observed a small 

improvement in the accuracy. This is explained by the ability of AS to improve 

separability between classes that are more likely to be confused. The results confinn 
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Table 7.10 Comparing AS against sprinkling over 4-class datasets 

REC SCIENCE 

Sprinkled LSI 86.99 80.60 

LSI+AS 87.47 81.12 

that even in orthogonal domains where no explicit class relationships are known, AS 

can have an edge over uniform sprinkling, because it treats hard-to-separate classes 

differently from the rest. 

7.4 Feature Similarity mined using Higher Order Associations 

In this section, we present experimental results to demonstrate the effectiveness of 

similarity knowledge mined using higher order associations as described in Chapter 6. 

The datasets described in Section 3.1 have been used for all evaluation reported in this 

section. An important issue associated with the algorithm for learning similarity 

knowledge is the setting of parameters a, ~, y associated with the strengths of first, 

second and third order associations respectively. To start with, we consider the case 

where these parameters are set using "brute force". This is done by incrementing each 

parameter in steps of 0.1 from 0 to 2.5, and trying out all possible combinations of the 

three parameters. Note that the strengths of higher order associations are normalized as 

described in Section 6.3 to make the ranges of the three parameters compatible with 

each other. In Section 7.4.2, we present results where the parameters are learnt 

automatically using an evolutionary approach. 

Table 7.12 presents a summary of the results. The figures in bold are the best 

results after paired t-tests between each classifier over results from the 15 trials. In 

situations where the differences between the top ranking classifiers is not statistically 

significant (p > 0.05), all top figures have been marked in bold. We observe that using 

second and third order co-occurrences at parameter settings that yield best performance 
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results in better classification accuracies compared to using first-order co-occurrences 

alone (P,y = 0). While the differences are statistically significant on all four datasets, 

the magnitude of improvement is more conspicuous in HARDWARE and RELPOL, 

which are harder domains, compared to USREMAIL and LINGSPAM, which already 

recorded high accuracies with simpler approaches. We compared our approaches to a 

CRN based on similarity relations mined using LSI. It may be noted that the use of 

higher order co-occurrences leads to better accuracies compared to LSI-based 

similarities and the differences are statistically significant on all four domains. This is 

all the more noteworthy in the light of our paired tests that reveal that LSI does better 

than first order co-occurrences on both HARDWARE and RELPOL, while results are 

statistically equivalent on the other two datasets. These two observations show LSI 

does better than using first order associations alone, but is outperformed 

comprehensively when higher orders are used. While Kontosthathis & Pottenger (2006) 

show that LSI implicitly models higher order co-occurrences, it is simultaneously 

constrained by the need to maximize variance across the concept dimensions, and by 

the need to produce the best k-rank approximation to the original case-feature matrix, 

in the least-squares sense. The experimental results confirm our intuition that these 

constraints could prove to be unnecessarily restrictive in the classification domain, and 

can be relaxed to obtained better performance. Another relative advantage of our 

approach vis a vis LSI-mined similarity is that we can explicitly capture higher order 

associations and embed into the similarity knowledge. This is useful for facilitating 

better explanation and visualization of the mined knowledge, as shown in Section 6.6. 

We also note that our approach outperforms SVM on all datasets except 

HARDWARE where SVM performs significantly better. One possible reason for the 

relatively poor performance in HARDWARE could be a significant overlap in 

vocabularies used to describe problems in Mac and PC. The problem is compounded by 

the fact that we ignore class knowledge of training documents while constructing 

similarity relations between terms. In contrast this is a critical input to SVM. Motivated 
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by this observation, we explored the idea of incorporating sprinkling into the similarity 

mining algorithm, which is described in Section 5.3. 

Table 7.11 reports a, p and y values at which best performances are observed. 

Easier domains like USREMAIL and LINGSP AM appear to prefer lower values of p 
and y compared to the two harder binary problems HARDWARE and RELPOL, and 

the two multi-class datasets REC and SCIENCE (refer GAMEciass scores in Table 3.1). 

We will re-examine this observation in the light of more experimental results in Section 

7.4.2. 

Table 7.11 Empirically determined best values of a,p and y 

REC SCIENCE HARDWARE RELPOL USREMAIL LINGSPAM 

(a,P,Y)opdma (I, 0.42, 0.49) (1,0.95,1.07) (1,0.37,1.15 ) (1,0.61,1.04 ) (1,0.21,0.15 ) (1,0.27,0.31) 

Table 7.12 Comparing Classifier Accuracies 

REC SCIENCE HARDWARE RELPOI USREMAII LINGSPA~ 

BASE(VSM) 62.79 54.89 59.51 70.54 59.23 85.09 

LSI-mined Similarities 82.16 75.37 72.40 93.39 95.83 98.32 

SVM -- -- 78.83 92.28 95.83 96.36 

First Order 82.71 77.04 71.71 93.09 95.77 98.26 

Higber Order SS.3S Sl.SS 74.51 9S.30 96.40 9S.S9 

7.4.1 Sprinkled Higher Order 

In Section 5.3, sprinkling was used to create artificial second order associations 

between features representative of the same class. In this sub-section, we evaluate the 

hypothesis that this indeed leads to better classification effectiveness by biasing the 

feature similarities to reflect class knowledge. We note that the number of sprinkled 

terms is an important parameter for this algorithm and needs to be set based on training 

set cross validation for optimal performance. For our evaluations, we simplify this 
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choice by using 8 sprinkled tenns per class, as this was empirically found to yield good 

results. 

The results are summarized in Tables 7.13 and 7.14. Sprinkling led to conspicuous 

improvement in perfonnance over the HARDWARE dataset from 74.5 1 % to 80.44%. 

This unambiguously points to the importance of class knowledge in this dataset. Table 

7.13 suggests that sprinkled higher orders outperforms SVM on all datasets; in the 

USREMAIL dataset, the improvement is not statistically significant. This is possibly 

because the domain is simple and had already high recorded accuracies. For the 

RELPOL domain however, adding class knowledge led to a slight drop in the 

perfonnance from 95.30% to 93.93% (Table 7.14), which was still significantly better 

than both LSI and SVM. The drop in RELPOL perfonnance indicates that in this 

domain, class knowledge is not as important as in HARDWARE. In our current 

implementation, we have used uniform number of sprinkled terms over all domains. 

Performance could be improved by optimising the number of sprinkled tenns for each 

individual domain. For example, HARDWARE would be more heavily sprinkled than 

RELPOL. 

Table 7.13 Comparing Sprinkled Higher Orders against SVM 

HARDWARE RELPOL USREMAIL L1NGSPAM 

Sprinkled .8044 .9393 .9630 .9838 
Higher Order 

SVM .7883 .9228 .9583 .9636 

Table 7.14 Comparing Higher Orders with and without Sprinkling 

REC SCIENCE HARDWARE RELPOL USREMAIL LINGSPAM 

Sprinkled 
.8574 .8339 .8044 .9393 .9630 .9838 

Higher Order 

Higher 
.8530 .8254 .7451 .9530 .9640 .9859 

Order 
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7.4.2 Using GA to learn parameters 

Performing exhaustive search on the parameter space allows us to empirically ascertain 

the contributions of each co-occurrence order. However, in practice, we would need a 

mechanism to determine the parameters automatically based on a given text collection. 

Section 5.4 presents an approach based on Genetic Algorithms to achieve this. The 

parameters are learnt on the training set, with the objective of maximizing classification 

accuracy on the unseen test set. Since the test set is not available, we instead set our 

objective to optimizing classification accuracy over 5-fold cross validation on the 

training set. 

Table 7.15 Comparing effectiveness of empirically determined and GA-Ieamt 

parameters 

HARDWARE RELPOL USREMAIL LINGSPAM 

Sprinkled HO .7938 .9304 .9593 .9814 
(parameter learning) 

Sprinkled HO .8044 .9393 .9630 .9838 

Table 7.16 Parameter values learnt by GA 

HARDWARE RELPOL USREMAIL L1NGSPAM 

(a,P,Y)optima. (1,1.88,1.56 ) (1,1.01 ,1.15 ) (1,0.97,0.85 ) (1,0.73,0.96) 

We carried out experiments over the binary classification datasets, as preliminary 

evaluation of the feasibility of this idea. Table 7.15 presents the classification 

accuracies when the parameters were learnt using the GA-based approach. We used the 

architecture of Figure 5.5 where sprinkled terms were used as carriers of class 

knowledge. The accuracy Figures with the learnt parameters are very similar to the 

Figures obtained by the "brute force" approach presented earlier where the best values 

are chosen after exhaustively searching the parameter space in fixed increments. While 

there is still a statistically significant difference in three of four datasets, the very close 
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average values suggest that the GA-based approach holds promise in significantly 

lowering manual overheads in parameter setting, while still continuing to deliver good 

performance. We need further research into better tuning of our approach for 

facilitating faster and more effective search in the parameter space. Table 7.16 shows 

the values of a,~ and y that were learnt by our algorithm for each of the four datasets. 

