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Abstract: Distributed Constraint Satisfaction Problems (DisCSPs) solving techniques solve problems which are dis-
tributed over a number of agents.The distribution of the problem is required due to privacy, security or cost
issues and, therefore centralised problem solving is inappropriate. Distributed local search is a framework that
solves large combinatorial and optimization problems. For large problems it is often faster than distributed
systematic search methods. However, local search techniques are unable to detect unsolvability and have the
propensity of getting stuck at local optima. Several strategies such as weights on constraints, penalties on
values and probability have been used to escape local optima. In this paper, we present an approach for escap-
ing local optima called Dynamic Agent Prioritisation and Penalties (DynAPP) which combines penalties on
variable values and dynamic variable prioritisation for the resolution of distributed constraint satisfaction prob-
lems. Empirical evaluation with instances of random, meeting scheduling and graph colouring problems have
shown that this approach solved more problems in less time at the phase transition when compared with some
state of the art algorithms. Further evaluation of the DynAPP approach on iteration-bounded optimisation
problems showed that DynAPP is competitive.

1 INTRODUCTION

Constraint Satisfaction Problems (CSPs) are prob-
lems which can be expressed by a set of variables, the
set of possible values each variable can be assigned
and a set of constraints that restrict the values vari-
ables can be assigned simultaneously (Dechter, 2003).
Distributed Constraint Satisfaction Problems (DisC-
SPs)(Yokoo et al., 1998) are CSPs where the problem
is dispersed over a number of agents which have to
cooperate to solve the problem while having limited
knowledge about the overall problem. It is often as-
sumed that each agent is responsible for the assign-
ment of one variable only and this will be also as-
sumed in this paper. A solution to a DisCSP is found
when an assignment of values to all the variables is
found which satisfies all existing constraints (Rossi
et al., 2006).

Systematic (backtracking) and local (iterative)
search are two types of approaches for solving DisC-
SPs. Systematic algorithms are complete but slow for
large problems when compared to local search, which
is incomplete. Local search algorithms start with an
initial random instantiation of values to all the vari-
ables and, in successive iterations, these values are
changed to repeatedly reduce the number of constraint

violations until a solution is found. Local search has
the propensity of getting stuck at local optima - a
point where the currently proposed assignment (that is
not a solution) cannot be further improved by chang-
ing the value of any single variable. A Quasi Lo-
cal Optima is a weaker form of local optima in lo-
cal search where an “unsatisfied” agent (with at least
one constraint violation) and all its neighbours have
no single improvement on their current assignment
(Zhang et al., 2002).

In this paper, we present Dynamic Agent Priori-
tisation and Penalties (DynAPP) a new approach for
escaping local optima which combines dynamic vari-
able prioritisation with penalties on variable values
for escaping local optima hence, avoiding search stag-
nation. An empirical evaluation with instances of ran-
dom, meeting scheduling and graph colouring prob-
lems showed that, at the phase transition, DynAPP
solved more problems in less time compared with
state of the art algorithms. Evaluation of DynAPP on
iteration-bounded optimisation problems showed that
DynAPP is competitive.

The remainder of this document is structured as
follows: section 2 describes related work; DynAPP
is explained in section 3; an empirical evaluation of
DynAPP is presented in section 4; finally, conclusions



are drawn section 5.

2 RELATED WORK

A number of strategies have been implemented to
escape and avoid local optima in distributed search
which has resulted in several algorithms. The Dis-
tributed Breakout Algorithm (DBA)(Yokoo and Hi-
rayama, 1996) is a hill climbing algorithm that in-
creases the weight of violated constraints in order to
raise the importance of constraints that are violated
at local optima, thus forcing the search to focus on
their resolution. The original algorithm has been stud-
ied extensively and a number of improved versions
proposed. Multi-DB (Hirayama and Yokoo, 2002) is
an extension of DBA for Complex Local Problems -
i.e. DisCSPs with more than one variable per agent.
Multi-DB was then improved in (Eisenberg, 2003) by
increasing constraint weights only at global optima
with the new algorithm being called DisBO. (Basharu
et al., 2007b) proposed DisBO-wd an improvement
on DisBO where constraint weights are decayed over
time. Thus, at each step, the constraint weight is in-
creased if the constraint is violated and it is decayed if
the constraint is satisfied. SingleDBWD (Lee, 2010)
is a version of DisBO-wd for DisCSP with one vari-
able per agent.

