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ABSTRACT 

 

The contemporary training practices of powerlifters are presently being adopted by athletes 

from a variety of sports seeking to improve their performance. The aims of this PhD were to: 

1) identify the contemporary training practices of powerlifters; 2) investigate the 

biomechanical stimulus the training practices create; and 3) assess whether the training 

practices have the potential to improve the athletic performance of general athletes 

 

The aims were achieved through the completion of five related studies. The first study 

employed questionnaires and interviews to indentify the contemporary training practices 

used by elite powerlifters. The results demonstrated that elite powerlifters used a wide 

variety of training practices, many of which would not have been attributed to the group 

based on previous literature. The practices were categorised based on their underlying 

mechanical principles so that the essential features could be investigated in the subsequent 

studies. A regression-based approach was used in the second study to identify the 

biomechanical variables associated with performance of common sporting tasks. Maximum 

force production, power, velocity and rate of force development (RFD) were shown to 

explain a large percentage of variation in performance of tasks such as sprinting, jumping 

and changing direction (adjusted R2 ranged from 0.43 to 0.86). These mechanical variables 

were then measured in a series of experimental studies to assess the potential of the 

contemporary powerlifting practices to improve athletes‟ physical performance. 

Assessments were based on a central paradigm in strength and conditioning that asserts 

that improvements in the ability to express biomechanical variables (e.g. force and power) 

are best obtained with training practices that maximise acute production of the same 

variable. 

 

Based on the categorisation of the mechanical principles underlying the assessed training 

practices, three experimental studies were conducted that investigated: 1) the practice of 

performing traditional resistance exercises at maximum velocity; 2) the effects of 

manipulating the external resistance through the use of variable resistance material (chain 

resistance) and an unconventional barbell (the hexagonal barbell); and 3) the effects of 

altering the movement strategy used to perform the squat. The results of the studies clearly 

demonstrated that each of the practices investigated could be used to substantially alter 

and in most cases enhance the biomechanical stimulus created. The practice of performing 
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traditional resistance exercises at maximum velocity revealed that all key mechanical 

variables were significantly increased (p<0.05) compared with the standard practice of 

performing repetitions with a sub-maximum velocity. In addition, the results demonstrated 

that when performing a traditional resistance exercise such as the deadlift at maximum 

velocity, experienced resistance trained athletes could accelerate the load for the majority 

(75% to 90%+) of the movement.  

 

The second experimental study featuring the separate use of chain resistance and the 

hexagonal barbell to alter the characteristics of the external resistance demonstrated 

contrasting effects. The change in position of the external resistance when using the 

hexagonal barbell significantly (p<0.05) increased the participants' ability to produce high 

force, power, velocity and RFD values across a range of loads in comparison with the same 

movement performed with a traditional straight barbell. In contrast, the results from the 

study evaluating the effects of adding chain resistance showed that whilst force values were 

increased with the addition of chains, velocity, power and RFD values substantially 

decreased compared to standard repetitions performed with barbell resistance only. The 

results also demonstrated that the effects of the chain resistance were more noticeable with 

heavier chain and barbell loads.  

 

The final experimental investigated the effects of altering the movement strategy used to 

perform the back squat exercise. The results confirmed that changes to the movement 

strategy had a significant effect on a range of kinematic and kinetic variables. In particular, 

the contemporary techniques promoted by powerlifters resulted in substantial kinematic and 

kinetic changes at the hip and reduced kinetic output at the ankle joint.  

 

Collectively, the work from this PhD supports the selective use of contemporary powerlifting 

training practices for the development of athletic potential. Future research should build on 

the framework created in this thesis, progressing to longitudinal and ultimately 

implementation studies to increase the likelihood of transferring the results to practice.    
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CHAPTER 1. INTRODUCTION 

 

The sport of powerlifting has become one of the most popular disciplines in a collection of 

modern day activities commonly referred to as strength sports. Alongside other disciplines, 

such as bodybuilding, strongman and Olympic weightlifting, powerlifting requires 

participants to engage extensively with resistance training to develop specific aspects of 

fitness. Of all the strength sports, powerlifting is viewed as the discipline which requires 

competitors to exhibit the highest maximum strength capabilities. The training practices and 

subsequent phenotypes developed by powerlifters have been used infrequently as a model 

for researchers to investigate topics such as the joint loading capacity of the human body 

(Escamilla  2001, Nisell and Ekholm 1986, Cholewicki, McGill and Norman 1991), the role 

of ageing in physical decline (Anton, Spirduso and Tanaka 2004, Galloway, Kadoko and 

Joki 2002), and the long-term adaptive response of physiological systems to strenuous 

resistance exercise (Hurley et al. 1987, Fry 2004, Walters, Jezequel and Grove 2012). The 

results from powerlifting competitions have also been used to model the relationship 

between strength and body mass (Cleather 2006, Markovic and Sekulic 2006). As these 

results have consistently demonstrated strong positive relationships between competition 

performance and body mass, some researchers have suggested that powerlifting is a sport 

mainly concerned with inducing muscular hypertrophy (Hakkinen, Alen and Komi 1984). 

However, more detailed and widely accepted models of maximum strength propose that the 

central and peripheral nervous systems (including innervations, signalling and 

synchronisation) act in combination with muscle cross-sectional area to determine force 

output (Kraemer, Fleck and Evans 1996). These latter models have greatly influenced 

understanding of the demands of powerlifting and the training strategies used by 

competitors.  

 

More recently, the performance of powerlifters has been described from the perspective of 

complex systems (Manso-Garcia et al. 2008). Using this perspective, results achieved by 

powerlifters can be attributed to the internal structure of the sport as a whole, and not solely 

to the competitor‟s characteristics. Complex systems in general are characterised by 

arrangements of interacting elements whose collective result is not determined by simple 

linear combinations of the individual behaviours (Zimmer 1999). Importantly, many complex 

systems adapt to changes in the environment without the need of a central controller or 

single regulatory body. Applied to the sport of powerlifting, a complex systems perspective 
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emphasises that performances will be influenced by factors such as the overall quality and 

size of competitions, the degree of professionalism in the sport, incentives provided, and 

advances in relevant technology. It is within this wider context that recent changes in 

various elements of powerlifting can be understood to have substantially impacted the sport 

as a whole. An important example of these recent changes is the proliferation of internet 

sites dedicated to powerlifting, which appears to have acted as a catalyst to expand 

participant numbers and increase professionalism of the sport through enhanced revenue 

from sponsorship.  

 

The proliferation of internet sites dedicated to powerlifting also appears to have influenced 

the training methods adopted by the athletes. Previous descriptions of the training methods 

employed by powerlifters have focused on their use of heavy loads and exercises similar to 

those performed in competition (Fry 2004). However, novel and diverse training practices 

have been promoted through internet sources over the last decade. A collection of these 

training methods have gained acceptance and now appear widespread in their use. 

Examples include the use of unconventional barbells, the performance of sled dragging 

exercises and the inclusion of variable resistance in the form of chains and bands. The 

expansion of training methods employed by powerlifters has only recently been 

acknowledged by researchers in the area of sport and exercise science (Chiu, Moore and 

Favre 2007). This recognition is primarily the result of observing athletes from mainstream 

sports adopting the same practices. Whilst researchers have begun to investigate isolated 

features of the contemporary training practices developed and used by powerlifters, 

currently no systematic effort to investigate potential efficacy has been presented. This PhD 

represents the initial stages of a larger research project with the goal of addressing this 

issue. The aims of the PhD are to identify the contemporary training practices used by 

powerlifters, and to provide a detailed analysis of the biomechanical stimulus created. By 

determining which mechanical variables are closely related to performance of important 

sporting tasks, a third central aim of the PhD is to assess whether the practices selected 

could provide appropriate mechanical stimuli for athletes of other sports.  

 

The scientific investigation of any training practice requires extensive study employing a 

range of methodological approaches. The collective aim of applied sport science research 

should ultimately be the improvement of athletes‟ performance. However, it has been 

highlighted that sport science research is poorly translated into practices used by athletes 

(Haff et al. 2010, Bishop et al. 2006). It has been noted that a disconnect between 
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researchers and practitioners occurs as a result of factors such as conservative coaching 

practices, the overly theoretical and non-applied nature of problems investigated by many 

researchers, and decisions to disseminate information in highly specialised scientific 

journals (Bishop et al. 2006, Stone, Sands and Stone 2004). It has also been suggested 

that a principal limitation in terms of the transfer of knowledge is a lack of structure 

surrounding research and its progression (Bishop 2008). Recently, Bishop (2008) proposed 

an applied research model to improve the transfer of sports science research to practice. 

The model describes multiple phases that progress research designs from descriptive to 

experimental, to implementation based. The model also emphasises the importance of 

meta-analyses across the phases, and execution of well designed studies in the initial 

descriptive stages to underpin the research that follows (Bishop 2008).  

 

The conception and design of this PhD was completed prior to the publication of Bishop‟s 

(2008) model. However, independently, the structure of this PhD closely matches the initial 

phases proposed (see Figure 1.1). The first phase consists of defining the research problem 

and providing context. The research problem investigated here was driven by the need to 

provide coaches and athletes with information regarding popular, but untested training 

practices. The context of the PhD is discussed in greater depth in chapter two, with 

discussion of the theoretical frameworks underpinning the research provided. The second 

stage of the research process comprises descriptive research to identify which training 

practices from those promoted were used by successful powerlifters (chapter three). Once 

these were established, the biomechanical variables that could predict performance in 

common sporting tasks were investigated (chapter four). This information was used to 

determine the variables measured in the experimental studies. The three dimensional 

biomechanical model used to calculate kinematics and kinetics of the body is presented in 

chapter five. The subsequent three chapters include the experimental studies of training 

practices identified earlier in the thesis. The training practices were categorised based on 

their underlying mechanical premise so that more general conclusions regarding the 

stimulus created could be drawn (chapters six to eight). The final chapter comprises a 

summary of the work, general conclusions, and recommendations for future research based 

on completion of the model outlined by Bishop (2008) in attempts to maximise the likelihood 

of findings transferring to practice.   
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Figure 1.1: Schematic outline of the applied research model for the sport sciences and 

corresponding thesis chapters  

 

         Stage            Location within thesis 

    Description  1 Defining problem, providing context  Chapters 1 & 2 

   2 Descriptive research    Chapter 3 

   3 Predictors of performance   Chapter 4 

Experimentation 4 Experimental testing of predictors  Chapters 6, 7 & 8 

   5 Determinants of key performance predictors 

   6  Efficacy studies 

 Implementation 7 Barriers to uptake 

   8  Implementation studies 

 

Adapted from: Bishop, D. (2008). An applied research model for the sport sciences. Sports Medicine. 

38(3): pg 255. 
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CHAPTER 2. LITERATURE REVIEW 

 

This literature review aims to provide background for the work conducted in this project and 

present a clear rationale for the overall direction taken in this thesis. This will be achieved 

by firstly providing an overview of: (a) resistance training; (b) the models used to design and 

investigate specific practices; and (c) the potential for resistance training to improve sports 

performance. Secondly, by discussing strength athletes and the potential relevance of their 

training practices in the physical preparation of others. Thirdly, by outlining and critiquing 

biomechanics as a field of study to provide lines of evidence that can be used to improve 

the overall effectiveness of resistance training.    

 

2.1 Resistance training 

 

2.1.1 Introduction to resistance training 

The term resistance training has been used in the sport and medical literature to describe 

training modalities ranging from the use of free weights and resistance machines to 

plyometrics, climbing and hill running (Stratton et al. 2004, Kraemer and Fleck 2004, 

Faigenbaum 2007). Frequently, the term is used interchangeably with „strength training‟ and 

„weight training‟ to refer to practices that incorporate external loads with the goal of 

increasing muscular strength (Kraemer and Fleck 2004, Stone, Stone and Sands 2007). 

However, defining and delimiting resistance training is an important process when 

conducting research. If the range of training modalities considered is too diverse, then it is 

difficult to generalise findings from studies. Conversely, limiting the term resistance training 

to the development of maximum strength fails to acknowledge an extensive research base 

that has demonstrated the potential to elicit an array of physiological adaptations that 

enhance multiple fitness and health parameters (Gordon et al. 2009, Cornelissen and 

Fagard 2005, American College of Sports Medicine 2009). For the purposes of this 

research project, resistance training will be defined as: 

A mode of training that requires skeletal muscles to produce force against an 

external resistance source.  
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In this context, resistance training is recognised as force training with magnitude, duration 

and temporal characteristics highly dependent upon the effort applied and the specific 

nature of the external resistance source.  

 

The study of resistance training is a relatively new area of sport and medical research. 

Historically, studies on the use of exercise for health or performance have centred on 

aerobic activities and their effects on the cardiovascular system (Peterson, Rhea and Alvar 

2004). The first study to investigate the effects of a systematic form of resistance training 

using barbells and dumbbells was conducted by Delorme (1945). Based on clinical 

observations of 300 patients with muscular atrophy, Delorme (1945) reported that the use of 

resistance exercises with progressively increasing loads improved muscle size and 

strength. Delorme (1945) also observed that the greatest increases in strength occurred 

when a heavy resistance was combined with a low number of repetitions, whereas muscular 

endurance was best improved by performing a high number of repetitions with a light 

resistance. The observations made by Delorme (1945) formed the basis of the overload 

principle and the principle of specificity which influences the design of all contemporary 

resistance training programmes (Stone, Stone and Sands 2007).   

 

Following the seminal research conducted by Delorme (1945), further refinement of 

resistance training design was delayed until the 1960s, where researchers employed 

various longitudinal designs to systematically manipulate different training variables (Berger 

1962b, Hellebrant and Houtz 1956, Berger 1962a, Berger 1965, Capen 1950, O'Shea 

1966). Consistent demonstration that resistance training could enhance muscular strength 

and endurance in heterogeneous populations led researchers to elucidate many of the 

adaptive responses of the musculoskeletal (McDonagh and Davies 1984, Clarke  1973, 

Caiozzo, Perrine and Edgerton 1981), nervous (Edström and Grimby 1986, Sale 1988, 

Costill et al. 1979), and endocrine (Kraemer  1988, Guezennec et al. 1986, Hetrick and 

Wilmore 1979) systems.  

 

Wider appreciation of the potential benefits of resistance training in the scientific community 

was limited by the belief that functional improvements were restricted to muscular strength 

and endurance, and that these variables played a limited role in the general population‟s 

health. Indeed, initial guidelines for the prescription of population-level physical activity 
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stated that individuals need only perform aerobic exercise (American College of Sports 

Medicine 1978). At the time these guidelines were published, there were no clear 

distinctions between the uses of exercise for fitness as opposed to health (American 

College of Sports Medicine 1998). In addition, epidemiological research reported strong 

relationships between aerobic endurance activities and the prevention of cardiovascular 

disease (Fox and Skinner 1964, Kannel 1970). As a result, the ability of aerobic activities to 

increase 𝑉 𝑂2max was interpreted as a means of improving health (Blair, LaMonte and 

Nichaman 2004). As physical activity guidelines shifted from an exclusively “performance-

related fitness” paradigm to one that acknowledged the multifaceted dimensions of health, 

researchers began to recognise the benefits of resistance training as a means of improving 

health-related factors such as functional capacity, basal metabolism, bone mineral density 

and low back health (Feigenbaum and Pollock 1999). Subsequent health-related guidelines 

began to incorporate resistance training as part of an integrated physical activity regime that 

also featured aerobic and various other exercise modalities (McSwegan et al. 1989, 

American College of Sports Medicine. 1990, American Association of Cardiovascular and 

Pulmonary Rehabilitation. 1999 , Fletcher et al. 1995). In the last decade, research 

investigating the health related benefits of resistance training has increased dramatically, 

with findings revealing that the unique mechanical and physiological stimulus has the 

potential to improve blood pressure (Cornelissen and Fagard 2005), metabolic health 

(Gordon et al. 2009), weight control (Schmitz et al. 2003, Hunter et al. 2002), and 

psychological well-being (Penedo and Dahn 2005). It is likely that future research will focus 

on optimising resistance training strategies for different health conditions whilst ensuring 

compliance remains high.   

 

2.1.2 Resistance training models 

To effectively design and investigate resistance training programmes an appropriate 

theoretical framework is required. A number of models with various degrees of overlap have 

been developed (Siff 2003, Verkhoshansky 1986, Bird, Tarpenning and Marino 2005, 

Kraemer 1983a, Issurin 2008). These models have originated from the perspective of 

enhanced sports performance and subsequent discussions of resistance training in this 

literature review will correspond primarily with this perspective. The model most commonly 

used in peer reviewed research is the acute variable model first proposed by Kraemer 

(1983a, 1983b). The first stage of the model comprises a needs analysis to identify the 

important muscle groups, energy systems and specific fitness characteristics (e.g. muscle 

strength, hypertrophy, power, body composition) that require development (Kraemer and 
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Fleck 2004, Kraemer 1983a). Once the needs analysis is completed, a long-term resistance 

training programme is designed based on the manipulation of selected variables. Kraemer 

(1983a) originally identified four acute programme variables that he considered to uniquely 

define the stimulus of a single training session. The four variables identified were load 

intensity, exercise selection, length of rest periods and the order that exercises were 

performed. Since its inception, the model has been amended to include the number of sets 

performed and repetition velocity to create a total of six acute programme variables 

(Kraemer and Fleck 2004). A large number of cross-sectional studies have investigated the 

short-term effects of manipulating different combinations of the variables identified by 

Kraemer (Kraemer et al. 1990, Ahtiainen et al. 2005) (Matuszak et al. 2003, Abdessemed et 

al. 1999) Results have consistently demonstrated that manipulation significantly alters the 

associated mechanical, metabolic and hormonal stimulus. Importantly, longitudinal studies 

have demonstrated that changes in short-term effects from manipulation of the variables 

can accumulate to alter the training response and development of fitness parameters over 

the long-term (Krieger 2009, Jones et al. 1999, de Salles et al. 2010).  

 

The combined manipulation of six acute programme variables that can each adopt a wide 

range of values provides an almost unlimited number of possible training sessions. To 

create adaptations over the long-term many successive training sessions, each providing an 

overload effect, must be undertaken. The strategic planning and variation of training over 

extended periods is commonly referred to as periodization and is generally conceptualised 

based on the training model selected. When training is designed using the acute variable 

model, periodization is viewed as the systematic long-term manipulation of the featured 

variables (Kramer and Fleck 2004). In classical strength/power periodization models, the 

training cycle commences with sessions comprising high volumes and low intensities and 

gradually progresses to sessions comprising the reverse (low volumes and high intensities) 

(Kramer and Fleck 2004). To achieve this change in stimulus the number of sets and the 

training load are the main acute programme variables that are altered. Classical 

strength/power periodization models may extend over sixteen to twenty weeks and are 

often divided into three active cycles, a taper period and a recovery cycle (Plisk and Stone 

2003) (Figure 2.1). During the first cycle the primary goal is to increase muscle cross 

sectional area. To achieve this adaptation rest periods are set to short intervals with 

exercise selection and order chosen to ensure different muscle groups experience 

adequate stress then recovery (Plisk and Stone 2003). The second cycle of the training 

period comprises the main strength phase with exercise selection focused on movements 

that produce the largest forces (Turner 2011). Additionally, duration of rest periods are 
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increased to maintain high force outputs and exercise order frequently arranged so that 

different muscle groups produce maximum force in the same session (Kramer and Fleck 

2004). The third and final active cycle of the model focuses on the development of muscular 

power. Repetition velocity and exercise selection are generally perceived to be the two most 

important acute programme variables to stimulate the required adaptations in this cycle 

(Kramer and Fleck 2004). 

