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Abstract 

Residential buildings in the UK consume around 28% of total final energy use. Therefore, in order to 
achieve the CO2 and fuel poverty reduction targets set by the Scottish government, it will be necessary 
to improve the energy efficiency of the existing housing stock. This research explores the 
improvement of the envelope’s performance in traditionally constructed buildings (which represent 
20% of the total stock) so as to reduce the space heating energy demand. Current studies show a great 
level of uncertainty regarding the long term effects of energy retrofit on moisture migration in 
traditional fabrics. Evaluation of risks, prior to any alteration on building’s physics, is critical to avoid 
any future damage on the envelope’s performance or occupants’ health and well being. 
 
Moisture dynamics in buildings’ envelopes are affected by the geometry of the enclosure, material 
properties and external and internal boundary conditions. Within the internal boundary there are 
several user related factors determining the environmental conditions like hours of heating use, 
number of rooms heated, temperature settings, ventilation patterns or cooking and dry clothing habits. 
However, due to the difficulty to obtain and model this information, internal climate is often neglected 
or extremely simplified. 
 
This research will explore the influence of user’s behaviour on the risk of condensation in solid walls 
in order to predict the actual effects of retrofit measures. Specifically, it will focus on the users’ 
influence on the hygrothermal performance of granite solid walls in Scottish tenement buildings after 
the insulation of the cavity between inner face of the masonry and the original lining. This research 
project intends to use Heat, Air and Moisture (HAM) numerical simulation to examine the impact of 
different behavioural patterns on the insulated walls. These patterns will be previously identified and 
analysed by means of long term environmental monitoring and occupants’ in-depth interviews. The 
results of this research may be used to advice owners and practitioners about the feasibility of 
different retrofit measures and the behavioural aspects that need to be monitored after its 
implementation. 
 
Keywords: traditional buildings, energy retrofit, moisture dynamics, occupants’ behaviour 
 
 

Introduction 

Since the elaboration of the Leipzig Charter on Sustainable European Cities in 2007, energy retrofit 
has become one of the priorities for the European Union. Governmental policies and scientific 
research have set the improvement of the energy efficiency of existing buildings as one of the main 
goals for the following years (Nemry et al. 2008, Sullivan 2007, RICS 2008). But, why is so 
important to improve the energy performance of the existing built stock?  And, why traditional and 
historic buildings in particular? 
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1. To reduce our green house gas emissions and mitigate the climate change 

 
The Scottish government is aiming to reduce the net Scottish greenhouse gas emissions by 80%, 
respect 1990 levels, for 2050 (Scottish Parliament 2009). To achieve this ambitious target it is 
essential to reduce the CO2 emissions of traditionally constructed buildings since 45% of total CO2 
emissions in the UK are due to the built environment (RAENG 2010), and 19% of this built stock can 
be considered “traditional” (Curtis 2010). Furthermore, due to the low rate of renovation in the 
European countries (between 1.2% and 1.4% per year (Dyrbøl, Thomsen, et al. 2010)), existing 
buildings will still represent around 80-85% of the total stock in 2050 (RAENG 2010, Palmer et al. 
2006). 

 
2. To reduce fuel consumption and ensure energy affordability 

 
Buildings are responsible for 40% of the final energy consumption in the EU (Ferreira, Duarte 
Pinheiro and de Brito 2013). Most of this energy is dedicated to the operational stage, including 
usage, maintenance and repair (Forster et al. 2011). Of all uses involved in building operation, space 
heating is especially important as it accounts for 55% of the total energy consumption (DECC 2012). 
Furthermore, according to the House Condition Surveys Team’s report, every 5% increase in average 
annual fuel prices would result in 30,000 more households in risk of fuel poverty (Cormack et al. 
2004). 
 

3. To ensure the preservation of the built heritage 
 
As stated by ICOMOS (1999), “due to homogenisation of culture and of global socio-economic 
transformation, vernacular structure all around the world are extremely vulnerable, facing serious 
problems of obsolescence, internal equilibrium and integration”. Adapting the existing stock of 
traditional buildings to the current needs and standards of comfort is probably the most effective 
approach to prevent neglect and deterioration and therefore the best solution to ensure their 
preservation. 