Comparing these values with the corresponding ones in Table 1, we observe a 

significant increase in the values of p. This can be attributed to the fact that sprinkled 

terms provide second order co-occurrence paths between terms of the same class. 

Increasing ~ thus helps in boosting similarity between terms of the same class, and 

decreasing similarity between terms of disjoint classes. This explains the greatly 

improved performance in the HARDWARE domain with sprinkling. 

7.S Chapter Summary 

We have presented experimental studies to evaluate supervised extensions of LSI for 

acquiring relevance knowledge and also evaluated the approach for mining similarity 

knowledge based on higher-order associations between features. Using LSI has been 

shown to yield significant improvements over the baseline Vector Space representation, 

however the absence of class knowledge is a major handicap, especially in complex 

domains like HARDWARE. Sprinkled LSI incorporates class knowledge in LSI. The 

resulting relevance and similarity knowledge lead to considerable improvements over 

LSI performance. The acquired similarity and relevance knowledge can be incorporated 

into a CRN, or for that matter any other instance-based retrieval formalism. We also 

showed that sprinkled LSI helps in promoting similarities between features belonging 

to the same class. From a practical standpoint, it is interesting to note that sprinkling 

involves minimal computational overheads over LSI on its own. The effectiveness of 

representations learnt by Adaptive Sprinkling has been demonstrated over three 

different types of classification problems, and over two classifiers kNN and SVM. 

Higher Order Associations have been shown to be effective in mining feature 
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similarity, however the absence of class knowledge in learning these similarities is a 

bottleneck. Experimental results show that using sprinkling as a pre-processing step can 

help us in overcoming this limitation. 
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Chapter 8 

Fast Case Retrieval Network 

The best way to accelerate a PC is at 9.8m1seclsec. Marcus Dolengo 

So far, we have dwelt on how statistical techniques can be used to acquire knowledge 

for TCBR, with the objective of facilitating effective retrieval. In this chapter we will 

address issues related to efficiency, i.e. time and space performance of retrieval. This is 

important in practical usage scenarios, where the feature set size and the number of 

cases can be extremely large, posing challenges to retrieval strategies and memory 

requirements. 

While CRNs scale up well with increasing casebase size, their retrieval efficiency is 

critically determined by the size of the feature set and nature of similarity relations 

defmed on these features. In text retrieval applications, it is not unusual to have 

thousands of terms, each treated as a feature. The aim of this chapter is to propose an 

approach to improve the retrieval efficiency of CRNs. The basic idea involves 

introducing a pre-computation phase that eliminates redundant similarity computations 

at run time. This new retrieval mechanism is referred to as Fast CRN (FCRN). Our 

experiments reveal that the proposed architecture can result in significant improvement 

over CRNs in retrieval time without compromising retrieval effectiveness. The 

architecture also reduces memory requirements associated with representing large 

casebases. 

Section 8.1 presents a concise introduction to the steps involved in CRN retrieval 

mechanism. We introduce FCRNs in Section 8.2, which is followed by an analysis of 

computational complexity and memory requirements in Section 8.3. We present 
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experimental results in Section 8.4. Section 8.5 discusses additional issues, such as 

maintenance overheads that need to be considered while deploying real world 

applications using FCRNs. We also present an extension to FCRN to cater to varying 

precision/recall needs. In Section 8.6, the main contributions of this chapter have been 

summarized. In Appendix A2, we show that the ranking of the retrieved results 

produced by FCRNs is same as that of CRNs, under both the Euclidean and cosine 

similarity measures. 

8.1 Retrieval in Case Retrieval Networks 

The CRN was introduced informally in Section 2.3.2. To facilitate further analysis, we 

formalize the CRN retrieval mechanism in this section. A CRN is defined over a finite 

set of s IE nodes E, and a finite set of m case nodes C. Following the conventions used 

by Lenz (1999), we define a similarity function cr: 

cr: Ex E 7 9l 

and a relevance function 

p: Ex C 7 9l 

We also have a set of propagation functions Iln: 9l n 7 ~ defined for each node 

in Eve. The role of the propagation function is to aggregate the effects of incoming 

activations at any given node. While Lenz (1999) leaves open the choice of the 

propagation function, for simplicity we assume that a summation is used for this 

purpose. 

The CRN uses the following steps to retrieve nearest cases: 

Step 1: Given a query, initial IE node activations tZo are determined. 

Step 2: Similarity Propagation: The activation is propagated to all similar IE nodes. 

s 

al(e)= LlT(epe).ao(e;) (8.1) 
;=1 
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Step 3: Relevance Propagation: The resulting IE node activations are propagated to all 

case nodes 

s 

a 2 (c) = LP(ej,c).a l (e j ) (8.2) 
j=1 

The cases are then ranked in descending order of a 2 (c) and the top k cases retrieved. 

A CRN facilitates efficient retrieval compared with a linear search through a 

casebase. As noted in Section 2.3.2, intuitively the speedup is because computation for 

establishing similarity between any distinct pair of IEs happens only once. Moreover, 

only cases with non-zero similarity to the query are taken into account in the retrieval 

process. A detailed complexity analysis is available in (Lenz 1999). 

We observe that in the face of a large number of IEs, Step 2 accounts for most of 

the retrieval time. The idea of FCRN stems from the need to identify and eliminate 

redundant computations during this similarity propagation step. 

8.2 Fast Case Retrieval Network (FCRN) 

We now present the basic idea behind FeRN. We substitute the expansion of the term 

a
l 
(e) from (8.1) into the expression for fmal case activation in (8.2). This yields: 

I • 

a 2(c) = Lp{ej,c). L u(e;,e j ).ao(e;) (8.3) 
j=1 ;=1 

Let us consider the influence of a single IE node ej on a single case node c. For this, we 

need to consider all distinct paths through which an activation can reach case node c, 

starting at node ej. Figure 8.1 illustrates three different paths through bold dashed 

arrows from ej to c, along with activations propagating through each path. 



159 

Figure 8.1 Different paths through which an activation can reach case c from an lEe, 

We observe that the influence of node ei on node c can be computed as the aggregation 

of effects due to all nodes ej that ei is similar to, and is given by: 

s 

in! (ei ,c) = L p(e), c)G'(e" e) )ao (e;). 
)=1 

The last term can be extracted out of the summation as follows: 

inj(e"c) ~ {tp(el, c)(J"(e"el)}ao(e,) 

(8.4) 

(8.5) 

We refer to the term within parenthesis as the "effective relevance" of the term e, to 

case c and denote it by A (ei. c). It can be verified that (8.3) can be alternatively 

rewritten as: 

s 

a 2 (c) = LA(e"c).ao(eJ (8.6) 
;=1 

The significance of this redefinition stems from the observation that given an effective 

relevance function A: E x C -7 91, we can do away with Step 2 (similarity propagation 
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step) of the eRN retrieval process. We can now construct a eRN that does not use any 

similarity arcs in the retrieval phase. Instead, a pre-computation phase makes use of 

similarity as well as relevance knowledge to arrive at effective relevances A. The 

resulting eRN is called FeRN (for Fast eRN) and its operation is shown in Figure 8.2. 

The equivalence of the expressions for final case activations in (8.2) and (8.6) above 

leads us to the following result. 

Theorem 1. For any query with initial IE node activations ao, such that a o(e/)e9lfor 

all i, the case activations (and hence the rankings) produced by the FeRN are identical 

to those produced by the eRN. Thus the eRN and the FeRN are equivalent with 

respect to retrieved results. 

Precomputation Phase 

The similarity and relevance values are used to pre-compute the effective relevance values 

A(e,.c) ~ {t,p(ej.c)O"(e"ej ).} 

Retrieval Phase 

Step 1: Given a query, initial IE node activations ao are determined. 