 

Figure 2.1: Schematic overview of classical strength/power periodization model, illustrating 

changes in volume, intensity and amount of technical practice across the different phases 

 

Adapted from: Plisk, S.S. Stone, M.H. (2003). Periodization Strategies. Strength and Conditioning 

Journal. 25(6): pg 24. 

 

The acute variable model is currently promoted by the National Strength and Conditioning 

Association (Baechle and Earle 2008) and the American College of Sports Medicine 

(American College of Sports Medicine 2009). Both organisations have created a framework 

where training is perceived as the development of fitness components and constraints are 

applied to the acute variable model to assist the design of appropriate training sessions. 

Table 2.1 illustrates recommended values for the acute variables when attempting to 

Time 16 to 20 weeks 

Arbitrary Units 
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develop fitness components associated with resistance training. This approach has been 

criticised when the primary goal is to enhance sports performance (Siff 2003). The main 

concern is that fitness components are considered too broad and do not take into account 

different characteristics of the force-time and force-load relationships which some consider 

important for determining success in sport (Siff 2003). This concern is supported by 

contemporary paradigms in strength and conditioning which promote the importance of 

concepts such as rate of force development (RFD), speed-strength and strength-speed for 

athletes (Stone, Stone and Sands 2007, Tan 1999). However, the variable model and 

associated guidelines provide an empirical basis on which to design appropriate resistance 

training programmes, with research consistently expanding the evidence base.  

 

Table 2.1: Acute variable guidelines 

Training Goal Load 

(%1RM) 

Goal 

Repetitions 

Number 

of Sets 

Rest Period Length 

Strength ≥ 85 ≤ 6 2 – 6 2 – 5 minutes 

Power single-effort 80 – 90 1 – 2 3 – 5 2 – 5 minutes 

Power multiple-effort 75 – 85 3 – 5 3 – 5 2 – 5 minutes 

Hypertrophy 67 – 85 6 – 12 3 – 6 30 seconds – 1.5 minutes 

Muscular endurance ≤ 67 ≥ 12 2 – 3 ≤ 30 seconds 
 

Adapted from: Baechle, T.R. Earle, R.W. (2008). Essentials of strength training and conditioning. Human 

Kinetics, Champaign, Il. pg 401. 

 

Alternative resistance training models are primarily used to design training programmes 

aimed at improving sports performance. One of the most prominent is the means and 

methods model which was conceptualised by Eastern European researchers and has 

subsequently been presented in a number of English texts (Siff 2003, Verkhoshansky 1986, 

Issurin 2008, Verkhoshansky 2006, Bondarchuk 2007). Variability exists between the 

different translations in key definitions used to define and delimit factors of the model. This 

variability may be due to different interpretations of language and/or concepts. It is, 

however, consistently remarked that the means and methods model is used to create acute 

mechanical and physiological stimuli, whose effects are accrued over time to induce 

adaptations that enhance performance in a specific sport (Issurin 2008, Verkhoshansky 

2006). In the simplest form of the model, the means refer to exercises or technical drills and 

the methods include generalised structures which determine how the exercises are 

performed (Siff 2003). Frequently, the means are categorised based on the relatedness of 
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the kinematics and kinetics of the training exercise and the movements performed within the 

sport. A common classification scheme organises each exercise or training drill into one of 

three categories: general, general-specific, and specific (Bondarchuk 2007, Baker 1996). 

General means are classified as exercises and drills which are unlikely to directly enhance 

proficiency in a sports movement, but rather serve to develop fitness variables associated 

with performance (Baker 1996, Smith 2005). General-specific means include exercises and 

drills which exhibit a higher degree of mechanical specificity with the sporting movement 

and can potentially enhance performance through both direct and indirect processes (Smith 

2005). Specific means exhibit kinematic and kinetic profiles that closely match the sporting 

movements and are expected to have a direct effect on movement proficiency (Baker 

1996). Table 2.2 provides examples of general, general-specific, and specific exercises for 

a range of athletes.  

 

Table 2.2: Example means classification for various athletes 

Athlete general general-specific specific 

American 
Football  

(linemen) 

Olympic lifts, powerlifting 
lifts, + most exercises 
performed with barbells, 
dumbbells, kettlebells etc   

pushing a weighted 
implement (e.g. sled, tire, 
special training apparatus, 
etc), performing 
intermittent hitting drills 

one on one contests 
against an opponent for 4-
10 second repetitions 

 

Track and 
Field  

(100m) 

Olympic lifts, powerlifting 
lifts, + most exercises 
performed with barbells, 
dumbbells, kettlebells etc   

double/single leg bounds, 
jumps, landings, depth 
jumps, alternating bounds, 
sprints wearing a weighted 
belt or vest, sprints 
performed on mild 
gradients 

variable intensity sprints 
over different distances 

 

Track and 
Field  

(High Jump) 

Olympic lifts, powerlifting 
lifts, + most exercises 
performed with barbells, 
dumbbells, kettlebells etc   

any bounds, jumps, 
weighted jumps, depth 
jumps, etc other than the 
competition exercise 

high jumps over various 
heights 

 

Olympic 
Weightlifter 

rows with barbells, 
dumbbells, kettlebells, 
presses/swings with 
dumbbells, kettlebells, 
GHR, pull ups, back 
raises, step ups, lunges, 
jumps onto a box, 
bounds, landings, depth 
jumps, etc 

front squat, back squat, 
overhead squat, box 
squat, SS Bar squat, 
cambered bar military 
press, overhead press off 
of pins/out of chains, jerk 
from stands, power jerk (if 
split jerk is used in 
competition), split jerk (if 
power jerk is used in 
competition), clean from 
blocks, clean from hang, 
power clean, snatch from 
blocks 

Snatch and clean & jerk  
with varied intensities 
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In contrast to the approach of classifying means based on their mechanical similarity with 

competitive sports movements, Siff (2003) recommended that means should be 

conceptualised on the basis of the afferent signals they transmit to the nervous system. 

Using this approach, Siff (2003) outlined four categories of means: 

 

1) Stimulation when muscular tension is produced by voluntary effort against external 

resistance, and the resistance of the moving load accelerates and regulates the 

effector impulses to the muscles   

2) Stimulation by the kinetic energy of a falling object or body, when the effort is 

primarily reflexive 

3) Stimulation caused primarily by voluntary effort, under conditions where additional 

external mechanical stimulation is absent or limited 

4) Stimulation of muscle elicited or intensified involuntary by means of external electric 

current 

 

The majority of resistance exercises performed in contemporary training of athletes are 

described by the first categorisation. However, Siff (2003) states that these exercises can 

be further divided into two groups. The first group comprise exercises where maximum 

force is developed after appreciable preliminary muscular tension. Examples include the 

squat and bench press where peak force in the concentric phase is preceded by large 

forces to decelerate the system load during the eccentric phase of the movement (Elliott, 

Wilson and Kerr 1989, McLaughlin, Lardner and Dillman 1978). The second group of 

exercises include actions where maximum force is developed without appreciable 

preliminary muscular tension. Examples include the deadlift and clean where only a low 

level of force is required in the preparatory phase to hold the body in equilibrium (Souza, 

Shimada and Koontz 2002, Brown and Abani 1985). It is proposed that this delineation is 

important as only the second group of exercises is considered to have the potential to 

increase the rate at which muscles can transition from rest to an active state (Siff 2003). In 

strength and conditioning literature this feature is often defined as starting strength and is 

proposed to be important in determining performance in very short duration high force 

activities such as sprinting (Tidow 1990). However, research on neuromuscular parameters 

such as starting strength is limited and at present largely speculative and anecdotal.  

 



 

13 
 

The second category of means described by Siff (2003) includes exercises such as depth 

jumps and bench throws. In both exercises, the kinetic energy of the falling object can be 

partly transformed into elastic energy to augment the subsequent concentric work (Siff 

2003). In addition, rapid stretch-shortening cycle (SSC) actions are likely to induce reflex 

mechanisms that can also contribute to performance (Komi 2000). A growing body of 

research suggests that these types of plyometric exercises may increase performance and 

reduce injury risk through adaptations which are distinct from those stimulated by standard 

resistance exercises (Siff 2003, Hubscher et al. 2010, Risberg et al. 2007, Vissing et al. 

2008).  

 

The third category of means described by Siff (2003) comprises primarily isometric actions. 

Initial research studies investigating the effects of isometric training concentrated primarily 

on changes in maximum strength (Wilson and Murphy 1996). More recently, isometric 

training has been used to investigate potential changes in stiffness of the tendon-

aponeurosis complex. (Kubo et al. 2006). A number of studies have demonstrated that 

isometric training can significantly increase stiffness of soft tissues, with changes influenced 

by factors such as the joint angle used in training (Kubo et al. 2006, Kubo et al. 2006, Kubo 

et al. 2009). In addition, research also suggests that isometric actions may be more 

effective than dynamic actions in creating soft tissue adaptations (Kubo et al. 2009). At 

present it is not clear if stiffer tendon-aponeurosis complexes are advantageous for sporting 

performance. It is hypothesised that stiffer complexes transmit forces to the limb at a faster 

rate and store more elastic energy for a given amount of joint displacement (Siff 2003). 

However, data from cross sectional studies have been mixed with both positive (Bojsen-

Moller et al. 2005) and negative (Kubo et al. 2000) correlations between stiffness and 

performance reported. Thus, further research is required to determine the effects and 

importance of soft tissue adaptations.   

 

The final category of means outlined by Siff (2003) comprises the practice of 

electromyostimulation (EMS). Initially, EMS methods were confined to single electrodes 

attached to defined muscle groups. With technical developments EMS has now progressed 

from local stimulation to a whole-body training method where multiple groups of muscles 

and kinematic chains can be stimulated simultaneously (Babault et al. 2007). In a recent 

systematic review of EMS training with experienced and elite athletes, the data highlighted 

that strength, power, RFD, vertical jump and sprinting performance could be positively 

affected (Filipovic et al. 2012). The authors concluded that the best results are achieved by 
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athletes if they combined EMS protocols with either dynamic or isometric training depending 

on the desired adaptations (Filipovic et al. 2012).  

 

The categorisation of means outlined by Siff (2003) places more emphasis on the 

underlying mechanical and neurophysiological processes associated with each type of 

exercise rather than focusing on their gross kinematics and kinetics. The advantage of this 

approach is that it highlights additional features of exercises that research suggests can 

influence adaptations, but perhaps would not be apparent from a basic overview of the 

movement itself. However, Siff (2003) concludes that whilst these different categories of 

means can provide unique stimuli, coaches and athletes should also select exercises that 

exhibit close mechanical relationships with the sporting movements to ensure maximum 

transfer of adaptations. Despite results from individual studies supporting some of the 

hypotheses presented by Siff (2003) and his categorisation of training means, there has not 

been the same systematic approach to research that has been conducted with the acute 

variable model. As a result, the validity of the approach is at present unknown. 

 

Once appropriate means have been selected, the acute training stimulus is determined by 

performing a particular method. However, variations also exist for this component of the 

model (Siff 2003, Verkhoshansky 1986, Issurin 2008, Verkhoshansky 2006). Issurin (2008) 

stated that methods could be classified using three methodological principles and 

subdivided into five major groups (Table 2.3). The methodological principles outlined by 

Issurin (2008) encompass a general perspective to exercise and as a result provide limited 

assistance when developing resistance training programmes for athletes. In contrast, 

Verkhoshansky (2006) described a more detailed list of methods specific to resistance 

training (Table 2.4). Each of the methods discussed reflects current practical 

recommendations and contemporary research in the field of strength and conditioning. The 

repeat method outlined by Verkhoshansky (2006) regulates the number of repetitions 

performed in a set based on the athlete‟s ability to maintain high kinetic outputs and 

appropriate technique. This method is currently recommended by most sources for the 

development of muscular power. Practical guidelines frequently state that six successive 

repetitions is the maximum number that should be performed in a single set as fatigue 

accrued diminishes the quality of further repetitions and hence attenuate the adaptive 

response (American College of Sports Medicine 2009, Baechle and Earle 2008). However, 

research to support the notion that six repetitions are indicative of a general performance 

threshold is limited. The majority of biomechanical studies that have investigated the 



 

15 
 

kinetics of resistance exercises have been restricted to single repetitions, with only a small 

number of studies assessing performance over a complete set. Eastern European 

researchers investigated the kinematics and kinetics of high-level Olympic weightlifters 

performing the snatch exercise over multiple repetitions with an 80% 1RM load (Lukashev, 

Medvedev and Melkonian 1979). The results demonstrated that kinetics were relatively 

stable within the range of eight to ten repetitions, whereas significant differences in 

kinematics were found after seven repetitions. It is unclear whether similar results would be 

obtained with general athletes who exhibit less proficiency in the weightlifting movements. 

Baker and Newton (2007) demonstrated that elite rugby league players could maintain high 

power outputs during the jump squat for approximately five repetitions. The research was 

limited by the use of a single absolute load for all participants. This limitation was overcome 

by Thomasson and Comfort (2012) who investigated squat jump kinematics and kinetics 

across a range of loads with high-level athletes performing a maximum of six repetitions in a 

set. The results illustrated that load influenced the maintenance of power with significant 

decreases noted during the sixth repetition of the heaviest load condition (60% 1RM). 

Importantly, the results also demonstrated that when using light loads (0 to 40% 1RM) four 

to six repetitions are required to reach maximum power values.  

 

Table 2.3: Methodological principles and characteristics of training methods 
 

Methodological principle Work-rest conditions Training Method 

Continuous exercise Uniform performance Continuous uniform method 

Non-uniform performance (includes 
periodic accelerations) 

Continuous alternating method 
Fartlek 

Intermittent exercise Work-rest ratio is strictly prescribed, 

rest interval is predetermined 

Interval method (long-interval, 

medium-interval, and short-

interval methods) 

Work-duration is predetermined, rest 

interval is not strictly prescribed and 

allows complete recovery 

Repetition method 

Game exercise According to the game scenario Game method 

 

Adapted from: Issurin, V. (2008). Principles and basics of advanced athletic training. Ultimate Athlete 

Concepts, Michigan, USA. pg 11. 
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The serial and complex methods outlined by Verkhoshansky (2006) have also attracted the 

focus of researchers in strength and conditioning. The serial method can be considered as 

an extension of the repeat method where the aim is to increase the overall quality of a given 

number of repetitions. In contemporary research the serial method is referred to as cluster 

sets and consists of a series of single repetitions interspersed with ten to thirty seconds rest 

to create an extended set (Haff et al. 2008). Cross-sectional research has established that 

cluster sets can increase accumulated values for velocity and power in comparison to the 

traditional method of performing repetitions continuously (Lawton, Cronin and Lindsell 2006, 

Haff et al. 2003). Results from longitudinal studies have been more varied with some 

evidence to show that cluster training can lead to greater improvements in velocity and 

power (Lawton, Cronin and Lindsell 2004), and other studies either reporting no differences 

(Hansen et al. 2011b) or greater results for the performance of continuous repetitions 

(Rooney, Herbert and Balnave 1994). Further research incorporating exercises that are 

considered most compatible with the serial method (e.g. clean, snatch, jump squat) is 

required to establish potential utility for elite athletes.  

 

The complex method outlined by Verkhoshansky (2006) has received considerable 

research attention over the last fifteen years (Sale 2002). The goal of the complex method 

is to enhance performance during explosive movements (e.g. vertical jump or sprint) by first 

performing a heavy resistance exercise (e.g. maximum squat). The preceding contractile 

activity from the heavy resistance can produce both fatigue and a postactivation potentiation 

effect (PAP), with the balance determining if performance is positively or negatively affected 

(Sale 2002). Numerous acute studies have clearly demonstrated that performance can be 

enhanced with the complex method (Baker  2003, Young, Jenner and Griffiths 1998, 

Hrysomallis and Kidgell 2001, Mitchell and Sale 2011); however, many studies have also 

failed to show positive results (Duthie, Young and Aitken 2002, Scott and Docherty 2004), 

indicating that it may be difficult to create a favourable balance between fatigue and PAP for 

all individuals. Longitudinal research investigating chronic adaptations from the complex 

method have generally been positive with some studies demonstrating superior results 

compared with traditional methods (Adams, O'Shea and O'Shea 1992, Verkhoshansky and 

Tatyan 1973) and others reporting improvements of a similar magnitude (MacDonald, 

Lamont and Garner 2012, Lyttle, Wilson and Ostrowski 1996). Importantly, longitudinal 

studies have failed to incorporate designs that assess whether the training protocols are 

consistently eliciting a PAP effect for each participant. Such a design would be challenging 

and illustrates the difficulty in applying the approach in many practical settings where the 
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balance between fatigue and PAP is required for multiple athletes that may exhibit 

substantial variability with the phenomenon.  

 

Table 2.4: Methodological principles and characteristics of training methods 

Method Description 

Repeat Method Used to develop primarily speed or power. Repetitions are performed until 

form deteriorate or velocity/power drops below desired values 

Interval Method Multiple sets are performed which comprise a large number of repetitions with 

short rest durations between sets 

Serial Method Multiple sets are performed to produce a series; multiple series are then 

performed for each exercise. The rest period between sets and series is 

generally different 

Failure Method Sets are performed until no more repetitions can be completed due to fatigue 

Circuit Training Variant of the interval method where a single set consists of performing 

multiple exercises in sequence 

Contrast Method High velocity repetitions are performed assisted and then with light resistance 

(or vice versa)  

Complex Method Light load high velocity sets are performed after sets of high load low velocity 

repetitions 

 

Adapted from: Verkhoshansky, Y.V. (2006). Special strength training: A practical manual for coaches. 

Ultimate Athlete Concepts, Michigan, USA. pgs 6-8. 

 

In summary, resistance training models are designed to assist practitioners in developing 

effective training programmes, and to facilitate systematic research that can be used to form 

an evidence base. A key feature of these models is to constrain the possible configurations 

and create programmes that stimulate specific adaptations. This process, however, only 
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constrains and still leaves the programmer with an element of creativity. Two of the most 

popular training models for developing resistance training programmes are the acute 

variable model and the means and methods model. The advantage of the former is the 

extensive research base and subsequent guidelines that have been developed. However, it 

has been argued that the acute variable models focus on developing aspects of fitness is 

limited in terms of enhancing sports performance. Instead the means and methods model, 

which was designed for the purpose of improving sports performance, is recommended. 

Currently, this latter model is not supported by a systematic evidence base. In addition, 

diverse interpretations of the model from its conception in Eastern Europe have limited its 

progress. Further development of the model should seek to standardise structure and 

nomenclature prior to conducting original research. 

