

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

CHAKRABORTI, S., 2007. Introspective knowledge acquisition for
case retrieval networks in textual case base reasoning. Available
from OpenAIR@RGU. [online]. Available from:
http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk

Introspective Knowledge Acquisition

for Case Retrieval Networks in Textual

Case Base Reasoning

Sutanu Chakraborti

A thesis submitted in partial fulfilment

of the requirements of

The Robert Gordon University

for the degree of Doctor of Philosophy

August 2007

2

Dedicated

To

Param Pujyapada Sri Sri Dada

and

My Parents

3

Abstract

Textual Case Based Reasoning (TCBR) aims at effective reuse of information
contained in unstructured documents. The key advantage of TCBR over traditional
Information Retrieval systems is its ability to incorporate domain-specific knowledge
to facilitate case comparison beyond simple keyword matching. However, substantial
human intervention is needed to acquire and transform this knowledge into a form
suitable for a TCBR system. In this research, we present automated approaches that
exploit statistical properties of document collections to alleviate this knowledge
acquisition bottleneck. We focus on two important knowledge containers: relevance
knowledge, which shows relatedness of features to cases, and similarity knowledge,
which captures the relatedness of features to each other. The terminology is derived
from the Case Retrieval Network (CRN) retrieval architecture in TCBR, which is used
as the underlying formalism in this thesis applied to text classification.

Latent Semantic Indexing (LSI) generated concepts are a useful resource for
relevance knowledge acquisition for CRNs. This thesis introduces a supervised LSI
technique called "sprinkling" that exploits class knowledge to bias LSI's concept
generation. An extension of this idea, called Adaptive Sprinkling has been proposed to
handle inter-class relationships in complex domains like hierarchical (e.g. Yahoo
directory) and ordinal (e.g. product ranking) classification tasks. Experimental
evaluation results show the superiority of CRNs created with sprinkling and AS, not
only over LSI on its own, but also over state-of-the-art classifiers like Support Vector
Machines (SVM).

Current statistical approaches based on feature co-occurrences can be utilized to
mine similarity knowledge for CRNs. However, related words often do not co-occur in
the same document, though they co-occur with similar words. We introduce an
algorithm to efficiently mine such indirect associations, called higher order
associations. Empirical results show that CRNs created with the acquired similarity
knowledge outperform both LSI and SVM.

Incorporating acquired knowledge into the CRN transforms it into a densely
connected network. While improving retrieval effectiveness, this has the unintended
effect of slowing down retrieval. We propose a novel retrieval formalism called the
Fast Case Retrieval Network (FCRN) which eliminates redundant run-time
computations to improve retrieval speed. Experimental results show FCRN's ability to
scale up over high dimensional textual casebases.

Finally, we investigate novel ways of visualizing and estimating complexity of
textual casebases that can help explain performance differences across casebases.
Visualization provides a qualitative insight into the casebase, while complexity is a
quantitative measure that characterizes classification or retrieval hardness intrinsic to a
dataset. We study correlations of experimental results from the proposed approaches
against complexity measures over diverse casebases.

4

Acknowledgements

I am deeply indebted to my supervisors Dr. Nirmalie Wiratunga, Dr. Robert Lothian

and Dr. Stuart Watt for their rock-solid support throughout my three years of stay at

Aberdeen. I have been through patches of turbulent times when I have had you as

mentors and advisors, but most importantly as my friends and well-wishers. Everything

I have here in this thesis, lowe it to you. Thank you.

I am grateful to Rahman Mukras, Ulises Cervino Beresi, Stewart Massie and

Amandine Orecchioni, who have lent their helping hand to me for part of the work

reported in this thesis. Thank you Ganesan for all that you have done to make sure I

survived my not-so-brief illness in 2005. All my other colleagues at CTC including

Muhammad, Bayo, Bhavani, Ratiba, Stella, Selpi, Sid, David, Ralph, and Zia have

richly contributed to a vibrant research ambience; thank you for helping me out when I

ran out of my idea reserves. Thanks Daniel for your evening music classes at CTC,

sorry I'm still stuck at C and could not move over to the more fashionable C sharp.

Thanks to Prof. Susan Craw for your bits and pieces of thoughtful advice throughout

my stay. A special note of thanks to Dr. Ines Arana for being so accommodative of my

concerns, in her capacity as research co-coordinator. I am indebted to anonymous

reviewers of my conference papers; your valuable insights, suggestions and critical

comments have played a significant role in shaping up this work.

I'll never have words enough to thank Dr. Yaji Sripada, Sandhya and dear little

Adithya for all you have meant to me for these three years. You have spared your

valuable time to ensure I always felt at home, and you have always been with me when

I needed you most. I have loved the warmth of your company and profited immensely

from your words of wisdom. A special word of thanks must go to my friends at my hall

of residence, including Taoufik, Sohan, Boudi, Naresh, Hemant, Viju, Kavya, Ram,

Sujith, the Samuels (1 and 2), Rajesh, Yuhong, Ricky, Alex, Rafal, Eva, Amith and

Denali for all the fun we had together. My friends back in India, including Basuri,

5

Ravindra, Kiran, Kishalay-da, Sailaja and Mahua have ensured I never suffer from e

solitude. I am grateful to Dr. Deepak Khemani, my MS-thesis advisor at lIT Madras,

for all his encouragement and inspiration.

My parents have steered me through my most difficult times, as they have always

done in my life. The debt of gratitude lowe them is beyond any expression. My sister,

brother-in-law and my lovely little niece Aditi all cheered me up when I needed them

the most. I benefited richly from all that my brother-in-law shared with me, regarding

his PhD experiences. From my 4-year old niece, I learnt how to cope up with the

pressure of being surrounded by people all more knowledgeable than me. She says

"never give up", she is perhaps right. Thank you dear.

6

Contents

Chapter 1 : Introduction .. 1

1.1 Textual Case Based Reasoning in Context4

1.1.1 The Thesis: A Quick tour .. 7

1.2 Research Objectives ... 9

1.3 Thesis Overview ... 10

Chapter 2 : Background ... 13

2.1 Introduction: Challenges in Textual Case Based Reasoning 13

2.2 From Words to Concepts ... 19

2.3 Scalable TCBR Architectures .. 33

2.3.1 TCBR Architectures ... 35

2.3.2 Case Retrieval Networks .. 37

2.4 Visualising textual casebases ... 39

2.4.1 A Short Review of Related Work .. .40

2.4.2 Limitations of Existing Visualization Schemes 42

2.5 Chapter Summary ... 42

Chapter 3 : Characterizing Textual Casebases .. 44

3.1 Datasets Used ... 46

3.2 Classifiers Used .. 47

3.3 Visualizing Textual Casebases ... 53

3.3.1 Examples of visualizations ... 57

3.4 Complexity evaluation of textual casebases 57

3.5 GAMEclass for the six datasets .. 62

3.6 Discussion of Related Work ... 64

3.7 Chapter Summary ... 65

7

Chapter 4 : Latent Semantic Indexing for Knowledge Acquisition in

eRNs .. 67

4.1 Two Mode Factor Analysis .. 68

4.1.1 An Introduction to the Mathematical Foundation of LSI 69

4.1.2 The Singular Value Decomposition .. 71

4.2 Latent Semantic Indexing .. 72

4.2.1 SVD for LSI .. 72

4.2.2 LSI: Beyond SVD ... 75

4.2.3 Why does LSI work? An Empirical Justification 79

4.3 Using LSI for Knowledge Acquisition in CRNs 80

4.3.1 Using LSI for Relevance Knowledge Mining 80

4.3.2 Using LSI for Similarity Knowledge Mining 84

4.4 Chapter Summary ... 85

Chapter S: Supervised Latent Semantic Indexing 87

5.1 LSI in Classification Tasks .. 88

5.2 Sprinkling ... 95

5.2.1 Why does Sprinkling Work? .. 97

5.2.2 Advantages and Limitations of Sprinkling 101

5.3 Adaptive Sprinkling ... 102

5.4 Discussion and Related Work .. 107

5.5 Chapter Summary ... 109

Chapter 6: Learning Similarities from Higher Order Co-occurrences 111

6.1 Motivation .. 112

6.2 Higher Order Associations ... 114

6.2.1 An Example .. 119

6.3 Modelling Word Similarities .. 120

6.4 Learning Model Parameters Automatically 121

6.5 Incorporating Class Knowledge into Word Similarities 123

6.6 Examples of Higher Order Associations .. 12 4

8

6.7 Discussion .. 126

6.8 Chapter Summary ... 128

Chapter 7: Evaluation .. 129

7.1 LSI perfonnance ... 130

7.2 Sprinkling ... 133

7.3 Adaptive Sprinkling ... 141

7.3.1 Confusion Matrices Before and after sprinkling 143

7.3.2 kNN perfonnance before and after AS 145

7.3.3 SVM perfonnance before and after AS 146

7.4 Feature Similarity mined using Higher Order Associations 149

7.4.1 Sprinkled Higher Orders ... 151

7.4.2 Using GA to learn parameters ... 153

7.5 Chapter Summary ... 154

Chapter 8: Fast Case Retrieval Network .. 156

8.1 Retrieval in Case Retrieval Networks .. 157

8.2 Fast Case Retrieval Network (FCRN) .. 158

8.3 Time and Space Complexity ofFCRN .. 161

8.3.1 Time Complexity Analysis ... 161

8.3.2 Memory Requirements ... 164

8.4 Experimental Results ... 166

8.5 Discussion .. 170

8.5.1 Computation Node .. 170

8.5.2 Maintenance Overheads with FCRNs 170

8.5.3 Multiple-pass retrieval using FCRNs 173

8.6 Chapter Summary ... 175

Chapter 9: Conclusion .. 176

9.1 Contributions .. 176

9.2 Desirable Extensions ... 180

9.3 Closing Notes ... 184

9

Bibliography ... 187

Appendix Al .. 199

Realizing Textual Similarity Measures using Case Retrieval Network

Appendix A2 .. 202

Realizing Textual Similarity Measures Using FCRNs

Appendix A3 .. 204

Published papers

10

List of Figures

Figure 1.1: A Case Retrieval Network ... 6

Figure 2.1 Showing the Stress Strain Relationship between cost of

knowledge acquisition and quality of retrieval .. 15

Figure 2.2 CRN for TCBR retrieval .. 39

Figure 3.1 A Schematic of the Extended Case Retrieval Network

(ECRN) .. 51

Figure 3.2 Documents in the Deerwester collection 54

Figure 3.3 Images from the Deerwester Collection (a) arbitrarily stacked (b)

after row stacking (c) after column stacking ... 56

Figure 3.4 Stacked imges from the six datasets ... 56

Figure 3.5 GAMEc\ass values across different datasets 58

Figure 3.6 A snapshot of hierarchical visualization (courtesy HCI Maryland

website) .. 63

Figure 3.7 Time performance overheads with Sprinkling 64

Figure 4.1 LSI in an example domain .. 75

Figure 4.2 Relevance values mined using LSI.. .. 81

Figure 4.3 A CRN constructed with the acquired relevance weights 81

Figure 4.4 Stacked Images from the USREMAIL domain before and after

LSI .. 84

Figure 4.5 Similarities mined using LSI .. 85

Figure 5.1 Hypothetical Casebases to illustrate LSI's preference for

dimensions ... 89

Figure 5.2 An Example .. 91

Figure 5.3 Sprinkling ... 96

Figure 5.4 Classification using Sprinkled LSI.. ... 96

11

Figure 5.5 (a) Original Term Doc Matrix (b)Matrix after sprinkling 3 terms

(b) Matrix after sprinkling 6 terms (d) Matrix after sprinkling 18 terms (e)

Fall of Singular Values before and after sprinkling 98

Figure 5.6 Illustrating the tradeoff between reducing WIB ratio (G(X» and

reducing the mean square error distortion with respect to the original case

feature matrix ... 1 00

Figure 5.7 A Confusion Matrix from the hierarchical 20 NewsGroups domain

... 105

Figure 5.8 Pseudo-code for Adaptive Sprinkling .. 106

Figure 6.1 Graphical Representation of Higher Order Co-occurences 115

Figure 6.2 An Example Domain .. 115

Figure 6.3 An Example .. 120

Figure 6.4 Term-Term Association Graph ... 120

Figure 6.5 Parameter Learning using a Genetic Algorithm 122

Figure 6.6 Examples of associations mined in the RELPOL domain 125

Figure 7.1 LSI performance at various dimensions 132

Figure 7.2 Performance of Sprinkled LSI at various dimensions 136

Figure 7.3 Organization of 20 Newsgroups sub-corpus used

for evaluating AS over hierarchical classes .. 142

Figure 7.4 Confusion matrices before and after sprinkling 144

Figure 7.5 kNN performance before and after AS at various dimensions ... 148

Figure 8.1 Different paths through which an activation can reach case c from

an IE ej ... 159

Figure 8.2 Precomputation and Retrieval in FCRN 160

Figure 8.3 A CRN over 3 cases and 4 IEs, an operationally equivalent FCRN

... 162

Figure 8.4 Pseudo-code for retrieval using CRN and FCRN 164

12

List of Tables

Table 2.1 Comparison of Concept Learning Approaches 32

Table 3.1 GAMEc1ass and Accuracies obtained by different classifiers 63

Table 3.2 Correlation of Classifier Accuracies with GAMEclass 63

Table 7.1 Comparing LSI perfonnance against naive VSM 131

Table 7.2 Comparing GAMEclass with LSI accuracies 133

Table 7.3 Comparing peak perfonnance of Sprinkled LSI with other

classifiers ... 137

Table 7.4 Comparing GAMEclass measure with LSISPR perfonnance 137

Table 7.5 Word Similarities before and after Sprinking 138

Table 7.6 Tenn affiliations to classes in SCIENCE domain before and after

sprinkling ... 139

Table 7.7 Time perfonnance overheads with Sprinkling 141

Table 7.8 kNN perfonnance before and after AS .. 147

Table 7.9 SVM perfonnance before and after Sprinkling 147

Table 7.10 Comparing AS against sprinkling over 4-class datasets 149

Table 7.11 Empirically detennined best values of a,p and y 151

Table 7.12 Comparing Classifier Accuracies .. 151

Table 7.13 Comparing Sprinkled Higher Orders against SVM 152

Table 7.14 Comparing Higher Orders with and without Sprinkling 152

Table 7.15 Comparing effectiveness of empirically detennined and GA-

learnt parameters .. 153

Table 7.16 Parameter values learnt by GA .. 153

Table 8.1 Retrieval Time as a function of the number oflE nodes 167

Table 8.2 Retrieval Time as a function of the density of similarity matrix .168

Table 8.3 Time perfonnance as a function of the number of IEs in the email

dataset .. 169

1

Chapter 1

Introduction

The White Rabbit put on his spectacles. 'Where shall I begin. please your Majesty?' he

asked. 'Begin at the beginning. ' the King said, very gravely, 'and go on till you come to

the end: then stop.' Lewis Carroll, Alice's Adventures in Wonderland.

The volume of electronically recorded data is growing astronomically. It was estimated

in 2006 that more data will be produced in 2007 than has been generated during the

entire existence of humankind (panurgy 2006). Disks are doubling every 18 months or

so, and that is clearly not enough. The much bigger issue, however, is that human

ability to absorb and use this growing mass of data has remained constant over the

years. When data is available in structured form, as in databases or spreadsheets,

automated approaches can be effective in crunching numbers and symbols, and helping

us make sense of the data flood. Making sense of unstructured data still remains a

largely unsolved problem. Examples of such free-form data abound in the form of e

mails, memos, notes from call centers and support operations, news, user groups, chats,

reports, surveys, white papers, research articles, presentations and Web pages. The

magnitude of the problem can be appreciated in the light of an estimate by Merrill

Lynch that more than 85% of all business information exists as unstructured text

(Bloomberg and Atre 2003).

An important aspect that characterizes structured data, as distinct from

unstructured text, is the availability of an unambiguous context for interpreting the

data. A database entry recording a number 45 under the field temperature, immediately

elevates the status of the number 45 from data to usable information that can be

2

processed for making inferences and associated meaningfully with other pieces of

information ("this is the hottest and second most humid day of this summer, clearly

explaining the discomfort"). In contrast, no such precise reference frame is available

for handling unstructured data; thus the same fact can be expressed in several different

ways in free text. Furthermore, the problem is compounded by the fact that natural

language sentences are often ambiguous and ill-formed. The traditional approach to

Natural Language Processing (NLP) involved formalizing rules of grammar to break

sentences down to more meaningful "deeper" representations that capture

interrelationship between structural elements, like phrases. Examples of phrases are

noun phrases ("This thesis") and verb phrases ("sounds stupid") are interesting, since

they usually correspond to natural semantic elements, which can help in constructing

the meaning of the sentence. While this approach of "deep NLP" has found limited

success in sentence-level understanding and machine translation, its applicability is

limited by the fact that it is slow and does not scale well beyond single sentences to

handle text at a paragraph or discourse level. A second approach to NLP is corpus

based, and relies on a probabilistic, as opposed to logical, model of language. There are

several advantages of this approach (Russell and Norvig 2003):

Convenient training from data. Learning is based on simple estimates obtained by

counting occurrences and co-occurrences.

Robustness. Statistical approaches can handle ill-formed sentences that do not

conform to the grammar strictly. While linguistically driven NLP systems reject any

ungrammatical string, corpus based approaches accept any string, albeit with a low

probability.

Disambiguation. Statistical approaches typically assign different probabilities to each

of the possible interpretations (senses); ambiguity is thus resolved by choosing the most

likely interpretation.

3

Given huge volumes of unstructured texts, a common task is to look for texts, or parts

thereof, that are relevant to a certain information need. Information Retrieval (lR) is the

discipline that studies this problem, and IR models and approaches form the backbone

for most search systems operational over the web. Risking over-generalization, IR

approaches can be treated as statistical NLP systems that use large volumes of

unstructured data to make a priori estimates of term relevances. Most practical IR

systems use fairly simple models that treat each document as a bag of words (BOW)

that are independent of each other, and thereby ignore word order and syntactic

patterns. Clearly, this is quite unlike the way humans deal with text. More often than

not, irrelevant documents retrieved by such simple approaches far outnumber the

relevant ones. However, the lack of sophistication is accompanied by efficiency

advantages, which is critical in the face of extraordinarily large volumes of data, as in

the web. It should come as no surprise that finding strategies that lead to more effective

and cognitively sound retrieval while retaining the efficiency edge constitutes an

important research direction. This sets a platform for collaboration between Artificial

Intelligence (AI) approaches and IR. An example of such collaboration is Textual Case

Based Reasoning (TCBR).

Case Based Reasoning (CBR) is an AI paradigm, inspired by cognitive models of

human memory. Operationally, CBR is a process of solving new problems based on

solutions to similar problems encountered in the past. A case is a recorded episode of

problem solving, and is often structured into a set of feature values to facilitate

similarity matching with other cases. The similarity measures used to compare cases

are usually specific to the domain. In (Richter 1998), CBR is seen as relying on four

knowledge containers, which include the set of cases, the vocabulary used to describe

the case structure and the similarity measure. In many real-world tasks like helpdesks

and diagnostics, the records of problem solving are typically textual and not readily

available in structured form. This motivates the sub-field of TCBR, which strives to

handle cases directly in the textual form. The challenge here is to automate or semi

automate the process of acquiring the knowledge containers needed for effective

4

problem solving. Broadly construed, this thesis aims to contribute novel approaches to

address this challenge. A part of our work will specifically address the issue of

supervised classification domains, where a select set of textual cases, referred to as

training cases, are accompanied by a class or category label that identifies a broad sub

topic within the collection. In a collection of textual cases on sports news, for example,

we can have classes such as baseball, cricket, hockey and/ootball. A classification task

is a variant of the retrieval task that uses the knowledge of training cases to assign class

labels to unlabelled cases, referred to as test cases. In Section 1.1 and in the next

chapter, we will identify the scope and assumptions behind our work, and position it in

the context of other relevant approaches. The rest of this chapter outlines the

motivation and objectives of this research.

1.1 Textual Case Based Reasoning in Context

TCBR attempts to strike a middle ground between simple and fast IR approaches

founded on BOW and more knowledge rich approaches as inspired by AI techniques.

The downside to most real world knowledge-based approaches is the knowledge

engineering bottleneck, which in the TCBR context refers to the cost of acquiring

domain-specific knowledge containers. Traditionally, CBR presupposes that cases are

structured, such that the similarity between two cases can be obtained by computing

similarity between their constituent features, and aggregating these feature-specific

scores. In contrast, TCBR must do away with the assumption that cases are neatly

structured. The absence of structure and a well-defined feature space makes

comparison of textual cases harder. Even when a hypothetical feature space (using

words as features, say) is constructed to facilitate comparison, it is difficult to ascertain

that like is compared with like. This is because the surface meaning of text is often

different from the deep or intended meaning, and only certain facets of the deeper

meaning are meaningful for case comparison. A significant knowledge engineering

5

effort is often involved to compensate for TCBR's non-reliance on readily structured

cases. In most practical systems, we are interested in striking a tradeoff between the

quality of retrieval and cost of knowledge acquisition.

In discussing knowledge acquisition in the context of TCBR, we will primarily

focus on two knowledge containers: the relevance knowledge, which shows how

strongly related features are to cases, and similarity knowledge, which captures how

strongly features are related to each other. This tenninology is derived from literature

on Case Retrieval Networks (CRNs), a fonnalism to facilitate fast retrieval in CBR

systems, first presented in (Lenz and Burkhard 1996). Figure 1.1 shows a CRN

constructed for a simple domain having 4 cases. The cases are described by feature

values, which are referred to as Infonnation Entities (IEs) in the CRN literature. In our

example, we have a vocabulary of nine words which act as IEs. Each case is linked to

its constituent IEs by a relevance arc. IEs are linked to each other by similarity arcs

which assume a real value in the range of 0 (in which case no arc is shown) to 1. In

response to a query like "dog licking mirror", a two-step retrieval process is initiated.

In the first step all IEs having non-zero similarity to the query IEs dog, lick and mirror

are activated. In our example these IEs are animal, cat, bite and glass. This step is

alternately referred to as query expansion. In the second step, all cases relevant to the

expanded set of IEs are activated. Case nodes aggregate incoming activations from IEs,

and are ranked according to the strengths of their activations. The activation of a case is

thus a function of the similarity and relevance values defined in the network. While we

have used binary relevance values in our example, real values can be used to model the

degree of relatedness of an IE to a case. It is interesting to see that our example query

leads to the retrieval of the case "animals biting glass", though the case shares no words

in common with the query. Clearly, the effectiveness of retrieval is critically

determined by the similarity and relevance knowledge, which have been relatively

simple to encode in this toy domain, but are difficult to acquire in any realistic TCBR

application. In their consolidated review paper on retrieval, reuse, revision and

retention in CBR, Lopez De Mantaras, R. et al. (2005) note that "The approach (CRN)

6

is efficient and flexible enough to handle incomplete case descriptions, but can incur a

significant knowledge engineering cost in constructing the network." This very briefly

summarizes the motivation behind the current thesis: proposing introspective machine

learning techniques that can effectively automate acquisition of similarity and

relevance for CRNs .

Cases

Cat fighting dog Dog licking cat Animals biting glass og breaking mirr

I nformation Entities

Figure 1.1 A Case Retrieval Network

Automated approaches for knowledge acquisition in TCBR systems are founded

on the idea of moving from word-level representations to concept-level representations.

Concepts can be interpreted in two ways. Firstly, concepts can refer to linguistic

entities like phrases or other domain specific grammatical patterns that correspond to

feature values and can be extracted from texts easily. The field of Information

Extraction is based on this notion of concepts. The second interpretation of concepts is

a statistical one, in which word co-occurrence patterns are used as the basis for

inferring underlying concepts. We can then abstract out mathematical (often

probabilistic) representations of these concepts, which are more robust indicators of the

textual content than the words themselves. A simplistic example would be the grouping

of near-synonymous words car and automobile into a single concept, based on the fact

7

that there is a fair degree of commonality in the words they co-occur with. Once such

concepts are learnt, a query on cars can retrieve cases dealing with automobiles as well,

and vice versa. In addition to handling synonymy, statistical approaches are also

effective in disambiguating polysemous words, i.e. words like bank, which assume

different meanings based on the context in which they are used. The main strength of

the statistical approach is that in most cases, concept extraction is automatic, with little

or no manual intervention. Considerable amount of work has been done outside the

TCBR community in this direction (Manning & Schutze 1999). In the IR community,

there has been significant interest in applying statistical machine learning approaches to

improve retrieval effectiveness; over the last ten years, probabilistic approaches

inspired by models used widely in the speech recognition community have been

organized under the broad sub-field of statistical language modelling. Interest in this

field is reflected by the fact that as high as 30% of papers presented over the last 5

ACM SIGIR conferences were related directly or indirectly to this task (Smeaton et aI,

2002). More often than not, concept extraction techniques rely on discovering hidden

associations between words; so this area overlaps with research interests within the

Text Mining community as well. In the recent past, several TCBR researchers have

adapted these methods to their tasks, or presented novel extensions to cater to specific

TCBR needs (Weber, et al. 2006).

1.1.1 The Thesis: A Quick tour

As a starting point for our research we explored the idea of exploiting Latent Semantic

Indexing (LSI), a well established statistical concept induction approach, to the

problem of acquiring similarity and relevance knowledge for TCBR tasks. LSI has

been shown to improve retrieval effectiveness in IR in several independent studies

(Deerwester, et al. 1990, Dumais 1993). In addition, LSI needs very little manual

intervention, generates concepts that can be elegantly explicated in terms of underlying

features as well as cases, and the acquired knowledge integrates easily into the CRN

8

framework. While initial results were promising, we observed that in supervised

classification tasks, a TCBR system based on knowledge inferred by LSI was

outperformed by state-of-the art classifiers reported in machine learning literature. We

hypothesized that this was because LSI relied solely on word co-occurrences and failed

to take into account the class labels of training cases, while acquiring relevance and

similarity knowledge. On the other hand, class labels are critical to concept learning in

most other approaches. This motivated us to propose a supervised LSI technique called

"sprinkling" that exploits class knowledge to bias the acquired similarity and relevance

knowledge. Next, we consider more complex classification domains where the classes

are related to each other. Two examples are hierarchical classes (e.g. Yahoo directory)

and ordinal classes (e.g. ratings I to 5 in movie review, each rating treated as a class).

Sprinkling is limited in that it fails to take into account class relationships. This

motivated us to investigate approaches that can scale up to handle such complex

classification problems. We next focussed our attention on the problem of mining

similarity knowledge for CRNs. Most current statistical approaches to address this,

like association rule mining (Wiratunga et aI., 2005a) or distributional word clustering

(Baker & McCallum 1998) are, at their roots, founded on the basic idea of estimating

similarity based on the number of times the two features co-occurred in a given corpus.

However, this is an inherently restrictive supposition. As an example, if words web and

browse co-occur in one document, and words internet and browse in another, we can

infer that web and internet are related to each other, even if they do not co-occur in any

document. Such a relation is called a second-order association. We can extend this to

orders higher than two; such associations are called higher order associations. While

the significance of higher order co-occurrences was noted elsewhere (Lemaire &

Denhiere, 2006), we have not come across any approach that exploited these

associations to acquire feature similarity. This motivated us to explore how such

associations can be mined efficiently from corpuses and how the effects of different

orders can be aggregated to model similarity between features. We also explored

extensions of this idea to supervised classification domains. As we will examine later,

9

the effectiveness improvements obtained using knowledge rich retrieval techniques

founded on statistical approaches like LSI or higher order associations, are

accompanied by a slowing down of the retrieval. This is a critical concern from a

practical standpoint. This motivates a novel retrieval formalism presented in this thesis,

called the Fast Case Retrieval Network (FCRN). The motivation behind FCRN was to

explore ways of eliminating redundant computations at retrieval time, leading to

improvements in time performance. Finally, in the course of our experimental

evaluations over diverse textual datasets, we realized that the applicability and

effectiveness of approaches was often critically dependent on properties of the

underlying dataset. In response to this observation, we investigated novel ways of

visualizing and estimating complexity of textual casebases. Visualization provides a

qualitative insight into the casebase, while complexity is a quantitative measure that

indicates the level of difficulty in carrying out effective retrieval or classification over

the dataset. While the scope of our research as reported in this thesis is restricted to

making preliminary use of the visualization and complexity measure to explain our

empirical findings, we believe that our ideas have the potential to be independently

pursued to other applications such as facilitating knowledge acquisition from experts,

and periodic maintenance of the casebase.

1.2 Research Objectives

This thesis explores techniques to acquire relevance and similarity knowledge for

TCBR tasks. LSI was to be extended to acquire relevance knowledge for supervised

classification tasks, and to handle casebases with diverse inter-class interrelationships.

The intuition behind higher order associations between features was to be incorporated

in an algorithm for mining similarity knowledge. Retrieval time efficiency implications

of the proposed approaches were to be addressed, to demonstrate the feasibility of

applying these techniques to handle real world applications. In order to obtain an

10

insight into how diversity of casebases affects retrieval effectiveness, we also needed to

make preliminary investigations into novel ways of visualizing and characterizing

textual casebase complexity.

Specifically, we address the following five objectives.

1. Propose supervised extensions of LSI to mine relevance knowledge in

classification domains.

2. Propose approaches that extend the scope of LSI to handle situations where class

inter-relationships are critical, e.g. hierarchical and ordinal domains.

3. Propose supervised and unsupervised approaches to exploit higher order

associations to mine feature similarity.

4. Propose a fast retrieval formalism that can use the acquired relevance and

similarity knowledge to facilitate effective retrieval while minimizing retrieval time by

cutting down on redundant computations.

5. Propose novel approaches to visualize and estimate complexity of textual

casebases, so that they can be meaningfully compared.

1.3 Thesis Overview

In this chapter, we have highlighted challenges in acquiring knowledge for TeBR,

which serve as motivation for the work reported in this thesis, and also outlined the

specific objectives of our research. In the next chapter, we will examine more closely

related work from the fields of TeBR, IR and machine learning that set the backdrop

for our work. In particular, we will make a comparative study of techniques that

abstract out concepts from a bag of words, and hence are potentially useful to

11

knowledge acquisition in TCBR. We will also review retrieval formalisms in TCBR,

and existing methods to visualize and compare textual casebases. This will help us in

positioning our work in its context more crisply, and lay a foundation for the remaining

chapters to build on.

Chapter 3 provides an overview of TCBR problems in specific relation to the

supervised classification task. We present a simple approach to visualize textual

casebases, and show how this can be extended to measure and compare complexity of

casebases. To illustrate our ideas, we use these tools to characterize six experimental

datasets that are used in our evaluations. We verify predictions from our complexity

estimates against performances reported by standard classifiers. In later chapters, we

will attempt to explain empirical findings from approaches proposed in this thesis in

the light of these complexity estimates.

Chapter 4 presents an introduction to LSI, and shows how it can be used for

acquiring similarity and relevance knowledge for TCBR applications. We specifically

look at mathematical underpinnings of LSI that explain its ability to represent features

as well as cases in terms of a common set of underlying concepts, making it

particularly attractive to TCBR.

Chapter 5 introduces sprinkling, a supervised extension of LSI which is a novel

contribution of this thesis. We also present Adaptive Sprinkling that extends this idea to

diverse classification tasks.

In Chapter 6, we present a novel algorithm for mining feature similarities based on

higher order associations between features. We also present extensions of this idea to

supervised tasks.

Chapter 7 presents experimental evaluation of the ideas presented in Chapters 5

and 6. The empirical findings are critically analysed both across approaches and in

relation to dataset complexities estimated in Chapter 3.

Chapter 8 proposes a novel formalism, FCRN, and shows how it can eliminate

runtime computations to speed up retrieval. We also present extensions of FCRN to

facilitate more flexible retrieval.

12

The conclusions in Chapter 9 summarise the contributions of the research, identifY

some of its limitations, and suggest possible extensions and directions of future

research.

13

Chapter 2

Background

I don't paint things, I paint only the difference between things ... Matisse 1908

This chapter aims at positioning our work in the context of related research in TeBR.

In particular, we will address issues associated with knowledge acquisition in TeBR,

scalable architectures to embed and effectively make use of the acquired knowledge,

and ways of visualizing this knowledge. Since each of these constitutes broad TeBR

sub-fields on their own, it will be ambitious to attempt a comprehensive and thorough

comparison with related work. Rather, our goal will be to cover as much ground as

motivates and sets in perspective the chapters that follow.

The organization of this chapter is as follows. The following section identifies key

challenges in TeBR, and sets the big picture that motivates our research. In particular,

we highlight the importance of statistical concept learners in automating knowledge

acquisition for TeBR. Section 2.2 is intended to be a consolidated survey of concept

induction techniques. Section 2.3 is a review of TeBR architectures in which concept

learners can be embedded. In Section 2.4 we look at the role of visualization in TeBR.

In each of sections 2.2, 2.3 and 2.4 we identify limitations of existing approaches, and

these serve as motivations for the rest of the thesis. Section 2.5 concludes this chapter.

2.1 Introduction: Challenges in Textual Case Based Reasoning

A recent survey of TeBR systems by Weber et al. (2006) identifies four major

challenges in eBR systems:

14

1. assessing similarity between textually represented cases

2. mapping texts to structured representations

3. adaptation of textual cases

4. automatically generating representations for TCBR.

While such a breakdown facilitates a preliminary grouping of existing TCBR systems,

we feel that it may be misleading to consider any of these problems in isolation from

the rest. In particular, challenges 1, 2 and 4 are closely intertwined. Similarity

assessment (challenge 1) makes sense, only when a representation is chosen and

methods identified to acquire structured case representations (challenges 2 and 4).

Also, the richer the underlying representation, the more effective the TCBR system is,

in problem solving. However, richer representations call for higher manual intervention

in acquiring the necessary knowledge and structuring this knowledge to facilitate

effective retrieval. Thus for any given domain, the choice of an underlying

representation is governed by the domain-specific logistics of attaining a trade-off

between (a) the quality of retrieval and (b) cost of knowledge acquisition. We illustrate

this using the diagram in Figure 2.1, which is inspired by (Brown et aI., 1998).

Grouped in the bottom left comer of Figure 2.1 are techniques that can be used to

automatically build textual case representations, but such representations are not rich

enough to allow sophisticated retrieval. By and large, these approaches are founded on

Information Retrieval models, a concise survey of which is presented in (Rijsbergen

1979). An extreme situation is treating a case as a bag of words (BOW), and treating

each distinct word in the casebase as a feature for indexing. Weights are assigned to

features, based on how frequently they occur in a case (term frequency), and how

strongly they discriminate a case from the rest of the cases (inverse document

frequency). Each case is modelled as a vector in a vector space, with the features

mapping onto the dimensions. The cosine similarity between two vectors is treated as a

measure of similarity between the corresponding cases. Though very simple, this

approach has received considerable attention in the TCBR community (Lenz et aI.,

1998b), possibly because it serves as the building block for more sophisticated systems.

15

As we shall see in Section 2.2, approaches that lead to richer representations can often

be equivalently regarded as realizing a different weighting on BOW features.

High

Low

Bag of Words +
Feature Selection

o

Bag of Words

Low

o Phrases/

Deep NLP: Speech Acts +
Manually Craned Rules

o

o
Manually Engineered
Training Data for
Information Extraction

o Domain specinc glossa ry

Syntactic Fearures

Cost of Knowledge Acquisition High

Figure 2.1: the stress-strain relationship between cost of knowledge acquisition and

Quality of Retrieval

Moving slightly away from the BOW extreme in Figure 2.1 are approaches that

attempt to identify meaningful "infonnation entities" that are semantically richer than

words on their own. Two examples are: phrases, made of contiguous words and word

groups, made of related words that are not necessarily adjacent to each other. These

entities are typically extracted using a combination of "partial" syntactic analysis (as

opposed to deep NLP) based on part-of-speech-tags and statistical units like n-grams.

In situations where a domain specific glossary is readily available, this can be a useful

resource as well. It may be noted that often the resulting representations can again be

mapped onto a vector space, with the infonnation entities treated as features . An

example of a TCBR system that belongs to this category is FallQ (Lenz & Burkhard

16

1997}. The use of phrases has had a turbulent history, with several authors (Scott &

Matwin 1999) reporting no significant performance improvements over BOW.

At the top right corner of Figure 2.1 are systems that adopt a ''top-down''

philosophy in their construction rather than a "bottom-up" one. More specifically, they

are based on the idea of creating goal-driven indexes. There are two broad ways of

realizing this. The first approach is to hand-craft the indexes and the underlying

representation with the objective of maximizing retrieval effectiveness. The second

approach is to use deep NLP. An example is a recent proposal by Gupta & Aha (2004),

where a deep natural language understanding approach is used to derive a first-order

representation of the unstructured texts. The authors envision that feature values can

also be mined using this framework, but considerable research needs to go into

foundational building blocks before an implementation of this idea can be realized.

Brown et al observe that abstract concepts proposed in Speech Acts (Austin 1962) and

Rhetorical Structure Theory (RST) (Mann & Thompson 1987) can be thought of as

classical indexes, in the CBR sense, since they attempt to model goals and intentions of

communicating agents, rather than using surface level text as a medium for such

communication. The main criticism of the first approach is the prohibitively high cost

involved in knowledge acquisition, making it infeasible for all but trivial

demonstrations. In contrast, the second approach is limited by the difficulty in

grounding the theories in sufficiently crisp rules to allow for automation, even within

restricted domains.

The relative ineffectiveness of bottom-up approaches, and the practical bottlenecks

associated with realizing top-down ones with low manual intervention motivates us to

investigate the feasibility of a viable middle ground. This is shown as the grey area in

Figure 2.1, sandwiched between the bottom left and top-right extremes. To date, there

have been two distinct threads of research in TCBR to attain this middle ground. The

first is based on Information Extraction (IE), and the second on modelling underlying

concepts using statistical mining of term associations.

17

The first approach attempts to extract feature value pairs based on structural

information that can be automatically extracted from documents (Riloff & Lehnert

1994). Examples of information entities that can be extracted with relative ease are

dates, locations of events and names of people or organizations. In the terminology

associated with the MUC series of conferences (MUC 91), these pieces of information

are referred to as annotations. The annotated document may be used for further analysis

based on domain specific knowledge, a significant part of which is acquired and

encoded manually. In (Grishman 1997), templates are used to guide the knowledge

acquisition process. A template is a set of slots and fillers, not very different from the

feature-value representations used in CBR. In order to fill a template, the annotations

are classified as belonging to one or more of the slots in a template. Often this

classification is supervised, and relies on the presence of training examples in the form

of unstructured cases that have been mapped to equivalent template representations by

experts. As a further step, IE systems also attempt to capture domain specific rules

(Grishman 1997) that allow the system to perform inferencing with the objective of

filling in missing slots or expanding the user query. In the classification context,

systems have been built to classify text that rely entirely on a system of handcrafted

rules (Hayes et aI., 1990). While there have been a few attempts to integrate IE with

TCBR (Bruninghaus & Ashley 2001), to our knowledge, no TCBR system to date has

used a combination of annotations and hand-crafted domain rules.

The second approach towards striking the middle ground in TCBR is using

statistical techniques to facilitate the journey from a bag of words to a set of underlying

concepts. The underlying hypothesis is that these set of concepts are better descriptors

of the underlying content, than the surface word-level representation. A critical

problem in dealing with text is the problem of word choice variability, or different

surface representations that achieve the same communication goal. Two common

problems highlighted in this context are synonymy and polysemy. Thus a textual

representation in the form of bag of words is at best a noisy representation of the

underlying knowledge content. The central thesis motivating statistical techniques is

18

that textual cases are less "noisy" when modelled in terms of concepts rather than

words. The main strength of this approach is that in most cases, the concept extraction

is automatic, with little or no manual intervention. This has inspired a significant

amount of research within Text Mining and IR communities, much of which has later

been adapted for TCBR tasks. Instead of attempting to discuss each technique

individually, we organize these techniques into a taxonomy and present a unified view

in Section 2.2, which allows us to compare and contrast these approaches.

To summarize, there are two broad trends towards attaining the middle ground: the

first is based on Information Extraction and relies strongly on linguistic knowledge; the

second is based on abstraction of words to concepts, and is founded on statistical

principles. In this thesis, we focus on the latter. However, it is important to note that

these two philosophies of achieving a middle ground are not necessarily in competition

with each other; in fact they can complement each other in more ways than one. Firstly,

instead of operating directly over a bag of words, statistical approaches can use phrases

or attribute values extracted by IE techniques as staring points for concept learning.

Mao and Chu (2007) show that concept learners operating over domain specific

keyphrases achieve significantly higher accuracy in classification tasks compared to

using words on their own. Secondly, statistical learning techniques can facilitate

automating Information Extraction tasks, or at the least assisting domain experts in

such tasks as well. Several IE approaches model IE as a token classification task

(Kushmerick et al. 2001). The text is split into several tokens, and standard

classification algorithms are employed to assign these tokens to one of the slot fillers.

Several other subtasks of IE like phrase extraction, identification of contextually related

word groups and extraction of attribute value pairs employ statistical approaches well.

In Section 2.2 we review statistical approaches to concept learning, and argue that

factor analytic approaches like LSI are favourably positioned amongst existing

techniques, in alleviating the knowledge acquisition bottleneck associated with TCBR.

