

OpenAIR@RGU

The Open Access Institutional Repository
at Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

AGILEINDIA ’12: Proceedings of the 2012 Agile India (ISBN
9781467307994, eISBN 9780769546575)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

BASS, J., 2012. Influences on Agile practice tailoring in enterprise
software development. Available from OpenAIR@RGU. [online].
Available from: http://openair.rgu.ac.uk

Citation for the publisher’s version:

BASS, J., 2012. Influences on Agile practice tailoring in enterprise
software development. In: AGILEINDIA ’12: Proceedings of the
2012 Agile India. 17-19 February 2012. Los Alamitos: IEEE
Computer Society. pp. 1-9.

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access Institutional Repository at Robert Gordon University

https://core.ac.uk/display/222839786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk

IEEE COPYRIGHT STATEMENT

© 2012 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Influences on Agile Practice Tailoring in Enterprise Software Development

Julian M. Bass
School of Computing

Robert Gordon University
Aberdeen, UK

j.bass@computer.org

Abstract—Agile development projects have become a reality
in large enterprises using offshore development models. A
case study involving seven international companies with
offices in Bangalore, India, and London, UK was
conducted, including interviews with 19 practitioners. The
contribution of this paper is to illustrate the reasons for
tailoring Agile practices within the context of large
enterprises. The findings show that scrum roles and
practices did not conflict with enterprise policies or
processes and were thought to improve product quality and
productivity. However, agile practices from the XP tradition
were not so widely adopted. Test driven development did
not integrate well within enterprises where independent
quality assurance teams were constituted as separate
departments. Continuous integration was found to be
challenging where enterprise software products required
time consuming regression testing and elaborate code
release processes. While adoption of coding standards and
collective code ownership are necessary to facilitate
interaction between disparate stakeholder groups.

Keywords-enterprise software; distributed agile development;
scrum; extreme programming (XP); tailoring

I. INTRODUCTION

Globalization in software development is driven by
technological innovation, the evolution of work and business
processes, as well as the prevailing education system and
national policies [1]. This trend is irreversible and led by
software intensive high-technology businesses [2]. In
consequence, global software development has become the
norm in large organizations. Simultaneously, enterprises
need software applications that can: firstly, reconcile the
(sometimes conflicting) needs of stakeholders, by secondly,
implementing business policies and processes, that thirdly,
bring value by fostering organizational goal attainment [3].
This must be achieved by enterprise software vendor
companies that face a period of modest rates of growth and
declining prices [4].

Agile practices can improve both software quality and
team productivity. Tailoring of agile practices has been
identified as necessary for their adoption in large
organizations [5], or where traditional software development
processes have previously been used [6]. The tailoring is

required to interface to existing structures, processes and
policies of the enterprise. This tailoring can include selection
(or deselection) of specific agile practices or adaptation to
integrate with aspects of the enterprise context over which
individual project teams have little influence. Further,
adaptation for geographically distributed implementation is
required.

In this paper, a constellation of extreme programming
(XP) and scrum practices using case studies are explored;
including 19 practitioner interviews from 7 international
companies. The investigation corroborates another study
suggesting a surprising recent gain in momentum for Scrum
practices [7]. However, the unexpected lack of support for
XP practices in these companies was also notable. The
following pages will describe reasons for this tailoring of
practices in distributed agile development. But first, a more
detailed discussion of previous research in this field is
presented, starting with a brief overview of agile practices
and more specifically those from Scrum and XP, followed by
a discussion of distributed agile development.

A. Agile Software Development Processes
Agile software development practices improve

responsiveness to customer needs, resulting in better
software quality and improve team morale, resulting in
enhanced productivity [8]. Practitioners report that the three
most important perceived agile principles are: (1)
achievement of customer satisfaction through early and
continuous delivery of valuable software, (2) business
representatives and developers working together frequently
throughout the project, and (3) that face-to-face
conversations are the most efficient way to convey
information to, and within, the development team [9]. There
is empirical evidence to support claims that agile methods
improve job satisfaction, productivity and customer
satisfaction but that the adoption by large and complex
projects is difficult [10].

B. Scrum Roles and Practices
The focus of Scrum is on management techniques rather

than on software development practices [11]. Scrum uses
short iterations, lasting two to four weeks, called sprints.
Software requirements are captured in the form of user
stories. Scrum envisages a product owner who prioritizes
user stories into a product backlog on behalf of the customer.