 

2.1.3 Resistance training and sports performance 

In contrast to recent acknowledgements of potential health benefits associated with 

resistance training, the view that the training modality can be used to improve sports 

performance has a much longer history. The extent to which training with dumbbells and 

barbells could increase strength and functional capacity became clear at the beginning of 

the twentieth century when organised competitive weightlifting sports were created (Fry and 

Newton 2002). Bodybuilders were the first group of athletes to promote resistance training 

to the general public through popular media. However, the extreme muscular hypertrophy 

exhibited by bodybuilders caused many to suggest the training would create athletes that 

were too big and slow. The sport of weightlifting, which was permanently included in the 

Olympic Games in 1904, demonstrated the functional strength, power and athleticism that 

could be developed from the training. Track and field throwers were the first non-strength 

athletes to adopt resistance training as a means of improving sports performance in the 

1950s (Fry and Newton 2002). In the late 1960s American football players began to 

incorporate resistance training as part of their overall physical preparation (Fry and Newton 

2002, Todd 1994). Importantly, college and professional teams began to employ strength 

coaches which greatly expanded the use of resistance training in sports. This progress has 

culminated in virtually all athletes ranging from wrestlers to distance runners now 

incorporating resistance training as part of the overall regime.  

Despite the now wide spread use of resistance training with athletes it remains difficult to 

assess the impact of the training on performance. It is likely that the influence of resistance 

will vary between sports, positions (i.e. different roles in team sports) and between 
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individuals who vary in physical, technical and tactical abilities. From a research 

perspective, quantifying the impact of resistance training on sports performance is difficult 

as performance in sport can be considered a complex multifactorial construct rather than a 

variable that can be directly measured (Atkinson 2000, Currell and Jeukendrup 2008). In 

team sports where resistance training is considered to play a pivotal role in the athletes‟ 

overall preparation, it is unclear what factors determine a given level of performance 

(Atkinson 2000, Currell and Jeukendrup 2008). As a result, assessing the importance of 

resistance training in team sports remains an unresolved issue. Performances in individual 

sports, where time or distance are the dominant factors, provide more appropriate models 

to assess the effects of resistance training. In addition, performance proxies such as 

maximum effort time trials may provide a more suitable testing environment for events 

where competition performance may be significantly influenced by external factors such as 

ambient conditions and tactics of opponents. The following sections provide an overview of 

resistance training and the most widely researched individual sports, which include 

sprinting, distance running and cycling. 

 

Sprinting has previously been described as a multidimensional skill that includes an 

acceleration phase, a transition phase and a maximum velocity phase (Delecluse 1997). 

Faster speeds are achieved by a combination of increased stride length and stride 

frequency. Increases in stride length are achieved by exerting greater support forces during 

ground contact, whereas increases in stride frequency are obtained primarily from the fast 

and coordinated actions of the hip musculature (Dorn, Schahe and Pandy 2012). Using a 

regression approach, Weyand et al. (2000) demonstrated with a heterogeneous group of 

athletes that faster top speeds were best explained by greater ground reaction forces 

expressed relative to bodyweight. This result provides a clear mechanism to explain how 

resistance training could be used to improve performance. Additionally, Weyand et al. 

(2000) reported that during level sprinting foot contact times at maximum speed were 

approximately 0.11 s. This duration is considerably shorter than the time required for 

skeletal muscles to produce maximum force (≈0.6 s (Viitasalo and Komi 1978)); therefore 

resistance training programmes aimed at improving sprinting are suggested to include 

stimuli that would improve variables such as RFD (Siff 2003). Numerous longitudinal studies 

have demonstrated that moderate length resistance training programmes can improve 

aspects of sprint performance. Blazevich and Jenkins (2002) reported that both high- and 

low-velocity resistance training could be used to improve the strength and twenty metre 

acceleration time of elite male junior sprinters over a seven week cycle. However, no control 

group was included and the athletes maintained their sprint training throughout the period 
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making it difficult to assess the overall impact of the resistance training. The majority of 

studies that have investigated the effects of resistance training on aspects of sprinting have 

recruited relatively untrained participants or athletes competing in team sports (Table 2.5). 

Of the nineteen studies reviewed that included both strength and performance measures, 

eighteen reported increases in strength and thirteen reported significant increases in 

measures associated with sprinting performance. Collectively, the results show that transfer 

of increased strength is limited, and large increases in force production capabilities are 

required to create much smaller improvements in sprinting performance. Results from 

multiple studies suggested that the transfer of training may be better improved if heavy 

resistance training is combined with plyometrics or explosive resistance exercises (Lyttle, 

Wilson and Ostrowski 1996, Kotzamandis et al. 2005, Ross et al. 2009). More longitudinal 

studies are required with elite level athletes conducted over longer time periods (i.e. one 

year vs. typical eight to twelve weeks) to portray a more relevant picture of the effectiveness 

of resistance training to improve sprint performance.   
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Table 2.5: Summary of previous studies investigating the effects of strength training on 

sprinting performance 

Authors Participants Intervention Outcome 
measures 

% Change in 
performance 

Blazevich and 
Jenkins (2002) 
 

Nationally 
ranked male 
junior sprinters 
(n=10) age 
19.0±1.4 yr.  

7wk, 4wk of standard 
training comprising two 
resistance training 
sessions per wk (squats, 
hip extension, leg curl, leg 
extension) in addition to 
sprint training. After 4wk, 
participants were split into 
high velocity (30-50% 
1RM) and low velocity 
group (70-90% 1RM) 

1RM squat,  
 
 
Isokinetic hip 
extension 
 
20 m 
acceleration 
performance 
 
Flying 20 m 
performance 

*High velocity = 12.4% 
*Low velocity = 11.8% 
 
*High velocity = 15.6% 
*Low velocity =  15.4% 
 
*High velocity = 4.3% 
*Low velocity = 2.9% 
 
 
High velocity = 1.9% 
Low velocity = 2.4% 
 

Chelly et al. 
(2009)  

Junior soccer 
players (n=22) 
17.0±0.4 yr. 

8 wk intervention, training 
2 days per wk. Resistance 
training group performed 
heavy back squats, and a 
control group   

1RM half 
squat 
 
5 m sprint 
performance 
 
Maximum 
sprint velocity 

*Resistance = 28.6% 
Control = 3.7% 
 
*Resistance = 7.1% 
Control = 0.6% 
 
*Resistance = 11.9% 
Control = 4.2% 
 

Coutts et al. 
(2004)  
 

Youth male 
rugby league 
players (n=42) 
age 16.7±1.1 
yr. 

Supervised and 
Unsupervised groups. 
Same 12 wk program 
given, 3 days per wk, 
linear periodized program  

3RM squat 
 
 
10 m sprint 
performance 
 
20 m sprint 
performance 

*Supervised = 40.1% 
*Unsupervised = 25.5% 
 
*Supervised = 1.2% 
*Unsupervised = 1.1% 
 
*Supervised = 1.2% 
*Unsupervised = 0.8% 
 

Deane et al. 
(2005) 
 

Recreationally 
trained male 
and female 
weight trainers 
(n=24 male 
and n=24 
female) 
22.2±1.4 yr. 

8wk intervention, 
treatment and control. 
Training: 3 days per wk, 
elastic tubing hip flexor 
exercise. 

Isometric hip 
flexor torque 
 
10-yard dash 
performance 
 
40-yard dash 
performance 

*Treatment = 11.4% 
Control = -6.6% 
 
*Treatment =11.4% 
Control = -3.7% 
 
*Treatment = 4.4% 
Control = -0.4% 
 

Delecluse et 
al. (1995) 

Untrained 
college aged 
males (n=78) 
20.4±1.6 yr. 

7wk intervention, high 
resistance, high velocity 
and two control groups 
(running only and 
passive). Training: 3 days 
per wk (2 specific training, 
1 sprint training). High 
resistance followed 
periodized program 
including standard upper 
and lower body exercises. 
High velocity group 
performed unloaded 
plyometric exercises.  

100 m 
performance  
 
 
 
10 m 
acceleration 

Heavy resistance = 0.2% 
*High Velocity = 1.7% 
Run Control = -0.7% 
Passive Control = -0.3% 
 
Heavy resistance = 1.1%  
*High Velocity = 7.1% 
Run Control = -1.2% 
Passive Control = -3.6% 
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Fry et 
al.(1991)  

Division I 
female 
volleyball 
players (n=14) 
19.6±0.6 yr. 

12 wk intervention, 
comprising resistance 
training and plyometric 
drills. Strength training 
comprised whole body 
workouts in a periodized 
program.  

1RM squat 
 
10-yard dash 
performance 
 
40-yard dash 
performance 
 

*20.5% 
 
8.2% 
 
 
0.9% 

Harris et al. 
(2000)  

Trained male 
athletes (n=42)  
19.0±1.8 yr. 

13 wk intervention, 
preparatory phase of 4 
wks, then participants split 
into 3 groups for 9 wks: 
High force, High power 
and combination. Training 
4 days per wk. High 
training group used loads 
of 80-85% 1RM, High 
power used loads of 30% 
maximum force. 
Combination group 
performed both types of 
training. 
 

1RM squat 
 
 
 
30 m 
performance 

*High force = 9% 
High power = 3.5% 
*Combined = 10% 
 
High force =0.1% 
High power = -0.7% 
Combined =1.4% 
 

Harris et al. 
(2008)  

Elite rugby 
league players 
(n=18)  
21.8±4.0 yr. 

4 wk familiarisation 
period, then 6 wk 
intervention, training 6 
days per wk. Two groups, 
both performing squat 
jumps, one group with 
80% 1RM, and the other 
the load that maximised 
their power output.   
 

1RM Squat 
 
 
10 m sprint 
performance 
 
30 m sprint 
performance 

*Strength = 16.6% 
*Power = 9.2% 
 
*Strength = 2.7% 
*Power = 1.6% 
 
*Strength = 1.7% 
*Power = 1.3% 
 

Hoffman et al. 
(2004) 
 

Division III 
male American 
football 
players (n=20) 
19.1±1.3 yr. 

15 week intervention, 
training 4 days per wk. 
Participants splint into a 
powerlifting group 
performing periodized 
program including 
traditional resistance 
exercises, and a Olympic 
weightlifting group 
performing similar 
exercise with addition of 
Olympic weightlifting 
movements. 
 

1RM squat 
 
 
40-yard dash 
performance 

*Powerlifting = 11.5% 
*Olympic = 12.6% 
 
Powerlifting = 0.8% 
Olympic = 1.4% 
 

Kotzamandis 
et al. (2005)  

Soccer players 
and age 
matched 
recreational 
controls (n=32)  
17.4±0.8 yr. 

13 wk intervention, 
training 3 days per wk. 
Soccer players were split 
into two groups: heavy 
resistance training and a 
combined group 
performing resistance 
training and speed 
sessions. Both training 
programs were 
periodized. 
 
 

1RM half 
squat 
 
 
30 m 
performance 

*Strength = 10.0% 
*Combined = 8.7% 
Control = 1.5% 
 
Strength = 0.4% 
*Combined = 3.3% 
Control = 0.3%% 
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Lyttle et al. 
(1996)  

Male 
recreational 
athletes with 
no resistance 
training 
experience 
(n=39) 
23.5±2.4 yr. 

8 wk intervention, training 
2 days per wk. Maximum 
power group performing 
squat jumps and bench 
press throw, combined 
group performing lower 
body maximum strength 
and plyometric drills. 

1RM squat 
 
 
40 m 
performance 
 
Flying 20 m 
performance 

*Power = 14.7% 
*Combined = 14.8% 
 
Power = 1.7% 
Combined = 0.8% 
 
Power = 0.4% 
Combined = 1.3% 
 

McBride et al. 
(2002)  

Recreationally 
trained males 
with resistance 
training 
experience. 
(n=26) 
23.2±1.5 yr. 

8 wk intervention, training 
2 days per wk. Maximum 
strength group performing 
jump squats with 80% 
1RM, maximum power 
group performing jump 
squats with 30% 1RM and 
a control group. 

1RM squat 
 
 
 
5 m 
performance 
 
 
10 m 
performance  
 
 
20 m 
performance 

*Strength = 8.6% 
*Power = 10.9% 
Control = 6% 
 
*Strength = -6.8% 
Power = 0.8% 
Control =-3.7* 
 
Strength = -4.4% 
Power =2.2% 
Control =-1.1% 
 
Strength = -1.8% 
Power = 1.6% 
Control = 1.0% 
 

Murphy and 
Wilson (1997) 
 

Recreationally 
trained males 
with resistance 
training 
experience. 
(n=27) 
22.0±4.0 yr. 

8 wk intervention, training 
2 days per wk. Heavy 
resistance group and a 
control group. The 
resistance group 
performed a periodized 
program using the squat.  
 

1RM squat 
 
 
40 m sprint 
performance 

*Strength = 20.9% 
Control = 4.0% 
 
*Strength = 2.3% 
Control = 1.0% 
 

Ronnestad et 
al. (2008)  

Professional 
male soccer 
players (n=21) 
22.5±2.3 yr. 

8 wk intervention, training 
2 days per wk. Moderate 
load resistance training 
comprising the squat and 
hip flexion exercise, 
combined group 
performing resistance and 
plyometric training, and  
control group. 

1RM Squat 
 
 
 
10 m sprint 
performance 
 
 
Flying 10 m 
performance  
 
 
40 m 
performance 

*Pooled strength and 
combined = 25% 
Control = 4% 
 
*Pooled strength and 
combined = 1.7% 
Control = 0% 
 
*Pooled strength and 
combined = 0.8%  
Control = 0% 
 
*Pooled strength and 
combined = 1.1% 
Control = 0.8% 
 

Ross et al. 
(2009)  

Non-elite male 
athletes with 
experience in 
resistance 
training.  
(n=25) 
19.8±1.5 yr 

8 wk intervention, training 
4 days per wk. Resistance 
group, spring group and 
combined group. 
Resistance training was 
periodized and included 
upper and lower body 
traditional resistance 
exercises. Sprint training 
included resisted and 
non-resisted sprints 

1RM squat 
 
 
 
20 m sprint 
performance 
 
 
30 m sprint 
performance 

*Resistance = 4.5% 
*Sprint = 5.5% 
*Combined = 5.3% 
 
*Resistance = 1.6% 
*Sprint = 5.0% 
*Combined = 8.0% 
 
Resistance =0.6%  
Sprint =1.6% 
*Combined =2.3% 
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Saez de 
Villarreal et al. 
(2012)  

Male 
recreational 
athletes with 
no resistance 
training 
experience 
(n=60) 
20.4±2.1 yr 

8 wk intervention, training 
3 days per wk. Five 
groups were created 
including: 1) combined 
training, 2) heavy-
resistance, 3) Power 
resistance training 4) 
Ballistic resistance 
exercise, 5) plyometric  

1RM squat 
 
 
 
 
 
 
 
 
30m sprint 
performance 

*Combined = 20.3% 
*Heavy resistance = 
11.1% 
*Power resistance = 
17.9% 
*Ballistic resistance 
=14.3% 
*Plyometric =  6.8% 
 
Combined = 0.23% 
Heavy resistance = 0.13% 
Power resistance = 0.33% 
Ballistic resistance 
=0.68% 
Plyometric =  0.91% 
 

Tricoli et al. 
(2005)  

Recreationally 
trained males 
with resistance 
training 
experience. 
(n=32) 
22.0±1.5 yr. 

8 wk intervention, training 
3 days per wk. Olympic 
weightlifting group 
performing high pulls, 
cleans and jerks. Vertical 
jump group performing 
vertical and horizontal 
plyometric drills, and a 
control group.  

1RM half 
squat 
 
 
10 m 
performance  
 
 
30 m 
performance 

*Weightlifting = 43.7% 
*Plyometric = 47.8% 
Control = 6.4% 
 
*Weightlifting = 3.7% 
Plyometric = 2.7% 
Control = 0.6% 
 
Weightlifting = 0.1% 
Plyometric = 0.8% 
Control = -0.6% 
 

Wilson et al. 
(1996)  

Recreationally 
trained males 
with resistance 
training 
experience. 
(n=27) 
23.8±4.8 yr. 

8 wk intervention, training 
2 days per wk. Strength 
training group performing 
the squat and bench 
press with progressive 
increases in load, and a 
control group.  
 

1RM Squat 
 
 
40 m 
performance 

*Strength = 20.9% 
Control = 4.0% 
 
*Strength = 2.3% 
Control =0.0% 

Wilson et al. 
(1993)  

Recreationally 
trained males 
with resistance 
training 
experience. 
(n=55) 
23.6±5.3 yr. 

10 wk intervention, 
training 2 days per wk. 
Four groups (3 
experimental and 1 
control). Two 
experimental groups 
performed 6 to 10 reps in 
the squat. The Strength 
training group performed 
the exercise with a heavy 
load, whereas the power 
group performed the 
exercise with a 30% 1RM 
load. The third 
experimental group 
performed drop jumps.  
 

Isometric 
Squat 
 
 
 
30 m 
performance 

*Strength = 14.4% 
Power = 2.0% 
Plyometric = 0.7% 
Control = -2.7% 
 
Strength = 0.2% 
*Power = 1.1% 
Plyometric = 0.2% 
Control = -0.8% 
 

*Significant difference between pre and post measures (p<0.05) 
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The case for resistance training improving performance in distance running is less obvious 

than that for sprinting. Distance runners were initially hesitant to perform resistance 

exercises due to concerns that muscle hypertrophy may reduce capillary density and 

mitochondrial function, thus reducing aerobic capacity (Yamamoto et al. 2008). In addition, 

no clear mechanisms to explain how resistance training could improve endurance 

performance were originally proposed. Standard performance models of endurance running 

predict that three physiological variables (𝑉 𝑂2max, % 𝑉 𝑂2max at lactate threshold and 

running economy) combine to determine average running speed (Bassett and Howley 

2000). Initial studies conducted to investigate the potential for resistance training to improve 

running performance demonstrated that the training had no effect on  𝑉 𝑂2max (Hickson et 

al. 1988, Hennessy and Watson 1994, Johnston et al. 1997) or lactate threshold values  

(Hickson et al. 1988, Paavolainen et al. 1999) in trained individuals. A plausible means to 

explain how resistance training could improve endurance performance of well trained 

athletes was first identified by Johnston et al. (1997). The authors focused on the effect of 

resistance training on running economy, hypothesising that increased strength could lead to 

improved efficiency. Johnston et al. (1997) conducted their intervention study with twelve 

non-elite female distance runners. Each athlete performed similar endurance training 

sessions over a period of ten weeks, with six participants randomly allocated to the 

intervention condition, which included an additional three resistance training sessions per 

week. The resistance training sessions comprised fourteen standard resistance exercises 

split into two groups and performed on alternating sessions. Repetitions ranged from 6RM 

to 20RM with progressive increases in load as the athletes increased their strength. 

Following the ten week training period the intervention group increased their upper and 

lower body strength by 24.4 and 33.8%, respectively. The control group exhibited no 

increases in strength over the training period. Changes in running economy were restricted 

to the intervention group where a significant increase of 4% on average was obtained. 

Based on the study design, Johnston et al. (1997) were unable to explain the mechanisms 

by which resistance training improved running economy. The authors speculated that 

improvements may have been caused by a number of mechanisms including shifts in 

ATPase activity of individual muscle fibres, changes in running mechanics, and changes to 

motor unit recruitment patterns. 