We also make a critical note of LSI shortcomings that motivates much of our work

reported in later chapters. In Section 2.3 we provide a comparative analysis of

19

architectures that facilitate effective and efficient retrieval in TCBR. In particular, we

highlight some advantages associated with Case Retrieval Networks in this context. We

also identify weaknesses of CRNs in the presence of non-sparse textual representations,

that motivates work reported in Chapter 8. Finally, we take a quick look at existing

visualization approaches that may allow users and experts to interpret the acquired

knowledge easily. We identify shortcomings of these approaches that inspire our

preliminary research reported in Chapter 3.

2.2 From Words to Concepts

While the traditional BOW paradigm has been the easiest prescription for building

most text retrieval applications, it is crippled with several limitations, most of which

stem from the fact that BOW fails to exploit associations between words and fares

badly in handling both synonymy and polysemy. Thus a query on "operating systems"

may fail to retrieve documents on Windows XP or Linux if the words "operating" or

"system" are not present in those documents, and polysemous words like "Jaguar"

cannot be effectively disambiguated based on usage context. In classification tasks,

using BOW results in very poor generalization over the knowledge present in training

data. Furthennore, infrequent words that are representative of one case are often

filtered out, if they do not occur frequently in the rest of the corpus. These limitations

of BOW have motivated research into modelling textual content using concepts rather

than words. From a statistical machine learning perspective, the thesis is that

combinations of words can be abstracted out to fonn concepts, which are more

representative of the underlying meaning thus facilitating more effective retrieval, or

more discriminative with respect to the defined categories in the classification context.

Based on the representation of concepts, statistical techniques that mine concepts

can be broadly grouped as follows:

20

1. Word Clustering/Distributional Clustering. In this approach, concepts are

modelled as clusters of related words. One popular version is a probabilistic approach

called Distributional Clustering, which was introduced in the early nineties for

automated thesaurus creation, and later found application in text classification (Baker

and McCallum 1998). In the classification context, the key idea is to extract features

comprising words that are contextually similar and contribute similarly to

classification. This has the positive effect of reducing data sparseness and redundancy,

and facilitating selection of most representative features. Several distributional

measures have been proposed for measuring similarity between two word distributions,

the most notable of which is the KL divergence (Manning & Schutze 1999). In the

TCBR community, researchers have extended this idea to the unsupervised case where

class labels are not present (Wiratunga et al., 2006, Patterson et al. 2005). The basic

idea behind these extensions is to substitute the class label by a separate set of seed

words, against which the distributional similarities of other words are conditioned.

2. Factor Analysis. Documents are similar when they have similar words, but words

are similar when they appear in similar documents. Approaches based on factor

analysis attempt to find a mathematical solution to the above circularity. In the field of

text retrieval, the most widely researched and used factor analytic technique is Latent

Semantic Indexing (LSI) (Deerwester et aI., 1990). LSI is founded on a vector space

representation of documents, which can be mapped onto a term-document matrix. The

key step in LSI involves subjecting this matrix to Singular Value Decomposition

(SVD), a linear algebraic technique that extracts a set of orthogonal bases for this

space. In essence, these basis vectors, also called concepts, are nothing but linear

combinations of the original terms. These concepts are ranked according to their

importance. Considering only the most important ones (based on some threshold) and

ignoring the rest, we can obtain reduced dimensional representations of both words and

documents. The revised representations using concepts rather than words have been

shown to improve retrieval performance (Deerwester et aI., 1990). The essential thesis

21

behind LSI is that by representing documents and words in the concept space, we can

recover from "noise" due to word choice variability, and thus have more robust

estimates of the underlying meaning. Further technical details are discussed in Chapter

4. One of the remarkable aspects of SVD is its ability to represent both terms and

documents in the same "concept space". This distinguishes it from its historical

precursors based on eigen-analysis that can handle only the term space or the document

space at a time. While initially designed for unsupervised retrieval, LSI has also been

applied to supervised classification tasks (Gee 2003, Zelikovitz 2004, Zelikovitz &

Hirsh 2001), where LSI was agnostic to class-knowledge. The inability to exploit class

knowledge in supervised tasks is one of the critical drawbacks of LSI. Ever since the

seminal paper of Deerwester et al. (1995), several approaches and extensions of LSI

have been proposed that are similar in spirit to the basic idea. Recently, a probabilistic

version of LSI called PLSI has received much attention in the text mining community.

Other relatives include Non-Negative Matrix Factorization (NMF) (Lee & Seung 2001)

and Semi-Discrete Matrix Decomposition Reference (Kolda & O'Leary 1998).

3. Rule Learners Unlike probabilistic or factor-analytic approaches that generate

numeric representations of concepts, rule learners produce symbolic concepts. These

approaches have been widely used for supervised classification tasks. The two broad

classes of rule learners are decision tree learners and inductive rule learners. A decision

tree classifier is a tree whose internal nodes are labelled by the terms, each branch

emanating from a node checks for the presence or absence of that term. Each leaf node

is assigned a class label. A test document d j is recursively tested for the weights that

words in internal nodes have in dj , until a leaf is reached, whose class label is assigned

to dj • A DT is constructed from training examples using a divide and conquer approach:

(a) check if all training documents have the same class label; (b) if not, choose a feature

and partition the set into two subsets, such that each subset has the same value for that

feature (often only presence/absence is considered). The process is recursively

performed on all subtrees, till each leaf is "pure", i.e. contains documents drawn from

22

one class, which is chosen as the label for that node. The key step here is to choose

partitioning attributes judiciously; information theoretic measures such as Information

Gain are often used to identify good choices. For our present discussion, we note that

we can read out a "rule" induced by a DT, by treating a conjunction of all nodes from

root to leaf (leaf excluded) as the rule antecedent, and the class label associated with

the leaf as a consequent. Fully grown DTs often suffer from overfitting; methods to

prune overly specific branches have been proposed (Breiman et al., 1984).

Inductive rule learners have the same goal as DT learners, but they tend to

produce more compact rules. The basic idea is to start from a set of highly specific

rules that cover all the training data. So, each training document leads to a rule which

has words in the document in its antecedent, and the class label of that document as the

consequent. Unsurprisingly, this leads to overfitting; the rule learner now generalizes

these rules by removing or merging clauses, to maximize rule compactness, while

retaining "coverage". A further step of pruning is now applied for "global

optimization" to strike a balance between mimimizing error on the entire rule set and

maximising generality. RIPPER(Choen & Singer 1999) and Information Extraction

extraction approaches like TextRise (Nam and Mooney 2001) are founded on this idea.

Unsupervised variants of rule learners have recently been studied. In Textual CBR,

(Wiratunga 2006) proposed Propositional Semantic Indexing (PSI), which uses rule

induction to extract new features that are logical combinations of existing features.

FEATUREMINE (Zelikovitz 2003) extracts simpler and less granular rules based on

pairwise comparisons of all feature-pairs.

4. Formal Concept Analysis (FCA). Founded on a theoretical framework conceived

in the eighties (Wille 1982), FCA has only recently been applied to mining concepts in

texts (Cimiano et al. 2003). FCA takes as input a term-document matrix, which is

referred to as defining the context. The output is a set of concepts. Intuitively, a concept

is essentially a grouping of a subset of documents, say D, with a subset of terms, say T,

such that the only terms that documents in D share between them are T, and

23

conversely, the only documents in which all terms in T appear are D ; this is called the

closure property. The set of all concepts, when ordered by set inclusion, satisfies the

properties of a complete lattice, which is called a Concept (or Galois) lattice. It may be

noted that concepts have been alternately referred to as closed itemsets in data mining,

and maximal bipartite cliques in theoretical computer science. One attractive feature of

FCA is that clustering is not done separately on the word and document spaces. Rather,

each concept is defined by a set of words and a set of documents, the former providing

an explanation for the grouping of the latter, and vice versa. Thus FCA-generated

concepts can be easily interpreted. However, one critical limitation is that it requires a

binary-valued term-document matrix as a starting point. Thus relations captured using

real valued weights or smoothed versions of this matrix cannot be accommodated.

Furthermore, rigid closure requirements mean that it may fail to identify "approximate"

concepts, which could be more meaningful and general than the extracted ones. When

operating over large and sparse term document matrix, this often results in a large

number of meaningless groupings of terms and documents. Furthennore, unlike LSI,

the extracted concepts are not ranked according to their importance. It is also not clear

how to extend this idea to accommodate class knowledge of training instances 10

supervised tasks.

5. Implicit Concepts Defined By Hyperplane Separators. In addition to the four

concept mining approaches described above, there is a family of "black box"

approaches that include neural networks and kernel methods like the Support Vector

Machines (SVM). The latter, in particular, has been shown to yield state-of-the-art

results in supervised text classification tasks (Joachims 1998). These approaches are

founded on the vector space model, and attempt to learn decision boundaries that

separate classes in the original feature space (as with neural networks (Mitchell 1997))

or a higher dimensional version of the original space, where classes become linearly

separable (as with SVMs). While the other approaches described so far produce

concept representations that can be accessed and exploited for various text mining

24

applications, neural nets and SVMs represent concepts implicitly using clusters of

objects (documents) bounded by hyperplane separators, which are linear combinations

of features that separate classes from each other. Intuitively, a concept could be

distributed across various regions of feature space, and each region is bounded by a

complex decision boundary, a polygonal approximation of which is constructed by the

separating hyperplanes. Thus, the representation of concepts is scattered across a set of

geometrical surfaces; the concepts are implicitly modelled within the geometry of the

space to solve the classification task, but cannot be easily interpreted, accessed or

exploited for other tasks. This can be contrasted against factor analytic approaches like

LSI, where each concept is a linear combination of features, that can be accessed and

used for tasks like feature extraction or mining word similarity. Another limitation of

neural nets and SVM is that they have been tailor-made to handle supervised tasks, and

do not lend themselves comfortably to unsupervised extensions.

While the above list is representative of the established techniques, it is by no

means exhaustive. In particular, it may be noted that all five approaches mentioned

above start from BOW representations, and thus knowledge of the order in which

words appear in the text is lost. One approach to address this problem is using syntactic

phrases based on linguistic knowledge like WordNet (Miller 1995). The five

approaches mentioned above can be easily extended to mine abstract statistical

concepts over Bag of Phrases, instead of using BOW as the starting point.

F or ease of analysis, we present below a taxonomy that groups approaches built

using the above formalisms, based on nine axes. This allows us to evaluate the relative

advantages and disadvantages of these approaches, and assess their suitability for a

given task.

Axis 1: Class knowledge. Based on how strongly the approach relies on knowledge of

class labels, techniques may be classified as:

Supervised. These techniques heavily rely on class knowledge, and some of them

cannot be easily extended to unsupervised tasks. Examples are neural nets and SVM.

25

Rule learners like RIPPER, decision trees and distributional word clustering

approaches also belong to this category.

Unsupervised. These techniques can learn concepts without relying on class labels of

training data. Examples are factor analytic techniques like LSI, rule learners based on

association rule discovery, and unsupervised extensions of distributional clustering

approaches like (Patterson et a12005, Wiratunga et aI2006).

In addition most supervised concept learners, can also be operated in a "semi

supervised" mode, whereby they use both labeled and unlabeled data for training. The

strength of such approaches is that they can compensate for lack of sufficient labelled

training instances, by using unlabelled ones, which are often available aplenty. Two

approaches are Expectation Maximization (EM) and co-training (Feldman & Sanger

2007). In EM, as a first step, a model is learnt based on training data. Next, in what is

called the E step, unlabelled documents are classified by the current model. In the M

step, the model is trained over the combined corpus. E and M steps are repeated till

convergence is obtained. Co-training is based on bootstrapping where unlabelled

documents classified using parts of the training documents (say abstracts or meta-level

tags) are used for training the classifier based on the remaining parts (say the body),

and vice versa. Both EM and co-training have shown a reduction of around 60% in the

amount of training data needed to produce the same classifier performance (Feldman &

Sanger 2007).

Axis 2: Knowledge Source. Based on their source of knowledge, concept learners are

of two types. While introspective techniques rely entirely on the given data (training

data, in supervised cases), those that use background knowledge can exploit knowledge

from external knowledge sources as well. Most techniques discussed above can be used

to accommodate background knowledge, or disregard it; so this is more a classification

of tools built on these learners, rather than the learners themselves. WordNet has been

used to provide linguistic knowledge of word associations in TCBR (Chakraborti et aI.,

2003). Recently, the Web, and in particular the Wikipedia has been used to acquire

26

knowledge of "semantic relatedness of words and phrases (Gabrilovich and Markovitch

2007). A third interesting way of incorporating background knowledge is transductive

learning, proposed by Zelikovitz and Hirsh (2001) in the context of supervised

classification tasks. The basic idea is to pool unlabelled documents along with labelled

ones while doing LSI. In the TCBR context, the use of domain specific knowledge is

critical to system performance. Mario Lenz (1998) identifies seven knowledge layers in

TCBR, and surveys TCBR systems that incorporate domain specific glossaries and

feature values. In the current work, we will focus on introspective approaches alone, so

that we are free of any underlying assumptions about availability of background

knowledge. We incur no loss of generality, since linguistic knowledge or knowledge of

domain specific feature values and their associations, if available, can easily be

integrated to augment the knowledge mined by the statistical approaches proposed in

this thesis.

Axis 3: Knowledge Richness. This is related to Axis 2, but here we are concerned with

the representation of features within the system, rather than the source from which they

were derived. At one extreme are knowledge light systems that rely on bag of words; at

the other extreme are knowledge rich systems that use domain specific feature values

extracted semi-automatically, typically with significant manual intervention.

Unsurprisingly, there are several possibilities between these extremes, as exemplified

by the seven knowledge layers of Mario Lenz. Most statistical concept learning

approaches make no underlying assumptions about the knowledge richness of features.

However, not all approaches scale well over the large dimensionality associated with

BOW (see Axis 9 below). Knowledge rich approaches help reduce dimensionality, and

also allow for more meaningful concepts to be inferred. This is particularly important

in the case of techniques like FCA which tend to generate noisy concepts over large

sparse BOW representations. Furthermore, while most concept learners are aided by

feature selection strategies using measures like Information Gain (Mitchell, 1997) to

reduce dimensionality over supervised classification tasks, feature selection over

27

unsupervised domains is less straightforward. In such situations, most learners are

likely to benefit from availability of knowledge rich features. The disadvantage with

knowledge rich features is in the additional manual effort involved in acquiring them.

Given our focus on completely automated knowledge acquisition, we will assume

BOW as our starting representation throughout this thesis. It is important to note,

however, that all our approaches will benefit from better domain-specific feature

engineering.

Axis 4: Explicitness/lnterpretability. This is determined by the formalism used to

describe statistically mined concepts. In vector space theoretic approaches, concepts are

viewed as linear combinations of features (as in LSI), or as combinations of convex

regions in the vector space bounded by linear decision surfaces (as in neural nets or

SVM). In Probabilistic models, like distributional word clustering, PLSI, and

probabilistic mixture models like Latent Dirichlet Allocation, concepts learnt are

probability distributions over the feature space. Rule-based models, like decision trees

and DNF learners model concepts as rules whose antecedents are logical combinations

of features, and consequents are class labels or features in the supervised and

unsupervised cases respectively. FCA may be alternately viewed as founded on the

rule-based model, since concepts mined by FCA have their counterparts in closed

itemsets mined by association rule mining algorithms. The question we ask here is: Can

the knowledge acquired by the system be interpreted meaningfully by humans? While

there is an element of subjectivity based on user profiles and representations that they

are comfortable with, there is not much of a disagreement about the extremes: rule

based learners are the easiest to interpret, while neural networks and SVM fare

miserably. Between these "white-box" and "black-box" extremes are approaches that

we call "grey box". Factor analytic approaches like LSI fall into this category. While

the numbers involved in the linear word combinations may not be easily understood,

LSI has the advantage that terms and documents are projected onto the same concept

space, and this allows for easy visualization. Also the concepts are ranked in

28

accordance with their importance, so a visual inspection of only a top few important

concepts may reveal interesting patterns that might have otherwise required a large

number of equivalent rules to elicit. It may be noted that in addition to interpretability,

some authors (Hilario & Kalousis 1999) identify a second criteria called transparency,

which refers to whether the principle behind the method (as opposed to the concepts it

generates) is easily understood. SVM and related kernel approaches are particularly

hard to grasp, whereas rule based techniques and word clusters are the easiest. LSI and

neural nets are moderately hard. For the purpose of the current thesis, we do not lay

much emphasis on transparency, as long as system generated concepts are accessible

and lead to improvements in system effectiveness.

Axis 5: Ease of Incremental Update. This is measured by the number of past training

examples that must be reprocessed to accommodate a new example. Given a new

training instance, incremental concept learners can update the set of generated

concepts, without having to run the learner on past examples all over again. While

incremental learning is often desirable in real world situations where the learner has to

handle a steady stream of incoming data, non-incremental learners are often more

effective over batch data, since they can better exploit the global properties of the

collection to arrive at "enlightened" (Hilario & Kalousis 1999) concept representations.

Another limitation associated with certain incremental learners is their sensitivity to

order of presentation of the training instances. SVM, neural networks and decision tree

based learners are all non-incremental. However (Utgoff 1989) and (Brodley & Utgoff

1995) present incremental variants of univariate and multivariate trees respectively. LSI

has been typically used in the non-incremental mode, though this limitation has been

successfully addressed by various fast SVD update strategies; (Berry et aI., 1995) for

example make a comparative study of six such update algorithms. It may be noted that

unlike statistically inferred knowledge, linguistic and background knowledge do not

require frequent updates.

29

Axis 6: Ease of Use. This is characterized by the number and complexity of model or

runtime parameters that need to tuned by the user. Decision trees require very few

parameter settings; and SYM has been shown to be fairly robust to parameters under

certain conditions (Joachims 1998). Neural Networks are possibly the worst, since the

number of internal nodes which determine the complexity of the learnt decision

surfaces, as well as the learning rate, momentum and initialization of weights need to

be tuned to suit the application in question. The case for LSI has no clear consensus.

While no parameters are involved in the factor analysis process per se, many

researchers have pointed to the difficulty in choosing the right number of concept

dimensions. We argue that LSI cannot be singled out in this regard, since a disguised

version of the same concern is shared by most other approaches as well. For example,

the support and confidence thresholds in association rule mining, the number of word

clusters and seed-words that are appropriate in distributional clustering, and the level of

decision tree pruning to achieve the right generalization, are all parameters that need

tuning and play a role not very different from the LSI dimensionality setting.

Alternatively, we can regard this parameter setting as aiming to achieve the right bias

variance tradeoff (Hastie et al., 2001). Low LSI dimensionality corresponds to a high

bias low-variance learner that would generate simple highly constrained models that are

insensitive to data fluctuations. Using large number of LSI dimensions, on the other

hand, corresponds to a low-bias high-variance learner that can generate arbitrarily

complex models, often running the risk of overfitting the data. Another aspect that

determines the ease of use of a concept learner is the number of underlying

assumptions. For example using association rules or FCA requires that one starts with

an integer valued term document matrix, and some additional techniques are required

to carry out the mapping from real-valued to integer-valued matrices, in a meaningful

way. SYM is popular since it has the flexibility of handling a large number of

dimensions, and its performance is not critically dependent on feature selection.

Current implementations of LSI can scale up comfortably to handle very large number

of dimensions.

30

Axis 7: Ease of integration with instance based techniques. This is an important

criterion in relation to TCBR systems. CBR systems are instance based learners that

support lazy learning, and incremental and local updates to knowledge. In addition they

are easily interpretable and knowledge maintenance is facilitated by the availability of

rich competence models. For TCBR tasks, we would prefer concept learners that yield

representations that maintain these advantages. LSI has a distinct edge here, since it can

generate revised vector space representations of the underlying cases, either as an

approximation of the tenn-document representation in the original feature space, or as a

reduced dimensional representation in the concept space. This will be discussed in

more detail in Chapter 4. SVM and neural networks are the worst in this regard, since

they yield no representations whatsoever, that can be exploited by instance-based

techniques. FCA, decision trees and other rule-based systems are not naturally suited

for CBR style representations, though the learnt concepts may be mapped indirectly to

revised case representations, often with loss of infonnation. In the PSI scheme

(Wiratunga et aI., 2005a) for examples, inferred rules were used for feature

generalizations, which in tum led to revised cases.

Axis 8: Support for additional tasks like Word Similarity Mining. In the TCBR

context, we are often interested in not just revised representations of concepts, but also

an explicit knowledge of word (feature) similarity. This allows experts to

independently examine the word similarity knowledge and suggest refinements. While

techniques like LSI can be tailored easily to mine similarity knowledge, it is less

straightforward to extract word similarity from rule-based learners like decision trees.

SVMs are the worst in this regard as they pennit no easy access to their underlying

concepts, which are critical in detennining how similar words are.

Axis 9: Efficiency. This is composed of two parts: training time and execution time.

While actual training times are critically dependent on parameter settings which

31

typically trade off effectiveness against training times, we can still compare approaches

by expressing training times as a function of n, the number of training instances and p,

the number of predictive features. Rule based techniques like ID3 have complexity of

the order of 0(n2p) in the worst case, whereas LSI's complexity mainly arises out of

the SVD step which has worst-case complexity 0(min(np2,pn2». However, SVD

implementations can be speeded up considerably, by requiring that only the first few

important concepts need to be considered, and by exploiting sparseness of the term

document matrices. Neural nets are the slowest in terms of training time. While

complexity analysis over neural nets is generally problematic because of the difficulty

in predicting the number of iterations required to converge, it has been shown that the

worst case complexity is exponential. Hinton approximates training time on a neural

network to be approximately 0(N3) where N is the number of weights in the network.

In comparison, SVMs are faster to train, the worst case complexity is O(n\ though

further extensions reduce the average case complexity (Chin 1998). The execution

times of different algorithms are less critical for the current comparison, since in TCBR

the unwritten assumption is that all approaches will finally yield revised case

representations, which will be processed using near neighbour approaches.

In Table 2.1, we summarize the strengths and weaknesses of the five concept

learning approaches, using a subset of the above dimensions as basis for comparison.

Some dimensions like use of background knowledge or knowledge richness, have been

excluded for comparison, since they characterize TCBR systems as a whole, as

opposed to underlying formalisms. In other words, no statistical approach has inherent

restriction to the use of background knowledge, or of knowledge rich units like phrases

instead of bag of words.

In this thesis, factor analytic approaches, in particular LSI, playa substantial role

in automatic knowledge acquisition for CRNs. The choice of LSI is driven by its ability

to generate rich representations for both documents and words in terms of a common

set of underlying concepts thus facilitating acquisition of both relevance and similarity

knowledge. Thus LSI integrates easily with instance based learners. Other advantages

32

include availability of easy update strategies, efficiency of retrieval, and reliance on

very few parameters to be tuned. However LSI is limited by its inability to exploit

class knowledge in supervised classification domains; we address this limitation in

Chapter 5. In Chapter 6, we present an approach to mine similarity knowledge that

relaxes certain mathematical constraints imposed by LSI. We show that our new

approach not only leads to better retrieval effectiveness, but is also better than LSI at

explaining, as opposed to merely estimating, associations between features. In Chapter

8, we address run-time efficiency implications of LSI and present novel retrieval

formalisms that facilitate fast retrieval over relevance and similarity knowledge mined

using LSI.

Table 2.1 Comparison of concept learning approaches

Word Factor Rule FCA Implieit
ClusteriJtg Analysis Learners Concepts

(SVM)
Class Originally U nsup ervis ed Supervised U nsup ervis ed Supervised
Knowleclge supervis e d, (supervised

recently extensions
unsupervised reported)
extensions
proposed

Interpre tability Average Average Very Good Good Poor
Transparency Average Average Very Good Average Poor
Ease of Use Average Average Good Average; SVMs

Lack of very
support for good,
real valued Neural
entries nets the

worst
Ease of Average Very Good Average Average Poor
Integra don
with instance
based
tecludques
Support for Very Good Very Good Average Average Poor
Word
Similarity
Mining
Training Average Average Good Average Neural Nets
Efficiency slowest,

SVMs
average

33

2.3 Scalable TCBR Architectures

It is not enough to have a good representation of textual cases, we also need an

architecture that embeds the different knowledge containers, and facilitates effective

and efficient retrieval over these cases. We identify the following characteristics that

are desirable for a TCBR architecture:

Efficiency: The architecture must allow for fast retrieval in the face of large number of

cases, by avoiding exhaustive search over the casebase. In addition, TCBR domains are

typically characterized by very high dimensionality, originating from the large number

of words (alternately phrases or word groups) that define the feature space. So it is

imperative for the system to be able to scale well to counter the "curse of

dimensionality".

Retrieval Effectiveness: This is a broad goal, which encompasses several sub-goals.

Firstly, the architecture must be flexible, so that the retrieval results can be tailored to

specific search needs of the user. In IR, precision and recall are most widely used to

evaluate retrieval effectiveness. The former measures the fraction of the retrieved

results that are relevant to the query, while the latter estimates the proportion of all

relevant documents in the collection that were retrieved. At one extreme, a TCBR

system should be able to support a very focussed (precision-centric) search where all

search terms or phrases appear in the retrieved documents. At the other end, it should

also support a lenient (recall-centric) search where even documents that contain none of

the query terms (say "gulf', "oil" and "war") but are still relevant (say on "Middle

east") are retrieved. Lenz (1999) identifies an additional pair of criteria, namely

completeness and correctness. The former implies that every sufficiently similar case in

memory will be found during retrieval, while the latter is ensured through a secondary

34

selection over the retrieved cases. We will not lay strong emphasis on these criteria,

primarily because in a practical setting, it is extremely difficult to formally evaluate

systems according to these measures. Moreover, the measures in a sense mandate a two

step retrieval, the first ensuring completeness and the second correctness, which may be

restrictive when dealing with techniques that rely on precomputed indices to do a one

shot pruning of the search space. In certain situations it may suffice to obtain an

appropriate ranking of cases, and the actual similarity scores do not matter; this aspect

may be used to eliminate redundant computations, thereby improving efficiency of

retrieval. To sum up, the efficiency of the system should not be at the cost of its

effectiveness, though concessions may be made specific to the needs of the retrieval

task at hand.

Few Underlying Assumptions: Approaches to improve retrieval efficiency often rely

on assumptions such as triangle inequality, existence of ordered attributes or

"skewed"ness of data distribution (Chavez et al., 2001). These assumptions restrict the

applicability of such techniques. We would thus prefer architectures founded on

formalisms with minimal underlying assumptions. In particular, the architecture must

support efficient retrieval over commonly used distance metrics like the Euclidean

Distance and the cosine similarity.

Explicit Knowledge Containers: The effectiveness of a TeBR system is typically

governed by two main knowledge containers, similarity and relevance knowledge.

Keeping in line with the CBR philosophy, explicit access to these knowledge

containers is desirable. It may be noted that the role of a third eBR knowledge

container, namely adaptation knowledge, has been of peripheral concern in practical

TCBR systems, though some approaches towards acquiring adaptation knowledge for

textual cases have been explored very recently (Gervas et aI., 2005).

35

2.3.1 TCBR Architectures

We classify the mechanisms explored in CBR to facilitate efficient retrieval into the

following broad categories.

Partitioning Methods. Organization of cases in the case-memory is based on

similarities between cases. Cases similar to each other are grouped in the same

"bucket" - this can be viewed as a generalization of hashing in one dimension. A k-d

tree (Wess et at. 1993) is a k-dimensional binary search tree that groups cases into non

overlapping partitions, each partition consists of cases that are similar according to a

given similarity measure. At retrieval time, only sub-trees likely to contain a

prospective case are traversed, thus saving on similarity computation with cases distant

from the query. To ensure that no relevant cases are missed out, similarity bounds are

computed at run time to decide whether cases in adjacent partitions need to be

considered. The main limitation of k-d trees is their assumption of ordered attributes;

also they do not scale well when large number of dimensions are used for indexing.

Inreca Trees (Bergmann 2002) are an extension of this idea that can handle unordered

domains and allow for n-ary splits based on attribute values.

Pivot Based Methods. These approaches were inspired by algorithms conceived in

early seventies (Chavez et at., 200 I) to speed up near neighbour search in large metric

spaces. Distances over a metric space obey the triangle inequality, and this property is

exploited to eliminate redundant computations at retrieval time. The idea is to select a

few documents as pivots, and pre-compute distances of all remaining documents to the

pivots. The target case is then compared only with the pivot cases, and triangle

inequality is used to eliminate distance computations to cases that can never satisfy the

search criterion. Variants of this idea use a tree data structure where partitions of the

casebase are assigned to pivots they are closest to, and these partitions are then split

recursively using further pivots at each intermediate node. The cost of traversing the

36

tree index is referred to as internal complexity, whereas the cost of exhaustive search at

the leaf nodes is referred to as external complexity. The efficiency improvements

obtained are critically dependent on the right trade off between these two complexity

estimates. Two techniques in the CBR literature may be regarded as close relatives of

pivot-based search. Smyth and McKenna (1999) present a footprint based retrieval

algorithm where a set of footprint cases act as pivots. Footprint cases are those that

provide a good "coverage" of the casebase. Intuitively these cases may be treated as a

small fraction of the cases that can solve the same set of problems as the entire

casebase. Each footprint case is associated with a set of related cases, that either solve

the footprint case, or are covered by it. The authors propose a two stage retrieval. First,

the target cases are compared against the footprint cases. In the second step, the cases

related to the most similar footprint case are searched. Closely related is the idea of

Fish and Shrink (Bergmann 2002) where similarities between a subset of cases is pre

computed using the relatedness of what the authors call "aspects". At query time, if a

case is found to be far away from the target, several neighbours of that case can be

shown to be ineligible as well, using the triangle inequality. This saves redundant

computations which is especially significant in this case, since aspect-based similarities

are computationally demanding. A limitation of most pivot-based approaches is their

reliance on assumptions like triangle inequality.

Spreading Activation Spreading activation methods VIew case memory as an

interconnected network of nodes that capture the association of cases with their

attribute values. Target attribute values trigger a spreading activation in the network,

resulting in activation of cases similar to the target. Spreading Activation based

approaches have been proposed in Brown et al. (1994), Wolverton and Hyes-Roth

(1994) and Lenz (1996). The CRN belongs to this category, and has been particularly

favoured by the TCBR community because of several reasons. Firstly, CRNs are

efficient. Lenz (1996) (also see Lenz et al. 1998) has successfully deployed CRNs over

large casebases containing as many as 200,000 cases. The applicability of CRNs to real

37

world text retrieval problems has been demonstrated by the F ALLQ project (Lenz et

aI., 1997). Balaraman and Chakraborti (2004) have also employed them to search over

large volumes of directory records (upwards of 4 million). More recently spam filtering

has benefited from CRN efficiency gains (Delany et aI., 2004). Secondly, they are

flexible and allow different retrieval needs like high precision or high recall to be

addressed within the same formal framework. Thirdly, they have no underlying

assumptions about the nature of attributes or distance functions. Finally, both

knowledge containers of CRNs, namely knowledge about how terms in a domain are

related to each other (similarity knowledge), and knowledge about relatedness of terms

to cases (relevance knowledge) are explicit and there is a neat separation between them,

allowing them to be independently acquired, revised and manipulated. Since much of

the later thesis is founded on the CRN architecture, we take a closer look at CRNs in

Section 2.3.2.

Additional techniques. In addition to the above basic approaches, Stanfill and Waltz

(1986) have reported significant speed-ups using massively parallel SIMD

architectures. Their approach uses a brute force sequential search, but parallelizes the

computations involved. Many commercial CBR systems use smart dynamic SQL

queries to successively narrow down search space, thereby also exploiting fast indexing

strategies already built into commercial DBMS systems. Both parallelization and

database-centric optimizations can lead to better performance of most approaches

discussed above.

2.3.2 Case Retrieval Networks

In this subsection, we take a closer look at CRNs. To illustrate the basic idea we

consider the example casebase in Figure 2.2(a) which has nine cases comprising

keywords, drawn from three domains: CBR, Chemistry and Linear Algebra. The

keywords are along the columns of the matrix. Each case is represented as a row of

38

binary values; a value 1 indicates that a keyword is present and 0 that it is absent. Cases

1, 2 and 3 relate to the CBR topic, cases 4, 5 and 6 to Chemistry and cases 7, 8 and 9 to

Linear Algebra.

Figure 2.2(b) shows this casebase mapped onto a CRN. The keywords are treated as

feature values, which mapped to Information Entities (lEs). The rectangles denote IEs

and the ovals represent cases. IE nodes are linked to case nodes by relevance arcs

which are weighted according to the degree of association between terms and cases. In

our example, relevance is 1 if an IE occurs in a case, 0 otherwise. The relevances are

directly obtained from the matrix values in Figure 2.2(a). IE nodes are related to each

other by similarity arcs (curved arrows), which have numeric strengths denoting

semantic similarity between two terms. For instance, the word "indexing" is more

similar to "clustering" (similarity: 0.81) than to "extraction" (similarity: 0.42). While

thesauri like WordNet can be used to estimate similarities between domain-independent

terms (pederson et al. 2004), statistical co-occurrence analysis supplemented by manual

intervention is typically needed to acquire domain-specific similarities.

To perform retrieval, the query is parsed and IEs that appear in the query are

activated. A similarity propagation is initiated through similarity arcs, to identify

relevant IEs. The next step is relevance propagation, where the IEs in the query, as well

as those similar to the ones in the query, spread activations to the case nodes via

relevance arcs. These incoming activations are aggregated to form an activation score

for each case node. Cases are accordingly ranked and the top k cases are retrieved.

A CRN facilitates efficient retrieval compared with a linear search through a

casebase. While detailed time complexity estimates are available in (Lenz 1999),

intuitively the speedup is because computation for establishing similarity between any

distinct pair of IEs happens only once. Moreover, only cases with non-zero similarity to

the query are taken into account in the retrieval process, thereby saving redundant

computations.

39

• c • II C C
C m m III 0 0 0 c c 0 c i i)(CD
CD ti ;c 'C C. CD 'C .r:.
E CD E E u ii

...
I!! • 0 ;, 'a .. 0 ~ ~ '0 E U u ;c .E ;, u CD ~ II

~ 0 CD U • 0 a 'a III C.

1 1 1 1 0 0 0 0 1 0

2 1 0 1 0 0 0 0 0 0

3 1 1 1 0 0 0 0 0 a

4 0 0 0 1 1 1 0 0 0

5 0 0 0 1 0 1 0 0 0

6 1 a a 1 1 1 a a a

7 0 0 0 0 a 0 1 1 1

8 0 0 0 0 0 0 1 a 1

9 0 0 0 1 0 0 1 1 1

(a) (b)

Figure 2.2 CRN for TCBR retrieval

CRNs are discussed in further detail in Chapter 8. Retrieval in CRNs tend to slow down

when the sparseness of the original similarity relations is reduced, as is typical when

concept learners like LSI are used to generate revised case representations. We propose

a solution to this problem; the revised formalism is called the Fast Case Retrieval

Network (FCRN) and forms the central theme of Chapter 8.

2.4 Visualising textual case bases

Deployment of a real world textual CBR system involves humans, either as experts or

as users, and often as both. This makes it imperative to devise ways of effectively

narrowing down the gap between the system and the human. In situations where the

underlying similarity or relevance knowledge is mined using statistical techniques and

encoded into the system as a set of numbers, we need effective ways of gaining access

to the underlying knowledge. This is where visualization plays an important role. In the

40

context of TCBR, we envisage that visualization can be potentially useful for realizing

the following goals:

1. easing knowledge acquisition for experts

2. visually evaluating goodness of the underlying representation, by displaying

clusters of mined concepts

3. maintaining the casebase, by revealing unimportant features or cases, for

example

4. providing a qualitative estimate of casebase complexity that allows TCBR

system designers to make first hand judgements and tell a difficult (hard-to

classify) problem domain from an easier one.

5. explaining retrieved results to end users

The first four are concerned with building and maintaining textual casebases, and are

"off-line" activities in that they do not directly concern retrieval. In contrast, the fifth is

an "on-line" activity, and is outside the scope of our research.

2.4.1 A Short Review of Related Work

Research in TCBR visualization has still not reached its critical mass. However, since

most of TeBR concerns with regard to visualization are shared by researchers from

text mining and CBR, it is worthwhile to take a close look at contributions from these

fields.

One significant line of research focuses on grouping documents based on their

similarity and displaying the similarity between the discovered groups (Feldman &

Sanger 2007). As a first step, one of the classical clustering techniques, like partitional

or hierarchical clustering is used to group documents having similar content. The

second step is of displaying these clusters in a meaningful way. In case of partitional

clustering, the clusters extracted are represented as nodes in a graph, and these nodes

41

are linked together to reflect inter-cluster separation. An optimization technique like

Simulated Annealing is used to arrive at the final graph configuration Also, each node

representing a cluster is tagged with the most representative keywords of that cluster

(Feldman & Sanger 2007). Hierarchical clusters are displayed using dendrograms, but

they often get crowded with increasing number of documents. One solution is to use a

hierarchical two-wise K-means algorithm such that each cluster is recursively

partitioned into two subclusters. The tiling pattern arranges the leaf nodes of this tree

along with keyword annotations for those nodes. While it provides insight into

concepts associated with clusters packed close to each other, the arrangement fails to

portray inter-cluster distances.

One disadvantage with most cluster visualization techniques is that the

neighbourhood relations between adjoining clusters is lost. Self-organizing Maps

address this limitation by mapping neighbourhood relations between high dimensional

objects (cases) to a low dimensional topology. One prominent work founded on this

idea is WebSOM (Feldman & Sanger, 2007). A very closely related theme is

Multidimensional Scaling (MDS) (Hastie et al., 2001). MDS is a procedure to

"rearrange" objects efficiently in a lower dimensional space, so as to arrive at a

configuration that best approximates the distances observed between high-dimensional

objects. The objects are iteratively moved around in the low-dimensional space,

attempting to maximize the goodness of fit. CBR researchers have adopted a variant of

this idea, metaphorically called Force Directed Graphs, which has been discussed in

(Eades 1984), (Mullins & Smith 2001).

Parallel co-ordinates, conceived by Inselberg (Inselberg 1985) is a third way of

representing high dimensional cases in two dimensions. In contrast to the Cartesian co

ordinate scheme where attributes are mutually perpendicular, parallel co-ordinates

assigns a vertical axis to each attribute, and evenly spaces out these axes horizontally.

The values that an attribute can take are plotted on the corresponding axis. Any given

case is represented as a polygonal line laid out across the axes, such that each line

segment connects two attribute values of that case. Viewed as a whole, such a plot is

42

expected to reveal some coherent patterns arising out of correlations between cases, as

well as features. One limitation in the context of text is the large number of dimensions

which lead to overcrowding of axes. Moreover, because of data sparseness typical with

text, most of the plot would be wasted portraying relatively trivial associations. For

example, two cases may appear similar because 90% of the features are absent in both.

It may be noted that most of these approaches may be used either to display

document clusters or word clusters.

2.4.2 Limitations of Existing Visualization Schemes

From the TCBR standpoint, we note the following limitations of existing visualization

mechanisms. Firstly, most approaches display either the feature space or the document

space, but lack the ability to display both documents and words in the same space.

Since document similarities can be accounted for by the similarities of their words,

showing document and word clusters in relation to each other has better explanatory

power, and enhances the usefulness of the visualization to experts. Secondly, most

techniques are not very helpful in identifying redundant words or documents that do

not contribute to casebase competence. Finally, it is not straightforward to gauge the

complexity of the casebase using most existing visualization schemes. Ideally, we

would like intuitive visual indicators such that complexity can be compared

meaningfully across representations of the same casebase, and across different

casebases. We present an approach to address these limitations in Chapter 3. We also

present a quantitative measure of casebase complexity that is directly inspired by our

visualization scheme.

2.5 Chapter Summary

We have taken stock of key TCBR challenges and surveyed the broad landscape of

concept learning techniques that can potentially aid in automated knowledge

43

acquisition. We have identified key dimensions that facilitate meaningful comparison

of the suitability of these approaches with respect to the TCBR knowledge acquisition

task. Factor analytic techniques like LSI have been shown to have several advantages

in mining relevance and similarity knowledge for CRNs. However, their inability to

incorporate class knowledge in supervised classification tasks is a significant

drawback. Also, similarity knowledge mined using LSI lacks transparency, and is

limited in effectiveness by its adherence to a set of mathematical constraints that can be

relaxed for TCBR. Overcoming these limitations constitutes a key motivation of this

thesis. We have also reviewed retrieval formalisms that can embed the acquired

knowledge to facilitate efficient retrieval. In particular, CRNs were studied as a special

case of spreading activation formalisms. We have seen that techniques like LSI can

result in loss of sparseness which can, in turn, have adverse effects on efficiency of

retrieval. This motivates a further contribution of our thesis in terms of retrieval

formalisms to facilitate efficient retrieval in the face of non-sparse similarity and

relevance knowledge. Finally, we look at visualization approaches that can help the

knowledge engineer in having better qualitative insights into the characteristics of the

domain, and facilitating maintenance tasks. We identify limitations of existing

visualization techniques that need to be addressed. In the following chapter, we address

these limitations, and present qualitative as well as quantitative ways of characterizing

textual casebases.

44

Chapter 3

Characterizing Textual Casebases

To be blind is unfortunate indeed but to be without a staff is even worse, for the staff

does much of the eyes' work. Sri Sri Thakur Anukulchandra (Indian saint)

The objective of this chapter is to examine factors that affect the effectiveness of TCBR

approaches, with a special emphasis on classification domains. One important goal is to

study inherent properties of textual classification datasets that determine how a CRN

based on bag-of-words performs in relation to state-of-the-art classifiers like SVM. The

analysis will also lead us to the challenge addressed in subsequent chapters; namely,

that of acquiring knowledge automatically for CRNs with the goal of elevating their

effectiveness to make them comparable to, or outperform, competing classifiers. This is

important in the light of the comparative study in the last chapter, where we noted

several strengths of instance based approaches relative to other classifiers. To ground

our discussion, we will focus on six experimental datasets, which we use consistently

through later chapters for evaluation. These datasets are reflective, if not representative,

of the diversity encountered in dealing with TCBR datasets in supervised classification

tasks.