Step 2: The resulting IE node activations are propagated directly to all case nodes 

s 

a 2 (c) = LA(e;oc).aO(ei ) 

i=1 

The cases are then ranked according to their activations, and the top k retrieved 

Figure 8.2 Precomputation and Retrieval in FeRN 

Figure 8.3 shows an example eRN depicting a trivial setup with 4 IEs and 3 cases, and 

the corresponding equivalent FeRN. It is observed that while the relevance values in 

the original eRN were sparse, the effective relevance values in the FeRN are relatively 

dense. This is because in the FeRN an IE is connected to all cases that contain similar 
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IEs. In the example shown, the effective relevance between case CI and Information 

Entity lEI is computed as follows: 

A(IEI,C/) = p(IEJ,C/)a(IEI.IEI) + p(IE2,C/)a(IEI.IE2) + p(IE3,C/)a(IEI.IE3) + 

p(/E4,C/)a(IEI.IE4) 

(Ix!) + (OxO) + (OxO.S) + (lxO.7) =1.7 

Other elements of the effective relevance table can be similarly computed. It is 

interesting to note that the effective relevance of the ith IE with the jth case is given by 

the dot product of the ith row of the similarity table (0) with the jth row of the 

relevance table (p). 

In practice, similarity measures based on Euclidean distance or cosine similarity 

are often used to evaluate similarity between cases. Appendix A2 shows how the 

FCRN can be extended to handle these distance measures. It also presents a proof that 

ranking of cases produced by FCRNs is same as that produced by a CRN, under both of 

these distance measures. 

8.3 Time and Space Complexity of FCRN 

In this section, we formalize our intuitions on efficiency improvements obtained by 

FCRNs. 

8.3.1 Time Complexity Analysis 

Let us compare the retrieval time complexity of FCRNs with CRNs. Figure 8.4 

illustrates the pseudo-codes for retrieval using the CRN and FCRN. 
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Relevanc. function p 

IE, IEz IE, IE. 

C, 1 0 
o ., 

1 

Cz 0 1 1 0 

C] 1 0 1 0 

Similarity function CT 

IE, IEl IE, IE. 

IE, 1 0.0 0.6 0.7 

IEl 0.0 1 0.5 0.0 

IE] 0.5 0.5 1 0.3 

IE. 0.7 0 0.3 1 

r------------.-----
I IE, 1\ 

Effective Relevance function 1\ 

IE, IEz IE] IE. 

C, 1.7 0 0.8 1.7 

Cl 0.5 1.5 1.5 0.3 I 
C, 1.5 0.5 1.5 1.0 

FeRN 
------.. ~-----.--

Figure 8.3 A CRN over 3 cases and 4 IEs, and an operationally equivalent FCRN 

The retrieval complexity is a function of loops /* A */ and /* B */ in the pseudo

codes: 

complexity(CRNRetrieva/) oc O(A xB xC) 

and 

complexity(FCRNRetrieva/) oc O(BxC) 

The following two reasons contribute to the speedup in FCRN retrieval: 

I . Step A in the CRNRetrieval pseudo-code involves spreading activation to IE 

nodes similar to the query IEs based on similarity values. This step is 

eliminated in FCRN retrieval since the similarity knowledge is transferred to 
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the effective relevance values during the pre-computation step. Thus, FCRN 

retrieval amounts to a simple table lookup for all cases "effectively" relevant to 

the query IEs and aggregating the scores received by each case from the 

individual query IEs. Using FCRNs, we can obtain efficiency very similar to 

inverted files typically used in Information Retrieval applications (Rijsbergen 

1979). However unlike inverted files, FCRNs also integrate similarity 

knowledge in the retrieval process. 

2. Step Bin FCRNRetrieval involves a loop over IE nodes activated by the query. 

In contrast, Step B of the CRN retrieval loops over all IEs similar to IE nodes 

activated by the query. In a situation where most IEs are connected to many 

others by non-zero similarities, Step B in FCRN would involve much fewer 

iterations compared to step B ofa CRN. 

While the above two factors lead to saving in retrieval time in FCRN, it is important to 

note that the step C of FCRN retrieval could be more expensive than the step C of the 

CRN. This is because effective relevance values in FCRN are less sparse compared to 

relevance values in CRN; thus, we would expect an IE to have non-zero relevances to a 

larger number of cases in FCRN, compared to a CRN. If the CRN relevance values are 

optimally dense in that each IE has a non-zero relevance to every case (as is expected 

to be true with relevances acquired by LSI), the step C of a CRN is equivalent in time 

complexity to the step C of FCRN, since CRN relevances are just as non-sparse as the 

FCRN effective relevances. In such a case, FCRN is guaranteed to be faster than the 

CRN. However, in the presence of highly sparse relevance values and dense similarity 

relations, the step C ofFCRN would be slower than the corresponding step of the CRN, 

thus partially offsetting the savings obtained by eliminating Step A and reducing time 

complexity of Step B. In the empirical evaluations reported later in this chapter, we 

focus on dense relevance relations as is typical when the knowledge is acquired using 

statistical techniques presented earlier in this thesis; however, it is important to note 



164 

that the performance gains obtained with FCRNs would be less conspicuous when the 

CRN relevance values are sparse. 

CRNRetrieval 

FOR each activated query IE (attribute A, value Vq in query) 

Determine all related IEs using similarity function 0 

FOR each IE that is found relevant 

FOR each case associated with that IE 

Increment score of case 

END FOR 

END FOR 

END FOR 

Rank and display related cases 

FCRNRetrieval 

FOR each activated query IE (attribute A, value Vq in query) 

FOR each case associated with that IE 

Increment score of case 

END FOR 

END FOR 

Rank and display related cases 

Figure 8.4 Pseudo-codes for retrieval using CRN and FCRN 

8.3.2 Memory Requirements 

/* A */ 

/* B*/ 

/* C */ 

'* B*' 

'* C *' 

Typically CRNs consume more memory when compared to a flat casebase, which has a 

linear listing of cases along with their constituent attribute values. This difference can 

be largely attributed to the following two factors: CRNs explicitly record lEI number of 

values corresponding to IEs, and !E12 values are required to model similarities between 

IEs. In addition we have ICasebasel x lEI relevance values between the IEs and the 

cases. 
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A flat casebase that models the case memory as a linked list of all cases will need 

to store ICasebasel number of cases and ICasebasel x lEI number of relevance values. 

memory (flat case base) oc ICasebasel x lEI + ICasebasel 

oc I Casebasel x (lEI + 1) 

The memory requirement of a CRN is approximately given by: 

memory (CRN) oc lEI + ICaseBasel + IEI2 + ICasebasel x lEI 

oc lEI + IEI2 + ICaseBasel x (IEI+1) 

oc lEI + IEI2 + memory(flat casebase) 

In FCRN we do not need to explicitly record the similarities between IEs, since this 

knowledge is contained within effective relevance values. The memory requirement of 

FCRN is given by: 

memory (FCRN) oc lEI + ICaseBasel x (IEI+ 1) 

oc lEI + memory( flat casebase) 

In textual applications, the number of IEs could be extremely large, and the saving of 

IEI2 could mean substantial gains in terms of memory requirements. 

It is worth noting that while the in-memory requirement for FCRN retrieval is 

considerably less than in CRN, we would still need to store the IEI2 similarity values 

for off-line maintenance. In a situation where a particular IE is deleted, we would need 

to re-evaluate the effective relevance values to reflect this change. This is possible only 

when the similarity information is available. 



166 

8.4 Experimental Results 

In this section, we present empirical results to illustrate FCRN efficiency in practical 

applications. The objective of our first set of experiments is to observe how CRNs and 

FCRN scale up with increasing number of IEs, and with varying nature of similarity 

interconnections between these IEs. Towards this end, it is sufficient to simulate a large 

number of IEs and cases with randomly generated similarity and relevance values. The 

synthetic nature of the datasets is not a major concern, since we are not really 

concerned with the actual cases retrieved. Sparseness of similarity values can be 

controlled by forcing a fraction of these values to O. In any real world application, the 

actual non-zero similarity and relevance values used would be different from the 

randomly generated values used in our evaluation, but the time complexity of the 

retrieval process is independent of the actual values used, since neither the CRN nor 

FCRN exploit the distributions of values to alter the retrieval process. So our 

experiments are expected to provide fair estimates of efficiency over realistic datasets. 