A sprint planning meeting is used to identify target
functionality and estimate the time required for
implementation within each sprint. Project team members
communicate every day using a stand up meeting. The stand
up meeting is intentionally short, 15 minutes, and each
participant is required to address three questions: (1) what
did you do yesterday? (2) what will you do today and (3)
what blockers have you encountered or created for others?
Blockers are issues that prevent progress.

Further, the scrum approach emphasizes software
development in small increments using self-organizing,
multidisciplinary “feature” teams [12] [13]. Feature teams
concentrate on the holistic development of end-to-end
functionality, or features, when seen from a user perspective.
This stands in contrast, to approaches where functionality is
hierarchically decomposed into architectural components,
which are then developed by specialist teams (such as
separate development teams for user interface and database
software).

C. XP Practices
Extreme programming (XP) emphasizes skilful

development practices and is founded upon the four values
of: communication, simplicity, feedback and courage [14].
Building upon these values, twelve development practices
are identified in XP: the planning game, small releases,
metaphor, simple design, test driven development, re-
factoring, pair programming, collective code ownership,
continuous integration, 40-hour week, on-site customer and
coding standards [15]. Notice that practices such as simple
design, test driven development, re-factoring and continuous
integration are focused very much on the software product
itself. These practices illustrate how XP places more
emphasis on software production techniques than Scrum.

D. Distributed Agile Development
The key issues in global software engineering is

coordination over geographical distance [16]. Time
separation, including: (1) time zones, (2) work day hours, (3)
weekend working patterns and (4) public holiday differences
are disruptive to global software engineering projects [17].
Minimization of this disruption is achieved through careful
selection of synchronous and asynchronous communication
methods. Collaborative software tools have been shown to
increase access to awareness information for team members
[18]. Yet, we still lack detailed understanding of the trade-
offs between communication methods, software tools and
software development practices [16].

Pilot projects exploring XP adoption in large
organizations use tailoring of agile practices to fit particular
organizational contexts [5]. Sometimes this tailoring can
appear to outsiders as a traditional development process with
a few agile practices used in specific circumstances. XP
practices do not address problems encountered by multiple
or distributed project teams [5]. Yet, there have been reports
of success in the use of scrum in distributed agile projects
[19]. Systematic review of the global software engineering
research literature highlights continuous integration, standup
meetings, pair programming, retrospectives, scrum of scrums

and test driven development as the most popular agile
practices reported [20]. However, it should be noted, that not
all of this literature refers to large scale or complex
enterprise projects.

More specifically, scrum teams use a wide range of team
collaboration tools including: visits and periods of
collocation working, unofficial meetings, training activities,
distributed documentation support tools to help overcome
sociocultural distance [21]. Scrum teams are supported with
a wide range of tools to support multiple modes of
communication including: phone, web camera,
teleconference, video conference, web conference, net
meeting, email, shared mailing lists, Instant Messaging (IM)
and Short Message Service (SMS).

Having surveyed research in agile practices and
distributed agile development relating to enterprise software
development, the research methods used in this study can is
now described. Information gathering techniques and
participant selection is described in the following paragraphs.
In Section III, the findings are presented highlighting the
agile practices adopted and looking at the reasons for
tailoring in an enterprise software context. The findings are
discussed in relation to knowledge of the field from other
research sources in Section IV. Limitations of the study are
considered in Section V. Finally, in Section VI, conclusions
and suggestions for further work are presented.

II. RESEARCH METHODS

This research comprises a case study investigation into
the adoption of distributed agile development practices in
global enterprise software development projects [22]. The
case studies involved investigation of publicly available as
well as commercially confidential policy and project
documents from the 7 international companies.

A combination of opportunistic and purposeful sampling
was used to identify target projects. Opportunistic sampling
was necessary since it is not feasible to “cold call” major
global companies seeking to conduct case studies into their
software development practices. A network of contacts from
former work colleagues in the commercial sector and
students of the Executive MBA program at the Indian
Institute of Management-Bangalore were used to make
contact with participating companies.

Face-to-face interviews were conducted with 19
practitioners, based in Bangalore, India and London, UK in
January 2010 (11 interviews in Bangalore), February 2010 (3
interviews, in London) and April 2011 (5 interviews in
Bangalore). The interviewees ranged from senior program
managers, responsible for several large project teams
through to experienced software developers. Interviewees
included scrum masters, product owners as well as people
describing themselves as architects and project managers, as
shown in Table 1. A good level of data triangulation was
achieved with a broad range of project stakeholders from
Company E and their offshore software service provider
Company D.