We need tools in helping us probe into the nature of textual casebases. To date,

there appears to be no consensus in the TCBR community about what constitutes

"adequate" characterization of a casebase; most often the issue is closely coupled with

the task at hand. Classification tasks have inspired work on evaluating classification

complexity in non-textual CBR (Massie 2006), whereas very recently unsupervised

measures of textual casebase complexity have been proposed (Lamontagne 2006,

45

Massie et al. 2007). In this chapter, we adopt a two-step approach for characterizing

casebases. In the first step, we render a visualization of the casebase that reveals the

broad clustering patterns in terms of the underlying cases and features. The

visualization provides a bird's eye view of the dataset. In the second step, we use the

visualization to formulate a compression-based measure that quantifies the complexity

of the casebase. While the measure itself can be used for unsupervised casebases, we

will focus more on a version of it that captures the complexity of the classification

problem associated with each dataset. We evaluate correlation of accuracy results

obtained from different classifiers against these complexity measures to seek

explanations on why certain approaches work well over some datasets, but not on some

others.

Visualization and complexity evaluation proposed in this chapter are used only to

the extent of facilitating better insight into the results of our experimental evaluation.

However, we have seen in the previous chapter that visualization is significant in its

own right in that it facilitates several TeBR tasks. Evaluating casebase complexity is

important in facilitating the off-line tasks identified in Section 2.4, in that it provides a

quantitative basis for assessing the suitability of a representation. While visualization

and complexity evaluation have often been treated in isolation, our current

understanding is that they often share similar goals, and may exploit similar

mechanisms to realize these goals as well.

The rest of the chapter is organized as follows. Sections 3.1 and 3.2 introduce the

datasets and classifiers used for our experiments. Section 3.3 presents a novel approach

called "stacking" to visualize textual casebases. Section 3.4 shows how this approach

can be extended to evaluate casebase complexity in unsupervised and supervised

settings. Section 3.5 shows how our complexity metrics for the six datasets correlate

with the accuracy figures reported by the classifiers described in Section 3.2. We

highlight insights from this analysis that lead us to intuitions behind the novel

contributions reported in subsequent chapters. Section 3.6 summarizes the chapter and

takes stock of its main contributions.

46

3.1 Datasets Used

For experimental evaluation reported in this thesis, we use six text classification

datasets. Four of these are email routing datasets created from the 20 Newsgroups

(Mitchell 1997) corpus. The remaining two are Spam filtering datasets.

For creating the four routing datasets, one thousand postings of discussions,

queries, comments etc. from each of the 20 Usenet groups covered by the

20Newsgroups datasets were chosen at random and partitioned by the news group name

(Mitchell 1997). Four sub corpuses were created:

1. SCIENCE from four science related groups

2. REC from four recreation related groups

3. HARDWARE from two hardware problem discussion groups, one on MAC

and the other on PC

4. RELPOL, from two groups, one concerning religion, the other politics in the

middle-east

Thus HARDWARE and RELPOL are binary classification problems, while SCIENCE

and REC are four-class problems. The HARDWARE domain is interesting in that there

are many terms like "drive" or "bus" which are shared by both PC and MAC, and

hence fail to discriminate between the two classes. However "drive" combined with

"vlb" indicates PC, whereas "drive" combined with "syquest" indicates Mac. It shows

that class labels of training data must play an important role while inducing the co

occurrence patterns that can help us in disambiguating between the two classes. The

RELPOL domain, on the other hand, presented challenges of a different kind. While

bag of words do not yield impressive results, unsupervised approaches that yield

clusters of features are useful in digging out concepts like "Palestine war" or

"holocaust" that playa critical role in improving classification accuracy. Compared to

47

HARDWARE, class knowledge has a relatively smaller contribution towards accuracy

improvements in RELPOL.

The two spam filtering datasets are

1. USREMAIL (Delany & Cunningham 2004a) which contains 1000 personal

emails of which 50% are spam

2. LINGS PAM (Sakkis, et al., 2003) which contains 2893 messages from a

linguistics mailing list of which 27% are Spam.

The datasets were split into equal sized disjoint training and test sets. Each split

contains 20% of documents randomly selected from the original corpus, and is

stratified in that it preserves the class distribution of the original corpus. Fifteen such

train-test splits (alternately called trials) were obtained for each of the six datasets

mentioned above. It may be noted that the documents were pre-processed by removing

stop words (noise words) like functional words which are frequent throughout the

collection and ineffective in discriminating between classes. Punctuations and special

characters (quotes, commas and full stops) were also removed. Some special characters

like "!", "@", "%", "$" were retained because they have been found to be

discriminative for some domains (Sakkis, et al. 2003) Remaining words are reduced to

their stem by using Porter's algorithm (Porter 1980). We use Information Gain

(Mitchell 1997) to perform feature selection and use a maximum of 1000 top features

for evaluation.

3.2 Classifiers Used

Sebastiani (2002) carried out a comparative experimental study of several text

classifiers over five different versions of the Reuters collection, as well as OHSUMED

and 20 Newsgroups collections. In summarising his findings, he reports that boosting

based classifier committees, Support Vector Machines, example based methods (which

we refer to as instance based methods in this thesis) and regression methods deliver the

48

best performances. They are closely followed by neural networks and online classifiers.

Based on this study, we select a cross section of classifiers that are broadly

representative of the best performing classifiers. The first approach is the most basic

instance based approach that uses a CRN to realize a kNN-based retrieval. The second

is the Extended Case Retrieval Network (ECRN), a novel approach that exploits a

neural network style training algorithm to acquire knowledge for CRNs. The third is

SVM, and the fourth is LogitBoost, a popular boosting-based ensemble approach. We

then briefly look at using LSI for acquiring knowledge for CRNs, an approach that has

been covered in detail in the following chapter. We also include for comparison

Propositional Semantic Indexing (PSI) which has been proposed by Wiratunga, et al.

(2005a) to acquire and explicate knowledge in TCBR applications.

1. kNN using CRNs. Instance based classification using k Nearest Neighbours is

based on the idea of retrieving k cases most similar to a query case, and using the class

labels of the similar cases to arrive at a prediction for the query (Sebastiani 2002). The

effectiveness of this approach is largely determined by the representation of cases and

appropriateness of the distance measure used to evaluate similarity between cases. We

have seen in Section 2.3 that a CRN can be used to realize fast kNN based retrieval.

The relevance and similarity knowledge of CRN determine the case representation and

the relationship between features that comprise the vocabulary. The simplest CRN

would be one that uses no knowledge of similarity between features, and that which

uses binary relevance values, with a relevance value assuming a value 1 when a feature

is present in a case, a value 0 otherwise. Thus, such a CBR system is no different from

a basic IR system that is founded on the vector space model over BOW, and forms our

baseline system for comparisons. The choice of binary valued representations is

governed by the fact that unlike most IR systems operating over very large datasets, we

use relatively smaller datasets over which frequency-based measures like tf-idf are not

very robust. There are several distance measures proposed in literature (Manning &

Schutze, 1999), of which the Euclidean distance and the cosine similarity are most

49

popular. If cases are regarded as points in a vector space, the Euclidean distance

between two cases is the geometrical (or straight-line) distance between their

corresponding points. On the other hand, the cosine similarity is measured by

computing the cosine of the angle between the two vectors representing the two cases.

Two cases are maximally similar if their vectors are perfectly aligned, leading to a

cosine similarity of 1. The original work on CRNs does not show how it can be used to

realize the Euclidean and the cosine measures. In Appendix A.I, we show that such an

extension can be made while retaining CRN's efficiency advantages ..

2. ECRN. We proposed Extended Case Retrieval Nets (ECRN) (Chakraborti et. aI.,

2004) to integrate sub-symbolic learning mechanisms as exploited by neural networks,

into the CRN. ECRN was motivated by the architectural parallels between CRN and a

Multi Layer Feed-forward Network (MLFN). The name ECRN stems from the fact that

in addition to the IE nodes and the case nodes present in a CRN, we now have a third

layer pertaining to class labels of the textual cases. Henceforth we refer to these layers

as IE, case and class layers respectively. The number of nodes in the IE layer is equal to

the number of distinct features obtained after feature selection. Figure 3.1 shows a

schematic of the architecture.

To initialize the ECRN, the relevance weights connecting IE nodes to case nodes

are assigned binary values as in the baseline CRN described above. The weights

connecting the case-layer to the class-layer are assigned binary values based on

whether the case belongs to that class or not. During training, weights are modified to

improve classification accuracy of the system. The training cases are fed into the IE

layer one at a time and the classification output of the system is compared against the

expected outcome. The desired output is a binary value 0 or I depending on the class to

which the input case actually belongs. An error signal is computed between the

observed and desired outcomes. This error is fed back to alter the set of weights that

connect the IE layer with the case layer nodes. This is done by using a variant of the

back-propagation algorithm used widely in training Multi-layer Feed-Forward

50

Networks (Mitchell 1997). A sigmoidal weighted aggregation (typical of back

propagation) is used at each node. Now the revised set of weights is used to classify

the set of training documents again. If the mean squared error of the output layer is less

than the previous iteration, the current set of weights is retained; otherwise we revert

back to the old set of weights. The iterative process terminates once there is no

improvement in accuracy: the set of weights obtained are retained for use in the

classification phase. Once the ECRN has been trained for classification over training

data, we evaluate its classification performance over test data. For this the new case to

be classified is preprocessed - the IEs pertaining to the case are activated and the

activation is propagated through the case nodes and the class nodes. This can be viewed

as a two step process: in the first step, the nodes pertaining to cases that are similar to

(nearest neighbours of) the incoming document are activated - in the second step, the

activated cases vote for their respective classes via the connections to the output layer,

and the results are aggregated in the output nodes. The class with the strongest

activation is returned as the result.

In the context of the current chapter, it suffices to treat ECRN as a neural

network approach for text classification. However, from a broader standpoint, it is

worthwhile to take note of significant differences between a traditional neural network

approach and the ECRN approach. Firstly, hidden nodes and weights of neural

networks do not carry any specific interpretation with respect to the domain. This has

led to the "black-box" view typically ascribed to neural networks. In contrast, the

relevance arcs and all nodes in ECRN have definite correspondence to knowledge in

the TCBR system. Furthermore, with traditional Neural Networks, the weights would

have random initializations to start with. However since weights in ECRNs map onto

relevances, we could launch the ECRN training using relevance weights meaningful to

the domain. In (Chakraborti et. aI., 2004), we present empirical evidence to show that

this leads to significant reductions in the training time of ECRN, when compared to

random initialization. A summary of empirical results obtained with ECRN is presented

in Appendix A3. The idea of using algorithms like Back-propagation over a neural

51

network initialized with prior domain knowledge is used in KBANN (Mitchell 1997).

However in the framework of KBANN, the prior knowledge is a domain theory

consisting of non-recursive propositional Hom Clauses; in contrast ECRN uses a

knowledge-light initialization based on binary relevance values. This helps us preserve

the CRN topology while allowing for relevance weight learning.

...
B u
?:
Q)
en
ro
u
"'5
a.
~

•
•
•

~ after feature
selection

•
•
•

Set of Cases

Class Information of
Training Data

c
0

~
... :J

g~
WW

Classes

Error feedback to alter relevance weights

Figure 3.1 A Schematic of the Extended Case Retrieval Network (ECRN)

3.SVM SVMs are founded on the basic idea of inducing hyperplane separators that

was briefly discussed in the last chapter. SVMs have been reported to outperform most

other off-the-shelf classifiers in several experimental studies over diverse text

classification applications (Drucker et aI., 1999, Dumais et aI. , 1998, Joachims 1998).

Joachims(1998) argues that SVMs have two advantages in the context of text

classification. Firstly, feature selection is not needed, as SVMs are fairly robust to

overfitting and can scale up to very high dimensionalities. Secondly, they need almost

52

no parameter tuning, as there is a theoretically motivated, "default" choice of parameter

settings, which has been shown to provide the best effectiveness.

4. LogitBoost Boosting is based on the idea of using an ensemble (committee) of

diverse "weak" learners that complement each other. In the first step, a prediction

model is induced from training data and added to the committee. In the next step, the

weights of the training cases are changed, so that the hard-to-classify cases get higher

weight relative to the rest of the cases. The next member of the committee focuses

harder on the difficult parts of the instance space. These two steps are repeated for a

given number of iterations, leading to several diverse classifiers, whose predictions are

combined to yield the final classification. The diversity of the classifiers explains why

boosting works so well in practice (Frank et al., 2002). LogitBoost (Friedman et al.,

2000), like its earlier sibling Adaboost, is based on the statistical estimation procedure

called additive logistic regression. We have chosen it for our comparative study since it

has been found to be the most accurate of multi-class boosting methods (Friedman et

al.,2000).

5. LSI. This is very similar to the baseline CRN realizing a kNN based classification,

except for the fact that the relevance knowledge for the CRN is acquired using LSI. We

have briefly introduced LSI in the previous chapter and seen how it uses ideas from

factor analysis to model textual cases in terms of their constituent concepts, where a

concept can be viewed as a linear combination of features. All of the next chapter is

devoted to an in-depth treatment of LSI with special emphasis in Section 4.3 on how it

can be used to acquire similarity and relevance knowledge for CRNs.

6. PSI. PSI (Wiratunga et. aI, 2005a) has goals similar to LSI in that it attempts to

acquire an indexing vocabulary to describe textual cases, while minimizing noise due

to word choice variability. However, unlike LSI, PSI extracts new features as logical

combinations of existing keywords. The underlying thesis is that such logical

53

combinations correspond more closely to natural concepts and are more transparent

than linear combinations mined by LSI. PSI uses association rule mining to arrive at

logical combinations of features that are highly discriminatory. As a further step,

boosting is used to reduce redundancies in the mined feature set, by retaining only

those feature combinations that have minimal overlap with the rest. Experiments on

classification domains show that PSI-derived case representations have superior

retrieval performance compared to the original keyword-based representations.

3.3 Visualizing Textual Casebases

Let us consider a set of textual cases, each case consisting of a set of features. For

simplicity, we treat words in the text as features; the ideas presented can easily be

extended to deal with more complex features. The domain is unsupervised, so no class

knowledge is available. Also, we will restrict our attention to the problem side of cases,

for the moment. To illustrate our ideas, we model the documents in the toy Deerwester

collection (Deerwester, et al. 1990) as cases. This is shown in Figure 3.2(a). An

alternate representation is in the form of case-feature matrix shown in Figure 3.2(b);

elements are 1 when a feature is present in a case, 0 otherwise. It is straightforward to

map this matrix onto an equivalent image, shown in Figure 3.3(a), where the values 0

and I are mapped to distinct colours, a lighter shade denoting 1. We refer to this as the

"casebase image" metaphor. All images in this chapter were obtained using Matlab.

However the image as it stands, is not very useful. Firstly, it conveys very little

information about underlying patterns in terms of word or document clusters. Secondly,

the image is highly sensitive to how the words and documents are arranged in the

matrix; this is clearly undesirable. Thirdly, and we shall explore this in more detail

later, the image tells us very little about the complexity of the underlying casebase.

To address these limitations, we propose an algorithm that does a two-fold

transformation on the case-feature matrix to yield a matrix where similar cases (and

54

similar features) are stacked close to each other. The output is a matrix, which when

visualized as an image, captures the underlying regularities in the casebase. Figure 3.4

shows a sketch of the algorithm. The broad idea is as follows . The first case row in the

original matrix is retained as it is. Next, we compute the cosine similarity of all other

cases to the first case, and the case most similar to the first case is stacked next to it, by

swapping positions with the existing second row. If more than one case is found to be

equally similar, one of them is chosen randomly. In the next step, all cases excepting

the two stacked ones are assessed with respect to their similarity to the second case.

The case that maximizes a weighted combination of similarities to the first and second

case (with higher weight assigned to the second case) is chosen as the third case, and

stacked next to the second row. The process is repeated till all rows are stacked. In

Step 2 of the algorithm, the same process is repeated, this time over the columns of the

matrix generated by Step 1.

c1: Human machine interface for Lab ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation at user-perceived response time to error measurement

m1: The genel"3tion of random, binary, unordered mas
m2: The Intersection graphs at paths In trees
m3: Graph minors IV : Widths of trees and well~uasl-ordering
m4: Graph minors: A survey

(a)

c1 :
c2:
c3:
c4:
c5:
m1:
m2:
m3:
m4:

'-

Ii r~ i~ ~ E
E~!l;EIt~g!·UI" :J:J !o,- '->oEILE
~1II.5 .. uOl:JEIII~w ..

1 0 1 0 1 00 000 00
o 1 0 0 1 o 1 o 1 1 o 1
00100 o 1 010 1 0
1 00 0 0 00 010 1 0
000 0 0 o 1 o 0 1 o 1
00010 00 000 00
00010 1 0 0 00 00
00010 1 0 100 00
010 001 0 1 0 0 00

(b)

Figure 3.2 Documents in the Deerwester Collection

The weighted similarity evaluation is critical to the working of this algorithm and

merits a closer look. The general rule for selecting the (k+l) row (case) is to choose the

one that maximizes

k L Wi sim(cp c) such that for all 1 ~ i < k , W i+1 > Wi

i=1

(3.1)

55

where k is the number of already stacked rows, Cj is the ith stacked case, C is a case

whose eligibility for (k+ l)th position is being evaluated, sim(cj, c) is the cosine

similarity between cases Ci and c, and Wi is the weight attached to the similarity of c

with the ith stacked case. In our implementations, we used

Wj =lI(k-i+l) (3.2)

The basic intuition behind this weighting scheme is that we want to ensure a gradual

change in the way cases are grouped. This has implications for facilitating a meaningful

display of clusters, and also for the complexity evaluation discussed in Section 3. If

only sim(clo c) were considered for the stacking process (which is equivalent to

assigning 0 to all Wi, i :::;: I to k-l) we may have abrupt changes resulting in an image

that fails to reveal natural clusters. We note that for efficiency reasons, our

implementation uses an approximation of (2), where we take into account only the

previous 10 stacked cases and no more, since the weights associated with very distant

cases are negligible and have no significant effect on the ordering.

Figure 3.3(a) shows the image corresponding to an arbitrary arrangement of the

documents in the Deerwester matrix. Figure 3.3(b) shows the image after the rows are

stacked. Figure 3.3(c) is the final image after column stacking. It is interesting to see

that the two broad topics within the collection, namely Human Computer Interaction

(HeI) and graphs are clearly visible in Figure 3.3(c) as two "chunks" of contiguous

light shades. Also, there is a gradual transition in shades from HCI to graphs. This is

useful in identifying "bridge words" that can serve to connect two topics; an example is

word 9 ("survey") in Figure 3.3(c) which is common to HCI and graphs. We can also

visually identify cases that are in the topic boundaries and deal strongly with more than

one topic. This is useful for aiding casebase maintenance tasks such as identification of

noisy cases and redundant features (Massie 2006). We have designed a simple

interface that allows users to "navigate" the image, and visualize the "topic chunks",

and words that describe those chunks.

56

(a) (b) (c)

Figure 3.3 Images from Deerwester collection (a) arbitrarily stacked (b) after row

stacking (c) after column stacking

Step 1 (Stack Rows)

Input : Case-Feature Matrix M

Output : Case-Feature MatrLx MR which i M stacked by rows

Method:

Instantiate first row of Mil to first row of M

for k = 1 to (noOfRows-l) /*the index of the last case (row) stacked*/

for j = (k+ 1) to noOfRows /* check through all candidate ca es*/

wsimJ = 0; /* wsim. weighted s imila rity of ith ca e */

for i = 1 to k /* a lready stacked rows*/

wsimj = wsimj+ wsim/(lI(k-i+l))*sim(c.,c);

e nd

end

choose j that ma ximize wsimJ and interchange rows (k+ 1) and j

end

Step 2 (Stack Columns)

Input: Case-Feature MatrLx MR generated by step 1

Output : Case-Feature MatrLx Me which is MR tacked by columns

Method: same as in Step 1 except that col umns a re in te rcha nged (based on feature s imila rity computed

as co ine s imilarity between columns) instead ofrows.

Figure 3.4 The Stacking Algorithm

57

3.3.1 Examples of visualizations

Figure 3.5 shows snapshots of stacked images obtained from the six datasets described

in Section 3.1. The rows of each image correspond to cases, and the columns to

features. The case rows are shaded to show the classes to which they belong. It is seen

that USREMAIL has very neat separability between the classes with cases belonging to

the same class packed closely to each other. LINGSPAM and RELPOL also display

regularities with respect to ways cases belonging to the same class are packed. In

contrast, HARDWARE is clearly a complex domain, with very little separability

between classes, and very few pronounced topic chunks. As noted in Section 3.1, this is

because of the presence of large number of features which are shared by classes Apple

and Mac. To increase effectiveness of classification in HARDWARE, one approach is

to combine features to extract new features which are more discriminative of the two

classes.

3.4 Complexity evaluation of textual casebases

Complexity of a casebase is independent of classifiers and derived directly from the

casebase characteristics that are critical to estimating the difficulty of performing

effective retrieval or classification on that dataset. In this section, we explore how the

image metaphor can be exploited to obtain a measure of the casebase complexity. For

completeness, we will digress into the more general problem of complexity evaluation

over textual casebases, and then show how we can arrive at a complexity measure that

suits our needs.

There are two reasons why complexity evaluation is useful. Firstly, we can predict

difficulty of domains (datasets) for a given choice of representation (feature

selection/extraction and similarity measures). Secondly, we can compare across

different choices of representation over a fixed domain and choose the representation

58

USREMAIL LlNGSPAM

HARDWARE RELPOL

REC SCIENCE

Figure 3.5 tacked Images obtain d from the six datasets

59

that minimizes complexity. We observe that complexity over a casebase can be defined

in two ways, namely Alignment Complexity (AC) and Collection Complexity (CC).

The former measures the degree of "alignment" (Lamontagne 2006) between problem

and solution components of textual cases. Measuring this helps us in answering the

question "Do similar problems have similar solutions?" and thereby assessing the

suitability of CBR (or alternatively the choice of representation) to that task. A special

case of this problem is seen in classification domains, where the solution is replaced by

class label. In measuring CC, the distinction between the problem and solution

components of cases is ignored, and the complexity measure provides a measure of

clustering tendencies exhibited by the casebase. Thus a casebase with cases uniformly

distributed over the feature space has a high CC; whereas, one with more well-defined

clusters has a lower CC (Vinay et aI., 2006). Intuitively, since the stacked image

captures regularities arising from topic chunks in the casebase, we would expect that,

all else being equal, stacked images from simpler domains will be more compressible,

and thus have higher compression ratios, compared to ones from complex domains.

This is because image compression algorithms typically exploit regularities to

minimize redundancy in storage. We carry forth this intuition into our discussions of

AC, since AC can be thought of as an extension of cc.
Alignment can be interpreted in two different ways. The first interpretation is a

local one; an example is the case cohesion metric formulated by (Lamontagne 2006).

Here we look at a case, say C, in isolation, and determine two sets: set SJ, which

comprises cases whose problem components are closest to the problem component of C

(based on a threshold), and a set Sb comprising cases whose solution components are

closest to the solution of C. The overlap between SJ and S2 is used as a measure of

alignment of C. This is a local metric, in that each case is evaluated on its own, and

assigned a measure. The second interpretation is a global one based on how well the

clusters derived from problem components of cases correspond to clusters derived from

solution components. In other words, a global measure is different from a local one in

that it is not evaluated "bottom-up" by aggregating complexities obtained by looking at

60

each case in isolation. Rather the clustering patterns at a broad level are used as the

basis for evaluating complexity. Also, a global measure cannot be extended

comfortably to yield case-specific complexity. In this paper we adopt this second

global interpretation of alignment.

Compression approaches used to measure CC can be extended to measuring AC.

For measuring alignment, we construct two case-feature matrices: one based on

problem components of cases, the other based on solution components. These two

matrices are stacked as described in Section 3.3, to yield two images Ip and Is

respectively. Ip and Is are now independently compressed to obtain compression ratios

CRp and CRs respectively. The higher the compression ratio, the more pronounced the

clustering patterns. We note that generating Ip and Is involve reordering the cases, and

we can read out the new order in which cases are arranged based on problem and

solution side clustering. For measuring alignment, we compare the ordering of cases in

Ip and Is. One way of doing this is to create a fresh solution side image Isp by stacking

solution components of cases using the problem side ordering of cases as read out from

Ip. We would intuitively expect Isp to be less compressible than Is,.unless the casebase

is perfectly aligned. Compressing Isp yields a new compression ratio CRsp. The Global

Alignment MEasure (GAME) is given by CRsp/ CRs. A higher value of GAME

indicates a better alignment. An alternate measure can be obtained by considering Ips,

the problem side image with solution ordering imposed on it, instead of Isp. However,

our choice of Isp over Ips was governed by the observation that in CBR, while we are

keen on ensuring that similar problems have similar solutions, it is not of primal

importance that similar solutions necessarily originate from similar problems. Using Isp

takes care of this asymmetry.

GAME can be extended to classification domains where the class label is treated

as a solution. In this case, our interest is in determining whether near-neighbours in the

problem side ordering (as obtained from Ip) belong to the same class. We obtain a

string of class labels corresponding to the problems as they appear in the problem side

ordering. This allows us to do away with the image compression and resort to a simpler

61

string based compression instead. As an illustration, let us consider a two class problem

of 10 cases in the email domain, where cases C1 through Cs belong to class S (for

SPAM) and C6 through CIO belong to L (for LEGITIMATE). Let us assume that the

problem side ordering of the cases after stacking is CIC2C6C4CSC7C3C9CIOCg.

Replacing each case identifier with its class label, we obtain the class string

SSLSSLSLLL. The most easily classifiable casebase would have a string

SSSSSLLLLL, and the most complex would have SLSLSLSLSL. A compression

algorithm that exploits contiguous blocks (but not compound repeating patterns like

SL) would thus be ideal; Run Length Encoding (Rosenfeld and Kak, 1982) is one such

scheme. Using this, the complexity is a direct function of the number of the flips

(changes from one class label to another, N to S or S to N in the above example). We

define GAME complexity measure for classification as

GAME I (fliPSrnax - flipsmin) I (n-1) - (k-I))
class = og = og ------

flips - flipsmin flips - (k -1)

where k is the number of classes, n is the number of cases (n > k), flips is the number

of transitions from one class to another in the class string, flipsmin is the value of flips

for the simplest possible casebase having n cases and k classes, and flipsrnax is the value

of flips for the most complex casebase. We note the most complex casebase

presupposes a uniform class distribution; we then haveflipsmax = (n-i). A higher values

of GAMEciass corresponds to a simpler domain; the most complex domain has

GAMEciass = O. Thus we expect positive correlation of GAMEclass to accuracy results

derived from classifiers. The logarithm has a dampening effect on the large values that

could result when n » k, flips. As a further detail, a small constant (say 0.01) should

be added to the denominator to avoid division by zero when flips = flipsmin.

An important issue that merits more attention is the choice of starting case in the

stacking process, and its influence on the visualization and complexity measure. A

theoretically sound way of choosing the starting case would be to perform stacking

several times, using a distinct case each time as a starting case. When we have

exhausted all possibilities, we choose the arrangement that yields the highest

62

compression ratio. Further research is needed to find efficient ways of pruning the

search space to make this process less computationally expensive. Our experiments

have shown that visualizations are not widely affected by the choice of starting cases,

except for the shuffiing in the order in which clusters are displayed.

3.5 GAMEd.55 for the six datasets

Figure 3.6 shows the GAMEc1ass values obtained over the 15 trials in each of the six

datasets. Of the binary problems, LINGSPAM and USREMAIL have high GAMEc\ass

values indicating that they are simpler compared to HARDWARE which has a low

GAMEc1ass value. Table 3.1 suggests that GAMEc1ass predictions are supported by

accuracy figures recorded by different classifiers. The current formulation of GAMEc\ass

allows for more meaningful comparisons between problems when they have the same

number of classes. So we compared the binary and four-class problems separately. The

correlation coefficient of the GAMEc1ass score against classification accuracies over the

four binary problems are shown in Table 3.2. We note a strong positive linear

correlation of GAMEc\ass to all four classifiers. It is pointless to do correlation over the

four-class datasets since we have just two of them; however we observe that GAMEc1ass

declares SCIENCE to be more complex than REC, and this is confirmed by all

classifiers. SVM being inherently a binary classifier was not applied on the multi-class

63

datasets, though we plan to experiment with multi-class SVM in future.

Q)

=>
Ii ,.

-e
UJ

~
(!)

Comparing GAMEcle$s across different datasets over 15 trials

4.-------------r-------------~----------__,

a
3.5

3

Q / "
B - "til I \ Q Gl J "l<1

/ \ I \ /' \ / ' ...0 ~
rf \ / ~~ \ / " /'

\ / I:.I \ / 13

a ~, .8
2 5

2

'. .0' 0- "
0- " ' "

.. · ·~.;/ ·· · · o .

15

0.501-------------5.1....-------------1-'-0---------------115

TriallD

.. . 0 ' " USREMAIL

---'0.- HARDWARE

- e - liNGSPAM
~RELPOL

-"O'- REC

--+- SCIENCE

Figure 3.6 GAMEciass values across different datasets

Table 3.1 GAMEclass and Accuracies obtained by different classifiers

REC SCIENCE HARDWARE RELPOL USREMAIL L1NGSPAM

GAMEda .. 1.1629 1.0492 1.0028 2.0358 2.3728 3.2222

kNN (CRN) 62.79 54.89 59.51 70.51 59.23 85.09

LSI 79.32 72.55 66.30 91.17 94.67 97.37

ECRN 69.91 80.18 80.12 93.26 96.50 98.17

SVM -- -- 78.82 91.86 95.83 95.63

LogitBoost 87.15 73.77 77.99 79.67 92.67 95.80

PSI 66.28 76.2 80.1 91.2 94.83 95.8

Table 3.2 Correlation of classifier accuracies with GAM Eciass

kNN (CRN) LSI ECRN SVI\1 LogitBoost PSI

P 0.7685 0.9176 0.9360 0.9023 0.8820 0.9330

64

3.6 Discussion of Related Work

We have noted in Section 2.4 that visualization techniques in Text Mining have

typically attempted to display one of word associations or document clusters, but

seldom both. An approach that comes close to our idea of stacking in terms of the

generated layout is the Hierarchical Clustering Explorer (HCI Lab, University of

Maryland 2007) which dynamically generates clusters based on user-defined

thresholds, and displays the mined document clusters. In addition to the fact that word

clusters are not displayed, one other limitation of this approach is that there is no clear

way of choosing the right ordering between several sub-trees under a given node . This

may lead to discontinuities in the image (some of which are marked by 0 in Figure 3.7)

and sudden change in concepts. Thus it would fail to reveal patterns revealed by the

weighted stacking approach. An approach that comes close to showing both words and

documents in the same space is WEBSOM (Feldman et aI. , 2007). WEBSOM fails to

preserve the structure of cases as a set of feature values, and is unwieldy for casebase

maintenance. Furthermore, our approach has the relative advantage of being free from

convergence problems faced by WEBSOM .

____ ~~T.:I~. _____ .. _ .. ~~,...

i

Figure 3.7 A snapshot of hierarchical visualization (courtesy HCI Maryland website)

It would be interesting to explore parallels between ' 'topic chunks" revealed by

the stacked image, and concepts as mined by Formal Concept Analysis (FCA) (Diaz

Agudo et al. 200 I). While FCA has been applied to TCBR tasks, the inherent

sparseness of textual data leads to generation of a large number of concepts that are

brittle and unintuitive. Relaxing the strict closure requirements of FCA could possibly

65

lead to "approximate concepts". Our intuition is that a topic chunk, when interpreted as

a blurred rectangular version of the actual light shades in close proximity, may be a

close analog to such an approximate concept. It is worth noting that this blurring

operation can be viewed as smoothing of cases based on neighbourhood of each cell,

thus achieving feature generalization. Blurring makes sense only on the stacked image

since we are assured that neighbouring cells are likely to correspond to similar cases

and features; it is meaningless on the original image where the arrangement is arbitrary.

In the next chapter, we show that lower dimensional representations generated by LSI

can be regarded as blurred versions of the original casebase. This parallel opens up

avenues for exploring alternatives to LSI that tailor the blurring process to cater to

specific TeBR goals. Of particular interest in this context is the idea of image

transforms proposed by Hoenkamp (2003).

As a final point, we note that casebases are seldom static, so the importance of

efficient update strategies that can handle additions, deletions or updates of cases (or

features) cannot be over-emphasized. Though we have not experimented with

dynamical collections, our current prescription is a lazy strategy that makes quick

incremental but approximate updates whenever a change happens, and relegates the job

of making accurate changes at a later "bulk update" stage. This saves the overhead of

performing stacking each time a change is encountered. The basic idea is to trade off

accuracy for efficiency, and is similar in sprit to the idea of folding-in (Berry et al.

1995) which is a popular method for updating LSI based representations. Folding-in is

briefly described in Section 4.2.2 in the following chapter.

3.7 Chapter Summary

In this chapter we have emphasized the importance of characterizing textual casebases

in explaining the performance of retrieval or classification techniques that operate over

them. Towards this direction, we have presented novel approaches for visualizing and

evaluating complexity of textual casebases. The visualization gives a bird's eye view

66

of the domain and helps the expert or knowledge engineer make qualitative judgments

on its characteristics. We have studied the perfonnance of text classifiers founded on

well-studied principles over six textual datasets, and analysed the correlation of our

complexity measure against accuracy figures reported by these classifiers. The six

datasets that were examined in detail in this chapter will be used in later chapters to

evaluate novel approaches to acquire relevance and similarity that aim at improving

retrieval effectiveness. This will help us derive better explanations of experimental

results in comparison with other classifiers, and particularly in terms of the inherent

dataset characteristics.

67

Chapter 4

Latent Semantic Indexing for

Knowledge Acquisition in CRNs

Classification is hard, especially for unlabelled cases. I

In Chapter 2, we have seen several limitations associated with bag of words

representation for textual cases. To summarize, BOW fails to recover from polysemy

and synonymy, and hence cannot resolve disparities due to variability in word choice.

In a study (Furnas et aI., 1987), it has been reported that different people use the same

keywords for expressing the same concepts only 20 % of the time. As noted before,

there are two distinct ways of addressing this problem, and most practical solutions use

a combination of both approaches. The first approach is to use carefully handcrafted

knowledge sources like domain specific ontologies and rule-bases, or linguistic

resources like thesauri and Wordnet (Miller 1995). The second approach is to use

statistical learners to infer "latent" word associations from a document corpus. Given

our emphasis on reducing manual knowledge engineering overheads, we are more

interested in the second approach. We have briefly introduced a statistical approach

called LSI in Chapter 2 and argued that it has certain advantages over other approaches

in relation to our TCBR goals. To recapitulate, these advantages include: ability to

position documents and words in the same space and hence generate both similarity

and relevance knowledge, easy integration with instance based learners because of its

1 Inspired by Neil Bohr's quote: "Prediction is difficult, especially about the future."

68

grounding on the vector space fonnalism, rich underlying representation of concepts in

tenns of words or documents allowing for good visualization support, availability of

easy update strategies, efficiency of retrieval, easy integration of background

knowledge in the fonn of additional documents to boost retrieval effectiveness, and

reliance on very few parameters to be tuned. One critical limitation is that LSI fails to

exploit class knowledge in supervised classification tasks. We address this limitation in

depth in Chapter 5. In this chapter, we elaborate on the mechanics of LSI with the goal

of laying a foundation for the following chapters. We also illustrate how LSI can be

used to mine knowledge for TCBR tasks, and how the acquired knowledge can be

integrated into the CRN.

The rest of the chapter is organized as follows. In Section 4.1 we attempt to

provide an intuitive insight into the mathematics of LSI. In Section 4.2 we relate this

mathematical understanding to the context in which LSI is actually applied. We also

examine the rationale behind using a dual mode factor analysis, from different

standpoints. Section 4.3 shows how LSI can be used to mine similarity and relevance

knowledge for CRNs.

4.1 Two Mode Factor Analysis

LSI was proposed as a technique for concept extraction by Deerwester. The starting

point for LSI is a tenn document matrix (alternately case feature matrix). The objective

is to detennine a set of underlying "factors" or concepts, that best explain the

relationship between the tenns and documents. This is not very different from the goal

of most factor analytic research from the sixties to the nineties. What distinguishes LSI

from most earlier approaches is its "two mode factor analysis" which allows it to

express both words and documents in terms of the same underlying concepts. For the

sake of completeness, we provide a brief introduction to linear algebraic techniques for

single-mode factor analysis in Section 4.1.1. In Section 4.1.2 we introduce the Singular

Value Decomposition, which is at the heart of LSI.

69

4.1.1 An Introduction to the Mathematical Foundation of LSI

To start with, we have a term document matrix; each element in that matrix is a weight

showing the relevance of the term to the corresponding document. The first significant

step in Linear Algebra is to view a matrix such as this as an operator. This means that

the matrix can act upon a vector (when it is multiplied with that vector), and relocate it

to a different position. For example, the square matrix2

[
2 -I I]

M= -I 2 -1

I -I 2

can act on the vector

and move it to a new location given by M A:

In the underlying geometry of the space, the action of a matrix M can be viewed as a

-combination of translation and rotation of A in the general case. We are interested in

charactering a matrix M formally in terms of its properties that govern its action on

vectors; the concept of eigenvectors does precisely that.

We consider all vectors i that, when acted on by M, stretch themselves to a

different location Ai, where A is a scalar, but do not undergo any rotation. Thus

2 Note that, unlike the example presented, all entries in a term document matrix are
usually non-negative.

70

M X = AX (4.1)

The vectors satisfying (4.1) are called eigenvectors, and each of these eigenvectors is

associated with a corresponding value of A referred to as an eigenvalue. We rewrite

(4.1) as (M -)J) x = 0, where I is an identity matrix of dimensions matching M;

this is called the characteristic equation. Solving it in our example, we have the

following three eigenvectors

associated with the eigenvalues Al = 1, A 2 = 1 and A 3 = 4 respectively.

We now study the effect of M on any arbitrary vector x

We can express x as a linear combination of VI' v2 and v3 • The revised position M x
is now given by

Mx= M(1v, +2V2 +3v3)

= Mv, + 2Mv2 + 3Mv3

= AI VI + 2A2 V2 + 3A3 V3

The interesting aspect of this rewrite is that we can see that the total effect of M on x
is expressed as a weighted combination of effects due to each eigenvector.

Eigenvectors having very small eigenvalues associated with them have a small effect

on the operation of M on X. In the example above, the eigenvector associated with the

eigenvalue A 3 = 4 will have a more pronounced effect in characterizing M as an

operator compared to the two other eigenvectors each associated with eigenvalue 1.

This intuition is critical to our treatment ofSVD below.

71

Moving on to a few more definitions, a family of a finite number of vectors is said

to be linearly independent if none of them can be expressed as a linear combination of

the remaining ones. The rank of a matrix M (not necessarily square) is the number of

linearly independent columns (or rows) in it. It can be shown that the rank of a square

matrix equals the number of its non-zero eigenvalues, counted with multiplicity.

We now look at an important result in factor analysis. For a given square real

valued m x m matrix M with linearly independent eigenvectors, we can obtain a

factorization

such that the columns of U are the eigenvectors of M, and A is a diagonal matrix

whose diagonal elements are eigenvalues of M arranged in decreasing order. This

result is due to the Matrix Diagonalization Theorem. This result applies to square

matrices, but not to rectangular ones like the term-document matrix.

4.1.2 The Singular Value Decomposition

Previous attempts at factor analysis applied the idea to term-term matrices or

document-document matrices, which are square. This is referred to as single-mode

factor analysis. In contrast, a two mode factor analysis starts off with a rectangular term

document matrix M of dimensions m x n (corresponding to m terms and

n documents), and rank r. The key apparatus is the singular value decomposition

(SVD) of M , which is given by:

M=U"L VT

where

U is an mxm matrix whose columns are orthogonal eigenvectors of M MT.

V is an n x n matrix whose columns are orthogonal eigenvectors of MT M .

72

The eigenvalues A" A,2 , ... , A,r of M M T are the same as eigenvalues of MT M . The

square root of these r eigenvalues, called singular values, are arranged in descending

order along the diagonal of the matrix L, all other elements of which are set to o.
We have seen before that small eigenvalues contribute less to the effect of the

action of a matrix M on vectors. Extending this intuition to SVD, it is interesting to

see the effect of considering only the top k singular values, and discarding the rest

(flipping them to 0). Thus the matrix L is shrunk to a k xk diagonal matrix L k • We

also delete the columns corresponding to low (and zero) singular values in U and V

A A A

to obtain U and V respectively. U, Lk and V can now be combined to yield

(4.1)

if is a k-rank approximation to M. This result is pivotal to our discussion of LSI that

follows in the next section. In the rest of the thesis, we will refer to M as a case-feature

matrix (with cases as rows and features as columns), excepting situations where we

refer to equation 4.1 which is formulated with cases as columns and features as rows.