 

Another influential study in the area of resistance training and endurance performance was 

conducted by Paavolainen et al. (1999). The authors recruited twenty two elite male cross 

country runners and used stratified sampling to allocate participants to the intervention or 

control group based on their aerobic performance. The experimental training period was 
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conducted over nine weeks and was performed following the competitive season. Those 

allocated to the control group performed standard endurance sessions and circuit training. 

Those allocated to the intervention group replaced approximately 30% of the standard 

endurance training volume with resistance training. The resistance training sessions were 

designed in attempts to equate the total training volume; however, the authors did not 

explain the methods used to calculate or equate volumes for each training mode.  In 

contrast to the resistance training protocols used by Johnston et al. (1997), Paavolainen 

and colleagues (1999) used only explosive lower-body resistance exercises with light loads 

performed at maximum velocity. This type of training was used in an effort to prioritise 

neuromuscular adaptations rather than gross changes to the skeletal musculature. At the 

end of the training intervention, slight decreases in strength were measured for the control 

group, whilst significant increases were obtained for those performing resistance training. In 

accordance with the classical model of endurance performance, Paavolainen et al. (1999) 

assessed changes in 𝑉 𝑂2max, lactate threshold and running economy. The researchers 

found that the inclusion of resistance training failed to improve 𝑉 𝑂2max and lactate 

threshold, but did improve running economy by 8.1%. Five kilometre running time was also 

assessed as a performance related measure. Only those allocated to the experimental 

condition demonstrated improvements in performance, with a significant correlation 

obtained with the pooled data for improvements in 5 km time and running economy (r = 

0.54, p<0.05).  

 

More recently, research investigating the effects of resistance training on endurance 

performance has distinguished between short-duration endurance capacity (<15 min) and 

long-duration endurance capacity (>30 min) (Aagaard and Andersen 2010). For both 

categories, evidence is now available to demonstrate that performance of well-trained and 

top-level endurance athletes can be improved when heavy resistance training is 

incorporated within the training regime (Storen et al. 2008, Mikkola et al. 2007b, Mikkola et 

al. 2007a). This is despite cellular studies revealing that resistance and endurance training 

create distinct and cross inhibitory signalling events involving the Akt/mTOR and AMPK 

pathways, respectively (Atherton et al. 2005, Baar  2006). At present it is still not fully 

understood which adaptive mechanisms improve performance, however, it is believed that 

the mechanisms responsible are distinct for short-term and long-term endurance 

performances (Coffey and Hawley 2007). In a recent review of potential mechanisms, 

Aagaard and Andersen (2010) concluded that future research to resolve the issue should 

investigate changes in the percentage of type IIA muscle fibres and increased RFD as the 

most likely candidates to explain increases in running economy and performance.  
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Similar to over-ground running, the sport of cycling is traditionally separated into sprint and 

endurance events (Foley, Bird and White 1989). Studies comparing the anthropometric and 

physical qualities of the two groups have reported that sprint cyclists are generally shorter 

and heavier, with larger muscular girths and greater strength levels than endurance cyclists 

(Foley, Bird and White 1989, McLean and Parker 1989). Additionally, correlation research 

conducted with sprint cyclists from local-level to international-calibre revealed that strength 

and power were strongly correlated with performance related measures, with RFD 

exhibiting low to moderate correlation values (Stone et al. 2004). Based on the results from 

these studies it would be expected that resistance training would be most effective in the 

performance enhancement of sprint cyclists. However, longitudinal research has focused on 

the potential for resistance training to improve performance of endurance cyclists. This 

apparent inconsistency reflects the extensive research base that has investigated 

concurrent strength and endurance training, with cycling providing a contrasting low impact, 

high volume model relative to running. In a recent systematic review of resistance training 

and endurance cycling (Yamamoto et al. 2010), the results from five longitudinal studies 

that included high-level participants, appropriate training regimes and performance outcome 

measures were investigated (Table 2.6). Results were mixed, with two studies reporting no 

differences between the resistance and control group (Bishop et al. 1999, Jackson, Hickey 

and Reiser 2007), and three of the studies reporting significantly greater improvements in 

performance related measures in those exposed to resistance training (Hickson et al. 1988, 

Paton and Hopkins 2005, Bastiaans et al. 2001). Both studies that reported no significant 

differences between groups organised the experimental training by simply adding 

resistance workouts on top of a relatively heavy endurance training load. In contrast, studies 

that reported greater improvements in performance with resistance training attempted to 

substitute an equivalent portion of the athlete‟s regular endurance training. The authors of 

the systematic review hypothesised that without replacement an imbalance between the 

stimulus and accumulated fatigue was likely to have occurred and subsequently 

compromised the adaptive response (Yamamoto et al. 2010). No mechanisms were 

proposed to explain increases in performance in those studies reporting a positive effect 

from resistance training. However, in a recent study conducted with well-trained competitive 

cyclists it was shown that eight weeks of maximal strength training significantly improved 

cycling economy.(Sunde et al. 2010) Therefore, it appears that similar to endurance 

running, improvements in performance are obtained through improved efficiency. Future 

research is required to establish the specific adaptive responses that improve cycling 

economy in order to optimise the training regimes used with athletes.  
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Table 2.6: Review of longitudinal studies investigating the effects of resistance training with highly trained cyclists  

Author Participants Training Protocol Outcome 
Measures 

Findings Improvement 

Bastiaans et 
al. (2001)  

Trained male competitive 
cyclists (n=14). Completed a 
minimum of 10h/wk (13±3 
h/wk). Allocated to treatment 
(n=6, 24±8 yr) and control 
(n=8, 29±12) 

9 wk treatment: replaced a portion 
of endurance training with high 
repetition, low weight, explosive 
resistance training: 4x30 squats, 
4x30 single-leg step-ups, 2x30 leg 
pull. 

30 s STP, 
OHT 

Treatment 
attenuated loss in 
STP from 
endurance training 
only 

7.1% increase in 
maximum power 
output in 
treatment group 

Bishop et al. 
(1999)  

Endurance trained female 
cyclists.  (n=21), 18-42 yr. 
Allocated to resistance training 
(n=14) and control (n=7) 

12 wk treatment: In addition to 
endurance training performed 
resistance training 2d/wk. 
Performed periodized program of 
the back squat to failure. 
 

LT, 𝑉 𝑂2peak, 
OHT 

1RM CO squat 
increased. No 
change in outcome 
measures 

No between group 
differences in 
performance 

Hickson et 
al. (1988)  

Male and female [(n=6), (n=2)] 
endurance cyclists and 
runners  

10 wk treatment: replaced a portion 
of endurance training with lower 
body resistance training with heavy 
loads (80% 1RM for 5 reps) in the 
squat, knee extension and hip 
flexion. 
 

STP, TTE STP and TTE were 
improved with 
resistance training 

STP increased 
11%,  
TTE increased 
20% 

Jackson et 
al. (2007)  

Male and female club trained 
cyclists [(n=18), (n=5)]. 
Minimum training load of 
5hrs/wk. Allocated to high 
resistance (n=9, 31±10), high 
repetition (n=9, 32±9) and 
control (n=5, 27±10) 

10 wk treatment: In addition to 
endurance training performed 
resistance training 2d/wk. Non-
periodized program. Squat, leg 
press, leg curls, single leg step-ups, 
high resistance 4x4 85% 1RM, low 
resistance 2x10 50% 1RM 
 

LT, 𝑉 𝑂2peak, 
TTE 

No change in 
outcome measures 

No between group 
differences in 
performance 

Paton and 
Hopkins 
(2005)  

Male cyclists with a minimum 
of 3 years competitive 
experience. (n=18) Allocated 
to treatment (n=9, 22±8) and 
control (n=9, 24±9),  

5 wk treatment: replaced a portion 
of endurance training with high 
repetition, low weight, explosive 
resistance training: vertical jumps 
and interval cycling  

LT, 𝑉 𝑂2peak, 
1 km TT, 4 km 
TT   

Improved sprint and 
endurance 
performance gains 

8.7% increase in 1 
km power, 8.1% 
increase in 4 km 
power 

CO = concentric only, LT = Lactate threshold, OHT = 1 hour cycle test, STP = short term performance, TT = time trial, TTE = time to exhaustion, 𝑉 𝑂2peak = 

peak oxygen uptake,  
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In summary, it is now commonly recommended that athletes in virtually all sports perform 

resistance training to directly or indirectly improve performance. However, due to the 

complexity of many sports it remains difficult to quantify the impact that resistance training 

may have. An extensive research base has emerged to demonstrate that well-trained 

athletes can improve their ability to sprint and maintain high work-loads for extended 

periods when running or cycling by incorporating resistance training within their overall 

preparation. However, substantial increases in variables related to resistance training may 

be required to produce only modest improvements in performance. As running plays a 

major role in many sports the finding that resistance training can improve this ability 

highlights one area where the training could improve overall sporting performance. In 

addition, research demonstrating resistance training can improve performance of discrete 

sporting movements and create favourable changes in body composition further contributes 

to the growing evidence base from which to recommend the mode of training. The main 

focus for contemporary research in the field of resistance training and sports performance is 

to determine the most appropriate training protocols for each sport and ultimately each 

individual.  

 

2.2 Strength athletes 

 

As highlighted previously in this chapter, one of the major difficulties with prescribing 

resistance training is the creation of a regime from an almost unlimited number of possible 

configurations. Resistance training models are frequently used to assist in creating 

appropriate long-term training programmes; however, another approach which has been 

used since athletes began resistance training is to reproduce (to varying degrees) the 

programmes of the most experienced and successful resistance trained athletes. 

Collectively these individuals are referred to as strength athletes and comprise sportsmen 

and women whose training almost exclusively consists of resistance training. Four main 

groups of strength athletes including bodybuilders, Olympic weightlifters, powerlifters and 

strongmen are commonly recognised (Figure 2.2). These athletes are considered to be the 

strongest individuals in the world, yet a number of differences in morphology and function 

have been noted between the groups. It is the extensive but specific adaptations that each 

group obtains from training influenced by decades of trial and error that has led coaches 

and athletes to select what they perceive as the optimum training regime to develop a given 

attribute. Competitive bodybuilding has existed for over a century with modern athletes 
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exhibiting extreme muscular hypertrophy and low levels of adipose tissue (Fry and Newton 

2002). In sports such as rugby and American football where body and total muscle mass 

are important and show increasing trends at rates far above the general population (Olds 

2001), strength and conditioning coaches frequently incorporate training practices 

developed by bodybuilders (Gamble 2004). These practices generally involve stimulating 

different muscular groups of the body in separate sessions with the goal to create moderate 

forces and large acid-base disturbances (Siff 2003, Crewther, Cronin and Keogh 2006). In 

addition, a range of advanced training methods have been developed by bodybuilders 

which attempt to augment and manipulate the balance between force production and 

metabolic stress to create adaptations for individuals with extensive training experience 

(Kraemer and Fleck 2004, Siff 2003). Bodybuilders are the only group of strength athletes 

whose performance is not determined by their ability to lift heavy loads. As a result, it is 

often stated that bodybuilders train for aesthetics and not for function, and therefore athletes 

should only perform similar training practices in limited circumstances (Siff 2003). In a 

recent study conducted by Di Naso et al. (2012) a comparison of thigh muscle cross 

sectional area and strength measured during performance of the back squat was made 

between bodybuilders, Olympic weightlifters, and powerlifters. The athletes were all of 

similar mass with bodybuilders exhibiting a lower fat percentage and the largest muscle 

cross sectional area. However, the Olympic weightlifters and powerlifters were able to 

produce significantly greater forces despite their reduced muscle cross sectional area. The 

findings from Di Naso et al. (2012) support the hypothesis that training practices developed 

by bodybuilders may optimise the muscular hypertrophy response but are not the most 

effective for increasing force capabilities.  

 

Figure 2.2: Representative images of elite A) Bodybuilders, B) Olympic weightlifters, C) 

Powerlifters, D) Strongman Athletes 
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Over the last thirty years interest in the training practices of Olympic weightlifters has 

steadily increased. Research conducted by Garhammer (Garhammer  1993, Garhammer  

1980, Garhammer and McLaughlin 1980) demonstrated that extremely large force and 

power values Over the last thirty years interest in the training practices of Olympic 

weightlifters has steadily increased. Research conducted by Garhammer (1993, 1980a, 

1980b) demonstrated that extremely large force and power values were generated when 

elite athletes performed either the snatch, clean and jerk, or any of the main variations of 

these movements. A large number of subsequent biomechanical studies have emphasised 

that non-elite athletes trained in the Olympic weightlifting movements can also produce 

large force and power values (Hori et al. 2008, Kawamori et al. 2005, Stone et al. 2006). As 

power is considered a key mechanical variable in the performance of many sporting tasks, 

the majority of researchers and coaches in the field of strength and conditioning currently 

recommend that most athletes perform the main Olympic weightlifting exercises and their 

close derivatives (Kawamori et al. 2005). In addition to the large power outputs, research 

has also established that the gross movement pattern used in the exercises are similar to 

many sporting actions that include rapid triple-extension of the hip, knee and ankle (Stone 

et al. 2006, Garhammer and Gregor 1992). However, despite the hypothesis that training 

with weightlifting movements can transfer effectively to improve athletic performance there 

have been concerns raised regarding the use of these exercises for general athletes 

(Bruce-Low and Smith 2007). These concerns generally relate to the perceived difficulty 

and time required to develop proficiency with the movements. In addition, a high potential 

for injury is often cited (Hedrick and Wada 2008). Biomechanical research conducted during 

competitions of elite weightlifters confirms that there is a range of demanding technical 

features associated with each of the movements (Gourgoulis et al. 2000, Kauhanen, 

Hakkinen and Komi 1984). However, research conducted with male lacrosse athletes 

demonstrated that technique could be improved with as few as twelve sessions when 

providing consistent verbal and visual feedback (Winchester et al. 2005). In addition, 

Comfort and colleagues (2012, 2011) have demonstrated that less technically demanding 

variations of the main weightlifting movements can be used to produce similar values for 

key kinematic and kinetic variables in both experienced and novice athletes. Determining 

the injury risk of a specific training practice is difficult due to confounding factors and the 

concurrent use of multiple types of training which is typical for most athletes. Evidence does 

show that soft tissue injuries of the wrists, shoulders, hip, back, knees and ankles are 

relatively common among individuals who engage in training with weightlifting movements 

(Hedrick and Wada 2008, Konig and Biener 1990). However, injury rates have been shown 

to be less than those obtained during other sporting activities such as American football, 

basketball and tennis for young athletes (Hamill 1994). In addition, it is unclear to what 
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extent injuries obtained during weightlifting are dependent upon improper exercise 

instruction and/or programming.     

 

More recently, practitioners in the field of strength and conditioning have demonstrated 

interest in the training practices of strongman competitors and powerlifters. Interest in the 

sport of strongman represents a progression of the functional training perspective which has 

emerged over the last decade. In general, functional training seeks to enhance sporting 

performance by performing exercises that incorporate multiple segments of the body and 

often require large displacements in all three planes (Siff 2002). Whilst some researchers 

have criticised this approach on the basis of limited research and highly speculative 

theoretical underpinnings (Siff 2002), the functional training perspective remains the primary 

motivation for recommending strongman training for general athletes (Waller, Piper and 

Townsend 2003, Zemke and Wright 2011). The sport of strongman is distinct from other 

strength sports in that there is no set competition structure, and instead, a variable format is 

used with each competition featuring approximately 4 to 6 different events from a much 

larger repository. Each event is selected to test various attributes of the athlete‟s strength 

and endurance. Many of the activities require athletes to locomote with implements that are 

unbalanced and believed to represent a challenge that is distinct from traditional resistance 

exercises and therefore more likely to transfer to sporting performance (Zemke and Wright 

2011). To test this hypothesis, McGill et al. (2009) compared resisted locomotive activities 

performed in strongman competitions with more traditional lifting tasks using a world-class 

competitor. EMG and electromagnetic tracking of the body were used to assess muscular 

activity and loads experienced around the trunk. The results demonstrated that there were 

significant differences between the two types of tasks with greater lumbar loads and trunk 

stiffness created during the resisted locomotive activities. Analyses revealed that 

differences were caused by greater co-contraction of trunk muscles during the more mobile 

activities to protect the spine. The authors concluded that the distinct biomechanical 

stimulus created provided a rationale to include the unique activities of strongman in the 

training of general athletes (McGill, McDermot and Fenwick 2009). Additional cross-

sectional research from various strongman activities including car pulling (Berning et al. 

2007) and tyre flipping (Keogh et al. 2010) has shown that very high physiological stress is 

created, providing support for practitioners that recommend the training to improve the 

anaerobic conditioning of athletes (Waller, Piper and Townsend 2003, Hedrick  2003). 

Further biomechanical and physiological research is required with general athletes 

performing strongman activities to determine if constructive stimuli and subsequent 

beneficial adaptations can be obtained.   
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In contrast to the relatively new appreciation of the potential benefits associated with 

strongman activities, the resistance training practices of general athletes have been 

influenced by powerlifters for a much longer period of time. The first powerlifting 

competitions were held in the 1960s in North America (Fry and Newton 2002). Competitors 

were separated into categories based on body mass and given three attempts to lift the 

heaviest load possible in the squat, bench press and deadlift. These exercises were 

selected to provide a measure of the athletes total body strength. Based on the extremely 

heavy loads that could be lifted with each movement and the large forces produced, the first 

strength and conditioning coaches replicated many of the training practices used by 

powerlifters with their own athletes (Todd 1994). Since the initial competitions, the training 

methods of powerlifters developed and continued to influence the design of maximum 

strength regimes of other athletes. However, until recently, the development of training 

practices used by powerlifters appeared to be relatively unaltered and featured only small 

changes in the design of training cycles. With the rapid proliferation of internet sites 

dedicated to powerlifting, several novel training practices are now promoted. Examples 

include the use of unconventional barbells, resistance in the form of chains and bands, and 

the performance of fast velocity repetitions with sub-maximum loads (Simmons 2007, Tate 

2006). At the same time novel training practices have been promoted, there has been a 

large increase in the competitive standard of powerlifting. Over the last decade world best 

performances in the squat and bench press in particular have dramatically increased. Some 

individuals have advocated a cause and effect relationship between recent developments in 

powerlifters training practices and improved performances (Tate 2006). This possibility has 

led many strength and conditioning coaches to incorporate the practices within their 

athlete‟s resistance training regimes. At present it is not known whether the novel training 

practices have caused the recent improvements in powerlifting or will be beneficial for 

general athletes. It is important to acknowledge that there are many factors that could have 

contributed to improved performances in powerlifting including increases in participant 

numbers, rule changes, advancements in ergogenic equipment, use of nutraceutical and 

pharmacological agents, etc. In addition, it is unclear which training practices are actually 

used by successful powerlifters as financial incentives and sponsorship may influence the 

information presented.   