Another DisCSP algorithm is Distributed Stochas-
tic algorithm (DSA)(Zhang et al., 2002), a random-
ized local search algorithm that uses probability, to
decide whether to maintain its current assignment or
to change its value at local optima. A hybrid of DSA
and DBA was proposed in Distributed Probabilistic
Protocol (DPP) (Smith and Mailler, 2010) where the
weights of constraints violated at local optima are in-
creased and agents find better assignments by the use
of probability distributions.

The Stochastic Distributed Penalty Driven
Search(StochDisPeL) (Basharu et al., 2006) is an
iterative search algorithm for solving DisCSPs where
agents escape local optima by modifying the cost
landscape by imposing penalties on domain values.
Whenever an agent detects a deadlock (quasi-local
optima), StochDisPeL either imposes a temporary
penalty (with probability p) to perturb the solution or
increases the incremental penalty (with probability
1 − p) to learn about the bad value combination.
Incremental penalties are small and remain imposed
until they are reset while temporary penalties are
discarded immediately after they are used. The
penalties on values approach has been shown to
outperform the weights on constraints approach of
escaping local optima (Basharu et al., 2007a).

Asynchronous Weak Commitment Search
(AWCS) (Yokoo, 1995) is a complete asynchronous
backtracking algorithm that dynamically prioritises
agents. An agent searches for values in its domain
that satisfy all constraints with higher priority neigh-
bours, and from these values it selects the value that
minimises constraint violations with lower priority
neighbours. When an agent does not find a consistent
assignment, the agent sends messages called no-good
to notify its neighbours and then increases its priority
by 1. The use of priority changes the importance of
satisfaction of an Agent.

3 DynAPP: DYNAMIC AGENT
PRIORITISATION AND
PENALTIES

We propose Dynamic Agent Prioritisation and Penal-
ties (DynAPP) [Algorithms 1-4] - a new algorithm
that combines two strategies: penalties on values and
agent prioritisation. At local optima, the priority of
inconsistent agents (whose current variable assign-
ment leads to constraint violations) is increased and,
at the same time, a diversification of the search is
encouraged by penalising values which lead to con-
straint violations.

In DynAPP, variables are initialised with random
values and all agent priority values are set to their
agent ID. It should be noted that the lower the agent
ID, the higher the actual priority of the agent. An
agent then sends its initial variable assignment to its
neighbours. Each agent takes turns to update their
AgentView (their knowledge of the current variable
assignments) with the messages received and selects
a value for its variable that minimises the following
cost function:

c(di) = viol(di)+ p(di) i ∈ [1..|domain|]

where di is the ith value in the domain, viol(di) is
the number of constraints violated if di is selected
and p(di) is the incremental penalty imposed on di.
When a temporary penalty is imposed, the penalty is
used to select another improving value and immedi-
ately reset. A QLO is detected when an AgentsView
does not change in two consecutive iterations. At
QLO, an agent (like StochDisPeL1) imposes a tem-
porary penalty (with probability p) or it increases the
incremental penalty (with probability 1− p) and also
changes its priority value to the priority of the highest

1Further details on how penalties are imposed can be
found in (Basharu et al., 2006).



priority neighbour with whom it shares a constraint
violation thus elevating itself among its neighbours.
The neighbour with the highest priority then reduces
its priority by 1. This dynamically reorders the struc-
ture of its higher and lower level priority neighbour-
hood.

Algorithm 1: Dynamic Agent Prioritisation and
Penalties (DynAPP): Agent

1 random initialisation
2 penaltyRequest← null
3 priority← agentID
4 repeat
5 while an agent is active do
6 accept messages and update AgentView and

penaltyRequest
7 if cost function is distorted then reset all

incremental penalties end if
8 if penaltyRequest ! = null then
9 processRequest()

10 else
11 if current value is consistent then
12 reset all incremental penalties
13 else
14 chooseValue()
15 end if
16 end if
17 sendMessage(penaltyRequest, priority)
18 end while
19 until termination condition

Algorithm 2: procedure processRequest()
1 for all the messages received
2 if penaltyRequest← IncreaseIncPenalty then
3 increase incremental penalty on current value
4 else
5 penaltyRequest← ImposeTemporaryPenalty
6 impose temporary penalty on current value
7 end if
8 end for
9 select value minimising cost function

10 reset all Temporary penalties

When an incremental penalty is imposed (Al-
gorithm 3 line 10), an agent informs neighbours
with lower priority to also increase their incremen-
tal penalty on current values; similarly, when a tem-
porary penalty is imposed (Algorithm 3 line 7), an
agent requests further temporary penalty impositions
on current values to lower priority neighbours with
whom it shares a constraint violation. When there
is no penaltyRequest, all neighbours are informed of