TABLE I. INTERVIEWEE OVERVIEW

Sector Interviewee Job Titles

Company A IT Service Provider
Program Manager
Senior Project Manager
Team Member

Company B Internet

Delivery Manager
Product Manager
(interviewed twice,
Jan 2010 and April
2011)

Company C Software Service
Provider Development Manager

Company D
(Offshore
Provider to
Company E)

Software Service
Provider

Project Manager
Product Owner
Scrum Master (3)
QA Lead
Team Member

Company E Enterprise CRM
Program Manager
Project Manager
Director of Engineering

Company F Industrial Products Scrum Master

Company G IT Service Provider Engagement Manager

An open-ended interview guide approach was used [23].
There was some evolution of the interview guide during the
three fieldwork study periods. A typical interview guide is
summarized in Appendix 1. Interviews were recorded,
transcribed and coded for analysis using an iterative process.
Emergent themes were identified and incorporated into the
coding scheme. Examples from the coding scheme include:
project <identifier>, scrum role <scrum master, product
owner, team member>, and agile practice <pair
programming, test-driven development, shared ownership>.

III. FINDINGS

Discussion and advocacy of agile methods appear in the
public documentation produced by the companies
investigated here. It appears that agile project experience is
an important capability for many offshore software service
suppliers.

Analysis of interview transcripts shows that of the 19
practitioners interviewed, 2 indicated that they wanted to be
regarded as having had bad experiences with agile methods.
The remaining 17 interviewees could be regarded as agile
advocates. Although interestingly, changes in job roles
meant that 7 were not working on agile projects at the time
of their interviews. The discussion of the findings presented
here is in two parts: first, the frequency of adoption of agile
practices, and second, the influences on adoption.

A. Agile Practice Selection
Some projects did not lend themselves to adoption of

agile practices. The engagement manager at Company G
contrasted software development projects and systems
integration projects “in product development we have a set
of defined features. We know what we are going to do.” He
continues, “In systems integration we need to interact with
multiple vendors,... they don't have any knowledge of agile.”

However, it is not surprising that evidence of agile
practices was found, since there was some degree of
purposeful sampling in the selection of companies to
investigate. However, their choice of practices, in an
enterprise software development context is interesting.
Eleven of the projects surveyed here made extensive use of
the roles and practices defined in the Scrum method, see Fig.
1. The underlying concepts of product owner, scrum master
and self-organizing team were adopted by 11 projects.
Similarly there was consensus on the key concepts of sprints,
sprint planning and retrospectives. Notice on Fig. 1, that
fewer projects provided evidence of the use of increment
demos.

Short iterations are seen as a way of responding to
market pressure, by reducing product release lead times.
According to the scrum master at Company F “in a
traditional waterfall model, you go for a requirement
analysis, then design, and then coding. And by the time you
actually go for delivery ... the market situation has changed.”
Reducing time to market and getting feedback on product
releases is important in the Internet domain of Company B
“[we want to] come in the market as soon as possible …
with newer ideas” and “you don't know your customers face-
to-face, so it's pretty critical to get the product out [and] get
their feedback.”

The self-organizing team approach empowers team
members, who have freedom to choose work tasks within a
sprint and also make their own scheduling estimates.
According to the product manager at Company B “if people
are being rotated based on their choice and interest their
motivation level is higher ... and as a team our skills are
going up.” Reducing dependency upon specific individuals is
valuable for reducing risk.

However, the implementation of the scrum practices was
not entirely as envisaged by proponents (for example [13]).
For example, several projects used Sprints but did not
attempt to deliver functionality to clients each increment. In
Company D, one month sprints produced code which was
then collected over six to nine months and packaged into
larger releases. Instead of producing shippable code, the
emphasis of the sprint was to focus and motivate team
members as a tool for productivity enhancement.

In contrast, few of the surveyed projects made use of XP
practices, see Fig. 2. The software service provider,
Company C, is an advocate of agile methods and makes
extensive use of XP. Theirs was the only project in the study
that aspired to fully implement XP style practices. According
to the Director of Engineering at Company E:

We don’t do extreme, definitely don’t do
extreme programming. ... we use scrum with
Agile more as an organizational thing ... we
meet in line with Agile process ... So all the
administrative tasks are very much in line
with what I understand to be Agile ... We
don’t use any things to improve the
productivity of the team through different

programming techniques or different style of
coding or anything like that

However, some form of two XP practices, collective
code ownership and coding standards, are common practice
on the enterprise software development investigated. The
factors affecting adoption of some practices and not others is
now discussed. The particular practices being selected and
tailored and the ways the practices are being tailored is
explored.