 

Researchers in sport and exercise science have begun to investigate some of the most 

widely promoted contemporary training practices used by powerlifters. The majority of the 

research conducted thus far has compared the biomechanical stimulus created during novel 

practices with that produced during more traditional training (Ebben and Jensen 2002, 
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McBride et al. 2010, Doan et al. 2002). Biomechanical research appears to be particularly 

well suited for this area of investigation, based on the rationales that have been proposed to 

account for the apparent success of the novel training practices. Indeed, many forms of 

training associated with maximum strength and power development involve muscular 

actions over relatively short durations and therefore are unlikely to induce extensive acute 

metabolic and hormonal responses that would warrant the interest of physiologists. Instead, 

the proposed success of the novel training practices and other approaches focused on 

developing strength and power are considered most influenced by their potential to 

maximise biomechanical variables (e.g. force, impulse, work, power acceleration) 

(Crewther, Cronin and Keogh 2005), or to activate specific muscle groups and limb 

movements related to performance in sporting tasks (Siff 2003). The following sections of 

the literature review discuss in greater depth the development and use of biomechanics 

research as a means of investigating resistance training practices. The following sections 

also include discussion of the theoretical frameworks that underpins much of the research 

for this PhD. 

 

2.3 Application of Biomechanics 

 

2.3.1 Traditional applications 

Traditionally, the application of biomechanics to resistance training has been viewed from 

the perspectives of technique analysis and fundamental mechanical concepts. The 

technique analysis approach has been used widely by sports biomechanists in all fields, 

and has been adopted in the study of resistance training mainly to inform exercise selection 

(Knudson 2003). In particular, technique analysis has been used to assess the benefit-to-

risk ratio of particular movements, and to determine which exercises are most sport-specific 

(Knudson 2003). Both qualitative and quantitative approaches have been used extensively 

when analysing exercise techniques. The squat has been the most widely investigated 

resistance training exercise as it is viewed as the most popular and important for developing 

strength and power, but has also been perceived to present a significant injury risk 

(Chandler and Stone 1991). Qualitative analyses of squat technique generally section the 

movement into phases and evaluate performance on adherence to key technical points 

(examples are displayed in Table 2.7) (Baechle and Earle 2008), which are based on 

principles of movement and data gathered from quantitative studies. For example, bar 
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position is selected as a key technical point on the principle of torques and the subsequent 

resistive moments experienced at the hip and lower back; whereas the recommended 

neutral spine position is influenced by research reporting that flexed postures reduce the 

extensor component of the muscle force and limit capacity to resist anterior shear forces at 

the lumbar spine (McGill, Hughson and Parks 2000).  

 

Table 2.7: Key technique points for the squat 

Starting position Downward movement Upward movement 

Grasp the bar with a closed, 

pronated grip in one of two 

positions: 

Maintain a position with the 

back flat, elbows high and the 

chest up and out 

Maintain a position with the 

back flat, elbows high and the 

chest up and out 

1) High bar position – above 

the posterior deltoids at the 

base of neck (handgrip slightly 

wider than shoulder width) 

Allow the hips and knees to flex 

slowly whist maintaining the 

torso-to-floor angle relatively 

constant 

Extend the hips and knees at 

the same rate (to keep the 

torso-to-floor angle constant) 

2) Low bar position – across 

the posterior deltoids at the 

middle of the trapezius 

(handgrip wider than shoulder 

width) 

Keep the heels on the floor and 

the knees aligned over the toes 

Keep the heels on the floor and 

the knees aligned over the toes 

Lift the elbows up with chest up 

and out, Tilt the head slightly up 

Continue flexing the hips and 

knees until the thighs are 

parallel to the floor, the trunk 

begins to round or the heels 

rise off the floor 

Continue extending the hips 

and knees to return to the 

starting position 

Position the feet shoulder width 

apart with the toes pointed 

slightly outward 

Do not bounce at the bottom of 

the movement 

Ensure that the knees and hips 

are fully extended and not 

hyper-extended 

 

Adapted from: Baechle, T.R. Earle, R.W. (2008). Essentials of strength training and conditioning. Human 

Kinetics, Champaign, Il. pgs 350-351. 
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Quantitative analyses of any movement require the selection of key variables (Lees 2002). 

When evaluating the benefit-to-risk ratio of resistance training exercises the key variables 

have traditionally included the measurement of joint torques to assess muscular effort and 

joint forces to assess injury potential. For the squat, quantitative analyses have generally 

focused on the knee where injury concerns are greatest (Chandler and Stone 1991, 

Schoenfeld 2010). Measurement of joint forces at the knee have revealed extremely large 

compressive forces of up to 8000 N (Nagura et al. 2002) and shear forces of up to 2700 N 

(Donnelly, Berg and Fiske 2006) with values increasing at greater flexion angles. Using 

more advanced mechanical models and integrating EMG, estimates of soft tissue forces 

have also been made (Escamilla et al. 2001b). Results from these models have shown that 

anterior and posterior cruciate ligament forces are relatively low at high knee flexion angles 

(Li et al. 2005), whereas patellar tendon forces are at their greatest (Nagura et al. 2002). As 

a result of the high compressive and shear forces that can be obtained most technical 

recommendations suggest that maximum knee flexion during the squat should not exceed 

50 to 60°, with increased angles adopted if it is required for specific conditioning in a sport 

or to assist performance in other exercises that require almost full flexion (Schoenfeld 2010, 

Comfort and Kasim 2007).  

 

Quantitative research conducted at the hip joint during squatting has tended to focus on 

muscle recruitment and the relationship between kinematics and kinetics rather than joint 

forces. Research conducted by Fry et al. (2003) demonstrated that significant changes to 

hip net joint torques were obtained when participants were forced to change the joint angle 

relationship between the hip, knee and ankle. Additionally, measurement of EMG activity of 

the musculature surrounding the hip has been shown to be influenced by squat depth as 

well as stance width. Caterisano et al. (2002) reported that gluteus maximus activity 

increased significantly when squats with large amounts of hip flexion were compared with 

shallower repetitions. McCaw and Melrose (1999) also found that wider stance widths 

elicited greater EMG activity values from the hip extensor muscles, with the greatest activity 

measured with repetitions performed at 140% of shoulder width. Collectively, the extensive 

biomechanical research that has been conducted on the squat indicates that the exercise 

does have a high benefit-to-risk ratio and that specific guidelines can be created for 

individuals who suffer certain pathologies or seek to manipulate the stimulus to focus on 

certain muscular groups of the body.   
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A substantial research base comprising biomechanical investigations has also been created 

for exercises such as the bench press, deadlift and more recently Olympic weightlifting 

exercises. Many of the biomechanical studies conducted on the clean and snatch exercises 

have assessed the techniques employed by elite athletes (Gourgoulis et al. 2000, 

Kauhanen, Hakkinen and Komi 1984, Enoka 1988, Baumann et al. 1988). This research 

has documented variables such as critical joint angles, joint movement patterns and barbell 

kinematics to create a model template for non-weightlifters to follow. The use of model 

templates in general has been criticised because of the unsupported assumption that 

success equates with technique and the contention that model templates discourage critical 

thought (Lees 2002). With specific reference to weightlifting exercises, it may be 

unreasonable to expect athletes from other sports to be able to duplicate the movements 

created by elite specialists with years of specific conditioning. In particular, the extensive 

range of motion adopted at many joints under high loads by elite weightlifters, may serve as 

inappropriate models for many general athletes.  

 

Traditional applications of biomechanics to resistance training have also used knowledge of 

fundamental mechanical concepts to manipulate various features of exercises. In the 

majority of strength and conditioning text books a chapter is typically dedicated to 

discussing the role of biomechanics, featuring topics such as mechanical levers, resistance 

movement arms, and the different forms of resistance commonly used in practice (Stone, 

Stone and Sands  2007, Baechle and Earle  2008, Cardinale, Newton and Nosaka  2011). 

Many of these topics rarely feature in isolation in peer reviewed research; however, they are 

extremely important to the profession and are used on a daily basis by trained strength and 

conditioning coaches. The ability to manipulate the resistance moment arms created during 

performance of an exercise is an important aspect of managing injury risk (Stone, Stone 

and Sands 2007). As a result, the key technical points of most exercises provide guidelines 

for the placement of the load relative to each segment of the body (Baechle and Earle 

2008). Different forms of resistance discussed in textbooks and biomechanics reviews 

generally include free weights, pulleys, levers and cams, hydraulic resistance and 

pneumatic resistance (Stone, Stone and Sands 2007, Frost, Cronin and Newton 2010). 

Machines that incorporate resistances that can vary throughout the movement are very 

popular in health facilities, however, they are rarely recommended for the purposes of 

athletic training. This is because resistance training machines generally restrict movement 

to a single plane, and, therefore, are considered ineffective for transferring improvements to 

sporting activities (Frost, Cronin and Newton 2010). In addition, it is argued that the 

relatively fixed nature of resistance training machines limits the development of balance and 
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proprioceptive abilities that are important in complex sporting tasks (Kraemer and Fleck 

2004). One exception appears to be the use of cable-pulleys which generally provide more 

than a single dimension of motion, and are frequently recommended for training the 

muscles of the trunk (Waller  2004) and for performing exercises which are kinematically 

similar to actual sporting movements (Tvrdy 2011, Roetert, Knudson and Groppel 2009), 

which, as discussed above is a key feature of  traditional applications of biomechanics.  

 

2.3.2 The variable based approach 

The biomechanical approach used in contemporary resistance training research has largely 

moved from technique based evaluations to the measurement of key kinematic and kinetic 

variables (Figure 2.3). This approach has been used extensively to determine the exercises 

best suited for development of specific athletic qualities and/or fitness variables, which as 

discussed in previous sections of this literature review, is an important component in models 

of resistance training. A variety of methodological approaches have been used to assess 

which mechanical variables are important for performance in different sports. Generally, the 

approaches used include 1) rank order studies; 2) correlation studies; and 3) longitudinal 

studies (Stone, Moir and Sanders 2002, Cronin and Sleivert 2005). Rank order studies (or 

“best vs. the rest” in some publications) compare elite with non-elite athletes in their ability 

to express mechanical variables hypothesised to impact on performance. If the variable is 

related to sporting performance, then a difference in the ability to express that variable 

should be found between those that perform the sport best (elite athletes) and those whose 

performance is at a lower level (non-elite athletes). The Northern American collegiate 

system provides an effective model to test rank order hypotheses. Colleges are separated 

into three divisions with regards to the quality of their sports teams. Division I colleges 

comprise the largest universities and are able to attract the most talented sportsmen and 

women with the most desirable scholarships. Division II and division III colleges attract 

progressively less talented individuals, respectively. Rank order studies across a range of 

sports have demonstrated that higher division athletes are able to produce significantly 

greater maximum force, power and RFD values than their less talented counter-parts (Fry 

and Kraemer 1991, Hansen et al. 2011a, Gissis et al. 2006, Ho, Smith and O'Meara 2009). 

The rank order approach, however, cannot establish cause and effect as differences in 

performance capabilities could be caused by other factors (that may be related to the 

mechanical variables). Information gained from rank order studies can be used as part of a 

larger body of evidence to provide support for, or contradict a specific hypothesis. In 
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addition, the approach can be used inductively to generate hypotheses that can then be 

tested with different research designs.  

 

Figure 2.3: Summary of the major concepts used in the variable based biomechanical 

analysis of resistance training 

 

  

 

 

 

 

 

 

The correlation approach is similar to that used in rank order studies, insofar as both can 

provide indirect evidence of the importance of a variable in relation to performance; 

however, neither can be used to establish cause and effect. Correlation studies may provide 

slightly more robust evidence as the strength of relationships can be expressed 

quantitatively. In comparison, there is no set method to interpret how large differences must 

be between levels in rank order studies to represent a meaningful result. However, 

calculation of effect sizes may be one method to complement the inferential statistics. An 

additional advantage of the correlation approach is that the shared variance can be 

calculated to provide an estimation of the proportion of total variance in one variable (e.g. 

measure of performance) that can be explained, or accounted for, by the variance in 

another (e.g. power) (Thomas, Nelson and Silverman 2010). The major difference between 

correlation studies and the rank order approach is based on the measurement of 

performance. In the rank order approach it is assumed that higher level athletes are better 

performers, but in general, differences between levels are not quantified. In contrast, 

correlation studies require some measurement of performance to complete the analysis. As 

discussed in section 2.1.3, direct measurement of performance in many sports is not 

possible. Instead, researchers have frequently used performance related tests of jumping, 
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sprinting and change of direction to act as proxies. In reality, these tests provide measures 

of athleticism, with the potential that performance in these tests may relate to performance 

in various sports. The results of correlation studies investigating the relationship between 

athletes‟ ability to produce values in different biomechanical variables and their performance 

in athletic tests have been mixed, with factors such as the population studied and 

combination of predictor (biomechanical variable) and outcome (performance related) tests 

influencing results.  

 

The most widely investigated biomechanical variable has been maximum strength. Initial 

research quantifying the relationship between isometric tests of maximum strength and 

dynamic performance measured from jumping tests revealed only weak to moderate 

correlations (Murphy, Wilson and Pryor 1994, Guy et al. 1996). Much stronger correlation 

values have been obtained for maximum strength measurements made during exercises 

such as the back squat. Correlation values as high as r = 0.94 (Wisloff et al. 2004) and r 

=0.92 (Peterson, Alvar and Rhea 2006) have been obtained for 1RM squat scores and tests 

of sprinting and jumping, respectively. Discrepancy in correlation values obtained for 

isometric or dynamic measurements of strength with performance have been proposed to 

reflect the neural and mechanical differences associated with each type of action (Wilson 

and Murphy 1996). However, weaker and non-significant correlation values have also been 

reported by studies correlating dynamic measurements of strength with performance. 

Cronin et al. (2003) reported a nonsignificant correlation value of r = 0.24 between 

maximum strength measured during a supine squat movement and performance in an 

explosive lunge exercise selected to simulate a common movement in team sports. Using a 

group of well trained athletes, Wilson et al. (1995) reported correlation values for twenty 

different force-time variables collected during a jump squat and sprint performance as 

measured by a 30 m test. Maximum force exhibited a trivial correlation of r = 0.04, with the 

strongest correlations reported for variables reflecting the ability to produce high forces in 

short time periods (r = 0.45 to r = 0.62). It is likely that the major factor influencing the 

strength of correlations obtained with similar predictor and outcome tests is the population 

recruited. Studies that have recorded very strong correlations have generally featured 

heterogeneous samples exhibiting considerable variation in strength and performance 

capabilities. With more homogenous samples, factors other than strength may become 

more important in distinguishing performance scores.  
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Correlation studies have also been used to investigate the relationship between different 

mechanical variables. Using elbow flexions performed with isoinertial loads, Moss et al. 

(1997) investigated the relationship between maximum strength and power in a group of 

well-trained male physical education students. The authors reported a very strong 

correlation between maximum strength and maximum power (r = 0.93), with a substantially 

lower, but still strong correlation found between maximum strength and power produced 

with minimal external loading (r = 0.73). Similar relationships between strength and power 

were reported by Stone et al. (2003a). The authors measured power during jumps squats 

performed on force platforms with loads of 10 to 100% 1RM. The strongest correlation was 

obtained between 1RM and peak power obtained with 50% 1RM (r = 0.94). A strong 

correlation was also obtained between 1RM values and power measured during repetitions 

performed with 10% 1RM (r = 0.84). In the studies conducted by Moss et al. (1997) and 

Stone et al. (2003a) the strong correlations were obtained with heterogeneous populations. 

Participants recruited by Stone et al. (2003a) had training experience that ranged from 

seven weeks to over fifteen years. Studies with more homogenous populations have 

obtained lower, but also strong and significant correlations between strength and power. 

Across three studies conducted with high-level rugby league players, Baker and colleagues 

(2001) obtained correlations of 0.79, 0.81 and 0.86 between 1RM and maximum power 

values measured during the jump squat. The coefficient of determination obtained in these 

studies range from 63 to 75%, demonstrating that a large amount of the variance in power 

capabilities across the athletes can be explained by maximum strength, and vice versa. 

 

Correlations between other popular mechanical variables have generally been moderate to 

strong, but lower than those reported for maximum strength and power. McLellan et al. 

(2011) investigated the intercorrelation of force-time variables obtained during performance 

of a vertical jump. Peak force and RFD demonstrated relatively strong correlations (r = 0.63, 

vs. r = 0.86 for peak force and power). The strength of relationships between power and 

RFD variables were mixed, and ranged from r = 0.36 to 0.73 depending on whether it was 

average or peak values that were analysed. In a study conducted by Cronin et al. (2003) 

investigating a wide range of force-time variables (e.g. peak force, impulse, power, average 

RFD, force produced at particular time intervals) correlation values ranged from 0.43 to 

0.99, with all reaching statistical significance. Collectively, the results demonstrate that there 

is a degree of relatedness between most mechanical variables, which may reflect either 

athletes‟ diverse training practices or a generality in the outcome of training adaptations 

induced by resistance training.   



 

42 
 

 

Longitudinal studies provide an important extension to cross-sectional research as they can 

provide better understanding of cause and effect relationships. However, most longitudinal 

studies incorporating resistance training interventions are of short duration (i.e. 4 to 12 

weeks) and feature relatively untrained participants. These design limitations reduce the 

explanatory power of the studies and limit their application to sport, where measurable 

improvements in high-level athletes generally require much longer time periods (McGuigan 

and Kane 2004, McGuigan, Cormack and Newton 2009, Appleby, Newton and Cormie 

2012, Anderson et al. 2006). In section 2.1.3 of this literature review, a number of frequently 

cited longitudinal studies investigating the effects of resistance training on sprinting, running 

and cycling were discussed. Unfortunately, the majority of these studies and others have 

failed to include correlation analyses across the intervention to quantify the relationship 

between improvements in biomechanical variables (e.g. ∆1RM, ∆power, ∆RFD) and 

improvements in performance. This additional feature would provide more robust evidence 

of which biomechanical variables are most important in the improvement of various sporting 

tasks. Instead, researchers have mainly tracked changes in biomechanical and 

performance variables across the intervention period, with correlations between predictor 

and outcome variables re-assessed at each data collection stage (Stone et al. 2003b, 

Robinson et al. 1995). This approach enables researchers to determine if the relationship 

between mechanical variables and performance is influenced by relatively short-term 

adaptations to resistance training. However, greater understanding of the effect of different 

mechanical variables on sports performance would be obtained if future longitudinal studies 

included correlation analyses (or related statistical techniques) between changes measured 

in variables.  

 

Once evidence has been obtained to indicate that a specific mechanical variable is 

important to the performance of a particular skill or sport, the field of biomechanics is also 

used to determine the most effective training practices to improve an athlete‟s ability to 

produce high values in the variable. The process is based on one of the most influential 

paradigms in contemporary strength and conditioning, namely, that the best training 

stimulus is created by selecting acute program variables that maximise production of the 

biomechanical variable targeted. That is, maximum strength, power and RFD are most 

effectively improved by selecting exercises, loads, repetitions and rest periods that 

maximise the acute production of force, power or RFD, respectively. Whilst it is recognised 

that short-term changes created from a wide range of exercise stimuli can accrue over time 
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to create similar positive adaptations (and importantly, that variation in training is required 

for continued improvements) (Stone, Stone and Sands  2007), data does exist to support 

the paradigm. For the development of maximum strength, Zatsiorsky (1995) has promoted 

the use of the maximal effort method. This requires the performer to select exercises that 

incorporate large muscle groups and produce high motivation to lift the heaviest loads 

possible for one to three repetitions. This training practice ensures that individuals produce 

maximum or close to maximum forces to stimulate adaptations to the central nervous 

system.  