An experimental strategy similar to ours was also used in (Lenz 1999). 

Table 8.1 shows the impact of the increase in number of IE nodes on the retrieval 

time. For this experiment, the query was randomly generated and IE nodes activated 

accordingly. The casebase has 1000 cases. The similarity matrix is optimally dense in 

that each IE node is connected to each other by a non-zero similarity value. Thus this 

result may be viewed as a worst-case comparison of the CRN performance against 

FCRN. It may be noted that the CRN retrieval time increases almost linearly as the 

number of IE nodes increases from 1000 to 6000. As the number of IEs goes beyond 

6000, CRN performance degrades steeply. In contrast, the FCRN shows stable 

behaviour with increasing number of IEs. This is attributed to the savings in similarity 

computation, and corresponds closely to our theoretical analysis in Section 3.2. 

The objective of our next experiment is to empirically evaluate the impact of the 

nature of similarity interconnections on the relative performance of the CRN and the 

FCRN. We recall that a bulk of the savings in retrieval time with FCRNs can be 
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accounted for by the fact that FeRN does away with the similarity propagation step. 

The time consumed in similarity propagation is critically dependent on the density of 

the similarity matrix, which is defined as the proportion of non-zero similarity values in 

the similarity matrix. We conducted an experiment to study the FeRN perfonnance 

against eRN, as a function of the similarity matrix density. Our experimental setup is 

similar to that in the first experiment. We simulate 8000 IEs and 1000 cases with 

Table 8.1 Retrieval time as a function of the number of IE nodes 

eRN Retrieval Time FeRN Retrieval Time 
No. of IE Nodes 

(sees.) (sees.) 

1000 0.04 <10· j 

2000 0.12 <10-J 

3000 0.22 <10-J 

4000 0.35 <10-J 

5000 0.49 <10-J 

6000 0.66 <10-J 

7000 1.42 0.01 

8000 3.40 0.01 

9000 3.86 0.01 

10000 4.98 0.02 

randomly generated similarity and relevance values. We now relax the density of the 

similarity matrix, by deliberately setting a value of 0 to a fraction of the similarity 

values, and compare FeRN perfonnance against the eRN, for different settings of 

similarity matrix density. The results are shown in Table 8.2. As the density increases 

from 0 (when no IE node is similar to any other node) to 1 (when all IE nodes are 

related to all others), the eRN retrieval time increases considerably from a sub

millisecond to about 3.38 seconds. Since FeRN does away with the step of similarity 
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propagation across IEs, its performance is not critically impeded by growth in 

similarity matrix density. The very small increment in the FCRN retrieval time when 

the density increases from 0.8 to 1.0 is not surprising, given the fact that the effective 

relevance values are influenced by the density of the similarity matrix. Hence an 

increase in number of similarity interconnections can have an adverse effect on the 

sparseness of the effective relevance values, leading to a consequent slowdown in 

retrieval. It may be noted that retrieval times recorded in all Tables in this section are 

rounded to two significant decimal places. 

In addition to empirical evaluation on synthetic data, we also carried out 

experiments on a real world classification task over a textual dataset comprising 2189 

personal emails organized into 76 folders (classes). Each class corresponds to one of 

the folders (like "sports", "hobbies" or "meetings") into which the emails are 

organized. The total number of features in this dataset is 32,699. Since many of these 

features have very poor discriminatory power, the feature set size was pruned to 6000 

using chi-square based feature selection (Yang & Pederson 1997). A CRN was 

constructed to classify incoming emails into one of the 76 classes. Instead of modeling 

the emails as textual cases as is usually done, we treated the classes as cases. Thus the 

eRN had 6000 IE nodes and 76 case nodes. 

Table 8.2 Retrieval time as a function of the density of similarity matrix 

Density of the CRN Retrieval FCRN Retrieval 

Similarity Matrix Time (sees.) Time (sees.) 

0 <10-3 <10-3 

0.2 0.92 <10- j 

0.4 1.71 <10-3 

0.6 2.43 <10-3 

0.8 2.81 <1O- j 

1.0 3.38 0.01 
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Traditional techniques for modelling relevance do not directly apply in our case, 

since relevance values in our architecture relate IEs to classes, instead of relating IEs to 

cases. In our classifier, we use the chi-square metric (Yang & Pederson 1997) as a 

measure of the relevance of an IE to a particular class. The chi-square metric measures 

the lack of independence between an IE and a class. Thus the relevance value is 0 when 

an IE is independent of the class, and high when it is strongly dependent. 

The similarity between IEs is computed using Latent Semantic Indexing (LSI), 

using the method described in Section 4.3.2. We have seen earlier that LSI has an 

adverse effect on the sparseness of the similarity matrix. As the number of IEs increase, 

this can lead to considerable slowdown in retrieval or classification. 

In Table 8.3, we report experimental results comparing the time performances of the 

FeRN against a eRN in this domain. As the number of IEs increase from 1000 to 

6000, the eRN slows down considerably. The slowdown is especially conspicuous 

when the number of IEs exceeds 4000. In contrast, the FeRN scales up well. 

Table 8.3 Time performance as a function of the number ofIEs in the email dataset 

CRN Retrieval Time FCRN Retrieval Time 
No. ofiE Nodes 

(sees.) (sees.) 

1000 0.02 <10·J 

2000 0.22 <10·J 

3000 0.34 <1O'J 

4000 1.01 <1O.J 

5000 1.87 0.01 

6000 2.82 0.01 
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8.5 Discussion 

In this section we consider some additional issues that need to be taken into account 

when building eBR systems using FeRNs. We also present an extension of the FeRN 

idea to allow for flexible control of precision and recall during retrieval. 

8.5.1 Computation Node 

One obvious limitation of the eRN mechanism is its inability to handle query values 

(in the textual case, terms) that are not present in the predefined set oflEs used to build 

the eRN. To address this issue, Lenz (1999) presents the concept of a computation 

node which is created at run time. A computation node represents an IE corresponding 

to the new query value. The similarity of the computation node to existing IE nodes is 

computed at run-time using a similarity function that needs to be defined over the 

attribute space. Once the new similarity arcs are constructed, the retrieval can proceed 

in the usual manner. With FeRNs, a similar computation node creation step is 

involved. However, it only plays a role in activating the IE nodes via the newly 

constructed similarity arcs. If one or more of these IE nodes were already activated, the 

new activations are added to the existing values. Once the IE node activations 

(ao values) are evaluated, the case nodes are activated directly using the effective 

relevance values. 

8.5.2 Maintenance Overheads with FCRNs 

The downside of FeRNs is that incremental and batch maintenance of the casebase 

involves extra pre-computations. The effective relevance values need to be recomputed 

each time new cases or IEs are inserted or existing caseslIEs deleted or edited. 

However, the recomputations can be limited to only those effective relevance values 

that could potentially be affected. We consider two specific update scenarios below: 



171 

1. Insertion of new cases or deletion of existing cases: Deletion of an existing 

case is straightforward and only involves setting all effective relevance values 

connecting IEs to that case, to zero. This does not influence the effective 

relevances of the other cases. However, when a new case is added, the effective 

relevances of IEs present in the case to the case needs to be pre-computed, 

based on the similarity and relevance knowledge. Existing effective relevance 

values of IEs to the remaining cases are not affected, since effective relevance 

of an IE to a case is independent of the relevance of the IE to any other case in 

the casebase. 

2. Insertion of new IEs or deletion of existing IEs: When an existing IE is deleted, 

effective relevances of all IEs having non-zero similarity to the deleted IE, 

need to be updated. This can prove to be computationally expensive, especially 

in the face of large numbers of IEs and cases. We present an efficient update 

strategy (we have not empirically evaluated this claim) that is based on two key 

ideas. Firstly, we make incremental changes to existing effective relevance 

values, rather than recomputing these values from scratch. Secondly, we 

eliminate redundant computations by restricting incremental changes to only 

those effective relevance values that can get affected. When an IE node ed is 

deleted, the effective relevance of a node A( e I' c) is decremented by an amount 

M( e
j 
,c) to yield the revised relevance value A • (e I' c) which is given by: 

. {O when i = d 
A (ej,c) = 

A(epc) -M(ej,c) where M(epc) = u(eped )p(ed,c) otherwise 

These operations can be speeded up by maintaining an update table, which is 

constructed from the similarity and relevance tables and plays the role of an 

inverted index. A lookup on the table shows the incremental change that must 
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be made on each of the affected effective relevance values and saves the 

overhead of computing the values from scratch 

It may be noted that no updates are needed in situations where ~A(e"c) 

evaluates to zero. This happens when either u(ejted) is 0 or when p(ed,c) is O. 