Rationale for research 

Following, the rationale for this research is presented. Further clarification of these concepts will be 
provided throughout the next sections of this paper. 

 
i. There is a need to improve the thermal performance of the traditional built stock in the UK. 

ii. Solid masonry walls are “hard to treat” and the insulation of the cavity between the masonry 
and the lath and plaster may offer a compromised solution between efficiency, conservation 
and effectiveness. 

iii. There is still a high level of uncertainty regarding the long term effect of insulation on the 
conservation of the fabric because of the changes caused to the internal moisture migration. 

iv. Moisture dynamics in building envelopes are determined by the enclosure properties and 
boundary conditions although indoor climate is often neglected in favour of external 
conditions and material characterization. 

v. Internal boundary conditions after the insulation of the envelope are difficult to predict 
because of the strong dependence on occupants’ behaviour. 

vi. Monitoring of combined effect of insulation and occupants’ behaviour has a limited capability 
to evaluate the feasibility of this measure due to the wide range of user related patterns 
involved and the long period of time required to achieve the moisture balance in the envelope. 



Aims and Objectives 

The aim of this research is to understand the influence of occupants’ behaviour on the hygrothermal 
performance of insulated solid walls.  Therefore, the following objectives and research question are 
defined: 
Objective 1. To review the existing knowledge on the effect of retrofit measures on traditional 
building physics. 
- Q1. What are the current technologies for retrofitting solid masonry walls? 
- Q2. How are the envelope’s moisture dynamics affected by these measures? 
- Q3. What factors are influencing the risk of condensation after the improvement of the envelope? 
 
Objective 2. To investigate the relationship between the adoption of retrofit measures and energy 
consumption patterns. 
- Q4. What are the driving factors for decision makers when adopting energy efficient technologies 

in traditional buildings? 
- Q5. How are occupants’ behaviour and needs considered when adopting energy efficient 

technologies in traditional buildings? 
 
Objective 3. To study the influence of occupants’ behaviour on the internal climate of traditional 
buildings. 
- Q6. What parameters of occupants’ behaviour are affecting the internal environment conditions? 
- Q7. How does occupants’ behaviour change after the improvement of the envelope? 
 
Objective 4. To explore the effect of internal boundary conditions on the performance of insulated 
solid walls. 
- Q8. To what extent are indoor climate conditions affecting the moisture dynamics of insulated 

solid walls? 
- Q9. Do insulated traditional buildings require any particular behavioural response? 

State of the Art 

The literature review has been organized in four different categories based on the main threads of this 
research: traditional buildings, energy retrofit, moisture dynamics and occupants’ behaviour. In the 
following, the “state of the art” in each category is briefly presented. 

Traditionally constructed buildings 

According to the first section of the Charter on the Built Vernacular Heritage (ICOMOS 1999:1), 
traditional architecture may be recognised by “a manner of building shared by the community” or “a 
recognisable local or regional character responsive to the environment”. It is evident that the term 
vernacular includes not only listed or historic buildings, but all traditionally constructed buildings. In 
the Scottish context, traditional buildings can be defined by the following characteristics (Urquhart 
2007, Historic Scotland 2012, Wood, Brocklebank and Pickles 2010, Buda, Taylor and Bennadji 
2013): 

 
1. Use of load bearing masonry walls 
2. Use of pitched roofs covered with slates or any other natural material 
3. Use of permeable materials that both absorbs and releases moisture 
4. Use of timber sash and case windows 

 
Traditional buildings are often considered as “hard-to-treat” (Beaumont 2013) because conventional 
retrofit measures for cavity insulation, loft insulation or air tightness are often not compatible with 



these characteristics. In the UK, those are the characteristics of the majority of buildings built before 
1919 and most of those built until 1945 (Wood, Brocklebank and Pickles 2010:17). 