4.2 Latent Semantic Indexing

SVD as formulated in Equation 4.1 is at the heart of LSI. In this section, we examine

the use of SVD for arriving at better textual representations. We show how LSI can be

made useful in practice, and take specific note of issues that provide a context to

motivate research reported in the following chapters.

4.2.1 SVD for LSI

The following are a few distinct directions from which SVD is interesting from the

point of view of text retrieval.

73

Firstly, we note that SVD achieves dimensionality reduction. Let M be a case

feature matrix, with each row representing a case. Geometrically, the rows of -0 and

V are co-ordinates of points corresponding to cases and features mapped onto a k

dimensional space. Typically, the axes are scaled using the k singular values to assign

more importance to dimensions that are associated with high singular values. These

reduced dimensional representations can then be compared against each other using the

dot product or the cosine measure.
~

Secondly, it can be shown that M is the best k-rank approximation to M in the

least-squares sense. The quality of an approximation M A is measured by the Frobenius

Norm of the "discrepancy" matrix X = M - M A' which is given by:

m n

IIXIIF= IIX/.
;=1 j=1

The lower the value of II X II F' the better the matrix M A is, as an approximations to

M. Viewing the low rank approximation problem as one of constraint optimization, it

can be shown that, of all approximate matrices that satisfy the constraint that their rank

is at most k, if is the one that registers a minimum value for II X II F • This conforms

to our earlier intuition that removing very small singular values does not significantly

affect M. The important thesis behind LSI is that the small singular values correspond

to noise due to word choice variability (polysemy and synonymy). if is a less sparse

representation compared to M that broadly retains the patterns of term association to

documents, but at the same time "smoothes" it out to eliminate noise.

Thirdly, we note that the correspondence between low singular values and noise

due to word choice variation is not accidental. Considering a square matrix M with

two identical columns, we can eliminate one of these and still retain the same rank.

This is a trivial case of feature selection. If instead, M had nearly identical columns, it

74

would mean that the two corresponding features would have co-occurred similarly with

documents. This would be true for closely related features like "Middle East" and "oil"

which might appear in very similar contexts in a large document corpus. In such a case,

it is intuitive that we can still go ahead with replacing the two columns corresponding

to the two features by a new feature (column) that averages or smoothes out the two

original features. This is exactly what SVD achieves when it constructs a low rank

approximation. In this context, we make a critical distinction between the "true rank"

and "effective rank" of a matrix. While the true rank takes into account all non-zero

singular values, effective rank discards the very small ones. Thus replacing two closely

related features by a single new feature changes the true rank but maintains the

effective rank of the matrix. The ability of SVD to identify "latent" co-occurrence

patterns is the main reason for its improved effectiveness in retrieval tasks compared to

the plain vector space model based on bag of words. Also, the new features which are

referred to as "concept" features are expected to be more robust indicators of meaning

in comparison to the original feature set. This can be viewed as a step of feature

extraction. It is important to note that extracted features can be expressed as a linear

weighted combination of original features. There is another notable consequence of

feature extraction: although LSI deals reasonably well with synonymy, (Deerwester

1990) observe that the solution it offers to polysemy is at best partial. This is also

confirmed by the results of their experiments. The problem lies in the fact that LSI

forces a term to have a single representation in the concept space; thus a word with

multiple meanings is represented as the weighted average of the different meanings. It

is possible that none of the "real" meanings is close to the average, leading to a serious

distortion. We will revisit this idea using a concrete example in Section 4.3.

Fourthly, both terms and documents are treated in a uniform way by LSI. The

concept features act as new dimensions, in terms of which both terms and documents

are represented. In Figure 4. 1 (a), which is an adapted version of Figure 18.3 from the

online version of (Manning, C. et aI., 2008 expected), we show an example of vectors

spaces before and after LSI. Figure 4.1 (b) shows how representations of words and

75

documents obtained by LSI can be positioned in the new concept space. This allows us

to visualize term and document clusters in the same space, and obtain interpretable

descriptors of these clusters based on neighbouring words.

Unemployment LSI dimension 2

o Doc 3 o Doc3

o Doc 2

o Doc I

Hunger

Unemployment

o Poverty

o Doc 2

o Doc I

o Hunger

LSI dimension 1

(a) Original Feature Space (b) Terms and documents in the LSI concept space

Figure 4.1 LSI in an example domain

4.2.2 LSI: Beyond SVD

In this section, we focus on additional issues that need to be addressed to make LSI

work in practice.

Query Transformation. For LSI to be practically useful in a retrieval task, it is

obviously not enough to represent documents in a low dimensional space; we need to

map the query to that space as well so that it can be meaningfully compared with the

documents. This mapping is given by:

~- 'U~-I q- q k k

76

(4.2)

where q is the original query and q its representation in the k-dimensional space. The

post multiplication by ~ k -I has the effect of weighting the dimensions based on the

singular values. The vector q can now be compared with the document

representations which can be read out from the rows of V .

In the TeBR context however, there are situations where we would like to make

comparisons on the basis of the original feature space, and not in the reduced space.

This is because the original features are more explicit than the extracted concept

features. Also, additional background knowledge about term associations can be easily

incorporated on a representation based on the original feature set; it is not

straightforward to inject such knowledge into the LSI-generated concept features. For

this, we can use the formulation in 4.1, which yields a "smoothed" (and less noisy)

representation of cases in the original feature space. The query can now be directly

compared against these representations. A relevant case that shared no features with the

query in the original vector space, may now register a non-zero similarity with the

query. This is because the smoothed representation of the case generated by LSI is

likely to reduce the sparseness of the original representation and assign positive

relevances to words contextually related to those present in the case. This increases the

likelihood of the case being retrieved in response to a semantically related query that

uses a different choice of words. This will be illustrated with an example in Section 4.3.

The choice of dimensionality One critical factor determining LSI performance is the

choice of k, the number of singular values that need to be considered. There is no

elegant solution to determining the value that works best. Usually the effectiveness of

retrieval is evaluated on a subset of documents over which relevance judgments are

available, and the value of k that works best is used for the entire collection. In

77

supervised classification domains, an appropriate value of k can be obtained using cross

validation over the training set. Using a very low value of k may result in filtering out

useful information along with noise; using a very high value may lead to retaining

noise that ought to be filtered out. In terms of evaluation measures, using a low value of

k leads to high recall; thus documents even remotely relevant to the query will get

retrieved. However precision may suffer, since not all retrieved documents may be

relevant. In contrast, using a very high value of k may result in low recall and high

precision. An extreme case is using a value of k same as the original number of terms,

which results in LSI representations that are no different from the original vector space.

Alternatively, using the measures of completeness and correctness introduced in

Section 2.3, low values of k favour complete retrieval over correct ones; high values

favour correctness over completeness.

Efficient Update When new documents or terms are added to the collection, or

existing documents or terms removed, the LSI generated representations need to be

revised to accommodate these changes. Three broad update strategies have been

proposed in LSI literature: (a) recomputation (b) folding-in (c) SVD update.

Recomputation involves a brute force SVD computation all over again to generate fresh

representations, each time a change happens. This is the most straightforward and the

most inefficient of the three approaches. Folding in terms and documents is a more

efficient approach, where the new documents (or terms) are mapped to the existing

representation using a formulation similar to query transformation shown in Equation

4.2. This obviates the need to compute SVD from scratch, and hence is much more

efficient compared to recomputation. The downside is that folding-in may not generate

accurate representations as would be obtained with a fresh SVD on the revised

collection. For one, the orthogonality of 0 and V are no longer guaranteed. This issue

is addressed by the approach called SVD-update, which obtains a revised lower rank

approximation which is comparable in accuracy to the one that would be obtained with

78

recomputation, and also preserves the orthogonality of (; and V. SVD update is

faster compared to recomputation since it involves only incremental changes to the

existing representation. However, it is much slower, though more accurate, compared

to folding in. The choice between SVD update and folding-in is thus driven by the

tradeoff between accuracy and time performance. Berry et al. (1995) observe that SVD

update is preferable when changes are more frequent. While update strategies are

peripheral to the theme of this thesis, we note that these approaches can be directly

applied to the LSI improvisations suggested in the following chapter. Most realistic

applications have dynamic collections, hence efficient updates is of critical concern

from a practical standpoint.

Using LSI for Classification LSI can easily be extended to supervised text

classification tasks. The revised representations of the labelled training documents in

the lower dimensional space are obtained as described before. Alternatively, we can use

the reduced rank approximations of the training documents in the original feature

space. The test documents are mapped to either of these spaces, and a weighted k

Nearest Neighbour algorithm is used to identify the nearest neighbours. A class label is

assigned to the test document based on weighted majority vote. Either cosine similarity

or Euclidean distance can be used as to compute similarities. As has been observed in

Chapter 2, a disadvantage with this straightforward extension of LSI to classification is

that class labels of the training documents play no role in constructing the revised

document representation.

Space and Time Efficiency LSI generated representations are more compact compared

to the original vector space because of reduction in the feature space size. However,

this does not really translate to reduction in storage space requirements, since

advantages due to compaction are offset by the fact that LSI destroys the sparseness of

the original representation. Furthermore, storage requirements are compounded by the

79

fact that relevance values generated by LSI are real numbers, while the original term

document matrix is typically binary valued. The loss of sparseness has adverse effects

in terms of retrieval time as well. While the use of an inverted index as common in IR

applications (Rijsbergen 1979), leads to significant speedups over the original

representation by restricting the number of cases compared, it is relatively ineffective

over the LSI generated representation. In Chapter 8, we address the issue of sparseness

in depth and propose an efficient CRN-based retrieval formalism to facilitate fast

retrieval over non-sparse representations.

4.2.3 Why does LSI work? An Empirical Justification

In Section 4.2.1, we have presented intuitive explanations for improvements in

performance observed with LSI. In this section, we will look at some interesting

empirical evidence (Kontostathis & Pottenger 2006) that suggests that LSI's

effectiveness can be attributed to its ability to model higher order term co-occurrences.

If two words co-occur in at least one document in the collection, they are said to share a

first order co-occurrence between them. Examples are "filtering" and "indexing" in the

casebase shown in Figure 4.2(a). Furthermore, we note that "matrix" and "clustering"

co-occur in one document, and words ''matrix'' and "differential" in another; thus we

can infer that "clustering" and "differential" are related to each other, even if they do

not co-occur in any document. Such a relation is called a second-order association, and

the word sequence "clustering - matrix -- differential" defines a second order path

between "clustering" and "differential". We can extend this idea to orders higher than

2. While we revisit the issue of higher order co-occurrences in more detail in Chapter

5, here we take note of the main conclusions reached by Kontostathis and Pottenger

(2006) that will be relevant to our discussion in the following three chapters.

There is a strong correspondence between the number of higher order co

occurrence paths between two words and the similarity between them as inferred by

LSI. The authors derive an LSI based term-term similarity matrix as described in

80

Section 4.3.2, for several well known corpuses in IR, like MED, CRAN and LISA.

They also independently mine the number of co-occurrence paths (upto the 6th order)

corresponding to each pair of terms. The ftrst five orders of association show a bearing

on the term similarity values. While the individual contribution of very high order paths

is expected to be small, this is compensated by the fact that there are so many of them.

In the LISA collection comprising about six thousand documents, the authors found

around 50,000 pairs with first order associations between them, around 10 million with

2nd order co-occurrence paths and over 60 million with 3n1 order paths.

Terms with high LSI similarities are those that have a moderate number of co

occurrences with other terms, and not those that share a huge number of high order

relationships with other terms. This suggests that the latter is treated as noise by LSI. In

contrast, second order pairs with many connectivity paths between them are associated

with high LSI similarity values; those with a moderate number are associated with

negative values. The authors infer that this points to the fact that second order

associations are critical to the "latent semantics" emphasized by LSI.

The authors mathematically prove that a connectivity path (at least one of several

higher orders) exists between any pair of terms with a non-zero LSI similarity.

4.3 Using LSI for Knowledge Acquisition in eRNs

A core motivation for our discussion so far has been to facilitate automated acquisition

of knowledge for TCBR systems. In this subsection, we illustrate using examples how

LSI can be used to acquire relevance and similarity knowledge for CRNs.

4.3.1 Using LSI for Relevance Knowledge Mining

For mining relevance knowledge, we use the formulation in (4.1), which provides a
A

lower rank approximation M corresponding to the original case feature matrix M . As

81

A

we have discussed in Section 4.2, the rows of M are the new representations of the

cases in terms of the original feature set. These case representations can in turn be

mapped to a CRN, where each element in the matrix M defines the relevance of a

term to a document.

Figure

Figure 4.2 Relevance values mined using LSI

extraction

1nde<lng

clustering

I~·

I·ect
purlf; "'lon

,.,..,.Ix

faetCKize

• • •

~ •• eS>

Figure 4.3 A CRN constructed with the acquired relevance weights

4.2 (a) shows an example casebase, which is same as the one in Figure 2.2. We have

nine documents and nine terms representing three broad concepts: CBR, chemistry and

Linear Algebra. The elements in the matrix that pertain to these concepts are shown in

82

shades of grey. The three elements shown in darker shades are interesting because they

identify a departure from the norm. These elements relate to the use of the Linear

Algebra term "matrix" in Case 1 which deals with CBR; the use of the CBR term

"filtering" in Case 6 which relates to chemistry; and the use of the chemistry word

"decompose" in Case 9 which belongs to Linear Algebra. In as far as they highlight

the applicability of these words in more than one context, each of these usages could be

regarded as polysemous.

When the case-feature matrix M constructed from Figure 4.2(a) is subjected to

SVD, the singular values obtained are 3.1873, 2.6940, 2.6185, 1.0786, 0.8071, 0.7094,

0.4730,0.4306 and 0.0000. It is clear that the top 3 singular values are conspicuously

bigger than the rest, perhaps pointing to the three main underlying concepts that

describe this casebase. By retaining the top 3 singular values, and setting the rest to 0,

we obtain a 3-rank approximation to M , say M . The corresponding document-term

matrix is shown in Figure 4.2 (b). The new relevances of features to cases can be read

out from this matrix.

We now examine some interesting differences between M and if . We focus

on how the values of the elements highlighted in darker shades in Figure 4.2(b) have

changed from their original values in M. Thus LSI has inferred that the term

"indexing" is relevant to case 2, though it is not explicitly present in that case. This is

because case 2 has terms "filtering" and "clustering" which are strongly associated with

the underlying concept CBR and the term "indexing" is strongly representative of that

concept. For similar reasons, the word "sediments" is now associated to case 5, and the

word "matrix" to case 8, despite the fact that they do not occur in those cases. This

illustrates the ability of LSI to exploit co-occurrence patterns to infer implicit semantic

associations within a casebase. We also note that the relevance of polysemous terms to

their cases have been attenuated by LSI. For example, the relevance of "decompose" to

case 9 has been diminished from I to 0.67. A possible explanation for this is as follows:

The meaning of the term "decompose" as used in Case 9, is different from the "average

83

meaning" of the tenn. It may be noted that LSI assigns a unique location (a set of co

ordinates) to each tenn (and each document) in the concept space. This location can be

intuitively regarded as capturing the global meaning of the tenn, as averaged from

several local meanings. In our current example, since the word "decompose" has been

more often used in the context of chemistry than in Linear Algebra, the global meaning

will show a greater belongingness to the concept of chemistry than to Linear Algebra.

Since Case 9 is predominantly about Linear Algebra, LSI attempts to strike a balance

between the following two conflicting requirements: the first that "decompose"

actually occurs in this case and therefore should be considered relevant, and the second

that the average meaning of "decompose" is conceptually not aligned to the main theme

of the case. Figure 4.3 shows how the LSI generated relevance values can be

implanted into a CRN.

We can extrapolate our discussion so far to see why M is better suited to

facilitate retrieval of relevant documents compared to M. When retrieval is perfonned

over if , Case 2 can be retrieved in response to a query on "indexing", even though it

does not have that tenn. This is because Case 2 has tenns "filtering" and "clustering"

which are conceptually related to "indexing", thus resulting in a non-zero relevance of

"indexing" to case 2, and in consequent retrieval of case 2. We can regard this as an

"implicit" query expansion (Manning et aI, 2008 (expected», where the query tenns are

augmented with additional tenns that are semantically similar.

Figure 4.4 (a) shows an image from the USREMAIL domain, obtained using the

stacking approach described in Chapter 3, and Fig, 4.4(b) shows its lower rank

approximation generated by LSI. It is interesting to observe that the LSI image is

relatively blurred; also the compressed LSI image is approximately 73% the size of the

original compressed image.

84

Figure 4.4 Stacked images from USREMAIL before and after LSI

4.3.2 Using LSI for Similarity Knowledge Mining

The method u ed for acquiring relevance values can easily be adapted for acquiring

similarity knowledge as well. Each column of the approximation matrix if
correspond to the repre entation of a feature in terms of its relevance to the ca es.

Computing word imilarities is thus simple: we take a dot product (or cosine similarity)

between the corre ponding columns of M . The word similarities thus obtained can be

compared again t imilaritie derived fro m the original term document matrix M .

Figure 4.5 hows term imilarities before and after LSI , for the example document

co ll ection Figure 4.2(a). [t i seen that LSI destroys the sparseness of the original

similarity matrix.

85

J I • I i I • ! • I a I i I 1

I I I f 1 i I • i I I • I I s II I i • •
! 1 , 1 1 1 1 1 0 1 0 J86 228 31 0 11 2 Oi3 107 ·0 13 1 21 ·0 11

....... 2 2 2 0 0 0 0 1 0 2.18 1.56 2.09 ·0.05 D.O • ·0.07 0.06 091 0.07

--- 3 2 3 0 0 0 0 1 0 --- 3.10 2.09 2.BO ·0.0. 0.10 ·0.03 ·00. 1.13 ·003

...... 1 0 0 , 1 J 1 1 1 1.12 ·005 ·00. J7 ' 226 J OB 108 090 1.08

...... 1 0 0 2 2 2 0 0 0 0.93 ~.O . 0.1 0 2.26 1.56 2.10 ·005 0.03 ·0.05

porI1I:IIIII 1 0 0 J 2 3 0 0 0 IIIftIIIIn 1.07 ·0.07 ·0.03 3.08 2.10 2.6. ·001 0.02 ·0.01

....... 0 0 0 1 0 0 J 2 3 ·0.13 0.06 ,0.0. 1.08 ·0.05 ·0.01 2.87 229 2.87

-- 1 1 1 1 0 0 2 3 2 -- 1.21 0.91 1.13 0.90 0.03 0.02 2.29 2.32 2.30

..... 0 0 0 1 0 0 3 2 3 •• 1I1Ii1I ·0.11 0.07 ·0.03 1.08 ·0.05 ·0.01 2.87 2.30 2.87

(a) (b)

Figure 4.5 Similarities mined using LSI

A second way of obtaining similarity knowledge is to use revised representations of

words in the k-dimensional space and compute cosine or dot product similarity between

these lower dimensional representations. We have seen that the matrix U in the

decomposition of equation 4.1 contains the revised term representations. These are
~

scaled using the matrix Lk to obtain the term matrix U Lk ' so that dimensions are

~

weighted by the importance of concepts. The rows of U Lk are the new co-ordinates

for terms. We can compute the dot product (or cosine similarity) between term
~

representations derived from U Lk . It can be shown that these two ways of computing

word similarities are equivalent in that they produce the same similarity matrix

(Deerwester et aI. , 1990).

4.4 Chapter Summary

]n this chapter, we have looked at the mathematical foundations of factor analytic

approaches, in particular LS] , to induce concepts from a collection of textual cases.

86

Linear algebraic techniques like matrix decomposition to extract eigenvectors are

central to the theme. SVD, which is the heart of LSI, is an extension of the idea which

realizes a dual mode factor analysis, which allows it to create a representation of both

terms(features) and documents(cases) in terms ofa common set of underlying concepts.

We have presented intuitive arguments that explain why the revised representations

yield improved retrieval effectiveness. Several issues of practical concern like choice of

dimensionality, space and time efficiency, approaches for efficient updates, and using

LSI for supervised classification tasks have been briefly covered. Finally, we have

illustrated using examples how LSI can be used to mine relevance and similarity

knowledge for CRNs in TCBR.

87

Chapter 5

Supervised Latent Semantic Indexing

You've got to stop looking at the big picture. Gunnar Grimnes

In the previous chapter, we discussed how LSI can be used to acquire relevance

knowledge for CRNs. In this chapter, we focus on using LSI for acquiring relevance

knowledge in supervised classification tasks. LSI has been used before in classification

tasks. In (Gee 2003) LSI has been applied to spam classification, and performances

competitive with Naive Bayes classifier reported. Similarly, in a study by (Zelikovitz &

Hirsh 2001), LSI-based classifiers have been extended to accommodate background

knowledge. However, an inherent limitation of LSI when applied to classification is

that it fails to exploit class knowledge of training documents. If taken into account,

class knowledge can lead LSI to promote inferred associations between words

representative of the same class, and attenuate word associations otherwise. In this

chapter, we present approaches to incorporate class knowledge into LSI to produce

revised document representations.

Section 5.1 discusses limitations of LSI in the context of supervised

classification tasks. We present a novel theoretical framework for understanding LSI

performance in classification tasks. In Section 5.2, we propose the idea of sprinkling,

which integrates class knowledge into LSI. Sprinkling is a simple extension of LSI

based on augmenting the set of features using additional terms that encode class

knowledge. We present an intuitive analysis of why sprinkling works, and also identify

factors that playa critical role in determining its effectiveness. Sprinkling is "naive" in

that it accords equal importance to all classes. Furthermore, when the resulting case

88

representations are used for classification by more than one classifier, sprinkling fails

to exploit the strengths and weaknesses of these classifiers. Section 5.3 presents a

principled approach called Adaptive Sprinkling (AS) to address these issues; Chapter 7

presents empirical results to demonstrate the effectiveness of AS over diverse

classification tasks including those where classes share ordinal or hierarchical

relationships. Section 5.4 positions our work in the context of other related works, and

identifies avenues for future work. Section 5.5 summarizes the main contributions of

this chapter.

5.1 LSI in Classification Tasks

In Section 4.2.2, we showed that applying LSI in supervised classification tasks is a

straightforward extension of its more commonplace application for retrieval. To make

our discussion self-contained, we revisit this extension here briefly. We are given a

collection of labelled training cases, and LSI is used to construct lower dimensional

representations of these cases. An incoming unlabelled test case is treated as a query,

and positioned in the space of training cases. This allows us to retrieve the k training

cases most similar to the test case; since these training cases are labelled, a weighted k

nearest neighbour (w-kNN) algorithm can be used to arrive at a class assignment for

the test case. It may be noted that w-kNN is not the only approach that can be used in

conjunction with LSI; since LSI generated representations are founded on the vector

space model (VSM), any technique founded on the VSM like the Support Vector

Machine can be used to carry out the classification.

Most practical systems using LSI for supervised classification use wkNN over LSI

generated representations as explained above. However, this approach has several

shortcomings, all resulting from the fact that LSI fails to take into account class labels

of training documents while constructing revised case representations. Let us consider

the simplistic example in Figure 5.l(a) which shows cases originating from two classes

89

distributed over two features. It is clear that Feature 2 is more useful than Feature I in

discriminating between classes I and 2. However, the variance or spread of the cases

across Feature 1 is more pronounced compared to Feature 2. Thus, assuming that

features I and 2 coincide with the orthogonal features extracted by LSI , Feature 1 will

be assigned more importance (as indicated by a higher singular value associated with

it) compared to Feature 2. This can be understood intuitively in the light of our

discussions in Section 4.2.1 , where it was observed that LSI yields the best lower rank

approximation in the least squares sense. LSI shows a preference for Feature 1, since

projecting the cases onto Feature 1, will result in lesser " loss of information" than

projecting them onto Feature 2.

Ftatu ... 2

o 0
o
O~SS1

Ftatu ... 1

(a)

FNtu ... 2

Ftature1

(b)

Figure 5.1 Hypothetical Case Bases to illustrate LSI ' s preference for dimensions

To better understand this, we take a simpler example of ten cases in Figure 5.2 that

mimic the case distribution of the classes in Figure 5.1. The feature values of the five

cases in Class I are (1 ,1.2), (1.8 ,1.3), (2.5 ,1.1), (3.6,1.2) and (4.5,1.4). The five cases

90

in Class 2 are (1.2,2.3), (1.8,2.2), (2.4,2.4), (3.6,2.1) and (4.4,2.3). The case feature

matrix is shown in Figure S.2(d). We perform an SVD on this matrix. The singular

value attached with the first LSI dimension is 10.67, while SVD associated with the

second dimension is 2.42. When only the first dimension is retained, we obtain the

approximation shown in Figure S.2(e) Figure S.2(f) shows the approximation when

only the second dimension is retained.

Based on the formulation in Section 4.2.1, we compute the Frobenius norm of

differences between an approximation X and the original matrix as:

2 10

E(X)= L L (Xi.\; -Xi.\;)2
,\:=1 i=1

where k is the index of features and i the index of cases, Xi.\: and X ik are the

values of kth feature of the ith case in the original case and in the LSI-generated

approximation respectively. The errors corresponding to the approximations in Figures

S.2(e) and S.2(f) evaluate to 2.42 and 10.67 respectively. This confirms that taking the

first dimension alone leads to a much better I-rank approximation to the original 2-rank

matrix, compared to taking the second dimension alone. In fact, as discussed in Chapter

3, we can verify that the approximation obtained with the first SVD dimension alone is

the best of all theoretically possible I-rank approximations.

Now we take a look at the approximations as plotted in Figure S.2(b) and (c). The

classes corresponding to the round, and star markers look more separable in Figure

S.2(c), compared to Figure S.2(b). This hints at the fact that though Dimension 2 is not

good from the point of minimizing reconstruction error, it is indeed more

discriminative of features compared to Dimension 1.

The above example shows that LSI is handicapped in its absence of class

knowledge and thus may extract features which are not the best from a classification

standpoint. Extracted features corresponding to the top k singular values correspond to

class structure only when features from cases belonging to different classes do not

91

overlap. However, more often than not, textual cases pertaining to different classes are

like ly to share features because of po lysemous and context driven usage of words and

large word choice variabil ity . Furthermore, infrequent features with high

discriminatory power may be treated by LSI as noise, and filtered out.
Ongon C

15
0

0 0

0

0

..
;
!

15

1
1 15 2.5 l5 H

F1I111'1 '

(a)
~lrnlllOftu1l'lgoriy son 1 Appfouml1lon UIII'IO only Dwn.nlilOfl 2

26 15
0

2 ' 0

22
0 0

0

18 0 5

'"
N . 0 ~

~ 16 ~
" (J

0 0

0
12 .

• .0 5

08

15 35 15 ·~8 .06 .0 ' 02 O. o.
(b) (c)

1 1.2'" 1.2613 '.1U5 - '.2683 595
1 .•••• 1.3'" 1.'._ 1 .11113 -'.1._ '.1151

2.5'" 1. 1'" 2.3A13_ 1 .36'3 '.1566 -'.2613

3.6'" 1.2'" 3.2"2 1.'121 '.392' -'.6127

".5'" 1 3.'655 2.115" •• 53_5 -' . 915_
1.2 ... 2.3'" 1.196_ 1.1113 -' . 696_ 1 . 1927
1 2.2'" 2.3113 1.SAI31 -'.5'13 '.156'
2 2 2.I3U 1.6553 -I.U_' '.1"7
3.61" 2. 1'" 3.5991 2.1115 - 15 2.38" _.2128 2.5111 1.1172 - '.2017

(d) (e) (I)

Figure 5.2 An Example

92

The features extracted by the LSI seldom coincide with the original set of features;

Figure 5.1 (b) shows a more realistic situation where the extracted LSI features are

ditTerent from the original. We observe that the extracted feature 2 is more

discriminating than the extracted feature 1, which is declared to be more important by

LSI. Our earlier discussion with reference to the simplified case of Figure 5.1(a) can

directly be extended to explain the failing of LSI in handling the situation in Figure

5.1(b).

The ideas presented above show a stress strain relationship between two, often

conflicting, goals. The first goal is to preserve the structure of the case feature matrix as

closely as possible by minimizing the least square error of the approximation with

respect to the original matrix. The second goal is to prefer extracted features (LSI

dimensions) that are better in discriminating between classes. LSI satisfies the first

goal, but ignores the second altogether. In this chapter, we investigate approaches that

strike a reasonable tradeotTbetween the two goals. We formalize this intuition below.

In unsupervised clustering literature (Hastie et aI., 2001), the goodness of a

clustering C obtained over a set of data points (cases) X is measured by the two metrics:

the within-cluster point scatter W(C,Aj and between-cluster point scatter B(C,X).

W(C,X) characterizes the extent to which cases assigned to the same cluster tend to be

close to each other. B(C,X), on the other hand, tends to be large when cases assigned to

disjoint clusters are far apart. Let each case be uniquely labeled by an integer

i E {l, ... ,N}.When the set of cases Xis fixed, we simplify the notations W(C,X) and

B(C,X) to W(C) and B(C) respectively, which are given by

1 K
W(C) =-L L Ld(xj,xj')

2 k=) C(i)=k C(j')=k

93

where d (xi' x;') is the distance between two cases Xi and Xi' as computed using a

standard distance measure like the Euclidean distance. K is the number of clusters, and

C(i) returns the class label of the ith case. We can define the total point scatter T as

T =W(C)+B(C)

It may be noted that T is constant given a set of cases, irrespective of the cluster

assignment. A good clustering assignment would be one that maximizes B(C) or

minimizes W(C), for a given number of target clusters K.

We will now try to adapt this formulation to deal with the supervised case. The

class labels are known and can be equivalently thought of as defining a clustering C.

However, the data points corresponding to the cases Xi are no longer fixed, but decided

by the choice of our representation. One such representation is the lower-rank

approximation to the original cases generated by LSI. Feature generalization using

Association Rule Mining as in Propositional Semantic Indexing (Wiratunga et al.,

2005a) generates yet another representation in the original feature space. Instead of

evaluating goodness of clustering given a representation, we are now interested in the

dual of the problem, intuitively stated as: Given a clustering C as enforced by the class

labels of cases, how good is a given choice of representation in ensuring that cases

belonging to the same class are close to each other, and cases from disjoint classes are

far apart. In other words, we are interested in finding X, which represents an

assignment of data points Xi in the feature space, that leads to minimizing W(C,x) and

maximizing B{c'X). for a given C. Since C is held constant, we simplify the notations

W(C.X) and B{C.X) to W(X) and B(X) respectively. In our discussion henceforth, we

focus on minimizing the function G(X) = W(X)/B(X). though alternative formulations

are possible.

It is easily seen that given this problem definition, the "best" representation would

be one that collapses all cases belonging to a certain class to a single data point, thus

94

resulting in each case in the casebase mapped to one of the K distinct points

corresponding to each class. This has the effect of minimizing W(X) to O. However,

this trivial solution is useless for all practical purposes, since it has very poor

generalization over an unseen test case; also, from a k-NN perspective, the

representation would be quite useless for retrieval since all knowledge of differences

between cases within a given class have been lost. Thus the system cannot say which of

the several cases within a given class is most similar to a given test case. Hence certain

constraints need to be added to the above definition to tighten up the problem definition

and make it useful in practice. These constraints come from the need to preserve the

structure of the original case-feature matrix, and patterns within it.

We have already defined the error in approximating the original case feature

matrix in Chapter 4 using the Frobenius Norm. We use this to define the second

optimization criterion, which we call called E(X); we are interested in minimizing E(X).

An extreme case of using the original case feature matrix suggests itself, in that it

makes E(X) = O. However, it has poor generalizability and is unsurprisingly

unimpressive in its classification effectiveness. On the other extreme, it can be seen

that the situation described above of collapsing all cases belonging to the class to one

datapoint results in a very large E(X), suggesting a large departure from the original

case-feature matrix structure. To sum up, thus, our goal is to opt for a representation X

that strikes a reasonably good tradeoff between satisfying the conflicting goals of

minimizing G(X) and minimizing E(X).

We refer to this as the structure versus class-knowledge dilemma, and in

conjunction with the well studied bias-variance trade-off (Mitchell 1997), will serve as

a useful tool in devising our algorithms, and explaining empirical results from

experimental evaluations.

95

S.2 Sprinkling

In the last section, we have identified two limitations of LSI in a classification setting.

Firstly, clusters defmed by extracted features correspond neatly to class structure only

when there are not many overlapping terms in cases from different classes. Secondly,

infrequent words with high discriminatory power are watered down. In this section we

address these issues by directly incorporating class knowledge into the representation

used as input by SVD, which forms the heart of LSI.

The basic idea is simple: we generate a set of artificial terms corresponding to the

class labels of the training cases. These artificial terms are then appended to the feature

set of the training cases. We refer to this process as 'sprinkling'. The case-feature

matrix of Figure 5.3(a) has three classes each having three cases as shown. We obtain

the augmented case feature matrix of Figure 5.3(b) by adding three new features

corresponding to the three class labels. These features can be thought of carriers of

class knowledge.

Figure 5.4 shows a schematic of the processes involved in using the idea of

sprinkling for classification. To start with, LSI is carried out on the augmented case

feature matrix. Noisy dimensions corresponding to low singular values are dropped and

a lower-rank approximation of this matrix is obtained as usual. The approximation

matrix containing the revised case representations has the same dimensionality as the

augmented matrix. However, we do not know the class labels of the incoming test

documents. Therefore, to make training document representations compatible with the

test document, the columns corresponding to additional sprinkled features are dropped

from the augmented matrix. This step is referred to as "unsprinkling" in Figure 5.4.

Test documents are now classified using weighted kNN using an Euclidean distance

metric in the usual manner. From a knowledge acquisition perspective, the relevance

values in a eRN can be read out from the case representations in the case-feature

matrix after unsprinkling.

features

"'" 111 0000 1 0 I
1 0 1 0 0 0 0 0 0 Class C1
1 1 1 0 000 0 0
000 1 1 1 000
o 0 0 1 0 1 0 0 0 Class C2
100 1 110 0 0

o 0 0 0 0 0 1 0 1 Class C3
000 1 001 1 1

96

features C1C2C3

1 1 100 001 0 1
1 0 1 0 0 0 000 1
1 1 1 0 0 0 0 0 0 1
o 0 0 1 1 1 0 0 0 0
o 0 0 1 0 1 0 0 0 0
1 001 1 1 0 0 0 0
o 0 0 0 0 0 1 1 1 0
o 0 0 0 001 0 1 0
o 001 001 1 1 0

Figure 5.3 Sprinkling

terms
111 000010
1 0 1 000000.
111 00000.0.
000 111 00.0
0 00 1 0 1000
1 0.0 1 1 1000.
00.0.0.0.0.1 11
00.0.0.00. 1 0. 1
000 1 00.1 1 1

Test Document

111 1 000 1 1

1 11 0. 0. 0. 0.1 0. DO.
1 0. 10.0.0.0.0.0. DO.
1 1 10.0.0.0. 0. 0. 10. 0.
00.0. 1110. 0.0. 1 0.
0.0. 0.1 0 10.0. 0. 10.
1 0. 0.11100.0. 10.
0 0 0. 0 0.0 111 0.1
0.0.00. 0 0. 10.1 0.1
0.0. 010. 0. 111 0.1

Weighted
K Nearest Neighbour

W 0.]9 1m DOl ruJI ~.ro 0.12 0-'2 0.12 1.(9 4m 012
0.87 o.ll 0..81 ~DI DOl o..m ~ll7 ~ .{I.ll7 0.81 o..m ~ll7
106 071 1.00 ~ro o.m ~OI .{I.t8 0.33 ~.OO I 00 ~OI ~oo

027 ~.OO ~lo. 107 0.71 1.01 .{I.OO ~m .{I.OO ~lo. 1.01 400
021 ~1IT.j)09 0.87 0.-'1 0.82 0.02 ~01 o..m .{I.C9 0.82 0.1II
0..58 011 0.17 114 0.;18 1.00 ~ro D.~ .{I.m 0.17 1.00 .{I.m
~DI 0(15 O.ro 0.27 .{I.OO ~1111I1 0.]9 I.m Dro ~ .1I 1m
~lo. -M2 ~~ 0.22 .{I.tv ~IB 0.82 D~ 0..82 ~~ ~IB 0.82
005 01Il .j)00 0.-'9 0.11 0.17 IlIl 0.84 IlIl ~lD 0..17 IlIl

115 0.]9 1.C9 001 WlI ~ro 012 0 . .52 0.12
0.87 Dll D.B! .j)DI DOl D.m ~ll7 D.:<ti .{I.IIT
106 0.71 1m .j)ro DIII ~OI .{I.OO 033 ~.OO

027 41B ~lD 107 0.71 1.01 .{IJXl ~m 400
021 4IIT ~09 087 0.-'1 0..82 0.02 ~01 o.m
0..58 0.11 0.17 114 0.;18 I.IB ~ro o.~ .{I.m
~DI 0.05 o..m 0.27 ~.re ~11 llI1 0.]9 l.a2
.{lID 4m ~~ 0.22 .{Ill7 ~IB 0.82 D~ 0..82
0.05 01Il ~oo 0.-'9 0.11 0.17 IlIl 0.84 IlIl

Unsprinkle

Figure 5.4 Classification using sprinkled LSI

While we have sprinkled only one additional feature per class, in principle

we can add more than one artificial feature for each class. This gives rise to interesting

possibilities. We observe that larger the number of sprinkled features per class, the

more the contribution of the class knowledge of the training cases in the generated LSI

representations and hence in the consequent classification process. It is illustrative to

study the singular values associated with the LSI dimensions obtained after the SVD of

the augmented case feature matrix, and observe how these singular values change as a

function of the number of sprinkled features. Figure 5.5(a) shows the case feature

97

matrix in Figure 5.3(a); as before, we assume that documents 1,2,3 belong to class 1;

documents 4,5 and 6 to class 2; documents 7, 8 and 9 to class 3. Figs. 5.5 (b), 5.5 (c)

and 5.5 (d) shows the augmented matrix after 3, 6 and 18 sprinkled features are added

to the cases. Figure 5.5 (e) shows line graphs connecting the nine singular values

obtained in each of these three cases, as well as over the original matrix with no

sprinkled tenns. We readily observe that with increased sprinkling the top three

singular values get promoted with respect to the remaining ones. The three top singular

values are associated with LSI dimensions that capture concepts that characterize the

three classes. Thus adding larger number of sprinkled tenns has the effect of

emphasizing the class specific concepts in the LSI representation. However, as we shall

examine in detail in the following sub-section, this "distortion" is not always without

added costs. As a final detail, we note that it is possible to simulate the effect of

sprinkling several columns by augmenting the matrix with a single column of real

valued elements, and varying these values instead. However, we retain the binary

valued nature of the matrix in the interest of efficiency.

S.2.1 Why does Sprinkling Work?

In this section, we examine reasons why we expect sprinkled case representations to

improve effectiveness in classification tasks. We also examine conditions under which

sprinkling is expected to perfonn best.

Structure versus Class Knowledge Argument

In Section 5.1, we highlighted that a good choice of representations must strike a

tradeoff between minimizing G(X), defined as the ratio of within-cluster point scatter

and between-cluster point scatter, and minimizing E(X), which quantifies the distortion

of the new representation with respect to the original one.

'e"".
I I I 000 010

I o • 000 000 .. , • • 000 000

j 000 , , , 000

000 • 0 • 000 , o 0 , , , o a 0

o 0 0 0 0 a I I I

o 0 0 0 0 a I 0 I

000 , o 0 , I I

(a)

tertl~

111000010100100
101000000100100
111000000100100
000111000010010
000101000010010
100111000010010
000000111001001
000000101001001
000100111001001

O,ioln . 1 '-y-J
(C) sprYlIdeO

terms

111000010 1' 100
101000000100
1110000001100

~ 000111000 ,010
§ 000101000 1010
~ 100111000010

00000011100 1
000000101001
00010011100 1

Orig in. ,
sorlnl4eo

(b)

"'000010,00'00 1 00,00 1 00,00
10 1 000000100100 10 0100 1 00100
,,'000000,00100,00100,00,00

i
~ 000"'0000 , 00 , 00100 , 00100,0

00010,0000,00,00100 , 00 1 00 ' 0
l! ,001,,0000100100100100100,0
o 00000011100100100,00,00100,

000000,0,00 , 00,00100,00,001
000,00",00'00,00100100,001

Ori , in a l

(d) oonnt<I8O

F all of Singular Values at Different SprinJding Levels
6 ~--~----~----~--~----'-----~---r--~

5

°1

,. .-.
" ,\ - \

2 3

\ :'.
,'\ v ·
~

_~'8 Ierms

. - - . SprirW:Ing 6 1enns

- -- SprHdng 31erms

-- No~

5 6
DlaQonallndex

(e)

98

Figure 5.5(a) Original Term Doc Matrix (b) Matrix After Sprinkling 3 terms (c) Matrix

After Sprinkling 6 terms (d) Matrix after Sprinkling 18 terms (e) Fall of Singular

Values before and after sprinkling

99

We carried out an analysis of the effect of sprinkling on LSI, to verify the hypothesis

that sprinkling leads to better case representations. To illustrate the idea, we use the

following toy case-feature matrix:

1 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 1 0 0 0
M=

0 0 0 1 0 1

0 0 0 0 0 0 1

0 0 1 0 0

0 0 0 0

This is a binary classification problem. Of the 8 cases, the first four are assumed to

belong to the first class, and the remaining four to the second. Also we assumed that the

affiliations of the features to classes are manually identified and hence known in

advance; this helps us evaluate the impact of sprinkling on the revised representations

of these features. It is usually not the case that feature memberships to classes are a

given, though the degree of belongingness of features to classes can be estimated

statistically. In our example, the first four features are prototypical of the first class, the

remaining four of the second. We create 4 different representations of M, by sprinkling

2, 4, 6 and 8 terms, and performing LSI on the augmented case feature matrices. Each

of these representations is used, in turn, to compute two dissimilarity matrices, the case

dissimilarity matrix and the feature dissimilarity matrix. Treating each class as a cluster

and following the procedure outlined in Section 5.1, we compute the within-cluster and

between-cluster point scatters, which are used to compute G(X). We also compute the

value £(X) measuring the difference between the revised case-feature matrix and M,

using the Frobenius norm.