The update table eliminates such redundant computations by restricting 

incremental changes to only those effective relevance values that get affected. 

As in the case of IE deletion, when a new IE is added, the effective 

relevances of all IEs bearing non-zero similarity to the new IE need to be re

evaluated. When a new IE node en is added, the revised relevance values are 

given by: 

Again, we can restrict incremental updates to only those effective 

relevance values that get affected by the IE insertion. 

We note that it may be restrictive to suppose that the update operations can always be 

localized to those similarity and relevance values that are immediately affected by the 

nodes inserted or deleted. The approaches outlined above for speeding up updates work 

well when the similarity and relevance knowledge are externally obtained (as from 

background knowledge like WordNet) or are derived from local properties of the 

collection (the relevance of an IE to a case is not dependent on other IEs or cases). 

However they may result incorrect updates when similarity or relevance knowledge is 

introspectively derived from global properties of the collection. Let us consider a 

situation where the relevances are obtained by combining local measures like term 

frequency and global measures like inverse document frequency. A single case deletion 

will necessitate the recomputation of inverse document frequencies pertaining to all 

relevance values. As with relevance values, similarity knowledge may need revision 
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each time an update is made. In realistic situations, such bulk updates will be 

computationally expensive. A practical approach would be to perform incremental local 

updates as outlined above whenever a node is inserted or deleted, and relegate bulk 

recomputations to a later time, when enough updates would have happened to make 

significant impact on the global measures. It is important to note that this 

recomputation overhead when using introspective techniques to acquire similarity and 

relevance knowledge is not specific to the FeRN, but is a concern shared by eRN and 

the flat casebase representation as well. 

8.5.3 Multiple-pass retrieval using FeRNs 

Textual domains often come with a wide variety of retrieval requirements. In retrieval 

applications, we may prefer to have a high-precision search in certain situations, high

recall search in others. One way to realize these diverse requirements is to control the 

number of IE nodes that are activated during the retrieval process. Thus a very high 

precision search might look for retrieving cases where at least one of the query IEs is 

explicitly present. In such situations we can have a eRN retrieval that bypasses the step 

of identifying similar IEs. We call this "zero-pass" activation. The eRN described in 

Section 3.1 uses one step of activating IEs similar to the query IEs. We refer to this as 

"one-pass" activation. A ''two-pass'' activation will involve an additional step of 

identifying IEs similar to the IEs identified as similar in one-pass activation. 

Thus a two pass activation involves the following three steps of spreading 

activation: 

Step 1: Activate IEs similar to the query IEs using similarity arcs. 

Step 2: Activate IEs similar to the IEs activated in Step 1 using similarity arcs. 

Step 3: Use relevance arcs to spread activation to cases from all IEs activated in 

Step 2. 

In the following, we show that a two-pass eRN retrieval can be efficiently modeled 

using FeRN. The case activation of a two-pass eRN would be given by: 
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(8.7) 

We consider the influence of a single IE node ej on a single case node c. The first step 

is to aggregate effects due to all intennediate nodes ej through which similarity may 

propagate from ej to eA;. In the next step, the activation of node c is obtained as an 

aggregation of relevance propagation from eA; to c for all instantiations of k. The final 

expression is given by 

s s 

inttepc) = L p(epc) L O'(ej , ek )a(e;> eJ )ao(e;) 
k=\ ]=\ 

The last term can be extracted out of the summation to yield 

inf(epc) = {tp(ek ,c) t u(e j ,ek )a(e; ,ej )}ao (e;) 
k=\ j=\ 

The term within parenthesis is the effective relevance of the term ej to case c: 

A(epc) = {~p(ek ,c)t.u(ej ,ek)CT(e; ,ej )} 

It can be verified that (7) can be alternatively rewritten as 

a 2 (c) = tA(epc).ao(e;) 
;=\ 

(8.8) 

(8.9) 

(8.10) 

(8.11 ) 

The equivalence of the expressions for fmal case activations in (8.7) and (8.11) above, 

leads us to the following result. 

Theorem 2. For any query with initial IE node activations ao ' such that ao (e;) E 9l for 

all i, the case activations (and hence the rankings) produced by the FCRN with 

effective relevances computed as given by (8.10) above, are identical to those produced 

by a two pass CRN. 

We can make similar extensions for cases where the number of passes is more than 2, 

each higher pass attempting to achieve a higher recall while possibly sacrificing 

precision. 
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It may be noted that CRN retrieval complexity is critically influenced by the 

number of passes, since this determines the number of spreading activation cycles 

through the similarity arcs. In contrast, the worst-case complexity of retrieval in a 

FCRN is independent of the number of passes, since pre-computed effective relevance 

values obviate the need for multiple rounds of similarity propagation. This property of 

FRCNs facilitates multiple pass retrievals at similar orders of retrieval time as in a 

single pass activation. In practice we can have effective relevance values pre-computed 

for different multiple pass networks, and the precision and recall can be tuned by 

switching between these options. The time complexity of FCRN is stable across these 

options. It is important to note that in certain applications it would be important to 

discount the influence of cycles (an IE node reinforcing its own activation over 

multiple passes) in the activation process. One solution is to use marker passing 

(Wolverton 1995). 

8.6 Chapter Summary 

We have presented a Fast Case Retrieval Network formalism that remodels the retrieval 

mechanism in CRNs to eliminate redundant computations. This has significant 

implications in reducing retrieval time and memory requirements when operating over 

casebases indexed over large numbers of IEs and cases. A theoretical analysis of 

computational complexity and memory requirements comparing FCRNs against CRNs 

is presented. Experimental results over large casebases demonstrate significant speedup 

in retrieval with FCRN in the presence of dense similarity and relevance values, as is 

typical with statistically acquired knowledge. As part of future work, we plan to 

conduct detailed studies of the impact of density of relevance values on the relative 

performances of FCRN and CRN. 
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Conclusion 

Thus grew the tale of Wonderland; 

Thus slowly, one by one, 

Its quaint events were hammered out

And now our tale is done 
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Lewis Carroll 

This thesis has investigated the problem of acquiring knowledge for TCBR applications 

using statistical approaches, and proposed novel approaches to acquire knowledge with 

the goal of improving effectiveness and efficiency of retrieval. In this chapter we 

conclude the thesis by taking stock of our main contributions and identifying promising 

areas for future work. 

9.1 Contributions 

We had enumerated the objectives of our research in Section 1.2. In this section, we 

examine our contributions in the light of those objectives. 

I. Propose supervised extensions of LSI to mine relevance knowledge in 

classification domains. While LSI has been shown to be useful for knowledge 

acquisition in TCBR, it is limited by its inability to take into confidence class 

knowledge of training documents in supervised classification domains. We 

have presented an analysis of this problem that shows the need to strike a 

tradeoff between the often conflicting goals of preserving the structure of the 
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original case-feature representation, and improving class separability. We have 

presented sprinkling, an approach that attempts to strike this balance while 

incorporating class knowledge into LSI. The approach is based on the simple 

idea of appending class labels to training cases, thereby augmenting the set of 

features. The appended features are referred to as sprinkled terms. When LSI is 

carried out over the augmented representation, terms representative of the same 

class are pulled closer to each other. The features extracted with sprinkled LSI 

are better at discriminating between classes compared to those mined by LSI 

on its own. To summarize our contributions, we note several interesting 

aspects of sprinkling. Firstly, our experimental studies verify that sprinkling 

succeeds in enhancing the performance of instance based learners like kNN to 

make them comparable with, or outperform state-of-the-art techniques like 

SVM. This result is of potential interest not only to TeBR, but to the wider 

Machine Leaning community as well, because of its practical implications for 

applications where lazy incremental updates are desirable. Also, while SVM

like kernel methods suffer from the "black-box" syndrome, kNN is well 

recognized to be suitable for explanation and visualization, making expert

initiated refinement possible. Secondly, sprinkling is a simple approach that 

yields significant improvements while incurring nominal overheads in terms of 

computation time. Thus it can be easily integrated into existing practical LSI 

systems. Thirdly, though presented in the context of LSI, sprinkling can be 

used to generate revised representations usable by any approach founded on the 

vector space model. Sprinkled LSI can also be used to mine similarity 

knowledge that uses combination of co-occurrences and class affiliations to 

mine feature similarities. 