Algorithm 3: procedure chooseValue()
1 if agentView(t) ! = agentView(t-1) then
2 select value minimising cost function
3 return
4 end if
5 r= random value in [0...1]
6 if r < p then
7 impose temporary penalty on current value
8 penaltyRequest← ImposeTemporaryPenalty
9 else

10 increase incremental penalty on current
value

11 penaltyRequest← IncreaseIncPenalty
12 end if
13 for all neighbours violating constraint with

currentVar
14 if priority[neighbour] > priority[currentVar]
15 priority[currentVar] = priority[neighbour]
16 end if
17 end for
18 priority[neighbour] = priority[neighbour]-1
19 select value minimising cost function

Algorithm 4: procedure sendMes-
sage(penaltyRequest, priority)

1 send message(id, value, priority, null) to all
neighbours with > priority

2 if penaltyRequest = IncreaseIncPenalty then
3 send message(id, value, priority,

penaltyRequest) to all neighbours
4 with < priority
5 else if penaltyRequest =

ImposeTemporaryPenalty then
6 send message(id, value, priority,

ImposeTemporaryPenalty) to
7 neighbours with < priority & violating

constraints with Self
8 send message(id, value, priorityValue, null) to

neighbours with <
9 priority not violating constraints with Self

10 else
11 send message(id, value, priority, null) to

neighbours with< priority
12 end if

the current value and priority (Algorithm 4 line1,11) .
Messages are processed by agents as described in Al-
gorithm 2, increasing or imposing an incremental or
temporary penalty respectively. An agent then selects
the value minimising the cost function and continues
this process until consistent values are found or the



Figure 1: A simple DisCSP

maximum number of iterations is reached.
For example, Figure 1 represents the simplistic

problem of allocating timeslots for 5 student vivas.
Representing this as a DisCSP, A, B, C, D, E are the
variables (students) and their domains (timeslots) Di
Di are DA= {1,2}, DB={1,2}, DC={1,3}, DD={1,3},
E={2,3}. There are 5 constraints in the problem and
Vi (i ∈ [A..E]) represents contraint violations and Pi
(i ∈ [A..E]) represents penalties imposed on each do-
main values. Initially, the priorities for {A,B,C,D,E}
are 4,2,3,1,5 respectively, a lower number implies
higher priority. Each agents keeps account of its
higher priority neighbour (HPN) and lower priority
neighbour (LPN). A has no LPN and {B} as HPN,
C has {B,D} as HPN and {E} as LPN and so on.
If for A=1, B=1, C=1, D=3, E=3, C detects a local
optimum, C changes its priority to 2 (i.e. that of B
which is the highest HPN it has a constraint violation
with. B reduces its priority to 3. C now has HPN
{D} and LPN {B,E}. C then imposes a penalty (as-
suming an incremental penalty which is 1) on value 1
and informs its new LPN {B,E} to also impose an in-
cremental penatly on their current assignment 1, 3 re-
spectively. Each agent then selects values with lower
violation C=3, D=1, E=2, A=2, B=2 which solves the
problem.

4 EMPIRICAL EVALUATION

Several problem instances of random problems, graph
colouring problems and meeting scheduling problems
of were used to compare DynAPP with StochDis-
pel and SingleDBWD. The percentage of problems
solved and the number of messages were recorded.
The ratio of number of iterations vs constraint vio-
lations were evaluated to further verify the algorithm
that solves the most problems early and was allowed
to run for a maximum 100n iterations, where n is
the number of variables,nodes or meetings. Statistical
significance was calculated using the wilcoxon test.

Random Problems: We evaluated DynAPP with

a variety of random problems with binary constraints
and present results (see Figure 2) with the follow-
ing problem-sizes and densities {80-0.1, 90-0.09,100-
0.08, 110-0.07, 120-0.06, 130-0.062, 140-0.057, 150-
0.054, 160-0.051, 170-0.047, 180-0.045, 190-0.042,
200-0.04} with a tightness of 0.4 (phase transition)
and domain size of 10. Median values for 100 prob-
lems are presented which show that DynAPP solved
the most problems and had the least number of mes-
sages. From 140 variables, SingleDBWD solved less
than 40% of the problems. Note: When an algorithm
did not solve a problem, the messages “wasted” in that
problem were not counted towards the median num-
ber of messages.

Table 1: Iterations vs. Violations: Random Problems.