Energy retrofit technologies 

Walls are the main source of heat loss in traditional buildings as they represent the larger area in 
contact with the external environment. However, traditionally constructed buildings in Scotland were 
usually built using ashlar masonry (Mcmillan 2006) so external insulation would be inappropriate in 
most of the cases and internal insulation feasibility shall depend on the existing finishes and available 
floor space (Currie 2013). In addition to that difficulty of implementation, disruption for occupants, 
upfront cost or loss of floor space are reasons usually mentioned to avoid the adoption of any of these 
measures (Gilbertson et al. 2006, Abdel-Wahab, Moore and MacDonald 2011, Mallaband, Haines and 
Mitchell 2012, Achtnich and Madlener 2014). Insulation materials pumped into the cavity formed 
between the solid wall and the lath and plaster seems to be a compromised solution (fig. 1). It reduces 
the heat loss and air leakage through the envelope while preserving the external appearance and 
internal finishes. Moreover, it minimises the cost of the operation and the disruption caused to the 
occupants. 
 

 

Figure 1. Insulated solid wall section detail (Adapted from Buda, Taylor and Bennadji 2013) 

Several experiments carried out in the past years have assessed the feasibility of the implementation 
of blown insulation in traditional buildings. Different materials have been pumped into the cavity to 
reduce the thermal conductivity of the envelope: PUR Foam (Abdel-Wahab and Bennadji 2012), 
Polystyrene beams (Jack and Dudley 2012, Jenkins 2012a, 2012b, 2012c, Changeworks 2012), 
Cellulose (Curtis 2012, Jenkins 2012c), Aerogel (Curtis 2012), Perlite (Snow 2012) or Mineral wool 
(Changeworks 2013). However, the level of uncertainty regarding the consequences of blocking the 
air circulation within the cavity is still fairly high. It is important to investigate the long term effects of 
these measures since some of the moisture-related pathologies in fabric or occupants become visible 
only after several years of its application (Ridout 2000) 

Moisture dynamics in building envelopes. 

Traditional buildings are affected by moisture in a completely different way than modern 
construction. While impermeable barriers are used to keep humidity out of modern buildings, 
traditional construction makes use of the porosity and permeability of natural materials to buffer and 
slowly evaporate the moisture (Hughes 1987, Urquhart 2007). To control internal moisture, traditional 
construction relies on high rates of air renovation in rooms and unheated cavities (crawl space, loft or 



wall cavity) in order to avoid condensation and mould growth (Halliday 2009). Therefore, any 
alteration of the envelope will produce changes in the hygrothermal performance that need to be 
carefully studied. 
 
Assessment of the hygrothermal performance of buildings is a complex process that requires the 
evaluation of heat (considering conduction, convection and radiation), air (natural and mechanical 
airflows) and moisture (including vapour diffusion, convection and liquid transport) (Ramos et al. 
2010). For a prediction of the hygrothermal performance it is necessary to establish the geometry of 
the enclosure, materials’ characteristics and boundary conditions. Accordingly, the prediction will be 
as accurate as the data used when modelling and, as stated by Straube and Burnett (2001:84), 
“boundary conditions imposed on a mathematical model are often as critical to its accuracy as the 
proper modelling of the moisture physics”. 
 

 
 
 
 
 
 

 
Interstitial condensation is the result of the difference between vapour pressures of internal and 
external spaces; therefore moisture generated by the occupant activity is a crucial parameter as it 
determines the internal vapour pressure. Internal air temperature is also important because warmer air 
implies higher vapour pressure at the same relative humidity (fig. 2). Moreover, high temperature 
gradients create stack pressure differences that contribute to greater migration of moist air through the 
permeable materials (Sanders 2005) 
 
The relevance of the users’ role in the evaluation of condensation risk and numerically based 
simulation has already been acknowledged in previous research (Kavgic et al. 2010, STBA 2012 and 
Tariku, Kumaran and Fazio 2014). Despite its importance, internal boundary conditions are often 
neglected in favour of more detailed description of external conditions and material characterization. 
Previous studies on moisture migration within insulated walls (Morelli and Svendsen 2012, Steskens, 
Janssen and Rode 2009, Mukhopadhyaya et al., Künzel 2000) have considered indoor environment as 
a constant boundary with fixed values for temperature and relative humidity (usually 20 °C and 50% 
RH). However, and as showed in the next section, indoor climate is far from being constant or 
homogeneous.  