2. Propose approaches that extend the scope of LSI to handle situations where 

class inter-relationships are critical. e.g. hierarchical and ordinal domains. 

One limitation of sprinkling is that it treats all classes and classifiers equally, 
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and fails to take into account relationships between classes, as exist in 

hierarchical and ordinal classification tasks. Even in the absence of an explicit 

relationship, some classes are more easily separable than others, and the 

complexity of decision boundaries should ideally influence the number of 

sprinkled terms. Our next contribution in the form of Adaptive Sprinkling 

addresses these concerns, by exploiting information implicitly captured in 

confusion matrices generated by classifiers. An advantage of this approach is 

that it does not need the knowledge engineer to specify the precise relationship 

between classes in advance. Experiments on hierarchical and ordinal datasets 

conclusively demonstrate the effectiveness of this approach. To our knowledge, 

ours is the first work combining the strengths of LSI, like higher order co

occurrence modeling and the ability to recover from word choice variability, 

with the knowledge of class relationships as inferred from confusion matrices. 

The result is a revised vector space representation that adapts itself to domain 

needs. The approach used in our work may be useful beyond the context of 

TCBR which presupposes the notion of instance based retrieval. We have also 

shown that AS-generated SVM representations result in significant 

improvements in SVM performance as well. The ability to exploit confusion 

matrices and generate representations tailored to classifier needs is a 

contribution of potential interest to the Machine Learning community. 

3. Propose supervised and unsupervised approaches to exploit higher order 

associations to mine feature similarity. We have presented an approach for 

exploiting higher-order associations between words to acquire similarity 

knowledge for CRNs. We demonstrated the importance of higher order co

occurrences in determining word similarity, presented both supervised and 

unsupervised algorithms for mining such associations and proposed a word 

similarity model, whose parameters are learnt using an evolutionary approach. 

We have demonstrated the effectiveness of the learnt similarity knowledge and 
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shown that using second and third order-co-occurrences yields better results 

than using first-order co-occurrence alone. Another contribution of our 

research is to incorporate class knowledge into the process of mining higher 

order associations. We have demonstrated the effectiveness of this extension as 

our approach outperforms state-of-the-art classifiers like SYM and LSIIkNN on 

classification tasks of varying complexity. Though the work has been presented 

in the context of CRNs, it can be easily extended to learn similarity knowledge 

over other retrieval formalisms. 

4. Propose a fast retrieval formalism that can use the acqUired relevance and 

similarity knowledge to facilitate effective retrieval while minimizing retrieval 

time by cutting down on redundant computations. We have presented a Fast 

Case Retrieval Network formalism that remodels the retrieval mechanism in 

CRNs to eliminate redundant computations. This has significant implications in 

reducing retrieval time and memory requirements when operating over 

casebases indexed over large numbers of IEs and cases. A theoretical analysis 

of computational complexity and memory requirements comparing FCRNs 

against CRNs is presented. Experimental results over large casebases 

demonstrate significant speedup in retrieval with FCRN. It may be noted that 

FCRN can be applied to improve retrieval efficiency in large scale non-textual 

CBR applications, as well. 

5. Propose novel approaches to visualize and estimate complexity of textual 

case bases, so that they can be meaningfully compared We presented a simple 

approach to visualize textual casebases. The stacked image display can help 

knowledge engineers to get a bird's eye view of the domain, thus facilitating 

knowledge acquisition. The visualization has three main advantages over other 

approaches. Firstly, it shows case and feature clusters in relation to each other, 

thus allowing case clusters to be explained in terms of feature clusters, and vice 
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versa. Secondly, since stacking does not rely on any abstraction, it preserves 

the structure of cases and displays case and feature vectors as they are. This 

helps casebase maintenance since noisy cases, redundant features or "bridge" 

features are revealed. Finally, stacking is fast and simple to implement, has no 

convergence problems, and is parameter-free for all practical purposes. We 

have also introduced a complexity measure founded on the idea of stacking. 

We showed that in classification tasks, an adapted version of this measure 

corresponds closely to accuracies reported by standard classifiers. 

9.2 Desirable Extensions 

This research reported in this work has attempted to throw new light on the area of 

acquiring knowledge for TeBR, with the goal of facilitating effective and efficient 

retrieval. However, given the breadth of scope both in terms of techniques and potential 

applications, it is but natural that this is far from finished work. In this section, we take 

a closer look at the limitations of the work reported here, and identify ways of 

addressing these limitations to fill in gaps or extend its scope. 

Lack of linguistic or background knowledge. Our work relies on knowledge 

introspectively acquired from a collection of training cases. However, recently the use 

of background knowledge like linguistic knowledge in the form of WordNet or web 

collections like Wikipedia (Gabrilovich & Markovitch 2007) have received a lot of 

attention from researchers in text mining. While experiments reported in this thesis use 

bag of words as the starting point for mining relevances or similarity, there is no 

inherent limitation in using semantically richer units like phrases or attribute values 

extracted by Information Extraction as information entities instead (Orecchioni et aI., 

2007) Relevance mining approaches based on sprinkling and AS, and similarity mining 

approaches based on higher order associations, do not make any assumptions on the 

nature of Information Entities. As for the integration of background knowledge, it will 
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be interesting to use sprinkled terms to model knowledge outside class knowledge. In 

web mining, meta-tags often carry important information about web-pages, that can be 

used to bias clustering of web-pages, in a way not very different from how class labels 

were used by sprinkling. In such an application, sprinkling can mean injecting 

meaningful terms, instead of artificial ones. Another idea is to sprinkle additional cases, 

instead of features as has been done in our work, that use forced co-occurrences to 

capture background knowledge of similarities between features. The possibility of 

augmenting the labeled cases with unlabelled training data where the sprinkled terms 

show no class affiliations may open up interesting avenues for applying semi

supervised approaches to acquiring relevance knowledge. This is particularly 

interesting from a practical standpoint, since unlabelled cases are often more readily 

available than labelled ones. 

Beyond LSI. In this thesis, we have focused on how sprinkling can be used to 

incorporate class knowledge into LSI to improve classification effectiveness. However, 

the general idea of sprinkling has the potential to make significant improvements to 

other concept learners as well. Probabilistic models like PLSI can benefit by using 

revised probability estimates obtained from sprinkled representations. Association rule 

mining approaches, distributional clustering and FCA can all be potentially extended to 

operate over sprinkled representations to bias their inferred knowledge by drawing 

together features representative of the same class. We have shown that SVM benefits 

from LSI generated representations obtained using sprinkling. Demonstrating the 

applicability of the basic idea of sprinkling to improve the classification effectiveness 

of popular concept induction approaches has the potential of extending the impact of 

our work beyond TCBR to the broader field of Machine Learning. 

Visualization for Maintenance. We have used visualization based on the idea of 

stacking to obtain qualitative insights into the nature of textual casebases. However, 

given the advantages of the stacking approach relative to other visualization approaches 
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as summarized in Section 9.1, the work can have interesting implications for casebase 

maintenance. Visualization can help us identify redundant and noisy cases and features, 

and thus facilitate casebase editing leading to improvement in retrieval effectiveness; 

this has been demonstrated in structured CBR by Massie (2006). However, to enhance 

usability, the visualization tool needs to undergo several changes. Firstly, it should be 

interactive with abilities to zoom into specific regions of the stacked image, facilitate 

flexible changes to the casebase and allow for restacking after incorporating the 

changes made. Secondly, instead of just displaying a list of words associated with each 

topic chunk, it should display the associations between features in such topic chunks. 

One idea is to integrate the facility for displaying association graphs that show higher 

order links between words (as shown in Section 6.6) into the stacked image, and invoke 

it whenever the user requests a zoom-in on any region of the image. Since the stacking 

process ensures that neighbouring features in the image are similar in their co

occurrence patterns, the association graph is expected to provide more insight into the 

nature of their associations. A final point is that we need consolidated user studies to 

evaluate the usefulness of our visualization approach with respect to other approaches 

in real world TCBR tasks. We have not emphasized this aspect enough in this thesis, 

primarily because visualization-driven maintenance was peripheral to the central theme 

of our work. 