StochDisPel DynAPP SingleDBWD
N. M % M % M %
Itrs viols sol viols sol viols sol
10 16 0 15 0 41 0
50 8 0 8 1 15 0
100 6 0 5 4 10 0
500 2 22 3 29 4 0
1000 1 38 2 49 4 2
1500 1 57 1 69 3 15
2000 1 63 1 84 2 29

When evaluating the algorithm by number of iter-
ations vs constraint violations (see Table 1), DynAPP
solved some problems as early as at the 50th cycle
while StochDisPeL and SingleDBWD had not solved
any problem. At the 2000th iteration, with a median
constraint violation of 1 for both StochDisPeL and
DynAPP, DynAPP solved 84% of the problems as op-
posed to 63% by StochDisPeL. SingleDBWD solved
only 29% of the problems. The differences in perfor-
mance between DynAPP and the other algorithms is
statistically significant.

Graph colouring: 3-Colour distributed graph
colouring problems were solved with n nodes, n ∈
{100, 110, 120, 130, 140, 150, 160, 170, 180, 190,
200} with degree between 4.3 ≤ degree ≤ 5.3. The
results, shown in Figure 3, are for the different graph
sizes at degree 4.9. DynAPP solved the most prob-
lems and had the least number of messages. DynAPP
solved 3 problems as early as at the 50th cycle while
StochDisPel solved 1 and SingleDBWD did not solve
any problem as seen in Table 2. At the 2000th itera-
tion, DynAPP solved 93% of the problems as opposed
to 68% by StochDisPel. SingleDBWD solved only
49% of the problems. These performance differences
are statistically significant.

Meeting scheduling: We also conducted experi-
ments with meeting scheduling problems. A distance
chart between locations is randomly generated so that



Figure 2: Random Problems

Table 2: Iterations vs. Violations:Graph Colouring Prob-
lems.

StochDisPel DynAPP SingleDBWD
N. M % M % M %
Itrs viols sol viols sol viols sol
10 30 0 28 0 84 0
50 14 1 12 3 33 0
100 10 2 8 10 21 0
500 4 32 4 57 8 13
1000 4 50 2 70 6 32
1500 3 57 1 69 3 42
2000 2 68 1 93 6 49

the distance between two locations is assigned a value
between 0 and the maximum possible distance indi-
cating the travelling time required. We present results
for 60 ≤ meetings ≤ 140, with a maximum possible
distance (md) of 3 and constraint density (d) between
0.1 and 0.25. The results, presented in Figure 4, are
median messages and percentage of problems solved
over 100 runs, and show DynAPP’s performance was
better than that of the other two algorithms. These
performance differences are statistically significant.

When comparing the number of iterations versus
constraint violations, Table 3 shows that at the first 10
iterations, 12% of the problems were already solved
by DynAPP while StochDisPeL solved 6% and Sin-
gleDBWD didnot solve any problem. At 500 itera-
tions, DynAPP had solved all the problems, StochDis-
PeL was able to solve all after 1400 iterations and Sin-

Figure 3: Graph Colouring Problems

Table 3: Iterations Vs Violations:Meeting Scheduling Prob-
lems

StochDisPeL DynAPP SingleDBWD
N. M % M % M %
Itrs viols sol viols sol viols sol
10 3 6 3 12 45 0
50 2 55 1 72 3 12
100 1 84 1 86 1 40
500 1 91 0 100 1 75
1000 1 98 * * 1 82
1400 0 100 * * 1 87

gleDBWD solved only 87% of the problems. These
performance differences are statistically significant.

5 SUMMARY AND
CONCLUSIONS

In this paper, we have presented Dynamic Agent Pri-
oritisation and Penalties (DynAPP), a distributed lo-
cal search algorithm for solving DisCSP that com-
bines two existing heuristics (penalties on values and
agent priority) for escaping local optima. DynAPP
significantly improves the performance of distributed
local search. Penalties on values is a fine-grained
heuristic that detects a set of nogood values often
found at local optima while prioritisation changes the
importance of agents.



Figure 4: Meeting Scheduling Problems.

Empirical results show that DynAPP used less
messages and solved more problems on a wide range
of random, graph colouring and meeting scheduling
problems. We also evaluated DynAPP, SingleDBWD
and StochDisPeL to determine the algorithm that op-
timizes the number of constraints violated given re-
stricted resources (maximum number of iterations).
DynAPP was found to perform best by solving the
most number of problems at given iteration inter-
vals. We intend to extend our cooperative approach
for solving DisCSP with complex local problems, i.e.
where agents are responsible for more than one vari-
able.
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