B. Influences on Agile Practice Tailoring
An important objective of this study is to understand the

influences affecting tailoring of agile practices as much as
their selection in enterprise projects. The main driver for this
tailoring is embedding the software development practice
into a wider enterprise context. Particularly those aspects of
the enterprise context where project teams have little
influence. The lack of influence tends to be over external
organizational structures (such as external departments
performing the build and release function) or quality
assurance processes (such as procedures dictated for user
acceptance testing of code, or deliverables that must be
specific document formats for review by some high-level
governance committee). Project teams can select agile

practices for use within the team, that do not adversely
impact or duplicate the work of external teams.

In addition, practices can be tailored for use in a
distributed development environment. Arrangement of team
members in certain time zones can dictate stand-up meetings
that are conducted with video conference tools towards the
end of their working day, rather than at the start.

I will now consider factors influencing selection of the
anomalous agile practices. I will explore factors relating to
the selection of scrum practices (1) sprints and sprint
duration, (2) daily scrum and de-selection of the (3)
increment demo.

In the subsequent paragraphs, I will then consider the de-
selection of XP practices (4) test driven development, (5)
pair programming, followed by discussion of the selection of
(6) coding standards, (7) collective code ownership and (8)
continuous integration.

1) Sprints and Sprint Duration
Sprints are used to focus the development team on

production of usable code within a fixed time period. The
sprints are un-interrupted and avoid demoralizing changes in
product requirements.

Company B were using sprints lasting one month, in
January 2010, with a product release cycle of six to nine

Figure 1. Findings Summary; Number of Projects Using Scrum Roles and Practices

Figure 2. Findings Summary, Number of Projects Using XP Practices

Product Owner
Scrum Master

Product Backlog
User Stories

Sprint Planning
Stand-Up Meetings

Increment Demo
Retrospective

0
2
4
6
8

10
12
14

N
um

be
r o

f P
ro

je
ct

s

Pl Gam
Sm Rel

Metaphor
Sim Des

TDD
Ref

Pair Prog
Col Own

Cont Int
Cod Stan

On-Site Cust

0
2
4
6
8

10
12
14

N
um

be
r o

f P
ro

je
ct

s

months. By April 2011 they had reduced the product release
cycle to 3-4 weeks. They have successfully moved to one
month sprints producing and delivering production code that
has been tested to full compliance with internal quality
assurance processes. This reduction in release duration has
resulted from a determined effort, supported by senior
management, to reduce the time required to deploy
production software. Further, substantial organizational
changes have been required to enable such a software
production cycle. Aligning sprint duration and release cycle
reduction required the integration of requirements analysis as
well as quality assurance processes with the shorter software
development cycles. Thus, shorter development cycles must
effectively cross traditional departmental boundaries.

The enhancements to the core CRM product of Company
E, developed using the offshore team at Company D, use 14
day sprints. There are two teams working on the product, so
each week there is either a sprint kick-off or a retrospective.
The sprints are used to empower and motivate the
development team. However, these increments are not
deployed to the customer-base. The problem is linked to the
scale and complexity of the product making continuous
integration difficult to achieve, as will be discussed in (8)
below.

2) Daily Scrum
The daily scrum is operated as a stand-up meeting on

many of the projects investigated. The meeting were
intended for team members to address three questions: (1)
what have you done since the last scrum? (2) what will you
do between now and the next scrum? and (3) what got in the
way of doing work? This meeting style makes team
members publicly (within the team, at any rate) accountable
for their commitments.

A minority of the projects, had geographically dispersed
team members, necessitating the use of video- or telephone-
conferencing technology. The configuration of team
members, in terms of their time zone, meant some team
members joined the scrum towards the end, rather than at the
beginning of their working day.

3) Increment Demo
To collect customer feedback, a demonstration of

finished code at the end of a sprint is intended. However, in
Company D code is collected into larger releases over a six
to nine month timescale, since as has been seen it is too
expensive to upgrade client's code base more frequently. In
Company B on the other hand, there is little face-to-face
contact with Internet customers. So, it is better to release new
features into selected markets on an experimental basis.

Only Company F, in addition to the agile advocates at
Company C, made effective use of Increment Demos.

4) Test Driven Development
It is argued that “any program feature that doesn't have

an automated test, simply doesn't exist” [15]. Taken further,
the suggestion is that it makes sense to write the tests first,
and then fill in the code to pass the test. For example, in the
Healthcare project in Company F, a conventional approach
to Test Driven Development was used. The Scrum Master
there states, “when you have put the acceptance test case

[initially] of course you know it is going to fail. Because we
don’t have a code yet, behind it.”