Evaluation over unsupervised coUections. While sprinkling is devised to operate 

specifically over supervised collections, higher order association mining approaches 

make no assumption of class knowledge. However, all our evaluations have been 

carried out over classification datasets. This was mainly because it is difficult to obtain 

unsupervised collections on which human relevance judgements are available on topics 

(queries). In the IR community, TREC and MUC have provided platforms for creating 

such evaluation datasets and allowing them to be used by the community to benchmark 

their performance results. It will be important for TCBR researchers to create similar 

evaluation datasets on select domains, so that the goodness of the automatically 
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acquired knowledge can be verified against expert judgements. This will also facilitate 

fresh research on how human experts and automated learners can collaborate and 

complement each other in the process of knowledge discovery and elicitation. The non

availability of unsupervised collections also meant that the original GAME measure 

could not be experimentally evaluated, though results on its supervised counterpart 

GAMEciass were reported. In the case of complexity evaluation, however, the lack of 

benchmark datasets can perhaps be circumvented by verifying alignment of textual 

review reports (treated as problems) to review ratings (treated as solutions) in product 

review domains; while it may be argued that this is no different from classification 

domains that we have evaluated, we feel that the wider range of review ratings can 

effectively map onto, and simulate a larger solution vocabulary. 

Dynamic Knowledge. Textual casebases, not unlike structured casebases, change over 

time. This means that the associated knowledge containers, namely the relevance and 

similarity knowledge, need to be updated to reflect these changes. Several approaches 

have been investigated by the LSI research community to speed up the process of 

updating LSI representations when changes are made to document collections. Three 

such approaches were briefly presented in Chapter 3. We note that these approaches 

directly apply to sprinkled LSI and AS-based LSI as well. However, more research 

needs to go into speeding up updates to similarity knowledge acquired using higher 

order association mining. Our current prescription is a lazy strategy that makes quick 

incremental but approximate changes whenever a change happens, and relegates the job 

of making accurate changes at a later "bulk update" stage. A similar idea was also 

presented in the context of making efficient updates to the stacked image for 

visualization. We have presented an algorithm to make fast updates to FCRN whenever 

changes are made to the casebase, by eliminating some of the redundant computations 

involved in computing effective relevance values from scratch. 

In addition to the broad areas identified above, there are avenues for extending 

and fine-tuning the approaches presented in this thesis. We have made mentions of 
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such possibilities in context when presenting these approaches. Examples include better 

heuristics for selecting the Maximum Sprinkling Length (MSL), faster evolutionary 

strategies for learning parameters in the similarity mining approach based on higher 

order associations, and efficient ways of selecting best starting cases for the stacking 

algorithm. 

9.3 Closing Notes 

This thesis is positioned at the confluence of two significant problems of topical 

interest. The first concerns the knowledge engineering bottleneck that has plagued real

world AI systems over the last few decades. The second is the problem of making sense 

of huge volumes of unstructured data to address diverse information needs of users. 

Implicit in the statement of this second problem is the need to attain a reasonable 

tradeoff between the twofold criteria of ensuring retrieval effectiveness and efficiency. 

As this thesis is being written, both problems mentioned above are holy grails of 

computing science, though a significant volume of research deals with downsized 

version of these problems, in that they narrow down their scope to realizing realistic 

targets in meeting application-specific requirements. CBR, not unlike other AI 

approaches, needs knowledge acquisition to populate its knowledge containers. IR 

needs to handle large volumes of unstructured texts. TCBR, however, needs to tackle 

both problems. This is because TCBR strives to a middle ground between CBR and JR, 

in that it aims at improving retrieval effectiveness of JR by using sophisticated domain

specific knowledge, and it extends CBR by relaxing the need to have structured 

representations for cases. In this thesis we have attempted a comprehensive study of 

approaches that address the aforementioned two problems of contemporary interest in 

the context of TeBR. However, because of the general nature of the problems, the 

ideas, techniques and formalisms presented are expected to be of interest to a much 
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wider research community from the fields of CBR, IR, Text Mining, Machine Learning 

and Information Visualization. 

We have shown that statistical learning approaches can be effective in reducing 

manual knowledge engineering overheads associated with acquiring knowledge 

containers for TCBR. Novel extensions of LSI were presented to handle supervised 

classification domains, and we have shown the idea can be extended to model complex 

class relationships in hierarchical and ordinal domains, while taking into account the 

fact that certain classes are easier to separate than others. We have presented a novel 

algorithm to mine similarity between features based on their higher order associations. 

One significant contribution of our work is in demonstrating that, when equipped with 

knowledge that is statistically mined using the proposed approaches, instance based 

approaches can outperform state-of-the-art machine learning approaches like SVM. 

This is of notable interest to the TCBR community, especially in the light of several 

advantages associated with instance based learners like support for lazy incremental 

updates and explicitness of knowledge allowing for good explanation, visualization and 

ability to accommodate expert-initiated feedback. Though experimental evaluations 

were carried out over supervised datasets, unsupervised TCBR systems can benefit 

from the rich representations as well. To address efficiency issues, we presented a 

novel retrieval formalism. It is interesting to note that while CRNs are good at handling 

a large number of cases, FCRN is specifically designed to improve CRN time 

performance by being able to handle high dimensional non-sparse representations 

efficiently. The curse of dimensionality (Russell & Norvig 2003) has been a challenge 

for scale up of real world systems, and FCRNs provide a practical approach to speed up 

retrieval while making best use of the rich relevance and similarity knowledge, which 

are critical to the effectiveness of TCBR systems. Our contributions on the 

visualization and complexity front have been under-exploited in this thesis, in that we 

have restricted our attention to using these techniques for explaining our empirical 

results. The bigger application context, however, is maintenance of TCBR knowledge 

containers. There are not many works till date in this area, and we hope our 
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contributions will lead to more active interest in the research community at effectively 

bridging the knowledge gap between the expert and the system. 
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Appendix At 

Realizing Textual Similarity Measures 

using Case Retrieval Networks 

During retrieval, the ranking of cases depends on the distance metric (or similarity 

measure) realized by the eRN. Two measures commonly used with textual data are the 

cosine measure and the Euclidean distance. The original work of Lenz (1999) 

prescribes no method to realize these measures. Here we propose simple extensions to 

the CRN towards this end, which are used in our implementations in the thesis. 

The cosine measure has been popular in Information Retrieval applications 

(Rijsbergen 1997) where the query is typically much shorter than the texts (cases). 

When the cases and queries are treated as vectors in a feature space, the cosine 

similarity depends only on the angle between the vectors and not their lengths. Several 

textual CBR systems also use the cosine measure in a retrieval scenario where users are 

expected to type in only a few words, based on which relevance of cases needs to be 

estimated. An example is FAQFinder (Lenz 1998a). The Euclidean distance metric is 

more commonly used in CBR, but it needs the query and the case to be compatible. 

This is true in classification applications and in case competence modeling, where 

cases within the same casebase are compared with each other. 

Let us consider a simplistic situation where each case (as well as the query) is 

represented by a binary-valued feature vector whose elements correspond to the 

presence or absence of an IE. We assume no knowledge of similarity between words. 
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Let the aggregation function at each case node be modelled by a simple addition of 

incoming relevance activations. 

Given a query Q, activations are propagated via similarity arcs. The incoming 

activations are aggregated at each IE node, and we obtain a revised query Q *. It is 

evident that the activation of case node C; is given by the dot product of the revised 

query Q * and the case vectors, where each case vector is composed of the relevance 

values relating the IEs to that case. 

Given this observation, extending the eRN to realize the cosine similarity is 

straightforward. We note that the cosine similarity between Q * and Cp cos( Q*, C
1

) is 

related to the dot product (Q*, C;) by the following equation: 

cos(Q*, C1 ) = Q. 'C1 /(11 Q·II·II C1 II) (Al.I) 

where II Q*II and II C i II are vector norms. II C I II can be pre-computed for all cases in the 

casebase, while II Q*II needs to be evaluated during retrieval. We need a post

processing phase to compute the cosine similarity using the dot product and the case 

and query norms. Figure A.t shows the schematic of a eRN to realize this. 