Occupants’ behaviour in retrofitted buildings 

A wide range of different indoor climates have been measured (Oreszczyn et al. 2006, Love 2012, 
Andersen 2012) proving the strong correlation between internal boundary conditions and occupants’ 
behaviour. Behavioural aspects are often studied in the context of energy consumption reduction and 
therefore most the investigations are usually focused on the identification of the driving factors for 
space heating demand. According to Wei (2014), those factors can be classified as environmental, 

Figure 2. Figurative representation of temperature and humidity interaction  
(Adapted from Bedoya and Neila 1997) 
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building and system related, occupant related or others. Some of the most relevant drivers are 
summarised in Table 1. 

Table 1. Driving factors for occupants’ heating behaviour (Adapted from Wei, Jones, deWilde 2014) 

CATEGORY DRIVER EFFECT REFERENCES 
    

Environmental Internal Relative 
Humidity 

Changes in the relative humidity lead 
to more frequent setting adjustment 

Fabi 2013 

Building and 
system related 

Building age No effect Vine 1987 
Older homes tend to be colder Hunt 1982, French 2007, Guerra-

Santin 2009 
Room type Living rooms are heated up to higher 

temperature and for longer periods 
Hunt 1982, Summerfield 2007, 
Conner 1990, Oreszczyn 2006, 
French 2007, Isaacs 2010, 
Guerra-Santin 2009, Yohanis 2010 

Heating system No clear correlation Hunt 1982, Andersen 2009, 
Kavgic 2012 

Level of insulation Lower temperature in insulated 
buildings 

Verhallen 1984 

Higher temperatures in  living room 
and bedroom when insulated 

Pimbert 1981, Haas 1998, 
Shipworth 2009 

User related House ownership No relationship  Vine 1987 
Higher demand in rented housing 
than in any other tenure groups 

Rehdanz 2007, Andersen 2009, 
DEFRA 2009 

Household income No relationship Vine 1987, French 2007, Guerra-
Santin 2010, Isaacs 2010 

Less energy spent for  space heating 
in families with lower income 

Newman 1975, Hunt 1982, Day 
2009, Weihl 1990, Vringer 2007 

 
Besides the energy use drivers, it is also necessary to identify and investigate how the occupants’ 
behaviour changes after the improvement of the envelope. Changes in energy consumption have 
already been investigated in several studies (Milne and Boardman 2000, BRE 2005, Martin and 
Watson 2006 and Hong 2001) and it has been shown that energy demand reduction is not directly 
proportional to the improvement of the envelope as several other factors are involved in the final 
energy use. Both Weihl and Gladhart (1983) and Shipworth et al. (2009) identified higher set-point 
temperatures in energy efficient homes while Verhallen and Van Raaij (1984) found lower thermostat 
settings in dwellings with higher levels of insulation. However, this variable should be used with 
caution since set-point temperatures do not necessarily mean equal internal temperatures. 
 
Research on heating periods (number of hours of active heating) is still very limited. Griffiths (1987) 
and Martin and Watson (2006) monitored use of heating before and after the refurbishment, however 
results of these longitudinal studies have not been made available. Only Shipworth et al. (2009) and 
Love (2013) have published some data reporting the changes that occurred after the improvement of 
the envelope but just for small samples and acknowledging many limitations to the results. Regarding 
the number of rooms heated before and after the insulation, only qualitative data has been collected 
(Gilbertson et al. 2006). According to this study, more rooms are used after the refurbishment and in 
consequence more rooms are heated. 
 