However, the other surveyed projects did not make much
use of Test Driven Development. For example, according to
an architect at Company D, “what we did is more like real-
time testing. It’s not a test-driven approach. ... it was more
like `I do this, okay, [then] I test this right now. I do that,
[then] I test if that works'...” Similarly, the Product Manager
at Company B, stated “[in relation to Test-Driven
Development] we are aware of that, but we are not following
that.” Even the Agile advocates at Company C, had some
difficulties, the project manager states, “I wouldn’t say we
are rejected [Test Driven Development] but I would say we
are on probably on different schemes, on different
principles.”

5) Pair Programming
In pair programming, all production code is written by two
people looking at one computer screen. The person typing is
thinking about the specific code context; the other person is
thinking more strategically. Sometimes is it helpful to pair a
novice with someone more experienced to provide support
with a new task activity. The pairings are intended to be
dynamic, swapping roles and pairs often.
It was surprising to find that only two of the projects used
Pair Programming. For Company C the practice is a normal
part of the their standard process, as envisaged in [15]. They
encourage frequent rotation of pairs “we try to constantly on
rotate the pairs, on a daily basis. ... Every day, maximum we
try to keep it as a couple of days beyond which we ask
people to rotate.”
In company D, however, Pair Programming is only used
where the code is seen as unusually complex or difficult.
According to a Scrum Master from Company D “pair
programming is one when we were initially on a spike, ...
[where] you don’t have much information, those are called
spikes. So when we’re doing that we do follow the - pair
programming.”

6) Coding Standards
All projects surveyed have coding standards. This results

from the need to tailor practices to fit in with the enterprise
development context. Enterprises often engage development
team members from outside as well as within the
organization, hence the need for an agreed coding standard
to improve readability of code originating from different
sources. Where multiple organizations are involved,
common on large enterprise projects, projects must adopt
shared policies. Sometimes shared policies belong to the
client organization, sometimes one of the major international
software service providers is brought on-board for their
management and delivery expertise, so they will dictate
project policies. Or, they may be dictated by the client or the
lead software development organization or by the quality
assurance standards adopted for the project.

The standards adopted may be the result of an ad hoc
selection process for a given project. Where technical
thought leaders have a choice they prefer light touch coding
standards, which are sometimes public domain, to encourage
widespread compliance within the team. The standards are

explicitly to support knowledge transfer, induction of new
joiners and collaborative working in general within the team.

7) Collective Code Ownership
Enterprise software development teams typically operate

with some form of collective code ownership. Software
considered “complete” by the development team must be
handed over to external user acceptance test teams for
detailed examination and regression testing. Subsequently,
after user acceptance tests are passed, software is handed
over again. This time the software is given to external release
teams for deployment and maintenance. Thus, collective
code ownership is forced upon project teams and developers
by the presence of external build and release, quality
assurance and user acceptance test teams. According to a
team member at Company D “we finish the development and
we send it to a team called the Sustaining Team and they do
the proper testing and maintenance” and further “they talk
directly to the clients. If the clients, after taking release, have
a few problems, it’s them who will fix actually everything.”

8) Continuous Integration
Advocates of continuous integration argue for daily

builds of working, shippable, software [15]. New features are
added to the integration progressively during the working
day. As soon as the new features are added, they are tested to
resolve any clashes with code elsewhere.

Continuous integration is challenging in enterprise
software development projects because of the size, scale and
complexity of the system under development. According to
the Director of Engineering at Company E, “regression tests
take too long to do it every sprint. So we don’t run a
regression suite, it is like three and a half days to run a full
regression suite so we don’t run that [every Sprint].” The
release process is described in more detail by the architect at
Company D:

we have three cycles [1] from the code freeze
date to integration complete, there will be no
check-ins and check-outs from the [code]
repository. And then [2] from integration
complete to release [candidate]. So again the
same test cases would be repeated… And
then the final phase [3] is when... the CD is
built properly and it can be installed from the
CD and then release it.

Clearly, this is a much more elaborate process than the
daily builds and release of code to clients at the end of each
sprint envisaged in [12]. So, according to the Director of
Engineering at Company E “we don’t necessarily have a
runnable application at every possible opportunity.” He
elaborates:

...people begin to see there is no take up of
releases, if they are too frequent. Because the
effort to upgrade from A to B is so costly that
it is not practical for people taking new
releases on a regular basis. So spitting out

new releases, some of them may never get
taken up unless you sell something [to a new
client].