Figure 5.6 shows that with increased number of sprinkled terms G(X) falls

conspicuously. However, this is accompanied by the fact that sprinkled LSI distorts the

original term document matrix D to a class-enriched LSI approximation Ds. We note

that Ds is no longer the best k-rank approximation to the D in the least-square sense.

The vertical axes of the graphs in Figure 5.6 show the mean square of errors between D

100

and Ds, given by E(X) . The number alongside each marker point in the line graphs

shows the number of sprinkled terms. We readily observe that the reduction in G(X)

achieved by sprinkling is at the cost of losing information on D, as indicated by an

increase in E(X) . Thus very large number of sprinkled terms may be detrimental to

classification performance, as it may over-emphasise class-knowledge. Ideally we

would like a trade off between "under-" and "over-sprinkling", that gives us the best of

both worlds: improve class-discrimination while not overlooking specific patterns in D.

0.16

0.15

...
0

~ 0.1 •

• ...
I
~0.13
~
c
: 0.12
~

0.11

Doc\Jllent Clusterilg : Term Clustering:
WIB and me~ square errOl 'tWh spmking WIB and mean square error with sprinkling

0.16ro---.---,....--.---r--.-----.---,

6

0.15

The nurrber aongside each marker
is the nunber of terms sprinkled

0

02 0.25 0.3

WIB
0.35

• ...
II

The number alongside each marker
is the number of terms sprinkled

&0.13
CI)

c
II

~ 0.12

0.11

01.~~~~~~~~~~~-~
6.165 0.17 0.175 0.18 0.185 0.19 0.195 01

WIB

Figure 5.6 Illustrating the tradeoff between reducing W/B ratio (G(X)) and reducing

the mean square error distortion with respect to the original case feature matrix (£(X)).

The Higher Order Co-occurrence Argument

Sprinkling aims to make explicit any implicit associations between terms indicative of

underlying classes. Since sprinkled features are essentially class labels, including them

helps to artificially promote co-occurrences between existing terms and classes. More

specifically, the performance of sprinkled LSI in classification tasks can be explained

101

using empirical observations made in (Kontosthathis & Pottenger 2006), which were

summarised in Section 4.2.3. Their work reveals a close correspondence between LSI

and higher order associations between terms. Kontostathis and Pottenger (2006)

provide experimental evidence to show that LSI boosts similarity between terms

sharing higher order associations. In the light of this observation, it is interesting to

note that sprinkled terms boost second-order associations between terms related to the

same class, hence bringing them closer. This is because two terms TJ and T2

representing cases of the same class are forced to co-occur with the sprinkled terms

corresponding to that class. Thus, even if TJ and T2 do not have first order association

between them, they share a second-order path through the sprinkled terms, which

boosts their similarity as inferred by LSI. We will examine the role of sprinkling in

making higher order co-occurrence pathways in further detail in the next chapter on

similarity knowledge mining.

5.2.2 Advantages of Sprinkling

From our discussion so far, we can identify the following advantages of sprinkling:

Simplicity: The idea is extremely simple, and needs no new algorithms to be

implemented. Any system currently using LSI can be made to scale up to handle

supervised domains by a preprocessing step that adds columns corresponding to the

additional terms to the case feature matrix. The basic apparatus of SVD, and

incremental update algorithms associated with SVD remain unaffected as a result of

this change.

Representation Richness: Sprinkling generates revised case representations that

integrate well within instance based learners like k Nearest Neighbours. More

generally, the generated representations can be used by any mechanism founded on the

vector space model; in Chapter 7 we present empirical results suggesting that SYMs

102

benefit by usmg sprinkled LSI representations instead of the original LSI

representations. Secondly, sprinkled LSI representations can be used for unsupervised

tasks like case retrieval, and retrieval quality is expected to benefit from the

incorporation of class knowledge. Thirdly, as with LSI, sprinkling can lead to revised

feature representations and feature similarity knowledge that incorporates class

knowledge. Finally, we note that though sprinkling has been discussed in the context

of LSI, the idea can be decoupled from LSI and exploited by other learners as well. In

the following chapter, we show how sprinkling can be used in conjunction with an

approach that mines similarity knowledge using higher order association between

features.

Efficiency: Sprinkled features are typically far fewer in number compared to the size

of the original feature space. In our experiments reported in Chapter 7, significant

improvements were obtained when as low as 8 artificial terms were sprinkled to an

original representation comprising 1000 features. Thus the overheads in terms of SVD

computation are minimal. Empirical evaluations supporting this are reported in Section

7.2.

5.3 Adaptive Sprinkling

The basic sprinkling approach treats all classes equally. This is a limitation for the

many multi-class problems with explicit relationships between classes. Two examples

are hierarchical classes and ordinal classes. An example of hierarchical classification is

the Yahoo directory, which is a manually created and maintained library of web sites

organized into categories and subcategories. Subcategories (say dogs) have is-a

relationships with their parents (say mammals). Ordinal classes are common in

sentiment analysis domains. In a movie review domain, we may have ratings I to 5,

each rating treated as a class. Reviews rated I are similar to those rated 2 in that they

both express a negative polarity, but dissimilar to those rated 5 which carry a positive

103

polarity. Ignoring inter-class relations in both the hierarchical an ordinal scenarios may

have an adverse effect on the effectiveness of the sprinkled representations.

Furthermore, even in scenarios where classes have no explicit relationship between

them, some classes are more easily separable than others, so the number of sprinkled

terms should depend on the complexity of the class decision boundary. A second

limitation of sprinkling is revealed when the case representations generated by

sprinkled LSI are used by other classifiers like SVM. Classes found confusing by a

kNN classifier could be different from those found confusing by SVM, and ideally the

sprinkling process should adapt to classifier needs. Adaptive Sprinkling (AS) IS

motivated by the need to address the aforementioned limitations of sprinkling.

There are two broad ways of incorporating knowledge of inter-class

relationships into case representations generated by sprinkling. The first is the explicit

approach, where the similarity between classes is captured using an explicit

formulation that captures the inter-class similarity. One can model the relationship

between classes in a movie review domain by assuming that the distance between

classes is a linear function of the absolute difference in the ratings (Mukras et al.,

2007). Similarly, for hierarchical classes, we can use one of the several distance

measures like the Wu Palmer distance, the Resnik distance or the path-length distance

(Pederson et al., 2004), which can be used to compute similarity between any two

classes. One way of incorporating the explicit inter-class similarity knowledge into

classification is to use it to bias the feature selection process; an example is (Mukras et

al., 2007) where the Information Gain approach is adapted to take into account class

relationships in ordinal datasets. There are several disadvantages to this approach of

explicitly modelling interclass relationships. Firstly, most explicit formulations fail to

take into account asymmetry between classes. Thus in the movie review domain, the

similarity between classes 1 and 2 will be reckoned to be the same as that between

classes 2 and 3. This may not be a reasonable assumption, given the fact that classes 1

and 2 are likely to share more vocabulary given that they are both negative in their

sentiment orientation, while class 3 is likely to be more diverse in its choice of words.

104

Thus the interclass similarity as formulated by an explicit relation may have little or no

grounding on the actual overlap of vocabularies between cases originating from

different classes, and thus fails to recognize that certain pairs of classes are harder to

separate than some others. Secondly, it is hard to arrive at a right choice of distance

measure. In the case of the movie review domain, why should we favour a linear

relationship over say one that uses an exponential decay instead? Similarly, which of

the several approaches to model hierarchies is expected to work the best? Thirdly, the

method fails in situations where classes have no explicit relationship between them.

This is the most common classification scenario, where the classifier chooses between

one or more of several unrelated classes. Henceforth we refer to such problems as

orthogonal classification tasks. The name signifies that the classes are considered

orthogonal with respect to each other, in the absence of any known relationship

between them. As we noted before, in this case we would like the sprinkled terms to

have a bearing on the inter-class complexity.

The second approach of influencing generated case representations using the

knowledge of inter-class relationships is the implicit one, and this is our main

contribution in this section. The key idea behind AS is to exploit confusion matrices

generated by classifiers like kNN and SVM. Confusion matrices implicitly capture a

wealth of knowledge about how classes are related to each other. A confusion matrix

compares a classifier's predictions against expert judgements on a class-by-class basis.

The non-diagonal values in this matrix are indicative of classes that the classifier finds

hard to separate; the lower the values, the more easily separable the classes. Figure 5.7

shows a confusion matrix created from nine classes in the 20 NewsGroup text

collection (Mitchell 1997) using the k-NN classifier. The classes shown are arranged in

a hierarchy. The two broad trees are eomp for computing and ree for recreation.

Referring to classification errors in the example confusion matrix of Figure 5.7 we

readily infer that classes 1 and 9 are easy to tell apart, while classes 1 and 2 are harder

to discriminate. AS is based on the intuition that relatively more sprinkled terms are to

be allocated between hard-to-discriminate classes. Interestingly, we found that

105

confusion matrices also implicitly carry information about explicit class relationships

as in ordinal and hierarchical classes. For example, in Figure 5.7, we see that the two

shaded regions correspond to confusion between classes within the comp and rec

subtrees. The confusion between classes from the two disjoint subtrees is smaller.

1. comp.graphics 130 10 14 18 20 0 5 2 1

2. eomp.os.ms-windows.misc 31 110 13 19 19 2 3 2 1

3. comp.sys.ibm.pc.hardware 25 19 111 36 6 1 2 0 0

4. comp.sys.mac.hardware 15 1 41 130 7 1 3 2 0

5. comp.windows.xp 34 16 5 6 135 0 2 2 0

6. rec.autos 19 1 1 7 3 148 16 4 1

7. ree.motorcycles 13 1 2 5 5 30 143 1 0

8. ree.sport.baseball 4 4 3 13 6 9 7 143 12

9. ree.sport .hockey 4 3 2 4 2 2 1 12 170

classifier's predictions

Figure 5.7 A Confusion matrix from the hierarchical 20 NewsGroups domain

AS determines the number of sprinkled terms for each class from the confusion

matrix. The confusion matrix is generated using the same classifier that will operate on

the revised representations. Let qij be an element of the confusion matrix Q, showing

the number of documents of class Cj being misclassified as class c)' We define

probability POI i) as the probability of class Cj being misclassified as class Cj . This can

be estimated from the entries in the confusion matrix as:

We then define the" mutual complexity" between classes Cj and Cj as

. .) P(i I j) + P(j I i)
mcc(/, } = 2

106

The asymmetric confusion matrix Q is now transformed into a mutual complexity

matrix M, which is symmetric. The pseudo-code in Figure 5.8 shows how sprinkled

terms can be generated based on the matrix M. The maximum sprinkling length MSL is

empirically determined. In our experiments we used MSL = 8. We note that the mutual

class complexity values are normalised and used as weights to vary the number of

sprinkled terms as a fraction of MSL. Thus the influence of class knowledge is greater

for those classes that are more difficult to discriminate.

for i = 1 to m-l {!*m is the number of classes*!

for j = i+ 1 to m {

}

1. Compute normalized mutual class complexity between classes Cj and Cj as

follows:

(i .)_ mcc(i,j)
mccnorm ,J - (. .)

mccmax l,J
where mccmax (i, j) is the maximum

mcc (i, j) value in the matrix M

2. s= LMSL xmccnonn(i,j)J

3. Sprinkle s terms in all documents belonging to class Cj and s others in all

documents belonging to Cj.

Figure 5.8 Pseudo-code for Adaptive Sprinkling

In Chapter 8, we present experimental evaluations over orthogonal, ordinal and

hierarchical classification problems. We compare the original confusion matrix with

the one obtained by trying the same classifier on the case representations generated by

AS, and also examine the feature similarities before and after sprinkling.

There are several advantages with using confusion matrices as implicit knowledge

sources for mining inter class relations. Firstly, the knowledge engineering effort is

107

reduced, since we can do away with modelling explicit associations between classes.

Secondly, the same approach can be used to handle the three categories of classification

problems: orthogonal, ordinal or hierarchical. We do not need to tailor the algorithm to

suit these tasks. Finally, unlike explicit approaches, AS exploits inter-class complexity

specific to a classifier to arrive at richer and more effective revised case

representations.

5.4 Discussion and Related Work

There have been several efforts in the past to extend LSI to text classification tasks.

Zelikovitz and Hirsh (2001) consider using a set of background texts in addition to the

training data for use in classification. Background texts are hopefully relevant to the

text classification domain and are used to find training examples that could not be

found by a simple comparison between the text example and training set. For example,

if a piece of background knowledge is found similar to both a training example and a

test example, the training example is considered similar to the test case, even if they do

not share any terms. The approach is especially suitable when the training data set is

small. The significant difference with sprinkling is that instead of using an extended

corpus for operation, we attempt to integrate additional knowledge using a synthetic set

of tenns that reflects the underlying class structure.

Sun et al. (2004) recently presented a technique called SLSI that is based on

iteratively identifying discriminative eigenvectors from class-specific LSI

representations. SLSI involves Ian SVD computations, corresponding to k iterations

over m classes, making it computationally expensive. In their study, no significant

improvement of SLSI over baseline SVM was reported. In Chapter 8, we will present

empirical studies demonstrating that sprinkled representations perform significantly

better than SVM over most of our experimental datasets.

108

Wang et al (2005) have an objective similar to ours; they present a theoretical

model to extend LSI to capture classification knowledge considering two matrices: a

term-document matrix and a document-class matrix. While the authors do not present

any experimental validation for their algorithms, they observe that the algorithm slows

down in situations where a document can belong to more than one class. In contrast,

sprinkled terms can comfortably represent affiliations of documents to more than one

class. This should have no conspicuous adverse effect on time performance.

Wiener et al. (1995) approach the problem of text classification using LSI by

conceiving of a local LSI in addition to the global (or the usual) LSI. In local LSI, a

separate LSI representation is created for each category. The local representations are

compared separately with an incoming test document. There are two main

disadvantages to this approach. The first is that since each local LSI representation is

created separately, the resulting similarities are not easily comparable. The second is

the computational overhead of making and maintaining several LSI representations and

the run-time overheads in processing the query separately against each local

representation.

Zelikovitz (2004) proposes transductive LSI for text classification. Rather than

performing SVD only on the training data, they use an expanded term-document matrix

that includes the test data as well. The classification accuracy improves because more

data is used. This work can, in effect, be viewed as a special case of (Zelikovitz and

Hirsh, 2001) where the test data is treated as background knowledge. However, neither

of these approaches takes into account class labels.

When compared to Adaptive Sprinkling, a general shortcoming of all of the above

mentioned approaches is that they fail to take into account relationships between

classes. A second relative strength of our approach is that it is simple and can easily be

integrated into existing LSI implementations. Unlike most of the approaches above, the

time complexity of AS is independent of the number of classes. In all our benchmark

experiments reported in Chapter 8, computing SVD over an augmented term-document

matrix takes less than 5% additional time compared to SVD on the original matrix.

109

Finally, it is important to note that sprinkling, though presented in the context of

LSI, is a fairly general strategy that can be used to benefit other approaches that attempt

to learn relevance or similarity knowledge. In the next chapter, we see how the idea can

be used in conjunction with a similarity knowledge mining algorithm to result in

feature similarity knowledge that respects class knowledge of the training documents.

We also note that while we have used sprinkling to incorporate class knowledge, it

would be interesting to see if the basic idea can be extended to incorporate other types

of knowledge as well. An interesting possibility is the encoding of background

knowledge as sprinkled features. An example would be to use sprinkling to encode

feature similarities as obtained from linguistic resources like WordNet (Miller, 1995) or

case associations as mined from Web resources like Wikipedia (Gabrilovich &

Markovitch, 2007). This may lead to scenarios where we may not only append artificial

features to cases, but also artificial cases to features. We envisage that the simple idea

of sprinkling may give birth to a framework for comprehensively integrating

introspective and background knowledge.

5.5 Chapter Summary

In this chapter, we have presented techniques to incorporate class knowledge into LSI

with the goal of improving effectiveness in supervised classification tasks. The first

approach is sprinkling. The basic idea is to augment cases with additional features

based on class labels, and do SVD on the augmented case feature matrix, so that the

dimensions extracted by LSI are influenced by class knowledge. Sprinkling is an

extremely simple approach that can easily be integrated with any existing LSI

application. Also it is efficient and involves minimal computational overheads. The

second approach Adaptive Sprinkling extends sprinkling by incorporating knowledge

of inter-class complexity derived from confusion matrices. This expands the scope of

110

our approach to handle diverse classification problems involving orthogonal, ordinal or

hierarchical relationships between classes.

111

Chapter 6

Learning Similarities from Higher

Order Co-occurrences

I link therefore I am. SJ. Singer

Similarity knowledge for CRNs can be acquired either introspectively, or using

background knowledge. The former relies on inferring similarity relations directly from

patterns hidden within the given collection of texts, while the latter uses external

linguistic resources like Wordnet or Roget's thesaurus, or web resources like

Wikipedia. The approach presented in this chapter is primarily an introspective one, in

that we rely on statistical properties of the collection and ignore linguistic relationship

(like syntactical categories) between features.

The rest of the chapter is organized as follows. Section 6.1 sets out the motivation

for our research. Section 6.2 explains the concept of higher order associations, along

with algorithms to mine the same. Section 6.3 describes our model of word similarities.

Section 6.4 shows how the parameters of this model can be determined automatically.

In Section 6.5, we present a novel approach of influencing the similarity values based

on class knowledge, along with empirical results. Section 6.6 shows some examples of

mined associations. Section 6.7 discusses our work in the context of earlier relevant

research. We sum up our main contributions in Section 6.8.

112

6.1 Motivation

Most early IR and TCBR systems were built on the assumption that features are

independent of each other. While this assumption simplified the design of systems and

facilitated efficient retrieval, the major downside was its very poor retrieval

effectiveness. This lead to questioning the status of a word as a standalone unit of

information, inspiring a family of techniques that use concepts instead of words as their

building blocks. We have reviewed a cross section of such approaches in Chapter 2.

While being effective in facilitating better retrieval, statistical concepts are often not

easy to explain to humans. In this section we will retain words as our choice of

Information Entities for building CRNs, but do away with the assumption that they are

unrelated to each other. In other words, we use statistical approaches to model

similarity between words, with the goal of improving retrieval effectiveness. Unlike

concept learners that induce concepts which implicitly group related words together,

our approach is to explicitly model word associations that can be alternately regarded

as defining concepts over the feature space implicitly.

Typically statistical approaches model similarity between two words based on the

number of documents where these words co-occur. Notwithstanding a significant

amount of both philosophical and pragmatic debate on whether co-occurrence is a

robust basis for semantic similarity (Jarmasz and Szpakowicz 2003), this simple

approach works fairly well in the presence of large and representative collections

(Terra and Clarke, 2003). Also, unlike domain-independent linguistic resources like

WordNet or Roget's Thesaurus, this approach can be used for estimating domain

specific word similarities. In this chapter, we show that we can do even better. We

incorporate the notion of higher-order co-occurrence into our model of word similarity.

The concept of higher order associations was introduced in Section 4.2.3, and is

summarized here to make the discussion self-contained. The basic idea is to use

indirect associations between words, in addition to direct ones. For example if words

car and chassis co-occur in one document, and words automobile and chassis in

113

another, we can infer that car and automobile are related to each other, even if they do

not co-occur in any document. Such a relation is called a second-order association. We

can extend this to orders higher than two. Several interesting examples showing the

importance of second order associations have been reported in studies on large corpora.

Lund and Burgess (1996) observe that near-synonyms like road and street fail to co

occur in their huge corpus. In a French corpus containing 24-million words from the

daily newspaper Le Monde in 1999, Lemaire and Denhiere (2006) found 131

occurrences of internet, 94 occurrences of web, but no co-occurrences at all. However,

both words are strongly associated. Their experiments show that higher order co

occurrences can be exploited to infer "semantic relatedness" (Budanitsky, 1999)

between road and street, and between web and internet. Throughout this paper, we use

the word "similarity" as a measure of semantic relatedness, as opposed to a formal

semantic relation (like synonymy or hyponymy).

This chapter presents algorithms for mining higher order associations between

words. The strengths of these associations are combined to yield an estimate of word

similarity. In the next chapter, we empirically test the hypothesis that similarity

knowledge mined using higher order co-occurrences leads to more effective retrieval

in comparison to knowledge mined using frrst order co-occurrences alone.

As we have observed in Chapter 4, LSI can easily be adapted to the problem of

learning similarity between features. This may make our goal of proposing a novel

similarity mining approach appear superfluous. Later in this chapter we make a

comparative study to illustrate the advantages of explicitly capturing higher order

associations, as opposed to doing so implicitly as in LSI. In addition, we show how the

similarity knowledge mining approach can be extended to incorporate class knowledge

in supervised classification tasks. In Chapter 8, we show that a CRN using similarity

knowledge based on higher order associations augmented with class knowledge can

outperform state-of-the-art text classifiers like Support Vector Machines (SVM) and

kNN based on LSI.

114

6.2 Higher Order Associations

The idea of higher order associations is illustrated through an example in Figure 6.1.

Terms A and B co-occur in Document 1 in Figure 6.l(a), hence they are said to have a

first order association between them. In Figure 6.1 (b), terms A and C co-occur in one

document, and terms C and B in another. In our terminology, A and B share a second

order association between them, through C. Extending this idea to Figure 6.1 (c), we say

that A and B share a third order association between them through terms C and D. The

first order paths that contribute to this third order association are (A. C). (C.D) and

(D,B). The similarity between two terms A and B is a function of the different orders of

association between them. This can be depicted as a graph as shown in Figure 6.1 (d),

where any two nodes sharing a first order co-occurrence relation between them are

connected by an arc. Each higher order association between any two given nodes A

and B is represented as a path connecting A and B. (A.C.B) is a second order path and

(A.C.D,B) is a third order path. Until now, we have restricted our attention to the

presence or absence of a first order path. A more general formulation of the similarity

relations would also need to consider the strength of these first order associations. This

is shown as the weighted graph in Figure 6.I(e). The weight of an arc connecting two

nodes is proportional to the number of documents in the collection where they co

occur. The strength of the higher order associations is, in turn influenced by the first

order association weights. In our implementations, we use the scheme in Figure 6.1 (d).

115

Doc 1 Doc 1 Doc 2 Doc 1 Doc 2 Doc 3

A,B A,C C,B A,C C,D D,B

(8) (b) (c)

(d) (e)

Figure 6.1 Graphical Representation of Higher Order Co-occurrences

~ c • • j j 0 at at • '! I c c 0 1i)(• ti ;c 'C D- • 1i 'C E !!! • • E E u = I 0
~ 'a 1; 0 '5 ~ U 'U u ;c .5 ~ u • 0 • u • • ;,

0 J! c 'a • Do

1 1 1 1 a a a a 1 a

2 1 a 1 a a 0 0 a a

3 1 1 1 a a 0 0 a a

4 a a 0 1 1 a a a

5 a a a 1 a 1 a a a

6 1 0 0 1 1 1 0 0 0

7 0 0 0 0 0 0 1 1 1

8 0 0 0 a a 0 1 a 1

9 a a 0 1 a 0 1 1 1

Figure 6.2 An Example Domain

116

The approaches presented in this chapter are centred around the basic idea of estimating

the strengths of different higher order co-occurrences and combining them into a word

similarity model. Details of our similarity model appear in the next section. To

estimate higher order strengths, we first tried a simple approach using goal driven

unification supported by Prolog. The Prolog program has two parts to it: a fact base and

a set of rules. The fact base was constructed automatically from the non-zero entries of

the term document matrix, by taking all possible pairwise combinations of terms that

appear in any document. From the example case-feature matrix of Figure 6.2(a) we

construct facts such as

first_order(extraction, indexing).

fll'st_order(extraction, clustering).

first_order(extraction, matrix).

Defming rules for higher order association is straightforward using Prolog. Second and

third order associations are defined in the following statements:

second_order(X, Y ,Z) :. first_order<X, Z), first_order(Z, y), X \== Y.

third_order(X,Y,Z,W) :. second_order(X,W,Z), first_order<W,Y), X \== Y, Z\== Y.

Often, in addition to the actual words that act as links between words, we are also

interested in the number of distinct paths linking up words. This is easy in Prolog, as

well:

lengthOfListm, 0).

lengthOfList (L I Tail], N) :. lengthOfList (Tail, NI), N is I + Nl.

no of 2ord-paths(X,Y,N, List) :. setof(Z, second_order<X,Y,Z), List), lengthOfList(List,N).

no oC30rd_paths(X,Y,N, List!) ,. setof«K,L), third_order(X,Y,K,L>, List1),

length OfList(List I,N).

117

One main limitation of Prolog in this task is the combinatorial explosion in the number

of first order associations that had to be recorded in the fact-base. In realistic tasks over

several hundreds of documents, our version of Prolog (SWI-Prolog) often ran out of

memory. To address this limitation, we explored the applicability of matrix operations

to directly compute the strengths of higher order associations. To start with, we

implemented an approach reported by Mill and Kontostathis (2004), where the authors

start by computing a first order co-occurrence matrix. For IWI words in the feature set,

this is a IWI x IWI matrix which has a value 1 in the iJth element if word i co-occurs

with wordj in at least one document. For all pairs of words that do not co-occur in any

document, the corresponding element in the matrix is O. The diagonal values are set to

zero since we are not interested in trivial co-occurrence of a word with itself. The

higher-order co-occurrence matrices are calculated using the following steps:

Step J: The term document matrix A is multiplied with its transpose AT to obtain the

IWI x IWI matrix To.

Step 2: All non-zero values of To are set to 1, and the diagonal values are set to zero to

yield a binary first order co-occurrence matrix T.

Step 3: The second order co-occurrence matrix T2 can be calculated by squaring T. The

third order matrix TJ is given as r. Other higher order co-occurrence matrices can be

calculated similarly.

Before a matrix is reduced to binary, the value of its iJth element is the number of co

occurrence paths between words i and j. The strength of a first order co-occurrence path

is the number of documents in which two words co-occur. The strength of a second

order co-occurrence path between words a and b is the number of distinct words c such

that a co-occurs with c and b co-occurs with c. In other words, the second order

strength of an association is the number of distinct second order paths between the

corresponding nodes in the graph model of Figure 6.1(d). Similarly, the strength of a

118

third order association between words a and b is the number of distinct third order

paths (via distinct nodes c and d) connecting a and b.

Implementing the above algorithm revealed a critical shortcoming. Let us consider

a third order association between terms a and b via terms c and d. Thus pairs a and c, c

and d, and d and b co-occur with each other. In finding distinct pairs of terms c and d,

we need to ensure that they are not the same as either a or b. By setting the diagonal

elements to 0 in Step 2 above, the algorithm ensures that a and c are different, and so

are d and b. But in addition we also need to ensure that d is not the same as a, and c is

not the same as b, and this is not taken care of. Thus the strengths of third order

associations were over-estimated by the algorithm. We propose a correction to the

algorithm to address this limitation. The brute force approach of explicitly counting

terms that satisfy the above-mentioned constraint instead of blindly cubing the binary

matrix T, turned out to be computationally expensive. We present below a technique

that rewrites this procedure as an equivalent matrix manipulation, which can be

implemented efficiently in matrix processing environments like Matlab.

Let T be the matrix of first order connections with diagonal elements set to zero.

For third-order co-occurrences, we seek to enumerate paths of type i-j-k-I for all i and I.

Now

is the total number of such paths, including paths of type i-j-i-I and i-I-k-I, which we

wish to exclude. Let n; be the number of paths of type i-j-i. This is equal to the total

number of paths originating from i. We evaluate n; by summing the rows (or columns)

ofT:

n;=I/ii
j

Now, the number of paths of type i-j-i-I is n;Ti/ and for type i-I-k-/ the count is n,Ti/. If

Ti/ '* 0, then we have counted the path i-j-i-j twice, so the total number of invalid paths

119

is (nj+nr-I)Ti/. Equivalently, if we construct a discount matrix D whose elements Di/ =

(nj+nr-l), then the number of invalid paths between words i andj is given by the iJ th

element of the pointwise product D*T. We use the following procedure:

(1) Calculate r.
(2) Enumerate and discount the invalid paths as above. r- D*T is the revised

third order matrix.

6.2.1 An Example

We illustrate the above ideas on a toy casebase comprising 4 terms and 4 documents as

shown in Figure 6.3. The corrected third order matrix TJ ' says that there are two third

order paths between terms 12 and 13, one third order path between 11 and 12, another

between terms 11 and 13, and none between tl and 14. A closer inspection of matrix T

reveals that this is indeed true. Figure 6.4 shows a graphical representation of matrix T,

where an arc exists between any two nodes iff the corresponding entry in the matrix is

1, denoting that there is at least one document in the collection that has both of these

terms. The two third order paths between 12 and 13 are 12-11-14-13 and t2-t4-tl-t3. The

only third order path between tl and 12 is 11-13-14-12, and between tl and 13 is tl-t2-t4-

13. There are only two possible candidates for a third order path between tl and 14: 11-

12-13-14 and 11-13-12-14. Either would require a first order association between 12 and 13,

which in our example does not exist, since there are no documents that contain both 12

and 13. Hence any third order association between tl and 14 is ruled out.

Now, let us take a closer look at how the discount matrix helps in identifying

invalid paths. Matrix T3 says that that there are 5 third order links between 11 and 12.

We enumerate them as follows: 11-/4-11-/2, 11-13-11-12, 11-12-11-12, 11-13-14-12 and 11-/2-

11-/2. Interestingly, excepting tl-13-14-12 all other links are invalid associations of type

i-j-i-lor i-l-k-l, and need to be discounted. Applying the formulations presented earlier,

the number of i-j-i-llinks in this case is niTi/ = nITa = 3. The number of i-l-k-llinks is

niTi/ = n]TI] = 2. Adding them up, we have 5 invalid links, but we note that we have

120

counted the link 11-12-11-12 twice since it can be treated as an i-j-i-/link as well as an i

I-k-/link. Thus the actual number of invalid links is 4, and this is discounted from the

exaggerated estimate of 5 in T3 to yield the correct value 1 in matrix T3 '.

A=

[: ~ ~ ~l [~~ ~ ~l
OOII~2021

I I 0 I 2 2 I 3

Convert non-zero T =
values to I and
diag. values to 0

Term Doc Matrix Term Term Matrix

T3= Tl Column Sums ofT O(ij) = n; + nj - I

1 ~ Order Matrix

0 =

[11 ~ ~l
nl = 3

-.. n2=2 -..
n 3 = 2

114 = 3

3'd Order Matrix

0(1 ,2) = 3+2-1=4 [0 4 4
0(1 ,3) = 3+2- 1 = 4 4 0 3
0 (1,4)= 3+3-1=5-" 4 3 0
D(2,3) =2+2-1 = 3 5 4 4
D(2,4) = 2+3-\= 4
0 (3,4) = 2+3-1 = 4 Discount Matrix

Figure 6.3 An Example

Figure 6.4 Term-Term Association Graph

6.3 Modelling Word Similarities

2nd Order Matrix

Revised 3'd Order Matrix
(. is pointwise product)

Once higher order co-occurrences are mined, we need to translate them into a measure

of similarity between words. Intuition suggests that very high order co-occurrences do

not really indicate similarity. In a study of higher order associations in the context of

LSI (Kotostathis & Pottenger 2006), the authors present experimental evidence to

confirm that associations beyond an order of 3 have a very weak influence on similarity

modeled by LSI. In our word similarity model, we ignore the effects of orders higher

121

than 3. In the last section, we have defined the strength of a higher order association

between two terms as the number of co-occurrence paths between those terms. Let

jirst_order(a,b}, second_order(a,b} and third_order(a,b} denote the strengths of first,

second and third order associations between terms a and b respectively. The similarity

between terms a and b can be expressed as a weighted linear combination of the

strengths of the first three orders of co-occurrence as follows:

similarity(a, b) = n first_order(a,b) + ~ second_order(a,b) + 'Y third_order(a.b) (6.1)

Note that the higher the order of association, the larger the number of co-occurrence

paths (since T';J > T";J' if n>m and if for all T;J #), T;/~ J, which is true in our case),

and hence the greater the strength of association. Thus, to make n, ~ and 'Y comparable

to each other, we need to normalize jirst_order(a,b}, second_order(a,b} and

third order(a.b} to values in [0,1]. In our implementation, we achieve this by dividing

each of these values by the maximum value between any pair of words corresponding

to that order. Each distinct choice of n, p and 'Y leads to a different set of similarities

between terms, which can then be used as similarity arcs in the eRN to perform

retrieval or classification. In complex domains, we would expect higher order

associations to play a critical role and hence such domains should show preference for

higher values of ~ and 'Y compared to simpler ones.

6.4 Learning Model Parameters Automatically

Next, we dwell on the problem of determining the value of the weights n, ~ and 'Y

automatically. We present an approach that uses a Genetic Algorithm (Russell &

Norvig 2003) to determine these parameters in supervised classification tasks. Since the

test set is not available, we instead set our objective to optimizing classification

122

accuracy over five-fold cross validation on the training set. The approach is broadly

illustrated in Figure 6.5.

Learning the parameters using a Genetic Algorithm:

Sample of
parameters

Evaluate fitness using
f-------I five-fold cross

validation

Next Generation - Replace old
parameters with new ones

Select and Reproduce
(Crossover + Mutation)

Figure 6.5 Parameter Learning using a Genetic Algorithm

To start with, we encode the parameters a, P and y, which form the solution

domain, into a genetic representation. We use a 9 bit string encoding to represent each

parameter. To encode a value of 0.8, we multiply this by 100 and convert the resulting

value (80) to its binary equivalent 001010000. This representation allows us to

represent real valued numbers from 0 to 5.11. We set a to a value of 1, and find values

of p and y to yield the best combination. The algorithm starts off with an initial

population of values for the parameters. A sample is randomly drawn from this

population and the fitness of the parameters is evaluated. This is done by splitting the

training set into 5 equal disjoint subsets. A cross validation is procedure is then run 5

times, each time selecting a different one of these as the validation (or test) set and

combining the remaining 4 subsets for the training set. For each of these cross

validation procedures, the accuracy of classification on the validation set is calculated,

using the similarity model derived from the chosen parameters. The average of the five

accuracy values is the quantity we intend to maximize, and is referred to as the "fitness

function" . The fittest combinations of parameters are chosen to obtain the next

123

generation. A single point crossover over each of the fittest genes is used to obtain a

new set of parameters. We also perform mutation (random flipping of bits) to improve

diversity in the next generation; the mutation probability is set to 1116. Note that

crossover and mutation are applied to genes corresponding to each parameter

separately. Thus, we obtain three parameter values at each iteration which together

determine the value of the fitness function. We terminate the iterations when the

improvement in fitness over several successive generations consistently falls below a

threshold E. The selected values of the parameters are now used to obtain a similarity

model over the entire training set, and its performance over the unseen test set is

calculated.

6.5 Incorporating Class Knowledge into Word Similarities

In a supervised classification context, we have class knowledge of training documents

in addition to the co-occurrence knowledge. This is ignored in our similarity

formulation in (I). However, class knowledge can play an important role in boosting

similarity of features if they occur frequently in cases belonging to the same class, and

in demoting similarity if they occur in cases belonging to disjoint classes. In this

section, our goal is to incorporate this class knowledge as part of pre-processing. The

approach is based on the idea of 'sprinkling' described in Chapter 5, where LSI was

extended to supervised classification tasks.

Each case in the training set is padded with additional artificial features that are

representative of class knowledge. For example in the Hardware domain, all cases

belonging to Apple Mac are augmented with artificial terms A, B , C and D, and all

documents belonging to PC are padded with terms E, F, G and H. The padded terms,

are referred to as sprinkled terms. It is interesting to note how these additional terms

influence the co-occurrence paths between any given pair of original features. When

co-occurrences are mined on the new case-feature representation having these

additional terms, features representative of the same class are drawn closer to each

124

other, and features from disjoint classes are drawn farther apart. This happens because

the sprinkled terms provide second-order co-occurrence paths between features of the

same class. Thus using the similarity formulation in (6.1) over the combination of

existing feature set and artificial terms results in increased similarity between features

of the same class. The revised similarity values are used to construct a CRN; it is

important to note that the sprinkled terms only playa role in computing similarities, but

do not appear as IE nodes in the CRN. Thus, an incoming test document whose class is

unknown can be processed in the usual manner. Since similarities between the original

features as captured by the similarity arcs is already biased by class knowledge,

retrieval over the revised architecture would be influenced by the class affiliations of

the query features. Most design issues pertinent to our discussion of sprinkling in

Section 5.2 also apply to our current architecture. For one, we need to decide the

number of additional terms to be added for each class. While sprinkled terms help in

emphasizing class knowledge, using too many of them may distort finer word

association patterns in the original data. This relates to the structure vs. class

knowledge dilemma outlined in Section 4.1. The approaches and heuristics outlined in

Section 5.2 to guide the selection of number of sprinkled terms are relevant here. In

our experiments reported in the next chapter, we used 8 additional terms per class, as

this was empirically found to yield good results.

6.6 Examples of Higber Order Associations

Figure 6.6 shows examples of second and third order associations mined from the

RELPOL domain. The weighted graph representation of Figure 6.l(e) is used for these

illustrations. The number alongside each path is the product of first order co

occurrences constituting that path. It is important to note that while these numbers have

been used to order the paths in the graph visualization, they have no bearing on the

strengths of higher order paths as computed using the approaches in Section 6.2.

125

Figure 6.6 Examples of associations mined in RELPOL domain

126

6.7 Discussion

The effectiveness of the similarity mining approach presented in this chapter is

demonstrated by experimental results in the following chapter, where we show that a

CRN with similarity knowledge mined using higher order associations outperforms

both LSI and SVM. However, the important thing to note is the explicit nature of our

similarity relations as compared to SVM. It is not clear how SVM can be used to mine

similarity between words, or incorporate expert feedback. The comparison with SVM

illustrates that our techniques can outperform the best-in-line classifier while being able

to explicitize its knowledge content, and supporting lazy incremental updates, both of

which are strengths of CBR. The Prolog-based system described in Section 6.2 has its

own advantages for visualization. For any given pair of words, all higher order

associations can be depicted in graphs of the kind shown in Figure 6.6, which may be

useful for explanation or for initiating expert feedback.

The approach presented in the chapter can be used to learn feature similarities in

unsupervised and supervised domains alike. However, the automatic parameter

learning algorithm needs a fitness function, which has been defined in Section 6.4 for

supervised settings. One way of evaluating goodness of a TCBR configuration in

unsupervised domains is to use the GAME measure, described in Section 3.4.

Alternately, we can use the case cohesion measure proposed by Luc Lamontagne

(2006), which measures the degree of correspondence between problem and solution

components of textual cases. Using GAME or case cohesion instead of classification

accuracy as a measure of the fitness function in our optimization algorithm would be a

first cut towards applying our approach to unsupervised tasks.

The importance of modeling similarity using higher order co-occurrences extends

beyond textual CBR. In the context of recommender systems, several authors have

127

reported problems due to sparseness of user-item matrices (Xue et aI., 2005); Semeraro

et al (2005) for example, report that 87% of the entries in their user-item matrix are

zero. Knowledge representations used in collaborative recommenders (like concept

lattices (du Boucher-Ryan & Bridge, 2006)) do not consider associations beyond the

flrst order. Higher order associations can help reduce the sparseness and allow for

better recommendation. In this context, analysis of higher-order associations in user

item matrices will help discover novel product recommendation rules that would

normally be implicit in the user ratings. Our approach can also be applied to link

analysis in social networks (Mori et aI., 2007), for clustering similar words, and

resolving ambiguity of words spanning several clusters.

Several works in the past have pointed to the importance of higher order co

occurrence in modeling word similarity. However we have not corne across any work

that explicitly attempts to obtain a parameterized model of similarity based on these co

occurrences, and learn optimal values of these parameters based on a fltness criterion.

As noted in Section 4.2.3, the work by Kontostathis and Pottenger (2006) provides

empirical evidence to show that LSI implicitly exploits higher order co-occurrence

paths between words to arrive at its revised representations. This provides a fresh

explanation for improvements obtained using LSI in text retrieval applications.

Edmonds (1997) examines the role of higher order co-occurrence in addressing the

problem of lexical choice, which is important to both machine translation and natural

language generation. Broadly speaking, the goal is to determine which of the possible

synonyms is most appropriate for a given communication (or pragmatic) goal. The

authors show that using second order co-occurrence has a favourable influence on the

performance of their lexical choice program. Recent work by Lemaire and Denhiere

(2006) makes an in-depth study of the relationship between similarity and co

occurrence in a huge corpus of children's texts. They show that while semantic

similarity is largely associated with flrst order co-occurrence, the latter overestimates

the former. Higher order co-occurrences as well as lone occurrences (occurrence of

word a but not b and vice versa) were used to account for LSI-inferred term

128

similarities. Unlike our work, the authors do not propose an algorithm to arrive at word

similarities; their approach is more analytic than synthetic. Two other recent

approaches potentially useful for mining word similarities are distributional word

clustering (Baker & McCallum, 1998) which has been used recently in TCBR

(Wiratunga et at., 2006), and Propositional Semantic Indexing (Wiratunga et at., 2005a)

which mines word relationships using Association Rule Mining (ARM) with the goal

of feature generalization. However, probability estimates used in the first approach and

the support and confidence estimates used in the second currently fail to accommodate

associations beyond the first order. It appears that both approaches can potentially

benefit from higher-order knowledge.