Changes in the internal temperature have been documented in several studies (Verhallen and Van 
Raaij 1984, Haas, Auer and Biermayr 1998, Oreszczyn et al. 2006, Martin and Watson 2006, Hong 
2011, Love 2013), however it is difficult to come to any valid conclusion as the variation in 
temperature differs greatly from one example to the other. It is not possible to explain these results 
without considering sociological aspects as previously described (family income, thermal sensation or 
occupant age, gender and culture). It is necessary to highlight that in a study carried out by Critchley 
et al. in 2007 to investigate the explanatory factors for persistent cold temperatures, pre-1930 
properties were the predominant type of homes that remained cold after the improvement. 
 



Measurements of the variation in the internal relative humidity have only been done by Love (2013). 
According to these results, internal humidity will decrease around 10-20% after the insulation. 
Verhallen and Van Raaij (1984) also noticed changes in the ventilation behaviour of users with more 
airing out of rooms in highly insulated buildings but no record of humidity is provided.  
 
All these studies have their focus on existing buildings, but, as acknowledge by the STBA (2012:30), 
at the moment “there is no work on user behaviour focused specifically on traditional buildings, 
neither on whether the behaviour of users of traditional buildings might be any different to that of 
occupants of any other types of building stock, nor, indeed, whether a retrofitted traditional building 
determines or requires particular behavioural responses”.  
 
Lastly it is important to emphasise the role that modelled behavioural profiles play in the study of 
users’ effect on the energy demand. According to Verhallen and Van Raaij (1984:148): “a 
segmentation approach based on behavioural patterns provides better insights in the interaction of 
energy behaviour, attitudes, house characteristics and sociodemographics”. This approach is also 
used by Love (2012), STBA (2014) and Fabi, Andersen and Corgnati (2013) in their respective 
studies.  

Research Design 

This research can be broken down into four steps (Table 2) according to the main stages of data 
collection established to address the research questions. 

Table 2. Research design summary 

RESEARCH STAGE RESEARCH QUESTIONS 
   

1. Literature review  

 Task 1.1 Traditional buildings 
Q1 What are the current technologies for retrofitting solid 

masonry walls?  Task 1.2 Energy retrofit 

 Task 1.3 Moisture dynamics Q2 How are the envelope’s moisture dynamics affected by...? 

 Task 1.4 Occupants behaviour Q3 What factors are influencing the risk of condensation after...? 

2. Decision making analysis   

 Task 2.1 DMs interviews Q4 What are the driving factors for decision makers when...? 

3. Occupants’ behaviour survey   

 
Task 3.1 Occupants interviews 

Q5 How are occupants’ behaviour and needs considered...? 

 Q6 How does occupants’ behaviour change after the...? 

 Task 3.2 Environ. monitoring Q7 What parameters of occupants’ behaviour are affecting...? 

4. Numerical simulation   

 Task 4.1 Scenarios modelling 
Q8 To what extent are indoor climate conditions affecting the 

moisture dynamics of insulated...?  Task 4.2 Simulations 

 Task 4.3 Sensitivity analysis Q9 Do insulated traditional buildings require any particular...? 

Stage 1. Literature review 

Literature has been reviewed to identify the existing options for retrofitting traditional buildings and 
the relationship between moisture dynamics in the envelope and influence of occupants’ behaviour on 



the internal climate. The findings shaped the hypotheses to be tested in the following steps of the 
research. The literature review has been organised using the same four categories defined in the 
previous “state of the art” section. 

Stage 2. Decision making analysis 

In-depth interviews with home owners and stakeholders has been the first method used for collecting 
data in the research. Qualitative methods were used to identify the different variables influencing the 
approach taken by owners and stakeholders when refurbishing an old house (Townsend 2010). 

- Data collection 

The semi-structured interviews followed a predesigned outline to ensure that all the relevant topics 
were addressed but, at the same time, giving some freedom to the interviewees to choose the order 
and depth for each subject to be discussed. Up to now, 11 interviews have been conducted. Each 
interview, including a site visit, lasted between 60 and 100 minutes. Participants have been selected 
among those who own a traditional building and have done, or are planning to do, some refurbishment 
work in order to improve their energy efficiency. 
 