There is extensive customization of software to suit
individual client enterprises, in this business domain.
Migration to a new release could entail significant and
expensive rework of customizations in order to upgrade
customer code. Thus, in this domain, outputs from
successive sprints are collected to form half-yearly releases.

IV. DISCUSSION

This research found that most of the projects investigated
used scrum agile practices, confirming the findings from the
project reported in [7]. These enterprises use sprints,
backlogs and scrum roles such as product owner, scrum
master and team members. Team members were self
organizing and empowered to estimate and assign work
durations to tasks and to select tasks for their own work.

Only one of the companies routinely used XP practices.
The other projects were not using most XP style agile
practices, such as pair programming, test driven
development, simple design, metaphors, re-factoring and so
on. These techniques are either not seen as important or are
difficult to implement in an enterprise context. Manual
methods such as story boards for managing user stories,
while still favored for their simple ability to communicate
effectively to co-located team members, are being
superseded by automated software tools.

The sprint is readily adopted in enterprise software
development settings, since it can be internal to the
development team. The program manager in Company E
described a CRM project development team, in the USA,
using short increments while embedded within a client
enterprise that organized departments around a waterfall
development tradition.

Some of the sprint practices were adapted for the
enterprise context. So Company E, and their offshore
software service provider Company D, used 14 day sprints
even though usable code was not shipped to customers at the
end of each increment. The productivity and morale benefits
were seen to be attractive in themselves.

The scrum is easily adopted, in an enterprise setting,
since it can be conducted internally, possibly even
surreptitiously, within the development team. In Company B
the scrum evolved from being internal to the team, in
January 2010, to involving external requirements analysis,
quality assurance and testing stakeholders in April 2011.

In several of the enterprise projects investigated the
increment demo did not play an important role, either
because there was no intention to release code at the end of
each sprint or because face-to-face contact with customers is
difficult.

Organizational boundaries made test driven development
unattractive, since corporate quality assurance processes
relied on user acceptance testing being performed by
independent and sometimes external teams. A major
organizational change process was required in Company B to

align sprint durations and production release cycles. In
Company D source code was handed to quality assurance
teams for time consuming regression testing.

It is puzzling that greater use was not made by the
projects of pair programming. There do not appear to be
organizational boundaries hindering adoption. The use of
pair programming in enterprise software teams was limited
to unusual, exploratory or complex code. Only the agile
advocates at Company C made use of pair programming as
standard practice.

In contrast, coding standards are rather enforced upon
enterprise development teams by the large organization
setting. The plethora of project stakeholders and employment
arrangements for project team members make standards
desirable to ensure readability of code. Similarly, there is a
general recognition that source code needs to be shared with
other project stakeholders.

The size and complexity of enterprise software products
make continuous integration a challenge. Daily cycles of
build, integrate and test seem attractive. But, the three days
required by Company E to run regression tests is typical of
the challenge. Elaborate cycles of code freezing, regression
testing and bug fixing is performed before adding installation
code and cutting to CDs for distribution. These tasks are
performed by a separate specialist build and release
department.

So, these findings are at variance with some earlier
sources. The projects I investigated did not make extensive
use of continuous integration, pair programming or test
driven development in contrast with the findings of [20].
Further, I found support for less studied practices such as
user stories, burn-down charts and planning meetings. I also
found some (possibly distorted implementations of) agile
practices that were well-established in large enterprises. For
example, all the large enterprises had their own coding
standards, or adopted publicly available standards to
facilitate sharing of code artifacts between distributed team
members. Further, common ownership of code is forced
upon the teams by the logistics of independent and often
external release management and user acceptance testing
teams.

Early writing on XP was explicit that to achieve the full
benefits of adoption practices should be implemented
wholesale (for example [15] page 149). Further, there was
emphasis on the physical arrangement of co-located work
areas ([15] page 77) and customer representative working
physically along side the development team in the form of an
“on-site customer” ([15] page 60). Clearly these aspects of
agile development are not well-placed for adoption by
distributed geographically teams.

The adoption of agile practices in the surveyed
enterprises was hindered by complex organizational as well
as geographical boundaries. The existence of corporate
project management standards, hierarchically formulated
build and release teams that enforce enterprise quality
standards apparently prohibit the use of practices such as test
driven development. Some projects have adopted such
practices, surreptitiously, out of belief in the productivity

benefits. These projects have attempted to gain benefits from
agile methods despite corporate constraints.

The research also shows that agile adoption can create a
ripple effect of change through the enterprise. Company B in
the Internet sector has succeeded in reducing release cycles
from six or nine months to three or four weeks, but this
involved drawing external quality assurance teams into the
Sprint teams.