6.8 Chapter Summary

We have presented an approach for exploiting higher-order associations between words

to acquire similarity knowledge for CRNs. We highlighted the importance of higher

order co-occurrences in determining word similarity, presented both supervised and

unsupervised algorithms for mining such associations and proposed a word similarity

model, whose parameters are learnt using an evolutionary approach. Another

contribution of the research is to incorporate class knowledge into the process of

mining higher order associations. Though the work has been presented in the context of

CRNs, it can be easily extrapolated to learn similarity knowledge over other retrieval

formalisms. In the next chapter, we will present empirical evaluation of our

approaches, and make a comparative assessment of its perfonnance versus state-of-the

art approaches like SVM and LSI.

129

Chapter 7

Evaluation

Who cares how it works. just as long as it gives the right answer Jeff Scholnik

In this chapter, we report and analyse results of experimental evaluation of the

approaches presented in Chapters 5 and 6 for mining relevance and similarity

knowledge in CRNs. The main objective of the experiments is to establish whether the

acquired relevance and similarity knowledge leads to improvement in the retrieval

effectiveness in CRNs. We also illustrate the goodness of knowledge acquired, in ways

that involve the qualitative judgement of the reader, instead of statistical rigour.

For most of our evaluation, we use text classification datasets, and use

classification accuracy as a measure of retrieval effectiveness. Using classification

datasets is a natural choice when evaluating sprinkled LSI, which is engineered

specifically for supervised tasks. However, this is not so for evaluating the algorithm

for mining similarity knowledge based on higher order associations, which can be

applied to unsupervised tasks as well. However, in light of the difficulty in obtaining

human relevance judgements over unsupervised datasets, we have opted to use

classification datasets throughout. A note about use of classification accuracy as an

evaluation metric is in order. While researchers in text classification have used more

involved metrics based on F-measure or ROC, it was noted in (Gabrilovich and

Marcovitch 2004) that accuracy is an appropriate and adequate measure in situations

where each case (document) belongs to not more than one class, and the class

distribution is uniform. This makes accuracy a suitable measure of effectiveness in our

experiments.

130

While carrying out empirical studies, it is useful to characterize the datasets used,

so that the results of experimental studies can be meaningfully interpreted with respect

to those characterizations. In chapter 3, we introduced six text classification datasets,

and presented techniques to visualize these datasets and obtain quantitative estimates of

their complexity. We use these datasets in our experiments here, and study the

correlations of our accuracy results with the complexity measures, with the objective of

obtaining better insights into successes or failures on specific datasets.

The chapter is organised as follows. Section 7.1 presents an evaluation of the

effectiveness of LSI -mined relevance knowledge. Section 7.2 evaluates sprinkling, and

also shows how word similarities are affected by the process of incorporating class

specific knowledge. Adaptive Sprinkling is evaluated in Section 7.3. AS exploits inter

class relationships, hence additional datasets that involve hierarchical and ordinal

associations between classes are used. Section 7.4 discussed performances obtained

using the similarity knowledge mined using higher order associations. We summarize

our findings in Section 7.5.

7.1 LSI performance

In this section, we evaluate the effectiveness of relevance knowledge mined using LSI.

We compare these values against a baseline Vector Space approach, called BASE,

whose relevance values are simply binary values showing feature presence or absence

in a case. We use a weighted kNN with k =3.

Firstly, we note that LSI performance is critically dependent on the number of

dimensions chosen for creating the revised representations. Figure 7.1 shows the

performance of LSI, in terms of classification accuracy, over each of the six datasets at

different LSI dimensions. The LSI dimensions used in our experiments were 5, 10, 15,

20,40,60, 80, 100 and 120. All performance figures are obtained after averaging over

15 test train splits of the datasets described in Section 3.1. The broad pattern that is

131

observed over all datasets is very clear: LSI perfonnance is best when a small number

of dimensions ranging from 5 to 20 is used. There is a pronounced peaking behaviour

in both four-class problems REC and SCIENCE. This is possibly because these four

class problems have more diversity in their texts in comparison to the relatively simpler

spam filtering problems USREMAIL and LINGSP AM. Our complexity analysis and

visualization in Chapter 3 shows HARDWARE to be the most complex of the binary

problems. Interestingly, the number of LSI dimensions that yield best perfonnance in

HARDW ARE is 20, which is conspicuously larger than the best dimensionality in the

simpler binary problems like RELPOL or the spam filtering datasets.

Table 7.1 Comparing LSI perfonnance against naive VSM

Routing Filtering

REC SCIENCE HARDWARE RELPOL USREMAIL LINGS PAM

BASE 62.79 54.89 59.51 70.51 59.23 85.09

LSI 79.32 72.55 66.30 91.17 94.67 97.37

Table 7.1 shows the peak accuracy results of LSI for each of the six datasets, observed

at the dimensionality that yielded best perfonnances. We observe that there is a

statistically significant improvement over the baseline in all datasets. The margin of

improvement is quite large in all binary datasets excepting HARDWARE. The

relatively unimpressive gain in HARDWARE can be explained by correlating the

accuracy results with GAMEclass scores reported in Section. The GAMEc1ass scores and

LSI accuracies are compared in Table 7.2. We observe a correlation coefficient of

i
II)

ii •

0.8

"' 07
C
o
).
u
~ DOl
u
u
(

06

konq Reds lei SCIENCE

• SI

B.A.SE kco:y: 54.89%

°SO SID III () OJ ~ IJJ
No. of LSI~

ii
~ 08
c
o
). O~
u •

k MCf Resuls for RELPOL

.- ,

~ 0 • LSI
u
(

065

06

BASE,bcMty. 70.51'.4
5\ 5 ' t511 () OJ ~

No. of LSI cinensions
1lI

0$

Q9

i Ci!i
II)

ii
• 06 "' c
0
).D~
u • 5
u
u
(

O!i\

i 09
., II) .. • IOI!i

"' c
o 08
).
u •

Acmcy Reds lei REC

.. ... LSI

>. ,

' .
>" -"

.. ...

B.A.SE Acancy: 62.79".4

!il II lID III
No. of LSI d'men~ons

AcMCf Reslis lei LINGS PAM
t., .s _,

..

~ 015 • LSI
u
u
(~

132

OIS

lSI
0.8

i
II)

ii
~ 075
c
0
).
u
! 0.7
~
u
u
(I····· "' l-

065
.

, B.A.SEAcancv: 59.51 %

o SIDt5 l1 () OJ W m m
No. of LSI dimensions

0'11

i 0$
II)

Acctney Results forUSROOIL

.. OSt • • ~

a 0;)
).

~ 09
~ lSI
p ll

o iii

OBI
BASE Acc\llCy: 59.33%

!il II lID tIl 0~u5-':tO..Lt511:'------'-() - -':IiI- -'W--IID'---- m

No. of LSIlimensions No. of LSI inen~ons

Figure 7.1 LSI performance at various dimensions

0.9176, over the four binary class problems. The high correlation suggests that

HARDW ARE's inherent complexity, coupled with the fact that LSI fails to take into

account class knowledge of the training documents, account for the poor performance.

Comparing LSI performances over the four-class datasets show that SCIENCE

registers a bener performance than REC, and this corresponds well with the complexity

scores registered by GAM Eclass'

133

Table 7.2 Comparing GAMEclass with LSI accuracies

REC SCIENCE HARDWARE RELPOL USREMAIL LINGSPAM

GAME 1.1629 1.0492 1.0028 2.0358 2.3728 3.2222

LSI 79.32 72.55 66.30 91.17 94.67 97.37

While companng peak perfonnances of LSI, it is important to note that in

practical situations, the best dimensionality setting cannot be detennined precisely

since the test documents are not available for accuracy evaluation. However cross

validation over training documents can be used to arrive at a reasonably good setting.

To summarize our findings, we firstly note that dimensions of LSI as low as 5-20

often work the best; more dimensions are needed on diverse problems as in multi-class

datasets, or on complex problems like HARDWARE. Secondly, LSI results correlate

well with dataset complexity as estimated with GAMEclass. Thirdly, improvements

achieved by LSI over the baseline are critically dependent on the discriminatory power

of the features (concepts) extracted by LSI. In the case of RELPOL, the extracted

features are effective in classification; whereas in HARDWARE, the extracted features

are likely to have a mix of tenns drawn from the two classes MAC and PC, which are

likely to share a lot of tenns between them. This bottleneck stems from the fact that the

class labels of the training documents are ignored by LSI. Supervised versions of LSI

will attempt to exploit the class labels to learn concepts (extracted features) that are

better at discriminating between classes.

7.2 Sprinkling

We evaluated the effectiveness of sprinkled LSI representations over the six

classification datasets described in Section 3.1. Ideally, the optimal number of

sprinkled tenns to be used should be determined based on cross-validation carried out

over training dataset for each individual trial. However, to simplify evaluation, we used

134

16 sprinkled tenns throughout for our experiments, as this was empirically determined

to yield reasonably good perfonnances. Thus, each class was represented by 8

sprinkled tenns in the binary classification problems, and by 4 tenns in the four-class

problems.

Figure 7.2 shows graphs comparing LSI perfonnance, in tenns of classification

accuracy, before and after sprinkling, at various choices of dimensionality. As with

experiments reported in the previous section, the accuracy Figures are obtained after

averaging over the 15 trials in each dataset. Firstly, we note that all six datasets benefit

from sprinkling. The margin of improvement obtained is also large in all datasets,

excepting USREMAIL and LINGSP AM, which are simple domains with already high

classification accuracies. Thirdly, the perfonnance of sprinkled LSI peaks at very low

dimensions in the range of 5-10. In this respect, the difference with LSI is notable,

especially for the three complex datasets, SCIENCE, HARDWARE and REC. The

incorporation of the sprinkled tenns helps in "aligning" the extracted dimensions to

class specific features. Thus the top few dimensions in sprinkled LSI would capture the

most discriminating features; in unsupervised LSI however, a larger dimensionality

would be needed to capture these discriminating features.

In Table 7.3, we report the peak perfonnance results for sprinkled LSI over each

dataset. We compare these perfonnances against BASE (our earlier VSM baseline),

peak LSI perfonnances as reported in the last section and Support Vector Machines

(SYMs). SYM has been chosen for our comparisons since it has been reported to yield

state-of-the-art perfonnances in text classification, in several independent studies. For

our SYM experiments we used SYM-Light (Joachims 1998). We used a linear kernel

since it was observed to be well suited to textual problems (Joachims 1998). SVM

being inherently a binary classification tool, we have not reported SYM results

corresponding to the two multi-class problems. However we plan to use multi-class

extensions to SYM in future over these datasets. We used paired t-tests (p = 0.05) to

evaluate the significantly better of each 6 pairs originating from the four classification

problems. The paired data for the t-tests comes from the 15 pairs of observations from

135

the 15 train test splits. Results in bold correspond to best accuracy; in situations where

there is no significant statistical difference between the best results, all top figures are

shown in bold. Firstly, we note that sprinkled LSI outperfonns LSI on all six domains.

With the exception of the simple LINGSP AM domain where classification accuracies

were already quite high, the differences with and without sprinkling are statistically

significant throughout. This conclusively suggests that class knowledge plays a critical

role in arriving at better case representations, leading to higher classification

effectiveness. Secondly, sprinkled LSI significantly outperfonns SVM in three of the

four binary classification problems. In USREmail, a relatively simple domain with high

classification accuracies, Sprinkled LSI accuracy is higher, though the difference is not

statistically significant.

Table 7.4 compares peak accuracies of sprinkled LSI against GAMEclass scores.

Sprinkled LSI perfonnance correlates well with the GAMEc1ass complexity measures.

For the binary classification problems, the correlation coefficient is 0.9365, which is

higher than what was observed with unsupervised LSI (0.9176). Perfonnance

improvement in the complex HARDWARE domain is conspicuous, thus confinning

our earlier hypothesis that class knowledge is critical here.

In Table 3.1 of Chapter 3, we presented the accuracy figures of three other

classifiers, namely PSI, ECRN and LogitBoost. We do not replicate those results here,

but it is clear that sprinkled LSI outperfonns these classifiers over most datasets, and

compares favourably in the rest. We also note that sprinkled LSI outperfonns the very

recently proposed TCBR technique PSI on all six datasets; the margins of difference in

the multi-class problems REC and SCIENCE are especially conspicuous.

.. • ,
I- 0
e
o
),
u
! D.E5
J
u
U

<
0.6

AcCtlK'f Rem for SCIENCE

'.

BASE AcMcy:54 .89'~

c lSI

+ SpmdedlSI

'-'.

' "
..

"

s;LJ~--~----~~~
01 1 5?J ~ ill ffi till

No. of lSI d'rnensions

g; AcelJaCY Res14s frK RElPO

, .~
,••.. -t· .

.. •
~ OB

-·~ .. lSI

+ SplmdlSI

~ ill III till ~

No. of LSllfrnensions

AcMC'f Results for REC

"' lSI

+ S~dlSI

.... ...
>.

"',
' "

i
til .. • ~ 075
l-
e
o
),

~ 07 ..
J
~
~

<
.65 "

136

Ace'laCj Results for fiARDWARE

,.~.

..... lSI

~ SprinkiedlSI

two •• • • ••

.,. ...

, BASE Acelney: 59.51 %

~ ill III 1!D 1?J 0 1115?J 40 ill III 1!D
No. of lSI dimensions No. of lSI dimensions

Accuracv Results for lINGSPAM

.!!i~ o.!II
Accuraq Rem for USREMAll

.. · · lSI

+ Sp~ lSI

..... - ~

I J t , t

ii 094 ".', . ,
I-

~ 092
),
u
! 0.9
J
u
~ 000

O.lIi

....... lSI

+ Sprinkled lSI

1?J

~ !il III !D 1?J OBlOLlI...l.l0..Lll?JL-- 40L-- !il.L-----'-1Il --..L
l
!D----.J

1Jl
No. of lSI amensions No. of lSI dimen~ons

Figure 7.2 Performance of Sprinkled LSI at various dimensions

137

Table 7.3 Comparing peak performance of Sprinkled LSI with other classifiers

Routing Filtering

REC SCIENCE HARDWARI RELPOl USREMAIL LlNGSPAM

BASE 62.79 54.89 59.51 70.51 59.23 85.09

LSI 79.32 72.55 66.30 91.17 94.67 97.37

SprinkJed
86.99 80.60 80.42 93.89 96.13 98.34

LSI

SVM -- -- 78.82 9l.86 95.83 95.63

Table 7.4 Comparing GAMEciass measure with LSISPR performance

REC SCIENCE HARDWARI RELPOL USREMAIl LINGSPAM

GAME measure l.l629 1.0492 1.0028 2.0358 2.3728 3.2222

Sprinkled LSI 86.99 80.60 80.42 93.89 96.13 98.34

Table 7.5 shows similarity between a select pair of features as mined using

sprinkled LSI on the HARDWARE domain, and compares them with corresponding

values using unsupervised LSI. The similarities are extracted based on the approach

outlined in Section 4.3.2. It is clear that sprinkled LSI promotes similarity between

features belonging to the same class. For example, Words apple and powerbook both

belonging to the class "apple" are drawn closer together, while the similarity between

words os and ibm. belonging to distinct classes "apple" and "pc" respectively, is

attenuated. It is interesting to see that sprinkled LSI conspicuously boosts the

similarity between "mac" and "macintosh", showing that class information can be

useful in resolving domain-specific synonymy. The small decrease in similarity

between apple and mac appears unintuitive, but is possibly a side effect of the LSI

based constrained optimization which favours marginally weakening existing strong

bonds, with the intent of reinforcing otherwise weak associations.

138

Table 7.5 Word Similarities before and after Sprinkling

Word 1 Word 1 LSI LSISPR Difference

Mac powerbook 3.26 4.61 1.35

Mac macintosh 1.88 3.25 1.37

App/ macintosh 2.00 2.81 0.81

App/ powerbook 3.77 4.12 0.35

App/ mac 19.94 19.02 -0.72

powerbook ibm 0.17 0.09 -0.08

macintosh ibm 0.09 0.23 0.14

Pc macintosh 2.44 1.99 -0.45

powerbook macintosh 0.71 1.20 0.49

Os microsoft 2.27 1.80 -0.46

Os macintosh 2.13 2.34 0.21

Os powerpc 0.15 0.58 0.44

Os ibm 2.82 2.31 -0.51

It is illustrative to compare the association of different terms to classes, before and

after sprinkling. Considering the two case-feature matrices corresponding to lower rank

approximations generated by LSI and sprinkled LSI, we can obtain a simple measure of

prototypicality ("representativeness") of a term to class by adding up relevance values

that estimate association of that term to cases belonging to that class. Assuming equal

number of cases in each class, the resulting class memberships can be meaningfully

compared against each other. Table 7.6 shows the prototypicality of words to each of

the four classes Electronics, Cryptography, Space and Medicine in the SCIENCE

domain. The figures in bold show the class to which the word is most likely to be

assigned by a human, based on knowledge of the domain. We can see clearly that in all

cases, Sprinkled LSI changes class memberships to make them better representative of

the concepts underlying each class. The words radio and antenna are relevant to two

classes Electronics and Space, and Sprinkled LSI correctly boosts the corresponding

139

memberships. Thus, sprinkling exploits class knowledge effectively to make the LSI

mined representations approximate the expert knowledge ofthe domain more closely.

Table 7.6 Tenn affiliations to classes in SCIENCE domain before and after sprinkling

LSI Sprinkled LSI

>. >.
~ .c:: ~ .c::
Col Q" ~ .!t Q" ~ CIIS = CIIS .S = ... ~ = ... ~

= CIl
Col Col = CIl CJ CJ ... CIIS

i
eo = Q" -= = Q" ~ Col

rI:J ~
~ Q"

~ ~
rI:J

~ - ~ -~ ~
U U

encrvot 7.02 95.29 -0.73 -4.09 0.08 110.59 -0.97 -2.25

secur 3.28 65.55 1.23 -1.29 0.32 68.76 -0.66 -0.70

chiD 23.30 70.41 3.56 4.59 29.81 80.17 -0.45 4.15

orbit 6.08 0.73 35.76 2.93 -0.28 0.28 52.95 0.17

sDace 7.75 11.42 59.54 11.38 5.55 10.34 7B.62 6.22

algorithm -1.46 44.Bl 0.34 2.91 0.66 49.06 0.49 0.79

launch 4.65 0.71 32.Bl -0.10 -0.35 1.94 44.40 -1.12

crypto 5.81 37.05 2.94 -2.07 0.33 41.71 0.29 -0.38

Drivaci 5.00 36.23 3.03 -0.18 2.19 40.41 -0.78 0.64

medic 6.65 -0.03 3.05 23.61 -0.18 -0.27 -0.59 36.25

circuit 21.01 2.01 1.66 0.40 36.BO -0.52 -1.39 -2.02

doctor 4.69 -0.49 0.85 26.03 0.26 -0.89 -0.52 34.B3

earth 5.81 0.57 26.51 6.01 5.53 -1.56 40.31 1.15

moon 4.49 0.91 33.95 3.87 2.33 1.28 40.32 0.76

nasa 0.03 3.33 34.43 5.70 0.82 2.71 40.13 4.01

rocket 3.65 0.57 24.43 -0.51 -0.06 0.37 30.49 -0.17

volta2 19.55 1.29 0.93 1.07 29.70 -1.30 -1.12 -0.49

public 2.29 51.61 12.68 18.46 0.59 53.55 19.16 16.03

diseas 1.44 1.50 4.71 20.0B -0.21 0.86 0.91 2B.2B

shuttl -0.05 0.67 12.90 2.40 -0.38 -0.45 21.52 0.02

rsa 0.71 22.37 -0.62 1.17 -0.31 22.92 0.36 -0.37

crvotograph -0.12 21.62 0.70 1.04 0.76 21.71 0.37 -0.07

health 6.00 1.11 3.84 IB.95 -0.06 0.62 0.85 25.71

medicin 0.68 0.48 2.29 20.48 1.90 -1.07 1.02 26.24

flil!ht 2.00 0.85 16.42 5.51 0.44 0.12 23.3B 4.91

treatment 0.68 -1.15 0.30 17.54 -0.79 -1.44 -0.93 20.80

lunar 2.16 0.17 11.67 1.42 0.03 -0.24 19.22 -0.16

electron 13.29 22.15 3.69 0.35 25.38 17.83 1.00 0.82

patient -0.42 0.19 1.10 10.19 -0.57 -0.17 0.07 14.72

spacecraft 0.41 -0.28 6.84 1.14 0.22 -0.47 13.0B 0.01

diet 1.33 0.17 3.98 15.31 0.59 0.48 1.28 18.72

dro2 1.18 11.53 -0.69 10.09 -1.14 12.11 -0.47 11.B7

volt 9.29 -0.31 2.28 0.35 13.86 -1.13 0.48 -0.79

tv 6.39 1.11 1.95 2.37 13.12 0.19 1.38 0.48

ohm 6.72 1.21 0.34 0.16 11.57 0.17 -0.21 -0.35

pavload 2.57 -0.16 11.11 -1.01 0.24 0.11 12.02 -0.70

2.03 0.46 10.01 -0.44 0.01 0.34 11.91 -0.57

140

LSI Sprinkled LSI

....
rI.I .c rI.I .c
(J c. ~ (J c. ~ ... eI 1:1 '= eI .5 1:1 ... ~ . .. ~

= CIl
(J (J = ... (J (J

:: eI :a :: CIl eI ...
= c. .s c. "C

(J - ~ (J

~
r:I:J

~
r:I:J ~

~ ~ ~
~ - -r;i;I r;i;I

U U

satellit 1.41 1.49 10.87 1.12 2.99 1.04 15.75 -0.02
proDuls 0.09 -0.70 10.42 2.47 0.98 -0.11 13.01 0.58

atmosDher 1.37 -0.29 7.70 1.78 1.20 -0.27 12.67 0.47
aoollo 0.58 0.97 7.90 0.16 -0.41 0.30 12.27 0.28

symptom 1.72 -1.32 0.79 10.81 1.09 -0.51 -0.32 13.18
motorola 7.18 2.74 1.37 2.16 15.00 1.55 1.75 1.27

homeopathi -0.39 -0.56 0.31 9.03 0.20 -0.61 -1.01 9.75

sunteri 1.07 -0.27 0.73 5.21 -0.51 -0.05 -0.16 8.80
aItitud -0.18 -0.03 6.81 -0.05 -0.32 -0.19 8.69 -0.26

microcircuit -0.37 7.29 -0.94 -0.55 0.18 7.33 -0.83 -0.04
Dlanet 0.70 0.10 3.53 1.60 0.11 0.04 8.78 1.07

Dassword 1.92 5.01 0.39 -0.17 0.15 6.65 0.85 -0.45
physician 0.29 0.30 1.13 2.79 -0.13 0.08 0.88 6.46

unix 6.35 6.57 2.\0 3.47 \.28 10.00 0.40 3.34

astronomi 0.23 0.35 2.83 3.15 -0.04 0.09 6.21 4.05

radio 12.75 4.86 10.08 4.31 19.55 4.55 12.03 3.79

associ 1.78 6.52 6.91 12.87 1.44 4.37 11.23 14.35

clinic 1.34 -0.65 0.21 5.77 1.61 -0.41 -0.43 6.48
planetari -0.16 2.39 3.31 1.19 -0.54 2.14 6.11 0.02
antenna 1.84 0.05 4.48 0.80 4.13 -0.10 5.42 0.13
chang 9.85 23.64 15.34 18.66 7.94 24.59 11.88 19.44

telescop 2.13 0.49 7.04 1.84 1.85 0.54 7.47 2.00

cancer 0.66 1.43 0.47 6.63 -0.25 1.67 0.87 7.10

fever -0.13 0.11 0.96 2.65 -0.\6 0.01 2.57 4.06

We now briefly turn our attention from evaluating effectiveness of mined

knowledge to examining efficiency implications of sprinkling. The only overhead

associated with sprinkling is that the size of the case-feature matrix grows because of

the augmented sprinkled columns. Table 7.7 shows that this overhead is miniscule in

practical scenarios. For our experiment, we compared time taken for computing the

SVD of a case-feature matrix having 1000 cases and 1000 features, before and after

sprinkling. We use the Matlab implementation of SVD over a PC configured with

Pentium 4 (single-core) processor and 512 MB of RAM, for our experiments.

141

Table 7.7 Time perfonnance overheads with sprinkling

No. of Sprinkled Terms 0 4 8 16 20 50 100

Time taken by SVD (ms) 134 134.92 133.13 133.76 134.37 135.35 140.18

7.3 Adaptive Sprinkling

Adaptive Sprinkling (AS) is different from sprinkling in that it takes into consideration

the knowledge of relationships between classes. We evaluated AS on three types of

classification problems. The first involves hierarchical classes, which have an is-a

taxonomy defined over them. The second type originates from sentiment analysis

problems, has an ordinal relationship defined between classes. For example, a textual

review accompanied by a rating of 1 (on a 10 point scale) is expected to be more

similar to one rated at 2 than another at 10. Ifnumeric ratings are treated as class labels,

similarity between classes is a function of this ordering. Finally, we consider

orthogonal problems where classes bear no explicit relationship to each other. This is

the most frequent category of problems; the datasets used to evaluate sprinkling have

flat disjoint classes, and they belong to this category. We used the following datasets in

our experiments:

1. Hierarchical dataset: This dataset was fonned from the 20 Newsgroups collection

(Lang 1995) which has seven sub-trees: comp, rec, talk, alt, misc, soc, and sci. We

selected the comp and rec sub-trees which contain 5 and 4 classes (corresponding

to leaf-nodes) respectively. The hierarchy is shown in Figure 7.3. We used 500

documents (cases) from each of these nine classes.

2. Ordinal dataset: Classification between ordinal classes is an interesting problem

in sentiment analysis literature (pang & Lee 2005). However, due to the relative

youth of the field, no suitable benchmark dataset was readily available. We

142

therefore compiled a new dataset from reviews on the "actors and actresses" sub

topic of the Rateital/.com opinion website. Each review contained an integer rating

(1 to 5 inclusive) assigned by the author. These ratings were used as the class

labels. We removed all reviews having less than 10 words, and created 5 equally

distributed classes, each with 500 reviews.

3. Orthogonal dataset: We used the acq, crude and earn classes of the Reuters-

21578 collection (Reuters 1997) to form this dataset. 500 documents were selected

from each class, such that each document belongs to at most one class.

Figure 7.3 Organization of 20 Newsgroups sub-corpus used for evaluating AS over

hierarchical classes

All three datasets underwent similar pre-processing. After stop word removal and

stemming, binary valued term-document matrices were constructed. For each of the

datasets, Information Gain (lG) was used to select the top 1000 discriminating words.

For experiments using SVM, we used the SVMmulticlass implementation (Joachims

1998), with a linear kernel as before. Since we have single labelled documents in each

dataset, and the all classes are distributed equally, accuracy suffices as a measure of

effectiveness. For all datasets we performed classification using 10 equally sized train

test pairs, and used the paired t-test to assess significance.

143

7.3.1 Confusion matrices before and after sprinkling

As described in Section 5.3 high off-diagonal values in a confusion matrix indicate

classes that the classifier finds hard to separate. This forms the intuitive basis for using

the confusion matrix to generate the sprinkling codes. In our experiments, as-fold

cross-validation on the raw training data yields five confusion matrices. These five

matrices are then used to construct an average confusion matrix Q, each of whose

elements are obtained by averaging the corresponding elements in the five matrices.

Sprinkled terms are generated based on Q using the algorithm presented in Section 5.3

and LSI is performed on the sprinkled representation. The same classifier is then

applied to the revised representations, yielding a new confusion matrix Q '. Comparing

Q and Q' provides direct evidence of the quality of the revised representation.

Figure 7.4 is a qualitative illustration of the effects of AS on the initial confusion

matrices, which result from applying a kNN classifier to three datasets. Each element of

the matrix is mapped onto a cell colour. A light colour signifies a high value in that

cell, a dark colour signify a low value. For a perfect classification, all cells except those

on the diagonal should be dark, as this indicates total agreement between the expert and

the classifier.

In all three datasets, we observe that AS results in a reduction in inter-class

confusion. The first column in the matrix of Figure 7.4A and the second one of Figure

7.4C, reveal pairs of classes that kNN fmds hard to classify. Interestingly, AS

succeeded in reducing inter-class confusion, as is revealed by the near-diagonal

patterns in matrices of Figures 7.4B and 7.4D.

comp.graphics

comp.oll.ms-windDws.misc

comp.sy&.ibm.pe.hardwant

eomp.ly&.mac.harwar.

comp.windows.xp

ree.auloa

ree.motorcyclH

rec.aport.bneball

rec.aport.hockey

fating 1

rating 2

rating 3

raling 4

rating 5

acq

144

: .
• • • B: A1t~ sprInkll1Q (hlerarchlC., CIIII!8I)

-.. .u. • cll1ulller

E: BPlClft .,nldlng (0II1IOgonal rlIll.Ht)

c:II~lIIler

i •

Figure 7.4 Confusion matrices before and after sprinkling

A closer look at the confusion matrices obtained after sprinkling reveals patterns

that are consistent with the relationship between classes. In the hierarchical dataset, the

confusion is mainly between classes within the same sub-tree. There are two broad

confusion zones, one between the five classes of the camp subtree, the other between

four classes of rec. Furthermore very closely related classes like those corresponding to

145

PC and MAC hardware, and those relating to autos and motorcycles are hard to

discriminate, and this is reflected in the lighter shades in the corresponding cells of

Figure 7.4B. For ordinal classes, the confusion matrix of Figure 7.4D shows that AS

has implicitly mined the similarity between rating classes and attenuated confusion

between distant classes. This is evident from the broad pattern of light shades along the

diagonal, and darker shades elsewhere. This is expected, since adjacent classes of an

ordinal dataset are the most similar. The orthogonal dataset has the least confusion

between classes since there is no explicit relationship between them. Figures 7.4E and

7.4F show that sprinkling has a positive effect in reducing inter-class confusion. In

particular, the confusion between classes acq and crude has been markedly reduced.

We sought an empirical explanation for this by studying similarity between terms

before and after AS, obtained using the approach described in Section 4.3.2. It was

observed that similarity between words were boosted if they related strongly to the

same class, and attenuated otherwise. For example, opec and refinery, both relevant to

the class crude, were drawn closer, while dividend (from earn) and crude (from crude)

were moved apart.

7.3.2 kNN performance before and after AS

To assess the impact of sprinkling we constructed three representations of each dataset:

the raw term-document matrix (baseline), the LSI-generated reduced dimensional

representation (LSI), and the approximation of the original matrix generated by

sprinkled LSI (LSI+AS).

Effects of sprinkling on kNN: We used two variants of kNN, the first based on the

Euclidean distance measure (kNNE) and the second on cosine similarity (kNNC). Both

use a weighted majority vote from the 3 nearest neighbours. Table 7.8 reports kNN

performances, before and after sprinkling, at the LSI dimension empirically found best.

These are compared against baseline SVM performance. For each dataset, the

146

performances significantly better (p < 0.05) than the rest, are shown in bold. Firstly, we

observe that AS leads to sizable improvements in performance of both kNNE and

kNNC over the respective baselines. kNNE and kNNC performances with LSI+AS are

significantly better than LSI on all datasets. Secondly, LSI+AS enhances kNN

performance to be competitive with, and occasionally outperform, baseline SVM.

At different LSI dimensions: Figure 7.5 shows kNNC and kNNE performances over

various LSI dimensions. We note that LSI+AS consistently outperforms LSI at all

dimensions, on both measures.

The poor performance of all classifiers on the ordinal dataset can be attributed to

classes that are not neatly separable. This is partly caused by subjective differences

between reviewers, who use different ratings to express similar judgements. The

positive impact of AS on confusion matrices in Figure 7.4D suggests that a regression

based technique can fare better than a classifier that attempts to predict a precise rating.

Furthermore, the IG measure used for feature selection assumes classes to be disjoint

and needs to be reformulated to accommodate inter-class similarity (Mukras et aI.,

2007).

7.3.3 SVM performance before and after AS

Table 7.9 shows the impact of sprinkling on SVM performance. It may be noted that

the confusion matrix used to generate sprinkled terms reflected weaknesses specific to

SVM, hence AS should ideally emphasise differences between classes that SVM on its

own found hard to classify. The results are in line with our expectation, as LSI+AS

significantly (p < 0.05) outperforms the baseline on all three datasets. There is some

evidence to suggest that LSI alone improves SVM performance, but the difference is

not statistically significant except for the orthogonal dataset.

147

Table 7.8 kNN perfonnance before and after AS

Hierarchical Ordinal Orthogonal

Baseline 48.02 25.84 93.47

kNNC LSI 49.53 29.08 94.80

LSI+AS 60.40 31.00 95.20

Baseline 20.80 25.40 78.60

kNNE LSI 35.73 29.00 91.87

LSI+AS 59.38 30.16 93.80

SVM Baseline 65.47 30.12 94.27

The likeness in perfonnance between LSI and LSI+ AS on the orthogonal dataset is

indicative of the fact that class knowledge plays a less critical role here, in comparison

to the ordinal and hierarchical cases.

Table 7.9 SVM perfonnance before and after Sprinkling

Hierarchical Ordinal Orthogonal
Baseline 65.47 30.12 94.27

SVM LSI 65.71 31.12 95.27
LSI+AS 66.33 32.08 95.27

7.3.4 AS versus sprinkling

We carried out experiments to compare the effectiveness of AS against sprinkling on

the multi-class orthogonal datasets REC and SCIENCE. Table 7.10 shows the accuracy

figures obtained after averaging over 15 trials. Over both datasets, we observed a small

improvement in the accuracy. This is explained by the ability of AS to improve

separability between classes that are more likely to be confused. The results confinn

Sprinkling at various LSI dimensions (Hierarchical dataset)

0.65 r;::::=======;----.----.---~~---,.--I
. kNNC LSI

0.6 . • .. kNNC LSI.AS
- kNNELSI

0 .55 _ kNNE LSI.AS

••• •• • •••• ' 1111. """ ••••• •••

0.5 . '

g- 0 .45 •• . • . 4" .,. ' ''" " .. '' ''' '''' .. ''' , " ''' .. ,

~
~ 0.4 ll ~ '

0 .35

D.)

0.25

r:-
t!
::J
~ ..

02~--~50~-----1~OO~----~150~----~200==~--~250~~---JOO~=---~)~50~----~4~OO
LSI dimensions

0 .31

0 .3

0.29

0.28

0 .27

026

0.25

Sprinkling at various LSI dimensions (Ordinal dataset)

......... kNNC LSI .. • kNNC LSI·AS
- kNNELSI
- kNN E LSI.AS

.......... ,."

!
/

0" "-
,

_ .. ,
,

024 L--L-----4~0~---60~----80==----~100~--~1~20=---~1~4~0~--1~60~--~1~80=---~200~
LSI dimensions

Sprinkling at various LSI d imensions (Orthogonal dataset)
O~ ~----r-----r-----r-.. -. -,-. ~.-. -. -.. --.r-.. -. -.-.. ~. r .. -.. -.-.. -.. ~.r.-. -.. -.~. ~. -. -.~ .. ~. ~ .. ~

"':: . I: : ,: .• II : • • : II~ lt l l llll llf l f ll l l l . I II I I II. , I'11 1 1111111111 1 't l l l ll l ll ll

0.9

0 .85

0.8

0.75
•• · kNNC LSI

. .. • kNNC LSI+AS

- kNNE LSI

- kNNE LSI.AS
0 ·~~0----~20~----~JO~----4~0~--~50~----~60~· ~--~70~====~80~====~90~==~1~OO

LSI dimensions

Figure 7.5 kNN performance before and after AS at various dimensions

148

149

Table 7.10 Comparing AS against sprinkling over 4-class datasets

REC SCIENCE

Sprinkled LSI 86.99 80.60

LSI+AS 87.47 81.12

that even in orthogonal domains where no explicit class relationships are known, AS

can have an edge over uniform sprinkling, because it treats hard-to-separate classes

differently from the rest.

7.4 Feature Similarity mined using Higher Order Associations

In this section, we present experimental results to demonstrate the effectiveness of

similarity knowledge mined using higher order associations as described in Chapter 6.

The datasets described in Section 3.1 have been used for all evaluation reported in this

section. An important issue associated with the algorithm for learning similarity

knowledge is the setting of parameters a, ~, y associated with the strengths of first,

second and third order associations respectively. To start with, we consider the case

where these parameters are set using "brute force". This is done by incrementing each

parameter in steps of 0.1 from 0 to 2.5, and trying out all possible combinations of the

three parameters. Note that the strengths of higher order associations are normalized as

described in Section 6.3 to make the ranges of the three parameters compatible with

each other. In Section 7.4.2, we present results where the parameters are learnt

automatically using an evolutionary approach.

Table 7.12 presents a summary of the results. The figures in bold are the best

results after paired t-tests between each classifier over results from the 15 trials. In

situations where the differences between the top ranking classifiers is not statistically

significant (p > 0.05), all top figures have been marked in bold. We observe that using

second and third order co-occurrences at parameter settings that yield best performance

150

results in better classification accuracies compared to using first-order co-occurrences

alone (P,y = 0). While the differences are statistically significant on all four datasets,

the magnitude of improvement is more conspicuous in HARDWARE and RELPOL,

which are harder domains, compared to USREMAIL and LINGSPAM, which already

recorded high accuracies with simpler approaches. We compared our approaches to a

CRN based on similarity relations mined using LSI. It may be noted that the use of

higher order co-occurrences leads to better accuracies compared to LSI-based

similarities and the differences are statistically significant on all four domains. This is

all the more noteworthy in the light of our paired tests that reveal that LSI does better

than first order co-occurrences on both HARDWARE and RELPOL, while results are

statistically equivalent on the other two datasets. These two observations show LSI

does better than using first order associations alone, but is outperformed

comprehensively when higher orders are used. While Kontosthathis & Pottenger (2006)

show that LSI implicitly models higher order co-occurrences, it is simultaneously

constrained by the need to maximize variance across the concept dimensions, and by

the need to produce the best k-rank approximation to the original case-feature matrix,

in the least-squares sense. The experimental results confirm our intuition that these

constraints could prove to be unnecessarily restrictive in the classification domain, and

can be relaxed to obtained better performance. Another relative advantage of our

approach vis a vis LSI-mined similarity is that we can explicitly capture higher order

associations and embed into the similarity knowledge. This is useful for facilitating

better explanation and visualization of the mined knowledge, as shown in Section 6.6.

We also note that our approach outperforms SVM on all datasets except

HARDWARE where SVM performs significantly better. One possible reason for the

relatively poor performance in HARDWARE could be a significant overlap in

vocabularies used to describe problems in Mac and PC. The problem is compounded by

the fact that we ignore class knowledge of training documents while constructing

similarity relations between terms. In contrast this is a critical input to SVM. Motivated

151

by this observation, we explored the idea of incorporating sprinkling into the similarity

mining algorithm, which is described in Section 5.3.

Table 7.11 reports a, p and y values at which best performances are observed.

Easier domains like USREMAIL and LINGSP AM appear to prefer lower values of p
and y compared to the two harder binary problems HARDWARE and RELPOL, and

the two multi-class datasets REC and SCIENCE (refer GAMEciass scores in Table 3.1).

We will re-examine this observation in the light of more experimental results in Section

7.4.2.

Table 7.11 Empirically determined best values of a,p and y

REC SCIENCE HARDWARE RELPOL USREMAIL LINGSPAM

(a,P,Y)opdma (I, 0.42, 0.49) (1,0.95,1.07) (1,0.37,1.15) (1,0.61,1.04) (1,0.21,0.15) (1,0.27,0.31)

Table 7.12 Comparing Classifier Accuracies

REC SCIENCE HARDWARE RELPOI USREMAII LINGSPA~

BASE(VSM) 62.79 54.89 59.51 70.54 59.23 85.09

LSI-mined Similarities 82.16 75.37 72.40 93.39 95.83 98.32

SVM -- -- 78.83 92.28 95.83 96.36

First Order 82.71 77.04 71.71 93.09 95.77 98.26

Higber Order SS.3S Sl.SS 74.51 9S.30 96.40 9S.S9

7.4.1 Sprinkled Higher Order

In Section 5.3, sprinkling was used to create artificial second order associations

between features representative of the same class. In this sub-section, we evaluate the

hypothesis that this indeed leads to better classification effectiveness by biasing the

feature similarities to reflect class knowledge. We note that the number of sprinkled

terms is an important parameter for this algorithm and needs to be set based on training

set cross validation for optimal performance. For our evaluations, we simplify this

152

choice by using 8 sprinkled tenns per class, as this was empirically found to yield good

results.

The results are summarized in Tables 7.13 and 7.14. Sprinkling led to conspicuous

improvement in perfonnance over the HARDWARE dataset from 74.5 1 % to 80.44%.