Participants’ recruitment for the interviews was done using different approaches. Private owners were 
first contacted at energy-related events (e.g. All-Energy conference) and then word of mouth from 
participants themselves (also known as snowball sampling, Marshall and Rossman 1999) allowed 
contacting new owners of the same area. In order to contact other types of decision makers, invitation 
letters were sent to a total of 26 organisations, including rural landlords, housing associations, 
property developers and estates department. A reminder letter was sent a few weeks later to those who 
did not reply to the first one. Positive answers were received from all the groups with the exception of 
property developers that refused to participate. 
 
A formal pilot study has not been undertaken. Instead, a complete evaluation of the process and 
results was carried out after the first 3 interviews. This process allowed the identification of 
weaknesses in the structure of the interview, recording methods or data analysis. Data obtained in 
these first interviews can still be used since “contamination is less of a concern in qualitative 
research, where researchers often use some or all of their pilot data as part of the main study” (van 
Teijlingen and Hundley 2001:3). 

- Data analysis and interpretation 

The first step of an interview analysis is the full transcription of the audio recordings to facilitate the 
identification of relevant topics. Transcript labelling facilitates the identification and interpretation of 
the underlying patterns. Topics may be relevant due to the repetition during the interview, because is 
explicitly said by the interviewee or because its connection with a certain theory or other participants’ 
answers. 
 
The interim analysis of the interviews allowed the identification of a purchase process similar to the 
model created by Oates et al. (2008) to investigate consumers’ use of information sources when 
purchasing sustainable technological products. Use of a similar template (fig. 3) for the analysis will 
facilitate the identification of “strong and weak filters” arisen during the decision making process.  
 
Due to small sample size, demographic information will not be statistically relevant. Questionnaires 
results will be only used to re-evaluate the findings of the qualitative analysis of the interviews trying 
to find the relation, if exists, between the demographic characteristics and the responses. 
 



 
 

Stage 3. Occupants’ behaviour survey 

To minimise the uncertainty associated with the indoor climate, this research aims to use real data 
collected from traditional buildings in order to model accurate retrofit scenarios. 

- Data collection 

Each case study will provide two different types of data, quantitative data from the environmental 
monitoring and qualitative information of occupants’ considerations derived from in-depth interviews. 
As decision maker’ interviews, questions to the occupants will follow a predefined semi-structured 
outline to ensure the acquisition of all the relevant data while allowing autonomy to the users to speak 
freely about their experience inhabiting the building. 
 
The environmental monitoring consists of the acquisition of temperature and humidity data from the 
living room and main bedroom of solid wall residential buildings over a period of twelve months. 
Data is recorded using Lascar EL-USB-2 (fig. 4) stand alone data-loggers. The sensors are placed 
away from direct heating sources and occupants’ reach in order to reduce both disruption and 
variability in the measurements. Longitudinal monitoring of internal spaces (Summerfield et al. 2007) 
requires owners’ consent and the engagement of the occupants during long periods of time and 
accordingly sample selection is laborious. For a consistent sample and an easier comprehension of the 
results, participants should belong to similar demographic groups and occupy comparable type of 
buildings.  
 
The sample selected is formed by two homogeneous groups. The first one comprises nine un-insulated 
flats located in a granite tenement in Aberdeen. The building belongs to a Housing Association, 
previously interviewed, which ensures a demographically homogeneous sample and allows the 
comparison of the results obtained from interviews with both decision makers and users. The second 
set of households included in the sample belongs to rural estates. This second sample is formed by 
recently insulated properties rented under the scheme of “affordable housing” providing a comparable 
set of data for a cross-sectional study (Hong, Oreszczyn and Ridely 2006). 
 

 

Context 

Purchase process 

Purchase outcome 

Strong 
Filters 

Weak 
Filters 

Figure 3. Purchase process analysis template (Adapted from Oates et al. 2008) 



 

Figure 4. Lascar EL-USB-2 data logger 

- Data analysis and interpretation 

Again, full transcription of the audio recordings will be the first step for data analysis in order to 
identify relevant and recurrent topics. Occupants’ interviews will be analysed from two different 
perspectives, first results will be studied together with the monitoring data to find the relationship 
between the recorded measures and the users’ opinions. Secondly the results will be compared to the 
selection criteria identified in the interviews with the decision makers to address research question 
number 5 “How are occupants’ behaviour and needs considered when adopting energy efficient 
technologies in traditional buildings?” 
 