V. LIMITATIONS

This type of study relies on self-reported measures. This
approach risks being deflected by respondents that have their
own motives for over- or under-reporting issues. Data
triangulation, obtaining different stakeholders perspectives,
and method triangulation, such using as using documentary
as well as interview sources, can improve reliability of
findings. There is a good level of data triangulation in the
investigation of Company E and their offshore software
service provider Company D. Sources range from the
Director of Engineering to scrum masters and team
members. Research rigor could be improved by a greater
effort to triangulate data collection from a range of
stakeholders within other projects. Although, the difficulty of
getting access to practitioner teams has been mentioned.

The results should not be generalized to different
industry sectors. For example, embedded software system
developers in the construction industry work under
profoundly different commercial lead-times and are
accountable to external planning authorities. I expect the
influences on agile practice adoption in the construction
industry would be very different, yet surveys such as [9]
seem to unhelpfully conflate results from widely differing
industry sectors.

VI. CONCLUSIONS AND FURTHER WORK

This research explores enterprise software development
in a climate of downward pressure on prices from clients,
increasing competition and reluctance to invest unless
projects demonstrate customer value. Enterprise software
development is conducted on a global scale, with offshore or
near-shore partnerships becoming the norm.

I had expected to find a steady process of agile practice
adoption from proof of concept projects and smaller
collocated XP software development teams. Instead, the
adoption of scrum roles and practices was observed. Short
iterations, even if they did not deliver production code to
customers, were used to improve team morale and focus
attention on customer needs. Short daily standup meetings
conducted using telephone and video conference
technologies, if necessary, were considered helpful.

In contrast, software development practices from the XP
method were much less widely adopted. Test driven
development did not integrate well with established
enterprise quality assurance policies. Separate build and
release teams, responsible for user acceptance testing, did not
integrate into the short release cycles in some of the
companies investigated.

Pair programming was only used in special
circumstances, such as where code was new and complex.
There was no obvious problem with integrating this practice
into the enterprise. Pair programming could be performed
without negatively impacting the work of any other
departments. Yet it was puzzling to find that there was not
more widespread adoption.

However, coding standards and collective code
ownership are normal practice on large scale projects. There
was recognition that common standards are necessary in
large and diverse project teams and that code will need to be
shared with others during the project lifetime. Continuous
integration was found to be challenging because of the time
required to run regression tests in large and complex
enterprise software products.

This study can be further developed in a number of ways.
Further data gathering, over time, would provide evidence of
longitudinal change in adoption patterns. In a different
direction, it is planned to use theory from the field of
organizational studies to explore the socio-technical factors
affecting agile practice adoption and tailoring in more detail.

It is puzzling that XP practices, notably pair
programming, that do not impinge on any broader enterprise
context are not more widely used. Further exploration is
required to understand the lack of awareness or lack of
commitment by development teams to these practices.

ACKNOWLEDGMENTS

I am grateful to all the companies and interviewees who
were generous enough to contribute their time and resources
to participate in this research. Thanks also to the current and
former students of the Executive MBA at the Indian Institute
of Management, Bangalore who helped identify target
companies. The research benefited in part from travel
funding from the UK Deputy High Commission Science and
Innovation Network.

REFERENCES

[1] W. Aspray, F. Mayadas, and M. Y. Vardi, Eds., “Globalization and
Offshoring of Software: A Report of the ACM Job Migration Task
Force.” ACM, 2006.

[2] J. D. Herbsleb and D. Moitra, “Global software development,”
Software, IEEE, vol. 18, no. 2, pp. 16 -20, Apr. 2001.

[3] P. Joannou, “Enterprise, Systems, and Software Engineering–The
Need for Integration,” Computer, IEEE, vol. 40, no. 5, pp. 103 -105,
May 2007.

[4] A. Bartels and J. R. Rymer, “The Future Of Enterprise Software:
Market Overview.” Forrester Research, Inc, Jun-2006.

[5] M. Lindvall et al., “Agile software development in large
organizations,” Computer, IEEE, vol. 37, no. 12, pp. 26 - 34, Dec.
2004.

[6] B. Boehm and R. Turner, “Management challenges to implementing
agile processes in traditional development organizations,” Software,
IEEE, vol. 22, no. 5, pp. 30-39, 2005.

[7] L. Pries-Heje and J. Pries-Heje, “Why Scrum Works: A Case Study
from an Agile Distributed Project in Denmark and India,” in AGILE
Conference (AGILE), 2011, 2011, pp. 20 -28.