This unambiguously points to the importance of class knowledge in this dataset. Table

7.13 suggests that sprinkled higher orders outperforms SVM on all datasets; in the

USREMAIL dataset, the improvement is not statistically significant. This is possibly

because the domain is simple and had already high recorded accuracies. For the

RELPOL domain however, adding class knowledge led to a slight drop in the

perfonnance from 95.30% to 93.93% (Table 7.14), which was still significantly better

than both LSI and SVM. The drop in RELPOL perfonnance indicates that in this

domain, class knowledge is not as important as in HARDWARE. In our current

implementation, we have used uniform number of sprinkled terms over all domains.

Performance could be improved by optimising the number of sprinkled tenns for each

individual domain. For example, HARDWARE would be more heavily sprinkled than

RELPOL.

Table 7.13 Comparing Sprinkled Higher Orders against SVM

HARDWARE RELPOL USREMAIL L1NGSPAM

Sprinkled .8044 .9393 .9630 .9838
Higher Order

SVM .7883 .9228 .9583 .9636

Table 7.14 Comparing Higher Orders with and without Sprinkling

REC SCIENCE HARDWARE RELPOL USREMAIL LINGSPAM

Sprinkled
.8574 .8339 .8044 .9393 .9630 .9838

Higher Order

Higher
.8530 .8254 .7451 .9530 .9640 .9859

Order

153

7.4.2 Using GA to learn parameters

Performing exhaustive search on the parameter space allows us to empirically ascertain

the contributions of each co-occurrence order. However, in practice, we would need a

mechanism to determine the parameters automatically based on a given text collection.

Section 5.4 presents an approach based on Genetic Algorithms to achieve this. The

parameters are learnt on the training set, with the objective of maximizing classification

accuracy on the unseen test set. Since the test set is not available, we instead set our

objective to optimizing classification accuracy over 5-fold cross validation on the

training set.

Table 7.15 Comparing effectiveness of empirically determined and GA-Ieamt

parameters

HARDWARE RELPOL USREMAIL LINGSPAM

Sprinkled HO .7938 .9304 .9593 .9814
(parameter learning)

Sprinkled HO .8044 .9393 .9630 .9838

Table 7.16 Parameter values learnt by GA

HARDWARE RELPOL USREMAIL L1NGSPAM

(a,P,Y)optima. (1,1.88,1.56) (1,1.01 ,1.15) (1,0.97,0.85) (1,0.73,0.96)

We carried out experiments over the binary classification datasets, as preliminary

evaluation of the feasibility of this idea. Table 7.15 presents the classification

accuracies when the parameters were learnt using the GA-based approach. We used the

architecture of Figure 5.5 where sprinkled terms were used as carriers of class

knowledge. The accuracy Figures with the learnt parameters are very similar to the

Figures obtained by the "brute force" approach presented earlier where the best values

are chosen after exhaustively searching the parameter space in fixed increments. While

there is still a statistically significant difference in three of four datasets, the very close

154

average values suggest that the GA-based approach holds promise in significantly

lowering manual overheads in parameter setting, while still continuing to deliver good

performance. We need further research into better tuning of our approach for

facilitating faster and more effective search in the parameter space. Table 7.16 shows

the values of a,~ and y that were learnt by our algorithm for each of the four datasets.

Comparing these values with the corresponding ones in Table 1, we observe a

significant increase in the values of p. This can be attributed to the fact that sprinkled

terms provide second order co-occurrence paths between terms of the same class.

Increasing ~ thus helps in boosting similarity between terms of the same class, and

decreasing similarity between terms of disjoint classes. This explains the greatly

improved performance in the HARDWARE domain with sprinkling.

7.S Chapter Summary

We have presented experimental studies to evaluate supervised extensions of LSI for

acquiring relevance knowledge and also evaluated the approach for mining similarity

knowledge based on higher-order associations between features. Using LSI has been

shown to yield significant improvements over the baseline Vector Space representation,

however the absence of class knowledge is a major handicap, especially in complex

domains like HARDWARE. Sprinkled LSI incorporates class knowledge in LSI. The

resulting relevance and similarity knowledge lead to considerable improvements over

LSI performance. The acquired similarity and relevance knowledge can be incorporated

into a CRN, or for that matter any other instance-based retrieval formalism. We also

showed that sprinkled LSI helps in promoting similarities between features belonging

to the same class. From a practical standpoint, it is interesting to note that sprinkling

involves minimal computational overheads over LSI on its own. The effectiveness of

representations learnt by Adaptive Sprinkling has been demonstrated over three

different types of classification problems, and over two classifiers kNN and SVM.

Higher Order Associations have been shown to be effective in mining feature

155

similarity, however the absence of class knowledge in learning these similarities is a

bottleneck. Experimental results show that using sprinkling as a pre-processing step can

help us in overcoming this limitation.

156

Chapter 8

Fast Case Retrieval Network

The best way to accelerate a PC is at 9.8m1seclsec. Marcus Dolengo

So far, we have dwelt on how statistical techniques can be used to acquire knowledge

for TCBR, with the objective of facilitating effective retrieval. In this chapter we will

address issues related to efficiency, i.e. time and space performance of retrieval. This is

important in practical usage scenarios, where the feature set size and the number of

cases can be extremely large, posing challenges to retrieval strategies and memory

requirements.

While CRNs scale up well with increasing casebase size, their retrieval efficiency is

critically determined by the size of the feature set and nature of similarity relations

defmed on these features. In text retrieval applications, it is not unusual to have

thousands of terms, each treated as a feature. The aim of this chapter is to propose an

approach to improve the retrieval efficiency of CRNs. The basic idea involves

introducing a pre-computation phase that eliminates redundant similarity computations

at run time. This new retrieval mechanism is referred to as Fast CRN (FCRN). Our

experiments reveal that the proposed architecture can result in significant improvement

over CRNs in retrieval time without compromising retrieval effectiveness. The

architecture also reduces memory requirements associated with representing large

casebases.

Section 8.1 presents a concise introduction to the steps involved in CRN retrieval

mechanism. We introduce FCRNs in Section 8.2, which is followed by an analysis of

computational complexity and memory requirements in Section 8.3. We present

157

experimental results in Section 8.4. Section 8.5 discusses additional issues, such as

maintenance overheads that need to be considered while deploying real world

applications using FCRNs. We also present an extension to FCRN to cater to varying

precision/recall needs. In Section 8.6, the main contributions of this chapter have been

summarized. In Appendix A2, we show that the ranking of the retrieved results

produced by FCRNs is same as that of CRNs, under both the Euclidean and cosine

similarity measures.

8.1 Retrieval in Case Retrieval Networks

The CRN was introduced informally in Section 2.3.2. To facilitate further analysis, we

formalize the CRN retrieval mechanism in this section. A CRN is defined over a finite

set of s IE nodes E, and a finite set of m case nodes C. Following the conventions used

by Lenz (1999), we define a similarity function cr:

cr: Ex E 7 9l

and a relevance function

p: Ex C 7 9l

We also have a set of propagation functions Iln: 9l n 7 ~ defined for each node

in Eve. The role of the propagation function is to aggregate the effects of incoming

activations at any given node. While Lenz (1999) leaves open the choice of the

propagation function, for simplicity we assume that a summation is used for this

purpose.

The CRN uses the following steps to retrieve nearest cases:

Step 1: Given a query, initial IE node activations tZo are determined.

Step 2: Similarity Propagation: The activation is propagated to all similar IE nodes.

s

al(e)= LlT(epe).ao(e;) (8.1)
;=1

158

Step 3: Relevance Propagation: The resulting IE node activations are propagated to all

case nodes

s

a 2 (c) = LP(ej,c).a l (e j) (8.2)
j=1

The cases are then ranked in descending order of a 2 (c) and the top k cases retrieved.

A CRN facilitates efficient retrieval compared with a linear search through a

casebase. As noted in Section 2.3.2, intuitively the speedup is because computation for

establishing similarity between any distinct pair of IEs happens only once. Moreover,

only cases with non-zero similarity to the query are taken into account in the retrieval

process. A detailed complexity analysis is available in (Lenz 1999).

We observe that in the face of a large number of IEs, Step 2 accounts for most of

the retrieval time. The idea of FCRN stems from the need to identify and eliminate

redundant computations during this similarity propagation step.

8.2 Fast Case Retrieval Network (FCRN)

We now present the basic idea behind FeRN. We substitute the expansion of the term

a
l
(e) from (8.1) into the expression for fmal case activation in (8.2). This yields:

I •

a 2(c) = Lp{ej,c). L u(e;,e j).ao(e;) (8.3)
j=1 ;=1

Let us consider the influence of a single IE node ej on a single case node c. For this, we

need to consider all distinct paths through which an activation can reach case node c,

starting at node ej. Figure 8.1 illustrates three different paths through bold dashed

arrows from ej to c, along with activations propagating through each path.

159

Figure 8.1 Different paths through which an activation can reach case c from an lEe,

We observe that the influence of node ei on node c can be computed as the aggregation

of effects due to all nodes ej that ei is similar to, and is given by:

s

in! (ei ,c) = L p(e), c)G'(e" e))ao (e;).
)=1

The last term can be extracted out of the summation as follows:

inj(e"c) ~ {tp(el, c)(J"(e"el)}ao(e,)

(8.4)

(8.5)

We refer to the term within parenthesis as the "effective relevance" of the term e, to

case c and denote it by A (ei. c). It can be verified that (8.3) can be alternatively

rewritten as:

s

a 2 (c) = LA(e"c).ao(eJ (8.6)
;=1

The significance of this redefinition stems from the observation that given an effective

relevance function A: E x C -7 91, we can do away with Step 2 (similarity propagation

160

step) of the eRN retrieval process. We can now construct a eRN that does not use any

similarity arcs in the retrieval phase. Instead, a pre-computation phase makes use of

similarity as well as relevance knowledge to arrive at effective relevances A. The

resulting eRN is called FeRN (for Fast eRN) and its operation is shown in Figure 8.2.

The equivalence of the expressions for final case activations in (8.2) and (8.6) above

leads us to the following result.

Theorem 1. For any query with initial IE node activations ao, such that a o(e/)e9lfor

all i, the case activations (and hence the rankings) produced by the FeRN are identical

to those produced by the eRN. Thus the eRN and the FeRN are equivalent with

respect to retrieved results.

Precomputation Phase

The similarity and relevance values are used to pre-compute the effective relevance values

A(e,.c) ~ {t,p(ej.c)O"(e"ej).}

Retrieval Phase

Step 1: Given a query, initial IE node activations ao are determined.

Step 2: The resulting IE node activations are propagated directly to all case nodes

s

a 2 (c) = LA(e;oc).aO(ei)

i=1

The cases are then ranked according to their activations, and the top k retrieved

Figure 8.2 Precomputation and Retrieval in FeRN

Figure 8.3 shows an example eRN depicting a trivial setup with 4 IEs and 3 cases, and

the corresponding equivalent FeRN. It is observed that while the relevance values in

the original eRN were sparse, the effective relevance values in the FeRN are relatively

dense. This is because in the FeRN an IE is connected to all cases that contain similar

161

IEs. In the example shown, the effective relevance between case CI and Information

Entity lEI is computed as follows:

A(IEI,C/) = p(IEJ,C/)a(IEI.IEI) + p(IE2,C/)a(IEI.IE2) + p(IE3,C/)a(IEI.IE3) +

p(/E4,C/)a(IEI.IE4)

(Ix!) + (OxO) + (OxO.S) + (lxO.7) =1.7

Other elements of the effective relevance table can be similarly computed. It is

interesting to note that the effective relevance of the ith IE with the jth case is given by

the dot product of the ith row of the similarity table (0) with the jth row of the

relevance table (p).

In practice, similarity measures based on Euclidean distance or cosine similarity

are often used to evaluate similarity between cases. Appendix A2 shows how the

FCRN can be extended to handle these distance measures. It also presents a proof that

ranking of cases produced by FCRNs is same as that produced by a CRN, under both of

these distance measures.

8.3 Time and Space Complexity of FCRN

In this section, we formalize our intuitions on efficiency improvements obtained by

FCRNs.

8.3.1 Time Complexity Analysis

Let us compare the retrieval time complexity of FCRNs with CRNs. Figure 8.4

illustrates the pseudo-codes for retrieval using the CRN and FCRN.

162

Relevanc. function p

IE, IEz IE, IE.

C, 1 0
o .,

1

Cz 0 1 1 0

C] 1 0 1 0

Similarity function CT

IE, IEl IE, IE.

IE, 1 0.0 0.6 0.7

IEl 0.0 1 0.5 0.0

IE] 0.5 0.5 1 0.3

IE. 0.7 0 0.3 1

r------------.-----
I IE, 1\

Effective Relevance function 1\

IE, IEz IE] IE.

C, 1.7 0 0.8 1.7

Cl 0.5 1.5 1.5 0.3 I
C, 1.5 0.5 1.5 1.0

FeRN
------.. ~-----.--

Figure 8.3 A CRN over 3 cases and 4 IEs, and an operationally equivalent FCRN

The retrieval complexity is a function of loops /* A */ and /* B */ in the pseudo

codes:

complexity(CRNRetrieva/) oc O(A xB xC)

and

complexity(FCRNRetrieva/) oc O(BxC)

The following two reasons contribute to the speedup in FCRN retrieval:

I . Step A in the CRNRetrieval pseudo-code involves spreading activation to IE

nodes similar to the query IEs based on similarity values. This step is

eliminated in FCRN retrieval since the similarity knowledge is transferred to

163

the effective relevance values during the pre-computation step. Thus, FCRN

retrieval amounts to a simple table lookup for all cases "effectively" relevant to

the query IEs and aggregating the scores received by each case from the

individual query IEs. Using FCRNs, we can obtain efficiency very similar to

inverted files typically used in Information Retrieval applications (Rijsbergen

1979). However unlike inverted files, FCRNs also integrate similarity

knowledge in the retrieval process.

2. Step Bin FCRNRetrieval involves a loop over IE nodes activated by the query.

In contrast, Step B of the CRN retrieval loops over all IEs similar to IE nodes

activated by the query. In a situation where most IEs are connected to many

others by non-zero similarities, Step B in FCRN would involve much fewer

iterations compared to step B ofa CRN.

While the above two factors lead to saving in retrieval time in FCRN, it is important to

note that the step C of FCRN retrieval could be more expensive than the step C of the

CRN. This is because effective relevance values in FCRN are less sparse compared to

relevance values in CRN; thus, we would expect an IE to have non-zero relevances to a

larger number of cases in FCRN, compared to a CRN. If the CRN relevance values are

optimally dense in that each IE has a non-zero relevance to every case (as is expected

to be true with relevances acquired by LSI), the step C of a CRN is equivalent in time

complexity to the step C of FCRN, since CRN relevances are just as non-sparse as the

FCRN effective relevances. In such a case, FCRN is guaranteed to be faster than the

CRN. However, in the presence of highly sparse relevance values and dense similarity

relations, the step C ofFCRN would be slower than the corresponding step of the CRN,

thus partially offsetting the savings obtained by eliminating Step A and reducing time

complexity of Step B. In the empirical evaluations reported later in this chapter, we

focus on dense relevance relations as is typical when the knowledge is acquired using

statistical techniques presented earlier in this thesis; however, it is important to note

164

that the performance gains obtained with FCRNs would be less conspicuous when the

CRN relevance values are sparse.

CRNRetrieval

FOR each activated query IE (attribute A, value Vq in query)

Determine all related IEs using similarity function 0

FOR each IE that is found relevant

FOR each case associated with that IE

Increment score of case

END FOR

END FOR

END FOR

Rank and display related cases

FCRNRetrieval

FOR each activated query IE (attribute A, value Vq in query)

FOR each case associated with that IE

Increment score of case

END FOR

END FOR

Rank and display related cases

Figure 8.4 Pseudo-codes for retrieval using CRN and FCRN

8.3.2 Memory Requirements

/* A */

/* B*/

/* C */

'* B*'

'* C *'

Typically CRNs consume more memory when compared to a flat casebase, which has a

linear listing of cases along with their constituent attribute values. This difference can

be largely attributed to the following two factors: CRNs explicitly record lEI number of

values corresponding to IEs, and !E12 values are required to model similarities between

IEs. In addition we have ICasebasel x lEI relevance values between the IEs and the

cases.

165

A flat casebase that models the case memory as a linked list of all cases will need

to store ICasebasel number of cases and ICasebasel x lEI number of relevance values.

memory (flat case base) oc ICasebasel x lEI + ICasebasel

oc I Casebasel x (lEI + 1)

The memory requirement of a CRN is approximately given by:

memory (CRN) oc lEI + ICaseBasel + IEI2 + ICasebasel x lEI

oc lEI + IEI2 + ICaseBasel x (IEI+1)

oc lEI + IEI2 + memory(flat casebase)

In FCRN we do not need to explicitly record the similarities between IEs, since this

knowledge is contained within effective relevance values. The memory requirement of

FCRN is given by:

memory (FCRN) oc lEI + ICaseBasel x (IEI+ 1)

oc lEI + memory(flat casebase)

In textual applications, the number of IEs could be extremely large, and the saving of

IEI2 could mean substantial gains in terms of memory requirements.

It is worth noting that while the in-memory requirement for FCRN retrieval is

considerably less than in CRN, we would still need to store the IEI2 similarity values

for off-line maintenance. In a situation where a particular IE is deleted, we would need

to re-evaluate the effective relevance values to reflect this change. This is possible only

when the similarity information is available.

166

8.4 Experimental Results

In this section, we present empirical results to illustrate FCRN efficiency in practical

applications. The objective of our first set of experiments is to observe how CRNs and

FCRN scale up with increasing number of IEs, and with varying nature of similarity

interconnections between these IEs. Towards this end, it is sufficient to simulate a large

number of IEs and cases with randomly generated similarity and relevance values. The

synthetic nature of the datasets is not a major concern, since we are not really

concerned with the actual cases retrieved. Sparseness of similarity values can be

controlled by forcing a fraction of these values to O. In any real world application, the

actual non-zero similarity and relevance values used would be different from the

randomly generated values used in our evaluation, but the time complexity of the

retrieval process is independent of the actual values used, since neither the CRN nor

FCRN exploit the distributions of values to alter the retrieval process. So our

experiments are expected to provide fair estimates of efficiency over realistic datasets.

An experimental strategy similar to ours was also used in (Lenz 1999).

Table 8.1 shows the impact of the increase in number of IE nodes on the retrieval

time. For this experiment, the query was randomly generated and IE nodes activated

accordingly. The casebase has 1000 cases. The similarity matrix is optimally dense in

that each IE node is connected to each other by a non-zero similarity value. Thus this

result may be viewed as a worst-case comparison of the CRN performance against

FCRN. It may be noted that the CRN retrieval time increases almost linearly as the

number of IE nodes increases from 1000 to 6000. As the number of IEs goes beyond

6000, CRN performance degrades steeply. In contrast, the FCRN shows stable

behaviour with increasing number of IEs. This is attributed to the savings in similarity

computation, and corresponds closely to our theoretical analysis in Section 3.2.

The objective of our next experiment is to empirically evaluate the impact of the

nature of similarity interconnections on the relative performance of the CRN and the

FCRN. We recall that a bulk of the savings in retrieval time with FCRNs can be

167

accounted for by the fact that FeRN does away with the similarity propagation step.

The time consumed in similarity propagation is critically dependent on the density of

the similarity matrix, which is defined as the proportion of non-zero similarity values in

the similarity matrix. We conducted an experiment to study the FeRN perfonnance

against eRN, as a function of the similarity matrix density. Our experimental setup is

similar to that in the first experiment. We simulate 8000 IEs and 1000 cases with

Table 8.1 Retrieval time as a function of the number of IE nodes

eRN Retrieval Time FeRN Retrieval Time
No. of IE Nodes

(sees.) (sees.)

1000 0.04 <10· j

2000 0.12 <10-J

3000 0.22 <10-J

4000 0.35 <10-J

5000 0.49 <10-J

6000 0.66 <10-J

7000 1.42 0.01

8000 3.40 0.01

9000 3.86 0.01

10000 4.98 0.02

randomly generated similarity and relevance values. We now relax the density of the

similarity matrix, by deliberately setting a value of 0 to a fraction of the similarity

values, and compare FeRN perfonnance against the eRN, for different settings of

similarity matrix density. The results are shown in Table 8.2. As the density increases

from 0 (when no IE node is similar to any other node) to 1 (when all IE nodes are

related to all others), the eRN retrieval time increases considerably from a sub

millisecond to about 3.38 seconds. Since FeRN does away with the step of similarity

168

propagation across IEs, its performance is not critically impeded by growth in

similarity matrix density. The very small increment in the FCRN retrieval time when

the density increases from 0.8 to 1.0 is not surprising, given the fact that the effective

relevance values are influenced by the density of the similarity matrix. Hence an

increase in number of similarity interconnections can have an adverse effect on the

sparseness of the effective relevance values, leading to a consequent slowdown in

retrieval. It may be noted that retrieval times recorded in all Tables in this section are

rounded to two significant decimal places.

In addition to empirical evaluation on synthetic data, we also carried out

experiments on a real world classification task over a textual dataset comprising 2189

personal emails organized into 76 folders (classes). Each class corresponds to one of

the folders (like "sports", "hobbies" or "meetings") into which the emails are

organized. The total number of features in this dataset is 32,699. Since many of these

features have very poor discriminatory power, the feature set size was pruned to 6000

using chi-square based feature selection (Yang & Pederson 1997). A CRN was

constructed to classify incoming emails into one of the 76 classes. Instead of modeling

the emails as textual cases as is usually done, we treated the classes as cases. Thus the

eRN had 6000 IE nodes and 76 case nodes.

Table 8.2 Retrieval time as a function of the density of similarity matrix

Density of the CRN Retrieval FCRN Retrieval

Similarity Matrix Time (sees.) Time (sees.)

0 <10-3 <10-3

0.2 0.92 <10- j

0.4 1.71 <10-3

0.6 2.43 <10-3

0.8 2.81 <1O- j

1.0 3.38 0.01

169

Traditional techniques for modelling relevance do not directly apply in our case,

since relevance values in our architecture relate IEs to classes, instead of relating IEs to

cases. In our classifier, we use the chi-square metric (Yang & Pederson 1997) as a

measure of the relevance of an IE to a particular class. The chi-square metric measures

the lack of independence between an IE and a class. Thus the relevance value is 0 when

an IE is independent of the class, and high when it is strongly dependent.

The similarity between IEs is computed using Latent Semantic Indexing (LSI),

using the method described in Section 4.3.2. We have seen earlier that LSI has an

adverse effect on the sparseness of the similarity matrix. As the number of IEs increase,

this can lead to considerable slowdown in retrieval or classification.

In Table 8.3, we report experimental results comparing the time performances of the

FeRN against a eRN in this domain. As the number of IEs increase from 1000 to

6000, the eRN slows down considerably. The slowdown is especially conspicuous

when the number of IEs exceeds 4000. In contrast, the FeRN scales up well.

Table 8.3 Time performance as a function of the number ofIEs in the email dataset

CRN Retrieval Time FCRN Retrieval Time
No. ofiE Nodes

(sees.) (sees.)

1000 0.02 <10·J

2000 0.22 <10·J

3000 0.34 <1O'J

4000 1.01 <1O.J

5000 1.87 0.01

6000 2.82 0.01

170

8.5 Discussion

In this section we consider some additional issues that need to be taken into account

when building eBR systems using FeRNs. We also present an extension of the FeRN

idea to allow for flexible control of precision and recall during retrieval.

8.5.1 Computation Node

One obvious limitation of the eRN mechanism is its inability to handle query values

(in the textual case, terms) that are not present in the predefined set oflEs used to build

the eRN. To address this issue, Lenz (1999) presents the concept of a computation

node which is created at run time. A computation node represents an IE corresponding

to the new query value. The similarity of the computation node to existing IE nodes is

computed at run-time using a similarity function that needs to be defined over the

attribute space. Once the new similarity arcs are constructed, the retrieval can proceed

in the usual manner. With FeRNs, a similar computation node creation step is

involved. However, it only plays a role in activating the IE nodes via the newly

constructed similarity arcs. If one or more of these IE nodes were already activated, the

new activations are added to the existing values. Once the IE node activations

(ao values) are evaluated, the case nodes are activated directly using the effective

relevance values.

8.5.2 Maintenance Overheads with FCRNs

The downside of FeRNs is that incremental and batch maintenance of the casebase

involves extra pre-computations. The effective relevance values need to be recomputed

each time new cases or IEs are inserted or existing caseslIEs deleted or edited.

However, the recomputations can be limited to only those effective relevance values

that could potentially be affected. We consider two specific update scenarios below:

171

1. Insertion of new cases or deletion of existing cases: Deletion of an existing

case is straightforward and only involves setting all effective relevance values

connecting IEs to that case, to zero. This does not influence the effective

relevances of the other cases. However, when a new case is added, the effective

relevances of IEs present in the case to the case needs to be pre-computed,

based on the similarity and relevance knowledge. Existing effective relevance

values of IEs to the remaining cases are not affected, since effective relevance

of an IE to a case is independent of the relevance of the IE to any other case in

the casebase.

2. Insertion of new IEs or deletion of existing IEs: When an existing IE is deleted,

effective relevances of all IEs having non-zero similarity to the deleted IE,

need to be updated. This can prove to be computationally expensive, especially

in the face of large numbers of IEs and cases. We present an efficient update

strategy (we have not empirically evaluated this claim) that is based on two key

ideas. Firstly, we make incremental changes to existing effective relevance

values, rather than recomputing these values from scratch. Secondly, we

eliminate redundant computations by restricting incremental changes to only

those effective relevance values that can get affected. When an IE node ed is

deleted, the effective relevance of a node A(e I' c) is decremented by an amount

M(e
j
,c) to yield the revised relevance value A • (e I' c) which is given by:

. {O when i = d
A (ej,c) =

A(epc) -M(ej,c) where M(epc) = u(eped)p(ed,c) otherwise

These operations can be speeded up by maintaining an update table, which is

constructed from the similarity and relevance tables and plays the role of an

inverted index. A lookup on the table shows the incremental change that must

172

be made on each of the affected effective relevance values and saves the

overhead of computing the values from scratch

It may be noted that no updates are needed in situations where ~A(e"c)

evaluates to zero. This happens when either u(ejted) is 0 or when p(ed,c) is O.

The update table eliminates such redundant computations by restricting

incremental changes to only those effective relevance values that get affected.

As in the case of IE deletion, when a new IE is added, the effective

relevances of all IEs bearing non-zero similarity to the new IE need to be re

evaluated. When a new IE node en is added, the revised relevance values are

given by:

Again, we can restrict incremental updates to only those effective

relevance values that get affected by the IE insertion.

We note that it may be restrictive to suppose that the update operations can always be

localized to those similarity and relevance values that are immediately affected by the

nodes inserted or deleted. The approaches outlined above for speeding up updates work

well when the similarity and relevance knowledge are externally obtained (as from

background knowledge like WordNet) or are derived from local properties of the

collection (the relevance of an IE to a case is not dependent on other IEs or cases).

However they may result incorrect updates when similarity or relevance knowledge is

introspectively derived from global properties of the collection. Let us consider a

situation where the relevances are obtained by combining local measures like term

frequency and global measures like inverse document frequency. A single case deletion

will necessitate the recomputation of inverse document frequencies pertaining to all

relevance values. As with relevance values, similarity knowledge may need revision

173

each time an update is made. In realistic situations, such bulk updates will be

computationally expensive. A practical approach would be to perform incremental local

updates as outlined above whenever a node is inserted or deleted, and relegate bulk

recomputations to a later time, when enough updates would have happened to make

significant impact on the global measures. It is important to note that this

recomputation overhead when using introspective techniques to acquire similarity and

relevance knowledge is not specific to the FeRN, but is a concern shared by eRN and

the flat casebase representation as well.

8.5.3 Multiple-pass retrieval using FeRNs

Textual domains often come with a wide variety of retrieval requirements. In retrieval

applications, we may prefer to have a high-precision search in certain situations, high

recall search in others. One way to realize these diverse requirements is to control the

number of IE nodes that are activated during the retrieval process. Thus a very high

precision search might look for retrieving cases where at least one of the query IEs is

explicitly present. In such situations we can have a eRN retrieval that bypasses the step

of identifying similar IEs. We call this "zero-pass" activation. The eRN described in

Section 3.1 uses one step of activating IEs similar to the query IEs. We refer to this as

"one-pass" activation. A ''two-pass'' activation will involve an additional step of

identifying IEs similar to the IEs identified as similar in one-pass activation.

Thus a two pass activation involves the following three steps of spreading

activation:

Step 1: Activate IEs similar to the query IEs using similarity arcs.

Step 2: Activate IEs similar to the IEs activated in Step 1 using similarity arcs.

Step 3: Use relevance arcs to spread activation to cases from all IEs activated in

Step 2.

In the following, we show that a two-pass eRN retrieval can be efficiently modeled

using FeRN. The case activation of a two-pass eRN would be given by:

174

(8.7)

We consider the influence of a single IE node ej on a single case node c. The first step

is to aggregate effects due to all intennediate nodes ej through which similarity may

propagate from ej to eA;. In the next step, the activation of node c is obtained as an

aggregation of relevance propagation from eA; to c for all instantiations of k. The final

expression is given by

s s

inttepc) = L p(epc) L O'(ej , ek)a(e;> eJ)ao(e;)
k=\]=\

The last term can be extracted out of the summation to yield

inf(epc) = {tp(ek ,c) t u(e j ,ek)a(e; ,ej)}ao (e;)
k=\ j=\

The term within parenthesis is the effective relevance of the term ej to case c:

A(epc) = {~p(ek ,c)t.u(ej ,ek)CT(e; ,ej)}

It can be verified that (7) can be alternatively rewritten as

a 2 (c) = tA(epc).ao(e;)
;=\

(8.8)

(8.9)

(8.10)

(8.11)

The equivalence of the expressions for fmal case activations in (8.7) and (8.11) above,

leads us to the following result.

Theorem 2. For any query with initial IE node activations ao ' such that ao (e;) E 9l for

all i, the case activations (and hence the rankings) produced by the FCRN with

effective relevances computed as given by (8.10) above, are identical to those produced

by a two pass CRN.

We can make similar extensions for cases where the number of passes is more than 2,

each higher pass attempting to achieve a higher recall while possibly sacrificing

precision.

175

It may be noted that CRN retrieval complexity is critically influenced by the

number of passes, since this determines the number of spreading activation cycles

through the similarity arcs. In contrast, the worst-case complexity of retrieval in a

FCRN is independent of the number of passes, since pre-computed effective relevance

values obviate the need for multiple rounds of similarity propagation. This property of

FRCNs facilitates multiple pass retrievals at similar orders of retrieval time as in a

single pass activation. In practice we can have effective relevance values pre-computed

for different multiple pass networks, and the precision and recall can be tuned by

switching between these options. The time complexity of FCRN is stable across these

options. It is important to note that in certain applications it would be important to

discount the influence of cycles (an IE node reinforcing its own activation over

multiple passes) in the activation process. One solution is to use marker passing

(Wolverton 1995).

8.6 Chapter Summary

We have presented a Fast Case Retrieval Network formalism that remodels the retrieval

mechanism in CRNs to eliminate redundant computations. This has significant

implications in reducing retrieval time and memory requirements when operating over

casebases indexed over large numbers of IEs and cases. A theoretical analysis of

computational complexity and memory requirements comparing FCRNs against CRNs

is presented. Experimental results over large casebases demonstrate significant speedup

in retrieval with FCRN in the presence of dense similarity and relevance values, as is

typical with statistically acquired knowledge. As part of future work, we plan to

conduct detailed studies of the impact of density of relevance values on the relative

performances of FCRN and CRN.

Chapter 9

Conclusion

Thus grew the tale of Wonderland;

Thus slowly, one by one,

Its quaint events were hammered out

And now our tale is done

176

Lewis Carroll

This thesis has investigated the problem of acquiring knowledge for TCBR applications

using statistical approaches, and proposed novel approaches to acquire knowledge with

the goal of improving effectiveness and efficiency of retrieval. In this chapter we

conclude the thesis by taking stock of our main contributions and identifying promising

areas for future work.

9.1 Contributions

We had enumerated the objectives of our research in Section 1.2. In this section, we

examine our contributions in the light of those objectives.

I. Propose supervised extensions of LSI to mine relevance knowledge in

classification domains. While LSI has been shown to be useful for knowledge

acquisition in TCBR, it is limited by its inability to take into confidence class

knowledge of training documents in supervised classification domains. We

have presented an analysis of this problem that shows the need to strike a

tradeoff between the often conflicting goals of preserving the structure of the

177

original case-feature representation, and improving class separability. We have

presented sprinkling, an approach that attempts to strike this balance while

incorporating class knowledge into LSI. The approach is based on the simple

idea of appending class labels to training cases, thereby augmenting the set of

features. The appended features are referred to as sprinkled terms. When LSI is

carried out over the augmented representation, terms representative of the same

class are pulled closer to each other. The features extracted with sprinkled LSI

are better at discriminating between classes compared to those mined by LSI

on its own. To summarize our contributions, we note several interesting

aspects of sprinkling. Firstly, our experimental studies verify that sprinkling

succeeds in enhancing the performance of instance based learners like kNN to

make them comparable with, or outperform state-of-the-art techniques like

SVM. This result is of potential interest not only to TeBR, but to the wider

Machine Leaning community as well, because of its practical implications for

applications where lazy incremental updates are desirable. Also, while SVM

like kernel methods suffer from the "black-box" syndrome, kNN is well

recognized to be suitable for explanation and visualization, making expert

initiated refinement possible. Secondly, sprinkling is a simple approach that

yields significant improvements while incurring nominal overheads in terms of

computation time. Thus it can be easily integrated into existing practical LSI

systems. Thirdly, though presented in the context of LSI, sprinkling can be

used to generate revised representations usable by any approach founded on the

vector space model. Sprinkled LSI can also be used to mine similarity

knowledge that uses combination of co-occurrences and class affiliations to

mine feature similarities.

2. Propose approaches that extend the scope of LSI to handle situations where

class inter-relationships are critical. e.g. hierarchical and ordinal domains.

One limitation of sprinkling is that it treats all classes and classifiers equally,

178

and fails to take into account relationships between classes, as exist in

hierarchical and ordinal classification tasks. Even in the absence of an explicit

relationship, some classes are more easily separable than others, and the

complexity of decision boundaries should ideally influence the number of

sprinkled terms. Our next contribution in the form of Adaptive Sprinkling

addresses these concerns, by exploiting information implicitly captured in

confusion matrices generated by classifiers. An advantage of this approach is

that it does not need the knowledge engineer to specify the precise relationship

between classes in advance. Experiments on hierarchical and ordinal datasets

conclusively demonstrate the effectiveness of this approach. To our knowledge,

ours is the first work combining the strengths of LSI, like higher order co

occurrence modeling and the ability to recover from word choice variability,

with the knowledge of class relationships as inferred from confusion matrices.

The result is a revised vector space representation that adapts itself to domain

needs. The approach used in our work may be useful beyond the context of

TCBR which presupposes the notion of instance based retrieval. We have also

shown that AS-generated SVM representations result in significant

improvements in SVM performance as well. The ability to exploit confusion

matrices and generate representations tailored to classifier needs is a

contribution of potential interest to the Machine Learning community.

3. Propose supervised and unsupervised approaches to exploit higher order

associations to mine feature similarity. We have presented an approach for

exploiting higher-order associations between words to acquire similarity

knowledge for CRNs. We demonstrated the importance of higher order co

occurrences in determining word similarity, presented both supervised and

unsupervised algorithms for mining such associations and proposed a word

similarity model, whose parameters are learnt using an evolutionary approach.

We have demonstrated the effectiveness of the learnt similarity knowledge and

179

shown that using second and third order-co-occurrences yields better results

than using first-order co-occurrence alone. Another contribution of our

research is to incorporate class knowledge into the process of mining higher

order associations. We have demonstrated the effectiveness of this extension as

our approach outperforms state-of-the-art classifiers like SYM and LSIIkNN on

classification tasks of varying complexity. Though the work has been presented

in the context of CRNs, it can be easily extended to learn similarity knowledge

over other retrieval formalisms.

4. Propose a fast retrieval formalism that can use the acqUired relevance and

similarity knowledge to facilitate effective retrieval while minimizing retrieval

time by cutting down on redundant computations. We have presented a Fast

Case Retrieval Network formalism that remodels the retrieval mechanism in

CRNs to eliminate redundant computations. This has significant implications in

reducing retrieval time and memory requirements when operating over

casebases indexed over large numbers of IEs and cases. A theoretical analysis

of computational complexity and memory requirements comparing FCRNs

against CRNs is presented. Experimental results over large casebases

demonstrate significant speedup in retrieval with FCRN. It may be noted that

FCRN can be applied to improve retrieval efficiency in large scale non-textual

CBR applications, as well.

5. Propose novel approaches to visualize and estimate complexity of textual

case bases, so that they can be meaningfully compared We presented a simple

approach to visualize textual casebases. The stacked image display can help

knowledge engineers to get a bird's eye view of the domain, thus facilitating

knowledge acquisition. The visualization has three main advantages over other

approaches. Firstly, it shows case and feature clusters in relation to each other,

thus allowing case clusters to be explained in terms of feature clusters, and vice

180

versa. Secondly, since stacking does not rely on any abstraction, it preserves

the structure of cases and displays case and feature vectors as they are. This

helps casebase maintenance since noisy cases, redundant features or "bridge"

features are revealed. Finally, stacking is fast and simple to implement, has no

convergence problems, and is parameter-free for all practical purposes. We

have also introduced a complexity measure founded on the idea of stacking.

We showed that in classification tasks, an adapted version of this measure

corresponds closely to accuracies reported by standard classifiers.

9.2 Desirable Extensions

This research reported in this work has attempted to throw new light on the area of

acquiring knowledge for TeBR, with the goal of facilitating effective and efficient

retrieval. However, given the breadth of scope both in terms of techniques and potential

applications, it is but natural that this is far from finished work. In this section, we take

a closer look at the limitations of the work reported here, and identify ways of

addressing these limitations to fill in gaps or extend its scope.

Lack of linguistic or background knowledge. Our work relies on knowledge

introspectively acquired from a collection of training cases. However, recently the use

of background knowledge like linguistic knowledge in the form of WordNet or web

collections like Wikipedia (Gabrilovich & Markovitch 2007) have received a lot of

attention from researchers in text mining. While experiments reported in this thesis use

bag of words as the starting point for mining relevances or similarity, there is no

inherent limitation in using semantically richer units like phrases or attribute values

extracted by Information Extraction as information entities instead (Orecchioni et aI.,

2007) Relevance mining approaches based on sprinkling and AS, and similarity mining

approaches based on higher order associations, do not make any assumptions on the

nature of Information Entities. As for the integration of background knowledge, it will

181

be interesting to use sprinkled terms to model knowledge outside class knowledge. In

web mining, meta-tags often carry important information about web-pages, that can be

used to bias clustering of web-pages, in a way not very different from how class labels

were used by sprinkling. In such an application, sprinkling can mean injecting

meaningful terms, instead of artificial ones. Another idea is to sprinkle additional cases,

instead of features as has been done in our work, that use forced co-occurrences to

capture background knowledge of similarities between features. The possibility of

augmenting the labeled cases with unlabelled training data where the sprinkled terms

show no class affiliations may open up interesting avenues for applying semi

supervised approaches to acquiring relevance knowledge. This is particularly

interesting from a practical standpoint, since unlabelled cases are often more readily

available than labelled ones.

Beyond LSI. In this thesis, we have focused on how sprinkling can be used to

incorporate class knowledge into LSI to improve classification effectiveness. However,

the general idea of sprinkling has the potential to make significant improvements to

other concept learners as well. Probabilistic models like PLSI can benefit by using

revised probability estimates obtained from sprinkled representations. Association rule

mining approaches, distributional clustering and FCA can all be potentially extended to

operate over sprinkled representations to bias their inferred knowledge by drawing

together features representative of the same class. We have shown that SVM benefits

from LSI generated representations obtained using sprinkling. Demonstrating the

applicability of the basic idea of sprinkling to improve the classification effectiveness

of popular concept induction approaches has the potential of extending the impact of

our work beyond TCBR to the broader field of Machine Learning.

Visualization for Maintenance. We have used visualization based on the idea of

stacking to obtain qualitative insights into the nature of textual casebases. However,

given the advantages of the stacking approach relative to other visualization approaches

182

as summarized in Section 9.1, the work can have interesting implications for casebase

maintenance. Visualization can help us identify redundant and noisy cases and features,

and thus facilitate casebase editing leading to improvement in retrieval effectiveness;

this has been demonstrated in structured CBR by Massie (2006). However, to enhance

usability, the visualization tool needs to undergo several changes. Firstly, it should be

interactive with abilities to zoom into specific regions of the stacked image, facilitate

flexible changes to the casebase and allow for restacking after incorporating the

changes made. Secondly, instead of just displaying a list of words associated with each

topic chunk, it should display the associations between features in such topic chunks.

One idea is to integrate the facility for displaying association graphs that show higher

order links between words (as shown in Section 6.6) into the stacked image, and invoke

it whenever the user requests a zoom-in on any region of the image. Since the stacking

process ensures that neighbouring features in the image are similar in their co

occurrence patterns, the association graph is expected to provide more insight into the

nature of their associations. A final point is that we need consolidated user studies to

evaluate the usefulness of our visualization approach with respect to other approaches

in real world TCBR tasks. We have not emphasized this aspect enough in this thesis,

primarily because visualization-driven maintenance was peripheral to the central theme

of our work.