The environmental data gathered from un-insulated buildings, together with the findings from 
literature, will be analysed and synthesised to create different user profiles. Number and 
characteristics of these profiles will be determined after data analysis but it is likely that they will be 
similar to those created by Verhallen and Van Raaij (1984) (conservers, cool, average, warm and 
spenders) or Fabi, Andersen and Corgnati (2013) (passive, medium, active). Post-retrofit scenarios 
will be defined by the improvement of the envelope and the changes in the internal climate due to the 
users’ behaviour (fig. 5). Like in the un-insulated scenarios, different profiles of users’ conduct will 
be proposed. The magnitude of these changes will be determined after the analysis of the insulated 
properties monitoring and review of previous cross-sectional studies. 
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Figure 5. Illustrating the pre and post-retrofit scenarios 



Stage 4. Numerical simulation 

To develop a numerical simulation of the moisture dynamics in the envelope this research project will 
make use of Heat, Air and Moisture (HAM) software. The simulation will examine the impact that a 
range of different behavioural patterns (heating, ventilation, etc.) have on moisture migration in 
granite solid walls with different types of insulation “pumped” into the cavity between inner face of 
the granite and the lath and plaster lining (fig. 1). 

- Data collection 

Previous research has shown that it can take up to 20 years to reach moisture balance in insulated 
walls, although in most cases the balance is evident after 5 to 10 years of insulation (Browne 
2012:68). Hence, the use of numerical simulations is especially appropriate in this case because it 
helps to simultaneously explore the changes in the wall’s performance under different boundary 
conditions for long periods of time. 
 
After the evaluation of the different HAM software available for commercial and research purposes 
(Straube and Burnett 2001, Janssens et al. 2008, Hens 2009, Ramos et al. 2010 and Delgado et al. 
2013), DELPHIN has been chosen to be used in this stage of the research. DELPHIN is a simulation 
program developed by The Institute for Building Climatology at Dresden University of Technology. 
This software has been repeatedly used in previous studies (Häupl, Fechner and Petzold 2004, 
Scheffler 2008, Morelli and Svendsen 2012) and has been validated conforming to EN 15026:2007. 
 
Modelling of the envelope and the boundary conditions will require several steps and different data 
inputs. After the definition of the enclosure geometry, it is necessary to define the materials forming 
the envelope. These data can be obtained from both built-in libraries and previous studies that have 
already characterized its thermophysical properties (Hens 1991, Kumaran 1996). The next step is the 
definition of the boundary conditions for external and internal spaces. Exterior conditions will not be 
affected by the changes in the envelope, so the same conditions can be used for modelling the 
scenarios before and after the insulation. The external parameters will be obtained from a weather 
station located on the roof of the first monitored building recording the climatic conditions for a 
whole year. 
Lastly, the internal climate for both un-insulated and insulated walls will be defined by the user 
profiles elaborated with the results of the previous stage. The profiles will include hourly data of 
temperature and relative humidity for a twelve months period and will take into account every user 
related factor identified through the research (heating use, ventilation, cooking, laundry drying, etc.). 
The following variables will be evaluated: 

 
- Pre-retrofit user behaviour (e.g. passive, medium, active) 
- Post-retrofit behavioural change (e.g. favourable, stable, adverse) 
- Insulation material (e.g. PUR foam, polystherene beam, cellulose) 
 
All these simulations will be performed in a typical wall section detail (fig. 1), but the most critical 
scenarios will also be studied in more vulnerable areas such as wall to floor junction, wall to wall 
junction or gable walls. 