[8] “Agile Alliance.” [Online]. Available: http://www.agilealliance.org/.
[Accessed: 25-Sep-2011].

[9] S. de Cesare, M. Lycett, R. D. Macredie, C. Patel, and R. Paul,
“Examining Perceptions of Agility in Software Development
Practice,” Communications of the ACM, vol. 53, no. 6, pp. 126-30,
Jun. 2010.

[10] T. Dyba and T. Dingsoyr, “What Do We Know about Agile Software
Development?,” Software, IEEE, vol. 26, no. 5, pp. 6 -9, Oct. 2009.

[11] K. Schwaber, Agile Project Management with Scrum. Redmond,
WA.: Microsoft Press, 2004.

[12] M. Cohn, Succeeding with Agile: Software Development Using
Scrum. Addison Wesley, 2009.

[13] K. Schwaber and M. Beedle, Agile Software Development with
Scrum. Upper Saddle River, NJ, USA: Prentice Hall, 2001.

[14] C. Larman, Agile and Iterative Development: A Manager’s Guide.
Pearson Education, 2003.

[15] K. Beck and C. Andres, Extreme Programming Explained, 2nd ed.
Addison Wesley, 2004.

[16] J. D. Herbsleb, “Global Software Engineering: The Future of Socio-
technical Coordination,” in Future of Software Engineering, 2007.
FOSE ’07, 2007, pp. 188 -198.

[17] J. A. Espinosa and E. Carmel, “The impact of time separation on
coordination in global software teams: a conceptual foundation.,”
Software Process: Improvement & Practice, vol. 8, no. 4, pp. 249 -
266, 2003.

[18] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, “A review of
awareness in distributed collaborative software engineering,”
Software: Practice and Experience, vol. 40, no. 12, pp. 1107–1133,
2010.

[19] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using scrum in a
globally distributed project: a case study,” Software Process:
Improvement and Practice, vol. 13, no. 6, pp. 527–544, 2008.

[20] S. Jalali and C. Wohlin, “Agile Practices in Global Software
Engineering - A Systematic Map,” in Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on, 2010, pp. 45
-54.

[21] E. Hossain, M. A. Babar, and H.-young Paik, “Using Scrum in Global
Software Development: A Systematic Literature Review,” in Global
Software Engineering, 2009. ICGSE 2009. Fourth IEEE
International Conference on, 2009, pp. 175 -184.

[22] R. K. Yin, Case Study Research: Design and Methods, 4th ed.
Thousand Oaks, California: Sage Publications, Inc, 2008.

[23] M. Q. Patton, Qualitative Research & Evaluation Methods, 3rd ed.
Thousand Oaks, California: SAGE Publications, Inc, 2001.

APPENDIX I INTERVIEW GUIDE

A. Motivation and Purpose of Research
I want to ask you about your experience of geographically
distributed agile software development projects. The
research involves interviews with people doing a range of
different roles and from companies with different
development models.
I want to learn more about your views of agile processes. I
am particularly interested to know what factors are affected
by geographical location and separation. The purpose here is
to try to understand the factors that affect project outcomes,
successful or otherwise, so that we can try to learn for the
future.

B. Ethical Commitments and Informed Consent
I want to ask you the following questions and tape record
your answers.
I will keep your responses absolutely confidential. Certainly
nothing will be shared with any client companies. I do plan

to publish interview extracts but I will make names and
companies anonymous.
Can I switch on the recorder?

C. Your Current Project(s)
How many projects are you working on currently?
What is (was) the title of your current (or most recent)
project?
What is the project management structure?
How is the project organized geographically?
How many people are in the project team?

D. Agile Practices
What Agile practices do you advocate for offshore projects?
What agile practices do you avoid or not recommend?

E. Requirements
How are requirements decided and prioritized?
How do user stories evolve over time?
How do user stories move up or down the backlog?

F. Product Owner/Customer (POC)

How do you represent the product development team within
the client organization?
How do you represent the client organization within the
product development team?

G. Releases and Testing
How do unit tested code become a release?
How is user acceptance testing managed?
How are bugs reported back, prioritized and fixed?

H. Challenges
What challenges do you face in agile offshore projects?
How have you tried to address these challenges?
What challenges remain to be resolved?

I. Learning
How does learning take place within the team?
How does learning take place for you personally?

J. Any other comments
Do you have any further comments in relation to
geographically distributed agile development projects?

	Bass agile india coversheet
	IEEE COPYRIGHT STATEMENT
	camera ready 20111211a