 

One of the first studies to systematically investigate the optimum resistance for the 

development of strength was conducted by Berger (1962b). Incorporating a college class of 

199 male students, participants were allocated to one of six groups for a twelve week 

training intervention to improve upper body strength as measured by the bench press. The 

groups performed one bench press set comprising 2, 4, 6, 8, 10 or 12 repetitions to failure, 

three times per week. Analysis of covariance revealed differences between the groups with 

the greatest increases in strength obtained with those performing 4, 6 or 8 repetitions each 

set. The results obtained by Berger (1962b) suggest that strength is best improved by 

moderate loading and therefore the development of forces that are less than maximum. 

However, the group lifting the heaviest load only performed 6 repetitions per week which is 

unlikely to provide an adequate metabolic and hormonal stimulus to create adaptations and 

is not representative of the high force training commonly used to increase strength.  

 

More recent studies investigating the optimum training strategies to improve strength have 

demonstrated a clear distinction between the requirements of novice and advanced 

individuals, with those previously untrained obtaining significant increases in strength whilst 

producing low forces with loads as light as 45 to 50% 1RM (Anderson and Kearney 1982, 

Campos et al. 2002). In contrast, research conducted by Hakkinen et al. (1985) with 

experienced resistance trained males showed that over a twenty four week training period 

incorporating resistances ranging from 70 to 120% 1RM, increases in strength required the 

production of near maximum forces with training loads of at least 80% 1RM. In addition, 

further support for the advantages conferred by training that develops large forces is found 

in research using the meta-analysis approach. Peterson et al. (2004) performed a literature 

search for studies including a strength training intervention with resistance trained athletes. 

A total of thirty seven studies were included in the final analysis. Pre-post effect sizes were 

used to standardise the improvement in strength obtained over the intervention. The results 
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demonstrated that training regimes incorporating training loads of 85% 1RM resulted in 

substantially greater improvements than those using lighter resistances. A lack of sufficient 

data to investigate loads above 85% 1RM meant that the authors were unable to determine 

if even greater results may have been obtained with training that produced higher forces. 

Collectively, research conducted with trained individuals focusing on strength strongly 

supports the paradigm that improvements are best obtained with training that maximises 

acute production of the variable of interest.    

 

In contemporary strength and conditioning, the variable that receives the most interest with 

regard to the development of athletes is power. This is because the ability to develop large 

power values is considered essential to perform at a high level in most sports (Bevan et al. 

2010, Sleivert and Taingahue 2004, Dayne et al. 2011). As discussed above, evidence 

does exist to support this position. However, it is possible that the perceived importance of 

power is influenced to some extent by the use of the term in common language rather than 

the unambiguous mechanical definition. In accordance with the paradigm of maximising the 

acute expression of a variable for optimal adaptations, many researchers and practitioners 

have recommended that athletes train with exercises, loads and repetitions schemes that 

produce the greatest peak power values (Sleivert and Taingahue 2004, Baker and Nance 

1999, Kaneko et al. 1983, Newton and Kraemer 1994, Stone  1993). In contrast to the 

relatively simple protocols that can be followed to express maximum force, the production of 

maximum power values is considerably more complex. Research has shown that power is 

maximised in single muscle fibres and single-joint movement when the resistance creates 

force values that are approximately 30% of maximum (Kaneko et al. 1983, Toji and Kaneko 

2004, Faulkner, Clafin and McCully 1986). However, with multi-joint exercises the protocols 

that maximise power are dependent upon a number of factors, the most important of which 

is the load used. Indeed, the identification of the load that maximises power has attracted 

more biomechanics research than any other topic in the field of strength and conditioning 

(Table 2.8). This extensive research base has demonstrated that the load that maximises 

power is also dependent upon a number of factors. The exercise selected has been shown 

to be the most influential, with the optimal load ranging from 0 to 40% 1RM for ballistic 

exercises such as the jump squat and bench throw, 30 to 60% 1RM for the traditional squat 

and bench press, and 70 to 90% 1RM for Olympic weightlifting movements such as the 

clean and snatch. In addition to exercise selection, the training status of the individual and 

methods used to calculate power has also been shown to influence the load that maximises 

power. Using both countermovement and static jump squats, Stone et al. (2003a) reported 

that participants with lower maximum strength produced maximum power values with the 
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lightest load equal to 10% 1RM, whereas stronger participants produced maximum power 

for both vertical jump conditions with 40% 1RM. Studies conducted by Driss et al. (2001) 

and Baker et al. (2001b) also reported that stronger athletes produce maximum power with 

greater relative resistances than their weaker counterparts. However, conflicting evidence 

indicating that the optimum load for power production is not influenced by an individual‟s 

strength also exists (Cormie, McGuigan and Newton 2010b, Nuzzo, McBride and Dayne 

2010). Further comparative research is required to clarify the role, if any, of maximum 

strength on the load-power relationship.  

 

More recently, research has highlighted that the methods used to calculate power can 

influence the load-power relationship. Michael et al. (2008) reported that calculations based 

entirely on movement of the barbell underestimates the total power developed and shifts the 

optimum load to greater relative resistances. In contrast, calculations of power that combine 

the ground reaction force and barbell kinematics have been reported to overestimate power 

(Michael, Olson and Winchester 2008, Lake, Lauder and Smith 2012) and may cause a shift 

in the optimum load towards lower resistances where the barbell velocity is substantially 

greater than the velocity of the system COM. 
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Table 2.8: Loads that maximise power production in various exercises 

Authors Participants Exercises Power Test Protocol Maximum 
Load 

Alcaraz et al. 
(2011)  

Male sprinters 
(n=10). 22.1±3.6 
yr. 

Max: 1RM SSC 
smith squat  
 
Power: SSC 
smith squat 
 

SSC smith squat with 
30/45/60/70/80% 1RM. 

60% 1RM, no 
SD across 
loads tested 

Asci and 
Acikada 
(2007)  

Male (sprinters, 
basketball, 
handball, 
volleyball, 
bodybuilders) 
(n=56). 23.7±4.7 
yr. 
 

Max: 1RM CO 
bench press 
 
Power: CO 
bench press 
 

CO bench press with 
40/50/60/70/80% 1RM 

50% 1RM, no 
SD across  
40-60% 1RM 

Baker and 
Nance 
(1991)  

Professional male 
rugby league 
players (n=20). 
24.2±3.8 yr. 

Max: 3RM SSC 
free weight 
squat 
 
Power: Smith 
Jump Squats 
 

SSC smith jump squat with 
absolute loads 40/60/80/100 kg  

100kg (≈65% 
3RM), no 
cross load 
analysis 

Baker et al. 
(2001) 
 

Male rugby 
players, 
professional 
(n=18) and semi- 
professional 
(n=13). 
Considered as 
one group (no 
significant 
differences). 
22.2±3.5 yr  
 

Max: 1RM free 
weight Bench 
Press  
 
 
Power: Smith 
bench press 
throw 
 

SSC Smith Bench Press with 
absolute loads. 40/50/60/70/80 
kg.  

70 kg (≈55% 
1RM), no SD 
across 70-80 
kg  

Baker (2001)  
 
 

Amalgamation of 
data from multiple 
studies of 
professional 
rugby league 
players and semi-
professional 
rugby league 
players. 

Max: 1RM free 
weight squat. 
 
Max: 1RM free 
weight bench 
press. 
 
Power: SSC 
smith jump 
squats. 
 
Power: SSC 
smith bench 
press throw 
 

SSC smith jump squat with 
absolute loads. 40/60/80/100 kg.  
 
 
SSC smith bench press with 
absolute loads. 40/50/60/70/80 
kg. 

≈55% 1RM, 
no cross load 
analysis 
 
 
 
≈55% 1RM, 
no cross load 
analysis 
 
 

Bemben et 
al. (1991)  

College-aged 
men (n=31) 

Max: 1RM free 
weight bench 
press.  
 
Power: free 
weight bench 
press 
 

SSC bench press with 
30/40/50/60/70/80%1RM 
 

50% 1RM, no 
cross load 
analysis 
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Bosco et al. 
(1995)  
 

Male and female 
track and field 
athletes (n=33), 
male and female 
throwers (n=12), 
male and female 
jumpers (n=21). 
21.6±4.6 yr.   
 

Max: 1RM SSC 
free weight 
squat 
 
Power: SSC 
free weight 
squats 

SSC squats with loads relative to 
body mass.  
35/70/100/105/140/175/210% BM 
 

Males and 
females 105% 
BM, no cross 
load analysis 
 

Comfort et al. 
(2012)  

Male athletes with 
resistance training 
experience 
(n=19). 21.5±1.4 
yr.   

Max: 1RM 
power clean 
from the hang  

Power: 1RM 
power clean 
from the hang 

Hang power clean with  
30/40/50/60/70/80% 1RM 

70% 1RM, no 
SD across 60-
80% 1RM 

Cormie et al. 
(2007)  

Male division I 
athletes 
(sprinters, football 
players,  long 
jumpers) (n=12). 
19.8±1.4, yr 

 

Max: 1RM free 
weight squat 
 
Max: 1RM 
power clean 
 
 
Power: SSC 
free weight 
squat 
 
Power: power 
clean 
 
Power: free 
weight SSC 
jump squat 
 

Squat with 
0/12/27/42/56/71/85% 1RM 
 
 
 
Jump squat with 
0/12/27/42/56/71/85% 1RM 
 
 
 
Power clean with 
30/40/50/60/70/80&90% 1RM 

56% 1RM, no 
SD across 
loads tested 
 
 
0% 1RM, no 
SD across 0-
27% 1RM 
 
 
80% 1RM, no 
SD across 
loads tested 
 

Cronin et al. 
(2000)  

Male athletes with 
resistance training 
experience 
(n=27). 21.9±3.1, 
yr 

Max: 1RM SSC 
smith bench 
press 
 
 
Power: SSC 
smith bench 
press 
 
Power: CO 
smith bench 
press 
 

SSC smith bench press with 
40/60/80% 1RM 
 
 
CO smith bench press with 
40/60/80% 1RM 
 

40-60% 1RM 
 
 
 
40-60% 1RM 

Cronin et al. 
(2007)  

Elite male rowers 
(n=8). 25.2±3.8 
yr. 

Max: 1RM 
cable seated 
row 
 
Power: cable 
seated row 
 

Cable seated row with 
30/40/50/60/70/80/90/100% 1RM 
 

80% 1RM 
average 
power 
 
60% 1RM 
peak power 
 
no cross load 
analysis 
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Dayne et al. 
(2011)  

High school male 
athletes (n=11). 
15.6±0.5 yr. 

Max: 1RM SSC 
free weight 
squat 
 
Power: SSC 
free weight 
jump squat 
 

SSC free weight jump squat with 
0/20/40/60/80% 1RM 

0% 1RM 

Frost et al. 
(2008)  

Recreationally 
weight trained 
males (n=30). 
24.9±4.9 yr. 

Max: 1RM SSC 
smith bench 
press 
 
Power: SSC 
smith bench 
press 
 
Power: SSC 
smith bench 
press throw 
 

SSC smith bench press with 
15/30/45/60/75/90% 1RM 
 
 
SSC smith bench press throw 
with 15/30/45/60/75/90% 1RM 
 
 

45% 1RM 
 
 
 
15% 1RM 
 
no cross load 
analysis 
 

Harris et al. 
(2007)  

Male rugby 
athletes (n=18). 
23.1±2.7 yr.  

Max: 1RM SSC 
machine squat 
 
Power: SSC 
machine squat 
jump 

SSC machine squat jump with 
10/20/30/40/50/60/70/80/90/100% 
1RM 

20%1RM 
peak power 
 
40% 1RM 
average 
power 
 
no cross load 
analysis 

Izquierdo et 
al. (2002)  

Male athletes 
(weightlifters, 
handball players, 
road cyclists, 
middle distance 
runners) (n=68) 
and  
controls (n=12). 
21.4±4.7 yr. 

Max: 1RM CO 
smith squat. 
 
Max: 1RM CO 
smith bench 
press 
 
Power:  CO 
smith squat 
 
Power: CO 
smith bench 
press 
 

CO smith squat bench press: 
30/45/60/70/80/100% 
 
 
CO Smith bench press: 
30/45/60/70/80/100% 

 

30-60% 1RM 
 
 
 
30-45% 1RM 
 

Jandaka and 
Uchytil 
(2011) 

Professional male 
soccer players 
(n=15). 26.1±3.9 
yr. 

Max: 1RM SSC 
smith bench 
press 
 
Power: SSC 
smith bench 
press 
 

SSC smith bench press 
0/10/30/50/70/90% 1RM 

 

50% 1RM 

Kawamori et 
al. (2005)  

Male athletes with 
resistance training 
experience 
(n=15). 22.1±2.0 
yr. 

Max: 1RM 
hang power 
clean 
 
Power: Hang 
power clean 
 
 

Hang power clean with 
30/40/50/60/70/80/90% 1RM 

70% peak 
power, no SD 
across 50-
90% 1RM 
 
70% average 
power, No SD 
across 40-
90% 1RM 
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Newton et al. 
(1997)  

Recreationally 
weight trained 
males (n=17). 
20.6±1.9 yr. 

Max: 1RM SSC 
Smith Bench 
Press.  
 
Power: SSC 
smith bench 
press Throw 
 
Power: CO 
Smith Bench 
Press Throw 
 

SSC Smith Bench Press Throw: 
15/30/45/60/75/90% 1RM 

 

 

CO Smith Bench Press Throw: 
15/30/45/60/75/90% 1RM 

 

15% 1RM 
peak power 
45% 1RM 
average 
power 
 
 
15% 1RM 
peak power 
30% 1RM 
average 
power 
 
no cross load 
analysis 
 

Siegel et al. 
(2002) 
 

Recreationally 
weight trained 
males (n=25). 
23±4 yr. 

Max: 1RM SSC 
Smith Squat 
 
Max: 1RM SSC 
Free-Weight 
Bench Press 
 
Power:  SSC 
Smith Squat  
 
Power:  SSC 
free weight 
bench press 
 

SSC Smith Squat and  
30/40/50/60/70/80/90% 1RM 
 
SSC Free weight bench press 
30/40/50/60/70/80/90% 1RM 
 

50-70% 1RM 
 
 
40-60% 1RM 

Sleivert et al. 
(2004)  

Male athletes. 
(power, rugby and 
basketball) 
(n=30). 2.4±1.4 
yr. 
 
 
 

Max: 1RM 
Smith CO 
Squat 
 
Max: 1RM 
Smith CO Split 
Squat 
 
Power:  CO 
Power Smith 
Squat Jump 
 
Power:  CO 
Power Smith 
Split Squat 
Jump 
 

CO Power Smith Squat Jump 
30/40/50/60/70% 1RM 

 

 

 

 

CO Power Smith Split Squat 
Jump 30/40/50/60/70% 1RM 

 

60% 1RM 
peak power, 
no SD across 
loads 
 
40% 1RM 
average 
power, no SD 
across 30-
60% 1RM 
 
 
40% 1RM 
peak power, 
no SD across 
30-50% 1RM 
 
50% 1RM 
average 
power, no SD 
across 

Stone et al. 
(2003)  

Male participants 
with extensive 
range of training 
experience 
(n=22).  
22.2±3.8 yr. 
 

Max: 1RM SSC 
free weight   
 
Power: SSC 
Free-Weight 
Jump Squat  
 
Power: CO free 
weight jump 

SSC Free-Weight Jump Squat 
10/20/30/40/50/60/70/80/90/100% 
1RM 
 
CO Free-Weight Jump Squat 
10/20/30/40/50/60/70/80/90/100% 
1RM 

10% 1RM 
 
 
 
10% 1RM 
 
 
no cross load 
analysis 
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squat 

Thomas et 
al. (2007) 
 

Male (n=19) and 
female (n=14) 
division I athletes. 
19.5±1.5 yr. 

Max: 1RM 
Smith SSC 
bench 
 
Max: 1RM 
Smith SSC 
squat 
 
Max: 1RM 
Smith hang 
high-pull  
 
Power: Smith 
SSC bench 
throw 
 
Power: Smith 
SSC squat 
jump 
 
Power: Smith 
hang high-pull  
 

Smith SSC bench throw with 
30/40/50/60/70% 1RM 
 
 
 
 
 
 
Smith SSC squat jump with 
30/40/50/60/70% 1RM 
 
 
 
 
 
 
 
 
Smith SSC hang high-pull  
with 30/40/50/60/70% 1RM 

Males 30% 
1RM 
 
Females 30% 
1RM, no SD 
across 30-
50% 1RM 
 
Males 30% 
1RM, no SD 
across 30-
40% 1RM 
 
Females 40% 
1RM, no SD 
across 40-
50% 1RM 
 
Males 40% 
1RM, no SD 
across 30-
60% 1RM 
 
Females 40% 
1RM, no SD 
across 30-
60% 1RM 
 

Turner et al. 
(2012)  

Professional male 
rugby union 
players (n=11). 
25.6±3.3 yr.  

Max: 1RM free 
weight squat 

Power: free 
weight jump 
squat 

Free weight jump squat 
20/40/60/80/100% 1RM 

20% 1RM  

Zink et al. 
(2006)  

Recreationally 
weight trained 
males (n=12). 
26.8±4.7 yr. 

Max: 1RM SSC 
free weight 
squat 

 

Power: SSC 
free weight 
squat 

SSC free weight squat with 
20/30/40/50/60/70/80/90% 1RM 

 

40% 1RM, No 
SD across 
loads tested 

Smith = smith machine, SSC = stretch shortening cycle, CO = concentric only, SD = significant 

difference 
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Training with the load that develops the highest power output is often referred to as Pmax 

training in the literature (Harris et al. 2008, Cronin and Sleivert 2005). Evidence exists to 

support the practice as an effective means of developing power; however, it is unclear 

whether it is the most effective practice. In a seminal study conducted by Kaneko et al. 

(1983) untrained males performed maximum effort repetitions on a resistance apparatus 

used to test the force-velocity relationship of the arm flexors. The participants were 

separated into four groups that each performed ten repetitions, three times a week for 

twelve weeks. The groups performed the actions with a resistance calibrated to 0, 30, 60 or 

100% of the maximum force (% Fmax) that they could produce. In support of the paradigm of 

maximising the acute expression of a variable, isometric strength was best improved by 

those training with the 100% load, followed by 60, 30, and 0% Fmax. The order was reversed 

for the best improvements in peak velocity, and finally, the load that produced the greatest 

acute power values (30% Fmax) resulted in the largest improvements in power. A similar 

pattern of results was reported by McBride et al. (2002) utilising the more complex jump 

squat exercise. The authors matched twenty six resistance trained males on the basis of 

their strength to mass ratio and assigned them to either a heavy resistance group that 

performed the jump squat with 80% 1RM, or a light resistance group focused on developing 

power with a load of 30% 1RM. The intervention duration was eight weeks, with pre and 

post measures of force, velocity and power recorded with the same resistances used in 

training. Those allocated to the light resistance group creating greater acute production of 

velocity and power, demonstrated significantly greater improvements in the variables over 

the training intervention, whereas the heavy resistance group demonstrated significantly 

greater increases in strength.  