Evaluation over unsupervised coUections. While sprinkling is devised to operate

specifically over supervised collections, higher order association mining approaches

make no assumption of class knowledge. However, all our evaluations have been

carried out over classification datasets. This was mainly because it is difficult to obtain

unsupervised collections on which human relevance judgements are available on topics

(queries). In the IR community, TREC and MUC have provided platforms for creating

such evaluation datasets and allowing them to be used by the community to benchmark

their performance results. It will be important for TCBR researchers to create similar

evaluation datasets on select domains, so that the goodness of the automatically

183

acquired knowledge can be verified against expert judgements. This will also facilitate

fresh research on how human experts and automated learners can collaborate and

complement each other in the process of knowledge discovery and elicitation. The non

availability of unsupervised collections also meant that the original GAME measure

could not be experimentally evaluated, though results on its supervised counterpart

GAMEciass were reported. In the case of complexity evaluation, however, the lack of

benchmark datasets can perhaps be circumvented by verifying alignment of textual

review reports (treated as problems) to review ratings (treated as solutions) in product

review domains; while it may be argued that this is no different from classification

domains that we have evaluated, we feel that the wider range of review ratings can

effectively map onto, and simulate a larger solution vocabulary.

Dynamic Knowledge. Textual casebases, not unlike structured casebases, change over

time. This means that the associated knowledge containers, namely the relevance and

similarity knowledge, need to be updated to reflect these changes. Several approaches

have been investigated by the LSI research community to speed up the process of

updating LSI representations when changes are made to document collections. Three

such approaches were briefly presented in Chapter 3. We note that these approaches

directly apply to sprinkled LSI and AS-based LSI as well. However, more research

needs to go into speeding up updates to similarity knowledge acquired using higher

order association mining. Our current prescription is a lazy strategy that makes quick

incremental but approximate changes whenever a change happens, and relegates the job

of making accurate changes at a later "bulk update" stage. A similar idea was also

presented in the context of making efficient updates to the stacked image for

visualization. We have presented an algorithm to make fast updates to FCRN whenever

changes are made to the casebase, by eliminating some of the redundant computations

involved in computing effective relevance values from scratch.

In addition to the broad areas identified above, there are avenues for extending

and fine-tuning the approaches presented in this thesis. We have made mentions of

184

such possibilities in context when presenting these approaches. Examples include better

heuristics for selecting the Maximum Sprinkling Length (MSL), faster evolutionary

strategies for learning parameters in the similarity mining approach based on higher

order associations, and efficient ways of selecting best starting cases for the stacking

algorithm.

9.3 Closing Notes

This thesis is positioned at the confluence of two significant problems of topical

interest. The first concerns the knowledge engineering bottleneck that has plagued real

world AI systems over the last few decades. The second is the problem of making sense

of huge volumes of unstructured data to address diverse information needs of users.

Implicit in the statement of this second problem is the need to attain a reasonable

tradeoff between the twofold criteria of ensuring retrieval effectiveness and efficiency.

As this thesis is being written, both problems mentioned above are holy grails of

computing science, though a significant volume of research deals with downsized

version of these problems, in that they narrow down their scope to realizing realistic

targets in meeting application-specific requirements. CBR, not unlike other AI

approaches, needs knowledge acquisition to populate its knowledge containers. IR

needs to handle large volumes of unstructured texts. TCBR, however, needs to tackle

both problems. This is because TCBR strives to a middle ground between CBR and JR,

in that it aims at improving retrieval effectiveness of JR by using sophisticated domain

specific knowledge, and it extends CBR by relaxing the need to have structured

representations for cases. In this thesis we have attempted a comprehensive study of

approaches that address the aforementioned two problems of contemporary interest in

the context of TeBR. However, because of the general nature of the problems, the

ideas, techniques and formalisms presented are expected to be of interest to a much

185

wider research community from the fields of CBR, IR, Text Mining, Machine Learning

and Information Visualization.

We have shown that statistical learning approaches can be effective in reducing

manual knowledge engineering overheads associated with acquiring knowledge

containers for TCBR. Novel extensions of LSI were presented to handle supervised

classification domains, and we have shown the idea can be extended to model complex

class relationships in hierarchical and ordinal domains, while taking into account the

fact that certain classes are easier to separate than others. We have presented a novel

algorithm to mine similarity between features based on their higher order associations.

One significant contribution of our work is in demonstrating that, when equipped with

knowledge that is statistically mined using the proposed approaches, instance based

approaches can outperform state-of-the-art machine learning approaches like SVM.

This is of notable interest to the TCBR community, especially in the light of several

advantages associated with instance based learners like support for lazy incremental

updates and explicitness of knowledge allowing for good explanation, visualization and

ability to accommodate expert-initiated feedback. Though experimental evaluations

were carried out over supervised datasets, unsupervised TCBR systems can benefit

from the rich representations as well. To address efficiency issues, we presented a

novel retrieval formalism. It is interesting to note that while CRNs are good at handling

a large number of cases, FCRN is specifically designed to improve CRN time

performance by being able to handle high dimensional non-sparse representations

efficiently. The curse of dimensionality (Russell & Norvig 2003) has been a challenge

for scale up of real world systems, and FCRNs provide a practical approach to speed up

retrieval while making best use of the rich relevance and similarity knowledge, which

are critical to the effectiveness of TCBR systems. Our contributions on the

visualization and complexity front have been under-exploited in this thesis, in that we

have restricted our attention to using these techniques for explaining our empirical

results. The bigger application context, however, is maintenance of TCBR knowledge

containers. There are not many works till date in this area, and we hope our

186

contributions will lead to more active interest in the research community at effectively

bridging the knowledge gap between the expert and the system.

187

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational issues,

methodological variations, and system approaches. AI Communications 7(1), (pp. 39-

59).

Austin, J. (1962). How to do Things with Words. Oxford University Press.

Baker, L., & McCallum, A. (1998). Distributional clustering of words for text

classification. Proceedings ofSIGIR-98 (pp. 96-103). ACM Press.

Balaraman, V., & Chakraborti, S. (2004). Satisfying Varying Retrieval Requirements in

Case-Based Intelligent Directory Assistance. Proc. of the FLAIRS Conference.

Bergmann, R. (2002). Experience Retrieval. In Experience Management: Foundations,

Development Methodology, and Internet-Based Applications (pp. 417-426).

Berry, M., Dumais, S., & O'Brien, G. (1995). Using linear algebra for intelligent

information retrieval. SIAM Rev., 37, (pp. 573-595).

Blumberg, R., & Atre, S. (2003). The Problem with Unstructured Data. DM review

magazine Feb 2003.

Breimen, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and

regression trees.

Brodley, C., & Utgoff., P. (1995). Multivariate decision trees. Machine Learning, 19,

45-77.

Brown, M., Fortsch, C., & Wissmann, D. (1998). Combining IR and CBR for "Middle

Ground" Text Retrieval Problems. Papers from the AAAI-98 Workshop on Textual

Case-Based Reasoning, (p. 3).

Brilninghaus, S., & Ashley, K. (2001). The Role oflnformation Extraction for Textual

CBR. Proc. of 4th ICCBR (pp. 74-89). Springer.

Budanitsky, A. (1999). Lexical semantic relatedness and its application in natural

language processing. Technical Report CSRG390. University of Toronto.

188

Chakraborti, S., Ambati, S., Balaraman, V., & Khemani, D. (2003). Integrating

Knowledge Sources and Acquiring Vocabulary for Textual CBR. Proc. of the 8th UK

CBR Workshop, (pp. 74-84).

Chakraborti, S., Beresi, U., Wiratunga, N., Massie, S., Lothian, R., & Watt, S. (2007).

A Simple Approach towards Visualizing and Evaluating Complexity of Textual Case

Bases. To appear in the Proc. ofthefourth workshop on TCBR (ICCBR 07).

Chakraborti, S., Lothian, R., Wiratunga, N., & Watt, S. (2006). Sprinkling: Supervised

Latent Semantic Indexing. Procs. of 28th European Conf. on Information Retrieval,

(pp.510-515).

Chakraborti, S., Lothian, R., Wiratunga, N., Orecchioni, A., & Watt, S. (2006). Fast

Case Retrieval Nets for Textual Data. Proc. of the 8th European Conference on

Case-Based Reasoning (ECCBR-06) (pp. 400-414). Springer.

Chakraborti, S., Mukras, R., Lothian, R., Wiratunga, N., Watt, S., & Harper, D. (2007).

Supervised Latent Semantic Indexing using Adaptive Sprinkling. Proc. of the

Twentieth /JCAI Conference, (pp. 1582-7).

Chakraborti, S., Watt, S., & Wiratunga, N. (2004). Introspective Knowledge

Acquisition in Case Retrieval Networks for Textual CBR. Proc. of the 9th UK CBR

Workshop, (pp. 51-61).

Chakraborti, S., Wiratunga, N., Lothian, R., & Watt, S. (2007). Acquiring Word

Similarities with Higher Order Association Mining .. To appear in the Proc. of the

7th International CBR Conference (ICCBR'07). Springer.

Chakraborti, S., Wiratunga, N., Lothian, R., & Watt, S. (2005). Fast Case Retrieval

Nets for Textual CBR. Procs. of the 10th UK CBR Workshop.

Chavez, E., Navarro, G., Baeza-Yates, R., & Marroquin, J. (2001). Searching in metric

spaces. ACM Computing Surveys Vol. 33 Issue 3,273-321.

Chin, K. (1998). Support Vector Machines applied to Speech Pattern Classification.

University of Cambridge.

189

Cimiano, P., Staab, S., & Tane, 1. (2003). Automatic Acquisition of Taxonomies from

Text: FCA meets NLP. In Proceedings of the ECMLIPKDD Workshop on Adaptive

Text Extraction and Mining, (pp. 10-17).

Cohen, W., & Singer, Y. (1999). Context-sensitive learning methods for text

categorization. ACMTrans. In! Syst. 17(2), (pp. 141-173).

Deerwester, S., Dumais, S., Furnas, G., Landuer, T., & Harshman, R. (1990). Indexing

by Latent Semantic Analysis. Journal of the American Society of Information

Science, vol. 41, no.6, 391-407.

Delany, S., & Bridge, D. (2006). Feature-Based and Feature-Free Textual CBR A

Comparison in Spam Filtering. Procs. of Irish Conference on AI and Cognitive

Science, (pp. 244-253).

Delany, S., & Cunningham, P. (2004). An Analysis of Case-base Editing in a Spam

Filtering System. Proc. of the 7th ECCBR (pp. 128-141). Springer.

Delany, S., Cunningham, P., Tsymbal, A., & Coyle, L. (2004). A Case-based

Technique for Tracking Concept Drift in Spam Filtering. Applications and

Innovations in Intelligent Systems XlI, Procs. of AI 2004, (pp. 3-16). Springer.

Diaz-Agudo, B., & Gonzalez-Calero, P. (2001). Formal concept analysis as a support

technique for CBR. Knowledge Based Syst. 14(3-4) , 163-171.

Drucker, H., Wu, D., & Vapnik, V. (1999). Support Vector Machines for Spam

Categorization. IEEE Tans. on Neural Networks, 10, (pp. 1048-1054).

du Boucher-Ryan, P., & Bridge, D. (2006). Collaborative Recommending using Formal

Concept Analysis. Knowledge-Based Systems, vol. 19(5), (pp. 309-315).

Dumais, S. T. (1993). LSI meets TREC: A status report. The First Text REtrieval

Conference (TREC1). D. Harman (Ed.), National Institute of Standards and

Technology Special Publication 500-207, (pp. 137-152).

Dumais, S., Platt, 1., Heckerman, D., & Sahami, M. (1998). Inductive learning

algorithms and representations for text categorization . Proc. of 7th International

Con! on Information and Knowledge Management.

190

Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium 42, (pp.

149-160).

Edmonds, P. (1997). Choosing the word most typical in context using a lexical co

occurrence network. Meeting of the Association for Computational Linguistics, (pp.

507-509).

Feldman, R., & Sanger, J. (2007). The Text Mining Handbook. Cambridge University

Press.

Frank, E., Holmes, G., Kirkby, R., & Hall, M. (2002). Racing committees for large

datasets. Discovery Science, 2002.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a

statistical view of boosting. Ann. Stat., (pp. 337-407).

Furnas, G. W., K., L. T., Gomez, L. M., & Dumais, S. T. (1987). The Vocabulary

problem in Human- System Communication. Communications of the ACM. 30,11,

(pp. 964-971).

G.-R., X., Lin, c., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., et a1. (2005). Scalable

Collaborative Filtering Using Cluster-based Smoothing. Procs. of the 28th ACM

SIGIR Conference, (pp. 114-121).

Gabrilovich, E., & Markovitch, S. (2007). Computing Semantic Relatedness using

Wikipedia-based Explicit Semantic Analysis. Proceedings of 20th IlCAI conference.

Gabrilovich, E., & Markovitch, S. (2005). Feature Generation for Text Categorization

using World Knowledge. Procs. ofllCA12005, (pp. 1048-1053).

Gee, K. (2003). Using latent Semantic Indexing to Filter Spam. Proc. of the 2003 ACM

Symposium on Applied Computing, (pp. 460-464).

Gervas, P., Diaz-Agudo, B., Peinado, F., & Hervas, R. (2005). Story plot generation

based on CBR. Knowl.-Based Syst. 18(4-5) ,235-242.

Grishman, R. (1997). Information Extraction: Techniques and Challenges. Procs. of

SCIE'97, (pp. 10-27).

Gupta, K., & Aha, D. (2004). Towards acquiring case indexing taxonomies from text.

Barr. V and Zdravko. M (eds) Proceedings of the Seventeenth Annual Conference of

191

the International Florida Artificial Intelligence Research Society (pp. 172-177).

AAAI Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning.

Springer-Verlag.

Hayes, P. J., Andersen, P. M., Nirenburg, I. B., & Schmandt, L. M. (1990). TCS : A

shell for content-based text categorization. In Procs of CAIA-90. 6th IEEE

Conference on AI Applications, (pp. 320-326).

Hilario, M., & Kalousis, A. (1999). Characterizing Learning Models and Algorithms

for Classification. CUI - University of Geneva.

Hoenkamp, E. (2003). Unitary Operators on the Document Space. JASIST 54(4), (pp.

321-334).

Hoffman, T. (1999). Probabilistic Latent Semantic Analysis. Proc. of Uncertainty in

Artificial Intelligence. UAI'99.

Inselberg, A (1985). The plane with parallel coordinates. The Visual Computer 1, (pp.

69-91).

Jarmasz, M., & Szpakowicz, S. (2003). Roget's thesaurus and semantic similarity ..

Procs of the International Conference on Recent Advances in Natural Language

Processing (RANLP-03), (pp. 212-219). Borovets, Bulgaria.

Joachims, T. (1998). Text Categorization with Support Vector Machines Learning with

Many Relevant Features. Proc. ofECML (pp. 137-142). ACM Press.

Kolda, T., & O'Leary, D. (1998). A semidiscrete matrix decomposition for latent

semantic indexing information retrieval. ACM Transactions on Information Systems.

vol 16. issue 4 , 322-346.

Kolodner, J. (1993). Case-Based Reasoning. San Mateo: Morgan Kaufmann.

Kontostathis, A, & Pottenger, W. (2006). A framework for understanding LSI

performance .. Information Processing and Management. Volume 42. number 1., (pp.

56-73).

Kunze, M., & HUbner, A (1998). Textual CBR - Case Studies of Projects Performed.

Papers from the AAAI-98 Workshop on Textual Case-Based Reasoning, (p. 40).

192

Kushmerick, N., Johnston, E., & McGuinness, S. (2001) .. Proc. of IlCAI'Ol Workshop

on Adaptive Text Extraction and Mining.

Lamontagne, L. (2006). Textual CBR Authoring using Case Cohesion. Proceedings of

the ECCBR '06 Workshops, TCBR '06 - Reasoning with Text, (pp. 33-43).

Lang, K. (1995). NewsWeeder: learning to filter netnews. Procs. ofICML'95, (pp. 331-

339).

Lee, D., & Seung, H. (2001). Algorithms for non-negative matrix factorization .. In

Advances in Neural Information Processing Systems, vol. 13, (pp. 556-562).

Lemaire, B., & Denhiere, G. (2006). Effects of High-Order Co-occurrences on Word

Semantic Similarity. Current Psychology Letters, 18, Vol. 1.

Lenz, M. (1996). Case Retrieval Nets Applied to Large Case-Bases. Proc. 4th German

Workshop on CBR. Informatik Preprints, Humboldt-UniversiUit zu Berlin.

Lenz, M. (1999). Case Retrieval Nets as a Model for Building Flexible Information

Systems, PhD dissertation. Humboldt Uni. Berlin. Faculty of Mathematics and

Natural Sciences.

Lenz, M. (1998). Knowledge Sources for Textual CBR Applications. Textual CBR

Papers from the 1998 Workshop Technical Report WS-98-12 (pp. 24-29). AAAI

Press.

Lenz, M., & Burkhard, H. (1996). Case Retrieval Nets: Foundations, Properties,

Implementation, and Results, Technical Report. Humboldt-UniversiUit zu Berlin.

Lenz, M., & Burkhard, H.-D. (1996). Case Retrieval Nets Basic Ideas and Extensions.

KI, (pp. 227-239).

Lenz, M., & Burkhard, H.-D. (1997). CBR for Document Retrieval - The F AllQ

Project. Case-Based Reasoning Research and Development, Springer Verlag. LNA!

1266, (pp. 84-93).

Lenz, M., Auriol, E., & Manago, M. (1998). Diagnosis and Decision Support (Chapter

3). Case-Based Reasoning Technology, Lecture Notes in Artificial Intelligence 1400,

(pp.51-90).

193

Lenz, M., Hubner, A., & Kunje, M. (1998). Textual CBR (Chapter 5). Case-Based

Reasoning Technology, Lecture Notes in Artificial Intelligence 1400, (pp. 115-137).

Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., et

al. (2005). Retrieval, reuse, revision and retention in case-based reasoning. Knowl.

Eng. Rev. 20:3 ,215-240.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from

lexical co-occurrence. Behavior Research, Methods, Instruments and Computers, 28-

2 , (pp. 203-208).

Lytinen, S., & Tomuro, N. (2002). The Use of Question Types to Match Questions in

F AQFinder, Mining Answers From Texts and Knowledge Bases. AAAI Technical

Report SS-02-06 (pp. 46-53). AAAI Press.

Mann, W., & Thompson, S. (1987). Rhetorical Structure Theory: A Theory of Text

Organization. Tech Rep. ISIIRS-87 -190, USC Information Sciences Institute.

Manning, C., & Schutze, H. (1999). Foundations of Statistical Natural Language

Processing. Cambridge, MA: MIT Press.

Manning, C., Raghavan, P., & Schutze, H. (2008 (expected)). Introduction to

Information Retrieval,. Cambridge University Press.

Mao, W., & Chu, W. W. (2007). The phrase-based vector space model for automatic

retrieval of free-text medical documents. Data and Knowledge Engineering Vol. 61,

Issue I , 76-92.

Massie, S. (2006). Complexity Modelling for Case Knowledge Maintenance in Case

Based Reasoning, PhD Thesis. The Robert Gordon University.

Massie, S., Wiratunga, N., Donati, A., & Vicari, E. (2007). From Anomaly Reports to

Cases. To appear in the Procs. of the 7th International eBR Conference (ICCBR'07).

Springer.

Mill, W., & Kontostathis, A. (2004). Analysis of the values in the LSI term-term matrix,

Technical report. Ursinus College.

Miller, G. (1995). WORDNET: A Lexical Database for English. Communications of

the ACM 38(/1), (pp. 39-41).

194

Mitchell, T. (1997). Machine Learning. Me Graw Hill International.

Mori, J., Ishizuka, M., & Matsuo, Y. (2007). Extracting Keyphrases To Represent

Relations in Social Networks from Web. Proc. of the Twentieth /JCAI Conference,

(pp. 2820-2825).

MUC. (1991). Procs of the Sixth Message Understanding Conference (MUC-6).

Morgan Kaufmann.

Mukras, R., Wiratunga, N., Lothian, R., Chakraborti, S., & Harper, D. (2007).

Information Gain Feature Selection for Ordinal Text Classification using Probability

Re-distribution. Proc. of IJCAI Textlink Workshop.

Mullins, M., & Smyth, B. (. (2001). Visualisation methods in case-based reasoning.

Workshop proceedings of the fourth ICBR.

Nahm, U., & Mooney, R. (2001). Mining Soft-Matching Rules from Textual Data.

Procs. of the Seventeenth International Joint Conference on Artificial Intelligence

(IJCAI-OI)" (pp. 979-984).

Orecchioni, A., Wiratunga, N., Massie, S., Chakraborti, S., & Mukras, R. (2007).

Learning Incident Causes. Proc. of the TCBR Workshop 2007 (ICCBR).

Pang, B., & Lee, L. (2005). Seeing Stars: Rxploiting Class Relationships for Sentiment

Categorization with respect to Rating Scales. Procs. of ACL 2005, (pp. 115-124).

Panurgy. (2006, August). Panurgy Technology News. Retrieved from

http://www.chesapeake.panurgy.com!Newsletter/2006-August.htm

Patterson, D., Dobrynin, V., Galushka, M., & Rooney, N. (2005). Sophia: A novel

approach for textual case-based reasoning. Proc. of the Nineteenth IJCAI Conference,

(pp. 1146-1153).

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). WordNet: : Similarity -

Measuring the Relatedness of Concepts. Procs. of AAAI conj, (pp. 1024-1025).

Porter, M. (1980). An algorithm for suffix stripping. Program, 14(3) , 130-137.

Reuters. (1997). Reuters-2I578 Text Classification corpus. Retrieved from

daviddlewis.comlresources/testcollections/reuters215 7 81

195

Richter, M. M. (1998). Chapter: Introduction. Lenz, M; Bartsch-Sprl, B.; Burkhard,

H.-D.; and Wess, S., eds., Case-Based Reasoning Technology: From Foundations to

Applications, Lecture Notes in Artificial Intelligence 1400. Springer Verlag.

Rijsbergen, C. 1. (1979). Information Retrieval 2nd edition. Butterworths.

Riloff, E. (1993). Automatically Constructing a Dictionary for Information Extraction

Tasks. Proceedings of the Eleventh National Conference on Artificial Intelligence

(pp. 811-816). Menlo Park, CA. : AAAI PresslMIT Press.

Riloff, E., & Lehnert, W. (1994). Information Extraction as a Basis for High-Precision

Text Classification. ACM Transactions on Information Systems, 296-333.

Rosenfeld, A., & Kale, A. (1982). Digital Picture Processing. New York: Academic

Press.

Rume1hart, D., & McClelland, J. (1986). Parallel distributed Processing Explorations in

the Microstructure of Cognition. Volume 1. Foundations. Cambridge: MIT Press.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pearson

US.

Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C., &

Stamatopoulos, P. (2003). A Memory-based Approach to Anti-Spam Filtering for

Mailing Lists. Information Retrieval, 6 , 49-73.

Schaaf, 1. (1995). "Fish and Sink" An Anytime Algorithm to Retrieve Adequate Cases.

Case-Based Reasoning Research and Development (Proc. of International

Conference on CBR 1995) (pp. 371-380). Springer.

Scott, S., & Matwin, S. 1.-3. (1999). Feature Engineering for Text Classification. Proc.

of ICML, (pp. 379-388).

Sebastiani, F. (2002). Machine learning in automated text categorization .. ACM

Computing Surveys 34(1), (pp. 1-47).

Semeraro, G., Lops, P., & Degemmis, M. (2005). WordNet-based User Profiles for

Neighborhood Formation in Hybrid Recommender Systems. Procs. of Fifth HIS

Conference, (pp. 291-296).

196

Smeaton, A., Keogh, G., Gurrin, c., McDonald, K., & SBdring, T. (2002). Analysis of

papers from twenty-five years of SIGIR conferences: what have we been doing for

the last quarter of a century? ACM SIGIR Forum ACM SIGIR Forum Volume 36 .

Issue 2 (Fall 2002).

Smyth, B., & McKenna, E. (1999). Footprint Based Retrieval. Proc. of 3rd ICCBR,

(pp. 343-357).

Stanfill, c., & Waltz, D. (1986). Toward Memory-Based Reasoning. Communications

of the ACM 29. 12. , 1213-1228.

Sun, 1., Chen, Z., Zeng, H., Lu, Y., Shi, C., & Ma, W. (2004). Supervised Latent

Semantic Indexing for Document Categorization. Proc. of ICDM (pp. 535-538).

IEEE Press.

Terra, E., & Clarke, C. (2003). Frequency Estimates for Word Similarity Measures.

Proceedings ofHLT-NAACL 2003. Main Papers, (pp. 165-171).

Utgoff, P. (1989). Incremental induction of decision trees. Machine Learning. 4 , 161-

186.

Vinay, V., Cox, I., Milic-Fralyling, N., & Wood, K. (2006). Measuring the Complexity

ofa Collection of Documents. Proc. of 28th ECIR, (pp. 107 - 118).

Wang, M., Nie, 1., & Zeng, X. (2005). A Latent Semantic Classification Model. Proc.

of 14th ACMCIKM, (pp. 261-262).

Weber, R., Ashley, K., & Bruninghaus, S. (2006). Textual Case-based reasoning.

Knowledge Engineering Review, Vol. 20:3 ,255-260.

WeB, S., Althoff, K., & Derwand, G. (1994). Using k-d trees to Improve the Retrieval

Step in Case-Based Reasoning,. Topics in Case-Based Reasoning, Proc. of European

Workshop on CBR-93 (pp. 167-181). Springer.

Wess, S., Althoff, K.-D., & Derwand, G. (1993). Using k -d Trees to Improve the

Retrieval Step in Case-Based Reasoning. Proc. ofEWCBR, (pp. 167-181).

Wiener, E., Pederson, 1., & Weigend, A. (1995). A Neural Network Approach to Topic

Spotting. Proc. ofSDAIR'95, (pp. 317-332).

197

Wille, R. (1982). Restructuring lattice theory: an Approach based on Hierarchies of

Concepts.!. Rival (Ed), Ordered sets. Reidel, Dordrecht-Boston, 445-470.

Wilson, D., & Bradshaw, S. (1999). CBR Textuality. Proc. of the Fourth UK Case

Based Reasoning Workshop, (pp. 67-80).

Wiratunga, N., Lothian, R., Chakraborti, S., & Koychev, I. (2005). A Propositional

Approach to Textual Case Indexing. Proc. of The PKDD Conference, Springer, (pp.

380-391).

Wiratunga, N., Lothian, R., Chakraborti, S., & Koychev, I. (2005). Textual feature

construction from keywords. Weber, Rand Branting, LK (eds) Proceedings of the

Textual Case-Based Reasoning Workshop, (pp. 110-119). Chicago.

Wiratunga, N., Massie, So, & Lothian, R. (2006). Unsupervised Textual Feature

Selection. Proc. of the 8th ECCBR Conference (pp. 340-354). Springer.

Wolverton, M. (1995). An Investigation of Marker Passing Algorithms for Analogue

Retrieval. Case-Based Reasoning Research and Development (Proc. of International

Conference on CBR 1995), LNAI 1010 (pp. 359-370). Springer.

Wolverton, M., & Hayes-Roth, B. (1994)0 Retrieving Semantically Distant Analogies

with Knowledge-Directed Spreading Activation. Proc. of AAAI -94.

Xue, G.-R., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., et al. (2005). Scalable

Collaborative Filtering using Cluster-based Smoothing. Procs. of 28th ACM SIGIR,

(pp. 114-121).

Yang, Y., & Pederson, 1. (1997). A Comparative Study on Feature Selection in Text

Categorization. Proco of the International Conference on Machine Learning, (pp.

412-420).

Zelikovitz, S. (2003). Mining for features to improve classification. Proc of Machine

Learning, Technologies and Applications.

Zelikovitz, S. (2004). Transductive LSI for Short Text Classification Problems. Procs

of FLAIRS Conference 2004.

Zelikovitz, S., & Hirsh, H. (2001). Using LSI for Text Classification in the Presence of

Background Text. Proc. ofCIKM2001, (pp. 113-118).

198

199

Appendix At

Realizing Textual Similarity Measures

using Case Retrieval Networks

During retrieval, the ranking of cases depends on the distance metric (or similarity

measure) realized by the eRN. Two measures commonly used with textual data are the

cosine measure and the Euclidean distance. The original work of Lenz (1999)

prescribes no method to realize these measures. Here we propose simple extensions to

the CRN towards this end, which are used in our implementations in the thesis.

The cosine measure has been popular in Information Retrieval applications

(Rijsbergen 1997) where the query is typically much shorter than the texts (cases).

When the cases and queries are treated as vectors in a feature space, the cosine

similarity depends only on the angle between the vectors and not their lengths. Several

textual CBR systems also use the cosine measure in a retrieval scenario where users are

expected to type in only a few words, based on which relevance of cases needs to be

estimated. An example is FAQFinder (Lenz 1998a). The Euclidean distance metric is

more commonly used in CBR, but it needs the query and the case to be compatible.

This is true in classification applications and in case competence modeling, where

cases within the same casebase are compared with each other.

Let us consider a simplistic situation where each case (as well as the query) is

represented by a binary-valued feature vector whose elements correspond to the

presence or absence of an IE. We assume no knowledge of similarity between words.

200

Let the aggregation function at each case node be modelled by a simple addition of

incoming relevance activations.

Given a query Q, activations are propagated via similarity arcs. The incoming

activations are aggregated at each IE node, and we obtain a revised query Q *. It is

evident that the activation of case node C; is given by the dot product of the revised

query Q * and the case vectors, where each case vector is composed of the relevance

values relating the IEs to that case.

Given this observation, extending the eRN to realize the cosine similarity is

straightforward. We note that the cosine similarity between Q * and Cp cos(Q*, C
1

) is

related to the dot product (Q*, C;) by the following equation:

cos(Q*, C1) = Q. 'C1 /(11 Q·II·II C1 II) (Al.I)

where II Q*II and II C i II are vector norms. II C I II can be pre-computed for all cases in the

casebase, while II Q*II needs to be evaluated during retrieval. We need a post

processing phase to compute the cosine similarity using the dot product and the case

and query norms. Figure A.t shows the schematic of a eRN to realize this.

Extending the eRN to rank cases according to the Euclidean distance metric

appears to be trickier, since IEs not activated by the query case also take part in the

matching process. A workaround is to rewrite the Euclidean distance between the case

and the query ED(Q*,C
i

) in terms of the dot product and the case and query norms as:

(A1.2)

As with evaluating cosine measure, II C i II can be pre-computed for each case in the

casebase and II Q*II is evaluated at run time. Q * ,C
j
is the dot product evaluated by the

eRN. In our experiments, we use the following formulation to obtain a similarity

measure based on Euclidean Distance:

(Al.3)

201

Figure ALl shows the post-processing needed for realizing Euclidean distance-based

similarity. An example distance calculation is also shown based on the relevance values

shown in Figure 4.2. We assume no similarity between IEs in the example.

Query Q --'--h-J

QCi ..
-- for realiZIng Cosine

11011 I IC11 I smlarity

11 {1 t (!laW t IICjll2 - 2 a.Cj)1I1}

for realizlng Eudldean
distance based sinllarity

C1 '" (1.17.0.83.1.11.0.0, -006.0.16, 0.59, 017)

Q'" (0, 0, 1, 0, 0, 0, O. 0, I. 0)

gC1 1!= JI.17' to.W +1111 +(-0.06)1 +0.161 +0.59' +0.17' '" 1.9225

nell" Jjl;ji - 1.4142

g'Cl " (111 x 1) t (0 59 x I) .. 1.7

cos(Q,Cl) '" e ·CI /(]1 Q II · R C,ID '" 0.6253

ED(Q.CI) .. {I Q II ' + II C1 II' _2(Q.C)}IIl .. U 1 S2

Fi!!ure A 1.1 Extendine: the eRN to realize Euclidean and cosine measures

202

Appendix A2

Realizing Textual Similarity Measures

Using FCRNs

In Appendix A I, we have shown how the eRN can be extended to realize the

Euclidean distance and cosine similarity measures. We reproduce the following two

equations from Appendix A I:

cos(Q·, C1) = Q. 'C1 /01 Q·II·II C1 II) (A2.l)

(A2.2)

While the same idea can be extended to FeRNs as well, a few differences are worth

noting. Firstly, since the similarity propagation phase is absent in the FeRN, we no

longer have access to the revised query Q •. Secondly, the case vector in the FeRN is

composed of the effective relevances of the IEs to the case, so IEs not present in a case

may also have non-zero effective relevance. This is because the similarity knowledge

between IEs is taken into account while computing effective relevances. We denote the

case vector as C·, which is a revised version of the original case vector C. Thus,

while a eRN uses the similarity knowledge to revise the query at run-time, the FeRN

uses a pre-computation step that uses the similarity knowledge to revise the cases in the

casebase.

Though the cosine and Euclidean measures produced by the FeRN are different

from those produced by the eRN, it follows from the equivalence shown in Section 8.2

203

that the dot-product case activations produced by eRN and FeRN are identical. Thus

Q * .C; = Q.C; *. This property may be used to rank cases in FeRN in the same order as

in a eRN, with respect to both measures. Using equation (A2.I), the ratio of cosine

measures of cases C. and C2 with respect to query Q* is given by

cos(Q*,C.) Q* ,C1 II Cz II Q,C1 * II CzlI
-~~~=--x--=--x--
cos{Q*,Cz) Q* .Cz II C1 II Q.Cz * II C1 II

(A2.3)

We note that this ratio is independent of II Q*II· The terms Q.C. * and Q.C
2
* are

outputs of the FeRN, while II C1 II and II C2 11 can be pre-computed. Thus we can

evaluate cosine measures for all cases relative to the first case, and produce a ranking

that is equivalent to that produced by the eRN.

We can also use a FeRN to generate the same ranking as in eRN, with respect to

the Euclidean distance measure. Using equation (A2.2), the difference between squares

of Euclidean distances of the query Q * to cases C. and C 2 is given by

ED2(Q*,C1) - EDz(Q*,Cz) =11 C1 UZ -2(Q* .C1) -II C2 W + 2(Q* .Cz)

=11 C1 liZ -2(Q,C, *) -II C2 112 + 2(Q.Cz *)
(A2.4)

We note that this difference is independent of II Q*II, and all terms on the right hand

side are available to the FeRN either at its output or from pre-computation. Thus we

can evaluate the squares of Euclidean distances for all cases in relation to the first case,

and produce a ranking of cases equivalent to that generated by the eRN.

204

Appendix A3

The Extended Case Retrieval Network

(ECRN) : Additional Results

The ECRN was briefly presented in Section 3.2, and shown to yield effectiveness

improvements comparable to, and occasionally outperforming the best off-the-shelf

classifiers. In this appendix, we take a closer look at some other interesting aspects of

ECRN.

Al.1 Training Time Reduction with VSM based Weight Initialization

In Section 3.2, we noted that the ECRN was different from a traditional neural network

in that we can ascribe meaning to its nodes and weights in terms of cases and relevance

values. This also facilitates instantiation of the ECRN network with LSI-mined weights

during training, instead of an arbitrary instantiation with low values as is typical with

neural networks. Fig. A3.1 shows that this can lead to conspicuous improvement in

training times in one of the problem domains (LINGSPAM). We observe that the

convergence is much faster when domain knowledge in the form of binary weights

from the vector space model is used for instantiation. With arbitrary instantiation, the

training error stagnates after around 70 epochs and is clamped to a value of around 0.4,

possibly because of getting stuck at a local minimum. This is not unusual as it has been

observed in neural network literature that the speed of convergence can critically

depend on the starting weights. Using VSM-based instantiations in ECRN helps to

recover from this problem on all six datasets.

18,-------.--------.-------,,-------.--------,

CD 1.6
~

---1
":)1.4
9-
::l
o 1.2
.......
ro
o 1
'
'-w
~ 0 .8
'-ro
::l

bS O.6
Q)

~0.4
'-
Q)

>
<1: 0 .2

~
I rt
I ~

~ \

If \

Decline of Error Rate during Training

Legends :
With LSI based Initialization

- - - Arbitrary Initialization with low values

\
\J "'___ _ ___ --:

r-...r'-------

205

OL----~~----~----~----~----~
o 50 100 150 200 250

No . of Epochs

Figure A3.1 Error rate reduction with training

A3.2 Proto typicality of terms to classes

We performed an experiment to determine how prototypical terms are, to the different

classes. Towards this end, we treated each term as a document containing just that term

and no other, and allowed it to be classified by the ECRN. We thus obtained a score

corresponding to each class at the output layer of the ECRN. The term was assigned to

the class with highest similarity. The top few prototypical terms from a two class sub

problem constructed from SCIENCE, having terms pertaining to medicine and space

domains, are shown in Table A3.1 below. The absolute difference between the scores

assigned to two classes is treated as a measure of prototypicality, and used as the

206

ranking criterion. Most of the top terms correspond well to the topics intuitively,

suggesting that the ECRN is effective in separating out the discriminating features

corresponding to each class.

Table A3.t. Prototypical terms corresponding to Space and Medicine domains,

extracted hv ECRN

Top Medicine Terms:

Words Belongingness Belongingness Absolute
to "Space" to "Medicine" Difference

1 caus -25.11 25.08 50.19
2 product -18.62 18.61 37.24
3 creat -17.67 17.59 35.19
4 prescriJ!t -17.44 17.42 34.86
5 kind -14.49 14.48 28.97
6 disease -12.59 12.58 25.17
7 doctor -12.35 12.34 24.69

Top Space Terms:

Words Belongingness Belongingness Absolute
to "Space" to "Medicine" Difference

1 space 14.68 -14.67 29.35
2 accessdigexnet 14.04 -14.03 28.08
3 launch 12.46 -12.45 24.90
4 orbit 12.24 -12.22 24.46
5 scispac 12.15 -12.14 24.28
6 rocket 11.72 -11.71 23.43
7 nuclear 11.44 -11.43 22.87

207

A3.3 Limitations of the ECRN

It is important to note that the relevance values acquired by EeRN improve

effectiveness when embedded as part of the network, but not when decoupled from the

network. This is a serious limitation, as the relevance weights cannot be used

independently by a eRN modelling an instance based classifier. This also has the

disadvantage that knowledge of feature similarity cannot be mined from the EeRN. As

an example, the similarity knowledge extracted from the revised weights learnt by

EeRN yielded only an accuracy of 62% in the LINGSPAM domain when plugged into

an EeRN; this compares poorly with 98.32% recorded by LSI-mined similarities. Thus

the improved effectiveness achieved by EeRN is grossly outweighed by the fact that

the acquired knowledge is not readily usable by instance based learners.

208

Appendix A4

Published papers

1. Chakraborti, s., Beresi, u., Wiratunga, N., Massie, S., Lothian, R., & Watt,

S. (2007). A Simple Approach towards Visualizing and Evaluating

Complexity of Textual Case Bases. To appear in the Proc. of the fourth

workshop on TCBR (ICCBR 07).

2. Chakraborti, S., Lothian, R., Wiratunga, N., & Watt, S. (2006). Sprinkling:

Supervised Latent Semantic Indexing. Procs. of 28th European Conf. on

Information Retrieval, (pp. 510-515).Springer.

3. Chakraborti, S., Lothian, R., Wiratunga, N., Orecchioni, A., & Watt, S.

(2006). Fast Case Retrieval Nets for Textual Data. Proc. of the 8th

European Conference on Case-Based Reasoning (ECCBR-06) (pp. 400-

414). Springer.

4. Chakraborti, S., Mukras, R., Lothian, R., Wiratunga, N., Watt, S., &

Harper, D. (2007). Supervised Latent Semantic Indexing using Adaptive

Sprinkling. Proc. of the Twentieth IlCAI Conference, (pp. 1582-7).AAAI

Press

5. Chakraborti, S., Watt, S., & Wiratunga, N. (2004). Introspective

Knowledge Acquisition in Case Retrieval Networks for Textual CBR.

Proc. of the 9th UK CBR Workshop, (pp. 51-61).

209

6. Chakraborti, S., Wiratunga, N., Lothian, R., & Watt, S. (2007). Acquiring

Word Similarities with Higher Order Association Mining .. To appear in

the Proc. of the 7th International CBR Conference (ICCBR'07). Springer.

7. Chakraborti, S., Wiratunga, N., Lothian, R., & Watt, S. (2005). Fast Case

Retrieval Nets for Textual CBR. Procs. of the 10th UK CBR Workshop.

8. Mukras, R., Wiratunga, N., Lothian, R., Chakraborti, S., & Harper, D.

(2007). Information Gain Feature Selection for Ordinal Text Classification

using Probability Re-distribution. Proc. of JJCAI Textlink Workshop.

9. Orecchioni, A., Wiratunga, N., Massie, S., Chakraborti, S., & Mukras, R.

(2007). Learning Incident Causes. Proc. of the TCBR Workshop 2007

(ICCBR).

10. Wiratunga, N., Lothian, R., Chakraborti, S., & Koychev, I. (2005). A

Propositional Approach to Textual Case Indexing. Proc. of The PKDD

Conference. Springer, (pp. 380-391).

11. Wiratunga, N., Lothian, R., Chakraborti, S., & Koychev, I. (2005). Textual

feature construction from keywords. Weber. Rand Branting. LK (eds)

Proceedings of the Textual Case-Based Reasoning Workshop (ICCBR) ,

(pp. 110-119). Chicago.

Note: An updated version of publication 5 has appeared in the BCS SGAI

journal Expert Update. An updated version of publication 7 is also slated to

appear in a forthcoming issue of the same journal.

	chakraborti thesis coversheet
	Sutanu Chakraborti thesis download