- Data analysis and interpretation 

Finally, a sensitivity analysis will enable the identification of the most influential user related factors. 
As stated by Hamby (1994:135) “a sensitivity analysis of these [the most influential] parameters is not 
only critical to model validation but also serves to guide future research efforts”. Two types of 
sensitivity are usually evaluated: individual ones, those exploring the influence of each single input, 
and total sensitivities, for the estimation of the effect of the uncertainties in all the input data (Lomas 



and Eppel 1992). According to Lomas, investigating the influence of both individual and total 
sensitivities has numerous practical benefits: 

 
i. To identify the inputs to which the output are particularly sensitive and those to which they 

are insensitive. 
ii. To identify inputs to which the program is sensitive, but for which adequate data is not yet 

available. 
iii. To establish the resolution of the program (i.e., the maximum accuracy) that can be expected 

in absolute predictions. 
iv. To identify the probability for the distribution of the results. 
v. To establish the significance of uncertainties due to technical limitations or modelling 

assumptions. 

Table 3. Appraisal of sensitivity analysis techniques. (Adapted from Lomas and Eppel 1992:40) 

Technique Advantages Disadvantages 
   

DSA No code modifications necessary, easy to 
implement, any parameter, simple post-processing, 
individual and total uncertainties 

Necessary to assume linearity 
and superposability to calculate 
total uncertainties 

MCA No code modifications necessary, easy to 
implement, any parameter, simple post-processing, 
no assumptions necessary about linearity and 
superposability 

Only total uncertainties can be 
obtained, not individual 
uncertainties 

 
There are several techniques for the application of the sensitivity analysis (Hamby 1995). Two 
different techniques have been successfully tested in a previous investigation regarding thermal 
simulation programs, a field comparable to this research project (table 3): differential sensitivity 
analysis (DSA) and Monte Carlo analysis (MCA). Since the evaluation of individual uncertainty is a 
crucial aspect in this study, DSA seems to be the most appropriate method to conduct the analysis. 
This technique requires the alteration of one parameter in each simulation while the rest remain stable 
at the most common value. An iterative process of parameter input alteration will allow the 
determination of all the individual effects. Since the internal climate in HAM software is characterised 
by air temperature and relative humidity or vapour pressure, the analysis should include any 
parameter affecting these two variables (fig. 6). At present, neither the parameters to be analysed nor 
the value of the perturbations can be defined and will be determined after the interpretation of interim 
results. 

 

0h                            6h                             12h                         18h                            24h     TIME 

RELATIVE HUMIDTY (%) 

TEMPERATURE (°C) 

Base Case 
Perturbation – Drying clothes 

Base Case 

Perturbation –Set-point 

Perturbation – Heating period 

Perturbation – Ventilation 

Figure 6. Illustrating the effect of different input perturbation on the internal climate 



Due to the repetitive nature of the DSA implementation, in Lomas and Eppel study (1992) the process 
was automated using a Fortran program. In this case an analogous procedure will be used (fig. 7), but 
all the processes for selection and perturbation of the parameters and calculation of individual 
uncertainties will be completed manually. 
 

 
 
 
 
The results obtained with the sensitivity analysis will be compared to the driving factors of decision 
makers to confirm if their purchase filters are taking the critical aspects of occupants’ behaviour into 
account (fig. 8). Decision makers could then be advised about the measures that can be safely applied 
and the behavioural aspects that need to be monitored after their implementation. 
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Figure 7. Implementation of the differential sensitivity analysis procedure 
(Adapted from Lomas and Eppel 1992) 

Figure 8. Research methodology overview 



Contribution to Knowledge 

The contribution of this research to the scientific knowledge can be summarised as follows: 
 

1. Gaining a better understanding of owners and stakeholders perspectives regarding the energy 
retrofit of traditional buildings. 

2. Deepening the knowledge on occupants’ behaviour in traditional buildings. 
3. A description of different behavioural patterns and its influence on the indoor climate in 

residential traditional buildings. 
4. Identification of critical aspects of users’ behaviour that need to be assessed after the 

insulation of solid walls to ensure their correct performance. 
5. Development of a new approach to evaluate the effect of changes in occupants’ behavior on 

the indoor climate. 
6. Development of a methodology to evaluate the sensitivity of solid walls to different user 

related patterns. 
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