 

The studies conducted by Kaneko et al. (1983) and McBride et al. (2002) have been 

criticised for assuming that repetitions performed with 30% of maximum produces the 

greatest power values (Cronin and Sleivert 2005). As discussed above, research has 

established that the load that maximises acute expression of power is dependent upon a 

number of factors and it has been argued that their ability to support the superiority of Pmax 

training for developing power is therefore reduced. Only a limited number of studies have 

conducted training interventions that identify and subsequently adopt the load that 

maximises power for each participant. Newton et al. (2006) adopted this protocol with elite 

female volleyball players performing the jump squat. Over a four week period during the 

middle of the competitive season the training resulted in increases in force, velocity, power 

and returned vertical jump performance to its original values tested at the beginning of the 

season. The authors did not include control or comparison groups due to ethical issues 
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associated with the manipulation of elite athletes training regimes. As a result, the study 

provides support for the effectiveness of Pmax as a training practice for elite athletes but fails 

to demonstrate superiority relative to other training practices. Wilson et al. (1993) compared 

the force and performance improvements of resistance trained males allocated to Pmax 

training, training with moderate resistances (6-10 RM), or plyometric depth jumps. The 

groups trained two times per week for ten weeks with the Pmax group recording the greatest 

increases in vertical jump height, sprint time and force production during fast velocity 

isokinetic actions. The authors concluded that the results provided strong support for the 

superiority of Pmax training for improvements in tasks requiring high power outputs. Data 

reported by Harris et al. (2008) on elite rugby league players showed that Pmax and heavy 

strength training resulted in similar performance improvements over a seven week period. 

Interestingly, despite obtaining increases in sprint speed, the athletes‟ pre to post force and 

power values decreased. The authors suggested that this may have been a transitory issue 

related to fatigue. However, the decreases in peak velocity and power were significantly 

less in the Pmax group compared with the heavy resistance group.  

 

Collectively, there is strong support for the effectiveness of training practices that maximise 

the acute expression of a given variable; in particular, substantial evidence has been 

obtained for the development of force and power. These findings have been extended to 

other mechanical variables such as RFD; however, despite the intuitive appeal of this 

approach and its feature as one of the main paradigms in the study and practice of strength 

and conditioning, research should continue to assess the validity of this approach for each 

variable demonstrated to impact upon sporting performance.   

 

Dissemination of the methods used to measure biomechanical variables, combined with the 

availability of relatively inexpensive equipment (e.g. linear transducers and portable force 

platforms) has led many researchers to focus on the effects of small manipulations rather 

than comparing diverse training regimes. Examples of manipulations used in recent studies 

include the use of weightlifting shoes (Kimitake, Fortenbaugh and David 2012), the use of 

compressive garments (Eitner, LeFavi and Riemann 2011, Blatnik, Skinner and McBride 

2012), the use of variable resistance material (Israetel et al. 2010, Baker and Newton 2009) 

and modifications to exercise technique (McBride et al. 2011, Drinkwater, Moore and Bird 

2012). These results, and others from similar studies, are being used to provide information 

within the framework of maximising acute expression of variables, to assist strength and 

conditioning coaches with their training prescription. This PhD project uses a similar 
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approach to assess whether the training practices used by contemporary powerlifters have 

the potential to provide appropriate mechanical stimuli for athletes of other sports.  

 

In summary, the use of biomechanics as a means to investigate and inform the practice of 

resistance training has developed over time. Initially, movement analysis approaches were 

used to observe, evaluate and recommend techniques used to perform resistance 

exercises. More recently, the variable based approach has been used to identify the most 

important kinematic and kinetic variables that influence performance in common sporting 

tasks. Once a particular variable has been identified, appropriate training practices can be 

selected on the basis of a central paradigm in strength and conditioning that asserts the 

most effective training regimes are those that maximise the acute production of the variable 

targeted. Whilst more research is required to fully substantiate the paradigm, there is clear 

evidence to support the use of the approach, in particular with regard to training aimed at 

the development of maximum strength and power. The major advantage of the paradigm is 

its ability to provide a bridge between researchers and practitioners. Much of the 

contemporary biomechanics research investigating resistance training is designed to 

assess the effect of manipulating an exercise on the mechanical stimulus created. Using 

this method, researchers can assess the effects of novel training practices and provide 

coaches with empirical data to inform their training prescription.   
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2.4 Summary 

 

The aim of this literature review was to provide background for the work conducted in this 

project and provide a clear rationale for the overall direction taken in this PhD. The initial 

sections of the review provided an introduction to resistance training and outlined the 

importance of models in designing programmes and conducting research. Additionally, 

evidence to support the use of resistance training as an effective means to improve sports 

performance was considered. Section two of the literature review introduced the concept of 

model training practices developed through trial and error by strength athletes. The 

relevance of each group was highlighted, with emphasis placed on the contemporary 

practices of powerlifters as a potential source of effective, novel training for other athletes. 

In the final sections of the review, much of the theoretical framework used to underpin this 

project was discussed. In particular, the variable based approach of biomechanics and the 

paradigm of maximising acute production of a target variable were linked to highlight a 

means of assessing training practices in the latter sections of the project.  
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CHAPTER 3. CONTEMPORARY TRAINING PRACTICES OF POWERLIFTERS 
 

 

3.1 Prelude 

 

Having defined the research question and completed the background work to the project, 

the next stage of the process sought to identify the contemporary training practices used by 

high-level powerlifters. Widespread proliferation of internet sites and online practitioner 

forums has increased dissemination of information regarding all forms of physical training. 

Information on resistance training practices appears to be amongst the most widely 

disseminated, due to interest from diverse populations who seek to improve strength, 

performance and body aesthetics. In parallel with the large increase in information available 

from lay sources, the number of research articles investigating resistance training practices 

has also increased substantially over the last two decades. An important feature of this 

newly available information has been to increase awareness of the extensive range of 

resistance training practices that exist. However, the large volume of information available 

and diverse topics covered presents a challenge when attempting to summarise the training 

practices of any particular group. In addition, commercial interests may lead to the distortion 

of the impact and prevalence of individual training practices in order to create additional 

revenue. Therefore, in order to identify the training practices used by powerlifters, data were 

collected from successful athletes currently competing by means of questionnaires and 

interviews. 
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3.2 Introduction 

 

Powerlifting is a popular strength sport that draws competitors from across the world and 

features in high profile sporting events such as the Commonwealth and World Games. 

Athletes are separated into categories based on age, body mass and gender to provide fair 

competition. Each athlete is given three attempts to lift the heaviest load possible in the 

squat, bench press and deadlift. The winner in each division is the individual who lifts the 

heaviest cumulative load across the three exercises. An overall winner within gender and 

age categories is determined by scaling the cumulative loads relative to each athlete‟s body 

mass using a non-linear scaling equation (Hester et al. 1990). The competition and training 

demands of powerlifting have been shown to develop a unique phenotype in sport. 

Successful powerlifters generally exhibit very large muscular girths and bony breadths, but 

display average limb lengths (Keogh et al. 2007, Bale and Williams 1987, Brechue and Abe 

2002). In addition, mesomorphy (defined as musculoskeletal robustness in the somatotype 

schema of Heath and Carter (1967)) values reported for elite heavyweight powerlifters are 

amongst the highest reported in the scientific literature (Keogh et al. 2007). Research has 

also established that both successful male and female powerlifters exhibit similar 

anthropometric characteristics when scaled relative to height and mass (Keogh et al. 2007, 

Keogh et al. 2008). In combination with extensive changes in morphology, training for the 

sport of powerlifting has been shown to create substantial increases in physical 

performance. Elite lightweight powerlifters are able to lift over five times their body mass in 

the squat and deadlift, and over three times their body mass in the bench press (Keogh et 

al. 2007). Elite heavyweight powerlifters are unable to lift the same relative loads as lighter 

competitors due to the non-linear relationship between strength and mass (Jaric  2002); 

however, the absolute loads lifted by the heaviest athletes now exceed 570kg in the squat, 

460kg in the deadlift, and 485kg in the bench press (Soong 2011).  

 

Information from lay sources and official powerlifting records over the last decade highlight 

that performances are improving at a faster rate than at any previous time (Bates 2012, 

International Powerlifting federation 2012, Tate 2006). Whilst the reasons for these 

improvements are likely to be multi-factorial, it has been suggested that recent changes in 

training practices used by powerlifters is an important factor (Simmons 2007, Tate 2006). 

The internet, and in particular practitioner forums, have been used extensively over the last 

decade to disseminate training information to a worldwide population, with large online sites 

attracting over 60,000 daily visitors (StatShow 2011). Training information relating to 
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powerlifting is varied and ranges from the use of nutritional supplements to technical details 

of how to perform specific exercises. One of the most popular topics discussed on websites 

are the various training systems used and promoted by powerlifters. Training systems can 

be conceptualised as attempts to structure training by providing general principles that lead 

to related programs. These are distinct from training models (discussed in chapter two), 

where the objective is to provide an understanding of how to design and study programs for 

a wide range of training goals. Training systems used and promoted by powerlifters differ 

greatly in their complexity and output in terms of programs created (Kraemer and Fleck 

2004). Traditionally, powerlifters have used relatively simple training systems which 

produced homogenous training programs. Popular examples included Bill Starr‟s 5x5 and 

Steven Korte‟s 3x3 systems which focus extensively on the use of the bench press, squat 

and deadlift (Purzel 2009). The use of more complex training systems, which provide 

greater variety, is believed to be the cause of recent changes in training practices and 

consequent improvements in performances (Tate 2006). Examples of more advanced 

training systems which are believed to be commonly used by novice and high-level 

powerlifters include the Westside barbell system and Jim Wendler‟s 5/3/1 system (Purzel 

2009). 

 

To the author‟s knowledge, there have been no longitudinal studies conducted to assess 

the effectiveness of different training systems used by powerlifters. The majority of studies 

investigating various resistance training regimes have focused on interventions 

recommended for the general public (American College of Sports Medicine 2009) or 

athletes competing in more traditional sports (e.g. American football, basketball and tennis) 

(Hoffman et al. 2004). There are, however, commonalities between resistance training 

interventions studied in the scientific literature, and fundamental aspects of training systems 

used traditionally by powerlifters. Bill Starr‟s 5x5 training system was one of the first 

adopted by powerlifters (Purzel 2009). Its main features include performance of the bench 

press, squat and deadlift on multiple sessions each week for five sets of five repetitions. 

The first four sets of each exercise are considered as a warm-up and feature sub-maximum 

ascending loads. The resistance for the final set of each exercise is selected so that 

completion of all five repetitions requires maximum effort. Once an individual is able to 

complete each set for five repetitions the loads are collectively increased for the next 

session. This progressive overload method is similar to that used in the first systematic 

training system pioneered by Delorme (1945). Multiple studies have confirmed that 

progressively increasing resistance upon achieving set targets can provide significant 

improvements in strength, particularly in novice trainees (Campos et al. 2002, Stone and 
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Coulter 1994) or those rehabilitating an injury (Delorme 1945, Lombardi et al. 2008, Fish et 

al. 2003). In addition, seminal research conducted by Berger (1962a) provides support for 

the use of resistances which allow a maximum of approximately six repetitions to provide 

effective increases in strength. However, more recent research suggests that the use of 

restricted loading schemes should be limited to novice athletes and that well trained 

individuals demonstrate greater increases in strength if a variety of resistances and 

repetition schemes are used (American College of Sports Medicine 2009, Peterson, Rhea 

and Alvar 2004, Fleck 1999). As a result, the Bill Starr 5x5 system is generally viewed as a 

strategy for beginner powerlifters and that more advanced systems are appropriate for 

individuals with greater training experience.  

 

Training systems used frequently by intermediate powerlifters have generally incorporated 

basic periodization models, featuring sequential training blocks of 2 to 4 weeks in duration 

(Tate 2006). Variation in volume and intensity are programmed primarily between blocks 

and are structured to present a stimulus that first increases muscular endurance, then 

muscular hypertrophy and finally maximum strength. This organisational method of 

programming the training stimulus is commonly referred to as a linear or traditional 

periodization (Plisk and Stone 2003, Turner 2011). The majority of studies that have 

compared linear periodized models with resistance training featuring unstructured variation 

in parameters have reported superior improvements for periodized training (Stone et al. 

2000, Willoughby 1993, Willoughby 1992, Stowers et al. 1983). In addition, research has 

demonstrated that traditional models of periodization can improve the strength of individuals 

with moderate resistance training experience (Rhea and Alderman 2004). As a result, it is 

expected that powerlifting systems which include sequential variation in training will be more 

effective than simpler systems and could be used successfully by beginners and 

intermediates. 

  

The first complex training system to be developed by powerlifters and promoted world-wide 

was the Westside barbell system (Purzel 2009). Many subsequent training systems used by 

powerlifters have incorporated various aspects of this original design (Defranco 2012). The 

principal feature of the Westside barbell system is a periodization scheme that features 

significant variation within training blocks and attempts to develop multiple fitness variables 

simultaneously (Simmons 2007). In the scientific literature, periodization strategies of this 

type are frequently referred to as undulating models. The majority of recent research 

conducted on periodization has focused on comparing training programs created from either 
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linear or undulating models (Rhea et al. 2002, Monteiro et al. 2009, Buford et al. 2007, 

Alvar, Wenner and Dodd 2010, Jimenez and Paz 2011, Hartmann et al. 2009, Prestes et al. 

2009). The results of these studies have been mixed, with some reporting greater increases 

in strength and power with undulating models (Monteiro et al. 2009, Rhea, Kenn and 

Dermody 2009) and others reporting no significant differences (Buford et al. 2007, Alvar, 

Wenner and Dodd 2010, Jimenez and Paz 2011, Hartmann et al. 2009, Prestes et al. 

2009). Overall, it appears that undulating models may be more effective than their linear 

counterparts, depending on factors such as training experience, length of intervention and 

degree of variation within the programs. In the majority of studies that reported no 

significant differences between periodization strategies, general trends emerged indicating 

greater results were obtained for participants in non-linear groups (Buford et al. 2007, Alvar, 

Wenner and Dodd 2010, Prestes et al. 2009). The relatively small sample sizes and short 

training periods incorporated in the studies most likely explain the lack of statistical support.  

 

It is important to note that the originators of the Westside Barbell system identify their 

periodization model as the conjugate method (Simmons 2007). This term was selected as it 

was believed to appropriately describe the process of simultaneously developing multiple 

fitness variables (Tate 2006). However, in the scientific literature the conjugate periodization 

model is defined as an advanced periodization strategy that utilises sequential targeting of 

fitness variables with periods of intentional overreaching, followed by periods of restoration 

(Plisk and Stone 2003). For the purposes of this work the periodization scheme utilised in 

the Westside barbell system will be deemed to be comparable to that of an undulating 

model.  

 

Recent training systems developed by powerlifters are more recognisable for the novel 

training practices they incorporate rather than their organisational structure. Examples of 

novel training practices currently promoted by powerlifters include the use of resistive bands 

and chains, and weight releasing devices which are implemented to alter the magnitude of 

the resistance during an exercise (Simmons 1999, Simmons 1996). Other practices include 

the use of modified barbells, unconventional lifting implements and various sled dragging 

exercises which are popular with track sprinters (Tate 2006, Purzel 2009). Based on 

anecdotal reports of the effectiveness of these practices for developing maximum strength 

and power, large numbers of athletes and recreationally trained individuals have begun to 

perform them. This has led to initial research being conducted by sport scientists. A small 

number of studies have investigated the use of bands (Mcguigan, Wallace and Winchester 



 

60 
 

2006, Wallace and Winchester 2006), chains (Berning and Adams 2004, MCCURDY et al. 

2009) and weight releasing devices (Doan et al. 2002, Ojasto and Hakkinen 2009) on 

exercise biomechanics, physiological responses and changes in performance. More 

recently, biomechanical and physiological research studies have investigated training with 

unconventional implements (McGill, McDermot and Fenwick 2009, Keogh et al. 2010). 

Collectively, results have indicated that the contemporary training practices used by 

powerlifters have the potential to create distinct biomechanical and physiological stimuli. 

However, research in the area requires a more systematic approach in order to further our 

understanding. The individual training practices investigated in previous studies have 

generally included restricted ranges for the experimental parameters and therefore lack 

ecological validity. In addition, scientific study generally lags behind the actual practices 

used by athletes in the field. The purpose of this descriptive study was to identify the 

contemporary training practices used by high-level powerlifters and to detail their 

motivations for employing such methods. The identified practices will be differentiated on 

the basis of their underlying mechanics and studied in the subsequent chapters.  
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3.3 Methods 

 

Approach to the problem 

To identify the contemporary training practices used by powerlifters and their motivations for 

use, questionnaires and semi-structured interviews were used. Questionnaires were 

completed by senior-level powerlifters from Scotland, England, Ireland and Wales at an 

international competition. Interviews were conducted at later dates using a sample of 

Scottish powerlifters from the same competition. Questions for both tools were created by 

first performing focused research of powerlifting practices reported in lay sources. The 

Information obtained was used to develop primarily closed questions for the questionnaire 

and more open and flexible questions for the interview schedule.  

 

Participants  

The participants included the top fifteen ranked male Scottish powerlifters and seventeen 

additional international competitors invited to the 2007 Four Nations Championship held in 

Livingston, Scotland. The participants included multiple national, international and 

commonwealth champions and record holders in weight categories ranging from the under 

75kg class to the unlimited weight class. Performance in powerlifting is measured by the 

Wilks equation which combines multiple power laws to scale the loads lifted by each 

individual relative to their body mass (Vanderburgh and Batterham 1999). Based on 2007 

competition results the average Wilks score of the group was 450.26 ± 34.7, with previous 

research classifying high level international athletes as those with Wilks scores greater than 

410 (Keogh et al. 2009). Each of the competitors participating in the international 

competition was invited to complete the questionnaire. Interviews were conducted in person 

and due to logistical constraints, only the Scottish powerlifters were invited to participate. 

The research design was approved by the Robert Gordon University Research Ethics 

Committee. 

 

Questionnaire 

A twenty-item questionnaire sectioned into six areas of inquiry (1. repetition speed; 2. 

explosive training load; 3. resistance materials used; 4. adjunct power training methods; 5. 

exercise selection; 6. training organisation) was created (Appendix I). Each section 
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represented an important aspect of contemporary training methods identified from research 

of lay material. Closed questions featured for all segments except for exercise selection 

where both closed and open questions were presented. The questionnaire was piloted with 

four local powerlifters with feedback specifically sought on language and content prior to its 

use on the participant population. Based on the feedback a few minor changes to the 

phrasing of three questions were made.  

 

Interview 

Semi-structured interviews were conducted to provide more detailed information regarding 

the training practices used by high-level powerlifters and their motivations for adopting such 

practices. In combination with a brief interview schedule (Appendix II), detail-oriented 

probes with follow up questions were used to provide more accurate accounts (Patton 

2002). The interviews were conducted according to the recommendations made by Kvale 

(1996) and lasted approximately 25 to 40 minutes depending on the participant‟s 

engagement with the process. Interviews were audio recorded and then transcribed 

verbatim. 