Extending the eRN to rank cases according to the Euclidean distance metric 

appears to be trickier, since IEs not activated by the query case also take part in the 

matching process. A workaround is to rewrite the Euclidean distance between the case 

and the query ED(Q*,C
i

) in terms of the dot product and the case and query norms as: 

(A1.2) 

As with evaluating cosine measure, II C i II can be pre-computed for each case in the 

casebase and II Q*II is evaluated at run time. Q * ,C
j 
is the dot product evaluated by the 

eRN. In our experiments, we use the following formulation to obtain a similarity 

measure based on Euclidean Distance: 

(Al.3) 
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Figure ALl shows the post-processing needed for realizing Euclidean distance-based 

similarity. An example distance calculation is also shown based on the relevance values 

shown in Figure 4.2. We assume no similarity between IEs in the example. 

Query Q --'--h-J 

QCi .. 
-- for realiZIng Cosine 

11011 I IC11 I smlarity 

11 {1 t (!laW t IICjll2 - 2 a.Cj)1I1} 

for realizlng Eudldean 
distance based sinllarity 

C1 '" (1.17.0.83.1.11.0.0, -006.0.16, 0.59, 017) 

Q'" (0, 0, 1, 0, 0, 0, O. 0, I. 0) 

gC1 1!= JI.17' to.W +1111 +(-0.06)1 +0.161 +0.59' +0.17' '" 1.9225 

nell" Jjl;ji - 1.4142 

g'Cl " (111 x 1) t (0 59 x I) .. 1.7 

cos(Q,Cl ) '" e ·CI /(]1 Q II · R C,ID '" 0.6253 

ED(Q.CI) .. {I Q II ' + II C1 II' _2(Q.C)}IIl .. U 1 S2 

Fi!!ure A 1.1 Extendine: the eRN to realize Euclidean and cosine measures 
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Appendix A2 

Realizing Textual Similarity Measures 

Using FCRNs 

In Appendix A I, we have shown how the eRN can be extended to realize the 

Euclidean distance and cosine similarity measures. We reproduce the following two 

equations from Appendix A I: 

cos(Q·, C1 ) = Q. 'C1 /01 Q·II·II C1 II) (A2.l) 

(A2.2) 

While the same idea can be extended to FeRNs as well, a few differences are worth 

noting. Firstly, since the similarity propagation phase is absent in the FeRN, we no 

longer have access to the revised query Q •. Secondly, the case vector in the FeRN is 

composed of the effective relevances of the IEs to the case, so IEs not present in a case 

may also have non-zero effective relevance. This is because the similarity knowledge 

between IEs is taken into account while computing effective relevances. We denote the 

case vector as C·, which is a revised version of the original case vector C. Thus, 

while a eRN uses the similarity knowledge to revise the query at run-time, the FeRN 

uses a pre-computation step that uses the similarity knowledge to revise the cases in the 

casebase. 

Though the cosine and Euclidean measures produced by the FeRN are different 

from those produced by the eRN, it follows from the equivalence shown in Section 8.2 
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that the dot-product case activations produced by eRN and FeRN are identical. Thus 

Q * .C; = Q.C; *. This property may be used to rank cases in FeRN in the same order as 

in a eRN, with respect to both measures. Using equation (A2.I), the ratio of cosine 

measures of cases C. and C2 with respect to query Q* is given by 

cos(Q*,C.) Q* ,C1 II Cz II Q,C1 * II CzlI 
-~~~=--x--=--x--
cos{Q*,Cz) Q* .Cz II C1 II Q.Cz * II C1 II 

(A2.3) 

We note that this ratio is independent of II Q*II· The terms Q.C. * and Q.C
2 
* are 

outputs of the FeRN, while II C1 II and II C2 11 can be pre-computed. Thus we can 

evaluate cosine measures for all cases relative to the first case, and produce a ranking 

that is equivalent to that produced by the eRN. 

We can also use a FeRN to generate the same ranking as in eRN, with respect to 

the Euclidean distance measure. Using equation (A2.2), the difference between squares 

of Euclidean distances of the query Q * to cases C. and C 2 is given by 

ED2(Q*,C1) - EDz(Q*,Cz) =11 C1 UZ -2(Q* .C1) -II C2 W + 2(Q* .Cz) 

=11 C1 liZ -2(Q,C, *) -II C2 112 + 2(Q.Cz *) 
(A2.4) 

We note that this difference is independent of II Q*II, and all terms on the right hand 

side are available to the FeRN either at its output or from pre-computation. Thus we 

can evaluate the squares of Euclidean distances for all cases in relation to the first case, 

and produce a ranking of cases equivalent to that generated by the eRN. 
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Appendix A3 

The Extended Case Retrieval Network 

(ECRN) : Additional Results 

The ECRN was briefly presented in Section 3.2, and shown to yield effectiveness 

improvements comparable to, and occasionally outperforming the best off-the-shelf 

classifiers. In this appendix, we take a closer look at some other interesting aspects of 

ECRN. 

Al.1 Training Time Reduction with VSM based Weight Initialization 

In Section 3.2, we noted that the ECRN was different from a traditional neural network 

in that we can ascribe meaning to its nodes and weights in terms of cases and relevance 

values. This also facilitates instantiation of the ECRN network with LSI-mined weights 

during training, instead of an arbitrary instantiation with low values as is typical with 

neural networks. Fig. A3.1 shows that this can lead to conspicuous improvement in 

training times in one of the problem domains (LINGSPAM). We observe that the 

convergence is much faster when domain knowledge in the form of binary weights 

from the vector space model is used for instantiation. With arbitrary instantiation, the 

training error stagnates after around 70 epochs and is clamped to a value of around 0.4, 

possibly because of getting stuck at a local minimum. This is not unusual as it has been 

observed in neural network literature that the speed of convergence can critically 

depend on the starting weights. Using VSM-based instantiations in ECRN helps to 

recover from this problem on all six datasets. 
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Figure A3.1 Error rate reduction with training 

A3.2 Proto typicality of terms to classes 

We performed an experiment to determine how prototypical terms are, to the different 

classes. Towards this end, we treated each term as a document containing just that term 

and no other, and allowed it to be classified by the ECRN. We thus obtained a score 

corresponding to each class at the output layer of the ECRN. The term was assigned to 

the class with highest similarity. The top few prototypical terms from a two class sub

problem constructed from SCIENCE, having terms pertaining to medicine and space 

domains, are shown in Table A3.1 below. The absolute difference between the scores 

assigned to two classes is treated as a measure of prototypicality, and used as the 
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ranking criterion. Most of the top terms correspond well to the topics intuitively, 

suggesting that the ECRN is effective in separating out the discriminating features 

corresponding to each class. 

Table A3.t. Prototypical terms corresponding to Space and Medicine domains, 

extracted hv ECRN 

Top Medicine Terms: 

Words Belongingness Belongingness Absolute 
to "Space" to "Medicine" Difference 

1 caus -25.11 25.08 50.19 
2 product -18.62 18.61 37.24 
3 creat -17.67 17.59 35.19 
4 prescriJ!t -17.44 17.42 34.86 
5 kind -14.49 14.48 28.97 
6 disease -12.59 12.58 25.17 
7 doctor -12.35 12.34 24.69 

Top Space Terms: 

Words Belongingness Belongingness Absolute 
to "Space" to "Medicine" Difference 

1 space 14.68 -14.67 29.35 
2 accessdigexnet 14.04 -14.03 28.08 
3 launch 12.46 -12.45 24.90 
4 orbit 12.24 -12.22 24.46 
5 scispac 12.15 -12.14 24.28 
6 rocket 11.72 -11.71 23.43 
7 nuclear 11.44 -11.43 22.87 
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A3.3 Limitations of the ECRN 

It is important to note that the relevance values acquired by EeRN improve 

effectiveness when embedded as part of the network, but not when decoupled from the 

network. This is a serious limitation, as the relevance weights cannot be used 

independently by a eRN modelling an instance based classifier. This also has the 

disadvantage that knowledge of feature similarity cannot be mined from the EeRN. As 

an example, the similarity knowledge extracted from the revised weights learnt by 

EeRN yielded only an accuracy of 62% in the LINGSPAM domain when plugged into 

an EeRN; this compares poorly with 98.32% recorded by LSI-mined similarities. Thus 

the improved effectiveness achieved by EeRN is grossly outweighed by the fact that 

the acquired knowledge is not readily usable by instance based learners. 
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