 

Data Analysis 

Descriptive statistics were used to summarise the responses from questionnaires. Data 

collected from interviews were analysed inductively within a framework supported by the 

study aims.  An inductive rather than deductive approach was used to ascertain the breadth 

of the training practices used. The collated raw data from interviews were organised in to 

themes. This was achieved by the primary author (who was also the interviewer) reading 

and then re-reading the transcripts to become familiar with them. The interview transcripts 

were then split into “meaning units” with tags provided to represent single ideas expressed 

by the individual (Côté et al. 1993). A full list of tags created across the nine interviews was 

then analysed, with similar tags collapsed into categories (Côté et al. 1993). The important 

themes were then identified by sorting categories to ensure they were distinct, and finally, 

ensuring at least four of the nine athletes discussed elements of the theme during their 

interview to demonstrate group patterns.   
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3.4 Results  

 

 

3.4.1 Survey 

 

Of the thirty two male powerlifters engaged in the competition a total of twenty eight (88%) 

completed the survey. Table 1 provides a summary of the results.  

 

Table 3.1: Summary of item responses  

Repetition Speed Heavy Loads (80-100% 1RM) 
% of powerlifters using the 

training practice 

Performed squat as fast as possible 64.3% 

Performed bench press as fast as possible 60.7% 

Performed deadlift as fast as possible 64.3% 

Repetition Speed Submaximal Loads (0-70% 1RM)  

Performed squat as fast as possible 75.0% 

Performed bench press as fast as possible 67.9% 

Performed deadlift as fast as possible 75.0% 

Explosive Training Load (0-70% 1RM)  

Used 0-10% for speed repetitions 0% 

Used 11-20% for speed repetitions 0% 

Used 21-30% for speed repetitions 0% 

Used 31-40% for speed repetitions 3.6% 

Used 41-50% for speed repetitions 39.3% 

Used 51-60% for speed repetitions 39.3% 

Used 61-70% for speed repetitions 53.6% 

Resistance Material Used  

Used chains in training 57.1% 

Used elastic bands in training 60.7% 

Adjunct Power Training Methods  

Performed the clean in training 60.7% 
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Performed the jerk in training 10.7% 

Performed the snatch in training 14.3% 

Performed pulls in training 17.9% 

Performed upper body plyometrics in training 14.3% 

Performed lower body plyometrics in training 17.9% 

Exercise Selection  

Performed box squats in training 46.4% 

Performed board press in training 57.1% 

Periodization   

Used periodization in training organisation 96.4% 

 

Repetition Speed 

Participants were asked if they performed their heavy sets (80-100% 1RM) in the squat, 

bench press and deadlift as fast as possible (maximum), or at controlled speeds (less than 

maximum). Thirteen of the twenty eight (46%) participants performed all three exercises as 

fast as possible and twenty two (79%) performed at least one of the exercises as fast as 

possible. 

 

Explosive Training Loads 

Participants were asked if they attempted to lift sub-maximum loads (0-70% 1RM) as fast as 

possible in the squat, bench press or deadlift. The sub-maximum loads were presented to 

the participants in seven categories (0-10%, 11-20%. 21-30%, 31-40%, 41-50%, 51-60%, 

61-70%) with instructions to select multiple categories if appropriate. The responses 

showed that the majority of the powerlifters (82%) performed the practice with at least one 

of the exercises, and in each instance used more than one loading category. None of the 

participants reported using loads less than or equal to 30% of their maximum for explosive 

training. Figure 3.1 illustrates the percentage of powerlifters that used the various sub-

maximum loading categories for the squat, bench press and deadlift. 
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Figure 3.1: Analysis of sub-maximum loads used for speed repetitions in the squat, bench 
press and deadlift
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Resistance Materials Used 

Thirty nine percent of the powerlifters surveyed incorporated elastic bands in their training 

and 57% reported using chains. Figure 3.2 illustrates that chains and bands were most 

commonly used with the bench press exercise. 

 

Figure 3.2: Analysis of the use of chains and band with squat, bench press, deadlift or 

assistance exercises. 
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Adjunct Power Training Methods 

Sixty nine percent of the participants reported that they regularly performed the Olympic lifts 

or their derivatives (cleans, snatch, pulls, and the jerk) as part of their overall training 

regime. A minority of the participants also reported performing upper and lower body 

plyometric drills (14% and 18% respectively). In general, it was the same participants that 

performed the exercises for both the upper and lower body.  

 

Exercise Selection 

Thirteen of the twenty eight (46%) participants performed the box squat in their training. 

Participants who included the box squat were asked to indicate how frequently they 

performed the lift in comparison to the free squat. Of those who performed the exercise, 

46% reported performing the box squat less often than the free squat, 23% reported that 

they performed both lifts with the same frequency, and 30% reported performing the box 

squat more often than the free squat.  

 

Participants were also asked which assistance exercise they felt best improved 

performance in the squat, bench press and deadlift. Box squats were cited most frequently 

for the squat (29%), close grip bench press was cited most frequently for the bench press 

(43%), and platform deadlifts were cited most frequently for the deadlift (29%). Additional 

exercises cited included board presses (21%), speed deadlifts (18%), and safety-bar squats 

(18%).  

 

Training Organisation 

Twenty seven of the twenty eight (96%) participants reported that they included some 

method of periodization in their training organisation.  

 

3.4.2 Interviews 

Of the fifteen powerlifters invited, nine volunteered to be interviewed. Analysis of the 

transcribed interviews identified five themes related to the athletes training practices and 

two themes relating to their motivations for adopting such practices. The identified themes 

included: 1) sources of information; 2) training systems; 3) specificity of strength; 4) 

developing power; 5) developing technique; 6) scientific underpinnings; 7) heuristics. These 

themes will be explored further in the discussion section of the chapter.  
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3.5 Discussion  

 

Questionnaires and interviews employed in this study were used to obtain information on 

multiple aspects of the training practices of high-level powerlifters. Questionnaires were 

primarily used to determine whether successful powerlifters utilised novel training practices 

currently promoted through internet sites and practitioner forums. In contrast, interviews 

were used to obtain a more complete representation of the athletes‟ training and to 

determine their motivations for adopting each practice. The results from the questionnaires 

and interviews demonstrated substantial overlap, indicating the importance of novel training 

practices in the preparation of high-level powerlifters. The majority of the powerlifters 

surveyed reported using multiple training practices aimed at developing power and the 

ability to produce large forces over short time periods. In addition, responses to 

questionnaires revealed a wide range of exercises used by powerlifters, thereby illustrating 

the possible diversity in training programs. The development of power and the use of 

specific resistance exercises to enhance competition performance were the most frequently 

discussed themes during interviews. Other themes included the development of technique, 

the use of training systems and the importance of information sources to develop training 

practices. All athletes interviewed reported that they used trial and error to enhance the 

effectiveness of their training. In addition, the majority of those interviewed justified their use 

of various training practices on the basis of purported biomechanical or physiological 

advantages. The following sections discuss in detail the content of themes identified from 

interviews and relate the findings where appropriate to the questionnaire results and 

previous literature.    

 

Information sources   

Each of the athletes interviewed discussed the importance of obtaining current information 

to develop their training regimes and improve performance. A variety of information sources 

were identified, with eight of the nine athletes stating that their primary source was the 

internet. The most popular internet sites identified were practitioner forums which featured 

discussion boards where powerlifters could comment on issues related to the sport and 

upload training journals and videos for peer feedback. Four of the nine athletes identified 

other powerlifters and training partners as the next most important source of training 

information. Additional sources identified included powerlifting magazines and local strength 

and conditioning coaches. In the scientific literature there is a paucity of data regarding the 

information sources used by athletes to develop their training. This may be due to many 
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athletes, particularly those competing at high levels receiving their training regimes from 

coaches and strength and conditioning practitioners. Examples include the sport of Olympic 

weightlifting where coaches play an extensive role in the training design and competition 

management of their athletes (Fry and Newton 2002). In contrast, the majority of 

powerlifters compete individually and do not employ coaches. The relatively isolated nature 

of powerlifting may explain why resources on the internet are so popular and communal. 

Internet sites enable large numbers of individuals to assist each other and monitor the 

effectiveness of various training practices by reviewing the progress of online users. The 

communal nature and usefulness of online sites was expressed by one powerlifter who 

stated the following during interview – 

 

“You get a lot of good people online... folk that know what they‟re talking about and 

are strong. If you think about it, you‟ve got some of the best powerlifters in the world 

putting up (their) training, putting up (their) videos and answering Joe Blogg‟s 

questions.” (04) 

 

Use of training systems 

The interviews also revealed that information sources used by powerlifters are closely 

related to the training systems they adopt. Almost all of the powerlifters surveyed reported 

that they adhered to long-term periodized programs. In addition, eight of the nine athletes 

interviewed stated that they develop the majority of their periodized programs through 

information and templates posted online. When designing a long-term periodized program 

there are a number of variables that have to be considered (Plisk and Stone 2003, Fleck 

1999). Training systems provide a framework which assist in the development of long-term 

plans by constraining the number of variables that require manipulation. When those 

interviewed in the present study were asked to describe how they organise their training, 

five of the athletes stated that they adhered to a training system and two stated that they 

incorporated elements from a training system. All seven of these individuals stated that it 

was predominantly the Westside Barbell system that they incorporated based on 

information obtained from online sources. The athletes provided a number of reasons as to 

why they followed the Westside Barbell system, with multiple athletes citing factors such as 

variety in training, the frequent use of maximum resistances, predilection for novel training 

practices, and approval of results obtained  – 
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“I like the four (training) days. I like the speed work, chains, bands, box squats... and 

it gets you strong.” (05) 

 

“Lifting multiple 1RM‟s each week really works. I rotate my max lifts every two weeks 

and that seems to keep my strength going up and up.” (06) 

 

“I‟ve tried (other programs including) Ed Coan‟s, five times five, Russian volume, 

German volume, and Westside gives better gains. I don‟t do all the template, but I 

do the heavy and speed days.” (08) 

 

“I like Louie (Simmons), I‟ve got his videos and online stuff. Everyone uses it 

(Westide Barbell System), so folk can help out and give advice.” (04) 

 

“There‟s not that many systems to use. Westside‟s a bit mystical, but it‟s based on 

science, and chains and bands are different. They work (bands and chains) and my 

squat is suited to the box (i.e. the box squat), so it‟s all good for me.” (06)   

  

As a result of the popularity of the Westside barbell training, a number of similar systems 

have been developed (Purzel 2009). In particular, attempts have been made to tailor the 

system to the training level and goals of the individual. Two of the athletes in the present 

study stated their belief that the Westside barbell system was most appropriate for 

powerlifters with substantial training experience. Similar opinions held by strength and 

conditioning coaches has led to the development of derivative training systems which are 

less demanding and believed to better suit less experienced powerlifters (Defranco 2012). 

In addition, training regimes that integrate features of the Westside barbell system with 

more general sports training have been developed to improve the physical conditioning of 

athletes other than powerlifters. 
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Specificity of Strength 

Powerlifting competitions are generally viewed as an accurate test of overall body strength 

(Siff 2003). The competition movements require activation of large amounts of muscle and 

enable individuals to produce forces at the maximum capacity of the human body (Gotshalk 

1985). As a result, previous discussions of how powerlifters should train have emphasised 

the importance of developing the strength of individual muscles (Kraemer and Fleck 2004). 

However, during interviews for the present study, the majority of athletes stated that general 

increases in strength were of limited benefit to powerlifting performance and that optimal 

improvement in strength should target their individual weaknesses in the competition lifts. 

Moreover, many of those interviewed repeatedly used the term “specific-strength” when 

referring to the premise that not all increases in force capability would improve competition 

performance. Interestingly, only two of the athletes interviewed expressed the opinion that 

overall strength was the most important factor in determining performance. In both cases, 

the athletes competed in the heaviest weight category and their responses appeared to 

relate the concept of total muscle mass with overall strength and performance - 

 

“Most important part of (power) lifting is strength. All lifts are set (limited) by the 

amount of muscle you got. You can try and squeeze out gains by messing with 

technique or changing your equipment, but how much you lift is how big you are”. 

(05) 

 

“The strongest guys are the biggest guys. To deadlift 400 (kilograms), except for one 

or two freaks, you have to be 150 (kilograms) or heavier. It‟s as simple as that.” (01) 

 

Results from the survey and interviews revealed a large breadth of training practices used 

by powerlifters to enhance performance of the competition exercises. Many of these 

practices involved performing variations of the competition exercises to enhance transfer of 

adaptations. The survey revealed that the majority of the powerlifters altered the range of 

motion used to perform the competition exercises or added additional resistance material in 

the form of chains and bands. During interviews the athletes also discussed performing 

competition exercises with various modified barbells. For each of the training practices 

discussed, the athletes explained that they were used to target specific weaknesses in their 

competition performance – 
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“I‟ve used chains cause they hit (stress) the top part of the lift. I can always get the 

bar off my chest or break it from the floor during deads (the deadlift), but I always 

struggle at lockout. The chains focus at the top and overload the joints.” (07) 

 

“Chains and bands both increase my lifts, probably more so the bench (press). 

Bands are way tougher so when I take them off the weight feels really light and 

stable.” (02) 

 

“The best exercise for improving deadlifts is rack pulls. Even though I usually fail at 

the bottom, the extra weight during the pull creates a much greater overload, plus it 

teaches you to stay rigid and tight.” (03) 

 

“I find the trap bar and McKenzine bar to be a good switch-up from the straight bar. 

If you do a long cycle with any of them and come back to the straight (bar) your 

numbers always go up because your using heavier weights for the same lift.” (01)   

 

A small number of previous studies have investigated the effects of modifying resistance 

exercises using methods similar to that described by the powerlifters. In his popular 

resistance training textbook, „Science and Practice of Strength Training‟, Zatsiorsky (1995) 

categorised partial range of motion training as an advanced strength-training method. The 

author stated that performing exercises with a partial range of motion allowed individuals to 

train with loads greater than their 1RM and therefore create a strong stimulus to promote 

strength increases (Zatsiorsky 1995). The premise of this training method is based on the 

observation that the relationship between force transmission and resistance caused by the 

external load varies throughout an exercise (Mookerjee and Ratamess 1999). Probable 

mechanisms for variation in force transmission include the muscle length-tension 

relationship and changes in muscle activation and moment arm length of the 

musculotendinous unit (Zajac and Gordon 1989). Biomechanical research has previously 

established that, for exercises performed with maximum resistance, a “sticking region” 

exists where the balance between force transmission and resistance causes the velocity of 

movement to substantially decrease and in many instances reach zero (McLaughlin and 

Madsen 1984). The sticking region therefore limits the amount of resistance that can be 
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overcome by acting as the weakest link. Cross sectional research conducted on the bench 

press has shown that significantly heavier loads can be overcome if the range of motion 

(ROM) is decreased to avoid  the sticking region (Mookerjee and Ratamess 1999, Clark, 

Bryant and Humphries 2008). However, longitudinal research comparing training 

interventions incorporating either full ROM or partial ROM repetitions has shown similar 

improvements in strength with both methods (Massey et al. 2004, Clark et al. 2011), or 

greater improvements when performing full ROM repetitions (Massey et al. 2005). The 

results obtained in longitudinal studies may reflect a trade-off in the overall mechanical and 

physiological stimuli created with each method. Whilst partial ROM training results in 

greater peak forces, full ROM repetitions require longer contraction times and produce more 

mechanical work (Clark, Bryant and Humphries 2008). Therefore, full ROM repetitions are 

more likely to stimulate a greater metabolic and hormonal response (Crewther et al. 2006). 

In addition, it has also been suggested that individuals without substantial resistance 

training experience may be unable to benefit from partial ROM training as the necessary 

neural adaptations to overcome supramaximal loads and fully augment the mechanical 

stimulus have not been created (Massey et al. 2005). Due primarily to the limited amount of 

research conducted, it is unclear how effective partial ROM training is for competitive 

powerlifters.  

 

Altering the magnitude of the resistance during an exercise provides an alternative method 

to overcome the sticking region. When using resistance training machines this is easily 

achieved through the use of motors and cams. However, transfer of adaptations to sporting 

performance is believed to be limited when using resistance training machines in 

comparison to free-weight exercises (Frost, Cronin and Newton 2010). Recently, 

powerlifters have promoted a method of varying the magnitude of resistance during free-

weight exercises by attaching additional resistance material in the form of bands and 

chains. During performance of the exercise the resistance is at its lowest during the initial 

stages of the movement where force capabilities of the body are generally low (Baker and 

Newton 2009). As the load is displaced upwards the bands stretch (or more links of the 

chain add to the barbell) to increase the overall resistance and match the enhanced force 

capabilities of the body. In contrast to partial ROM training, the addition of bands and chains 

allow full repetitions to be performed and therefore may provide a more effective combined 

mechanical and physiological stimulus. In addition, some strength and conditioning coaches 

have suggested that the addition of bands and chains has the potential to enhance core 

stability and neurological adaptations to strength training (Berning, Coker and Briggs 2008). 

However, the majority of training related claims regarding bands and chains are anecdotal, 
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and despite widespread popularity of the training practice, research in the area is still 

limited.  

 

Many of the studies investigating the use of bands and chains are of a cross-sectional 

design and have sought to measure the effects of including the resistance material on 

mechanical parameters believed to be important in stimulating adaptations. The total 

resistance added when using bands and chains is likely to determine whether appropriate 

changes to the mechanical stimulus are created. Over half the powerlifters surveyed in the 

present study reported that they regularly used either bands or chains in their training. Of 

the nine powerlifters interviewed, seven confirmed that they used either bands or chains as 

part of their training preparation. When asked to detail how they incorporated the resistance 

material within their training, it was consistently remarked that the bands and chains had to 

represent a large percentage of the overall resistance to be effective. Three of the 

powerlifters stated that they regularly incorporated chain and band resistances of 

approximately 40 to 60% of their 1RM lift. Resistances approaching these magnitudes have 

not been investigated in previous research. In multiple studies the resistance added through 

chains and bands has been as low as 5% of the participant‟s maximum strength (Ebben 

and Jensen 2002, Baker and Newton 2009, Berning, Coker and Briggs 2008, Coker, 

Berning and Briggs 2006, Anderson, Sforzo and Sigg 2008). Therefore, further research is 

required to investigate the mechanical effects of the materials with loads commonly used in 

practice.  

 

The use of modified barbells is a training practice commonly associated with the Westside 

Barbell training system. Of the nine athletes interviewed in the present study, five stated 

that they regularly used modified barbells to target specific weaknesses in their competition 

lifts, or to provide variation in their training. It was further identified that modified barbells 

were most commonly used to perform the deadlift and squat. To the author‟s knowledge, 

only one previous study has investigated potential changes in exercise biomechanics when 

using a modified barbell. Lander et al. (1986) compared joint kinematics and kinetics of six 

experienced male weightlifters performing the squat with a regular barbell or a modified 

barbell that could be adjusted to progressively lower the vertical height of the external 

resistance. A 5RM load was selected with the resistance lowered by 18 and 36% of the 

participant‟s height. The results showed no significant differences in joint kinematics and 

kinetics across conditions. Indirect assessment of the stress placed on the lumbar spine 

was obtained by measuring intra-abdominal pressure (IAP). The results demonstrated that 
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IAP was significantly lower during squats performed with the regular barbell. The authors 

interpreted this finding as evidence of reduced stress on the lumbar spine when squatting 

with the modified barbell. Joint moment data were collected at the hip and not the lumbar 

spine and therefore the authors‟ conclusions are difficult to confirm. The relative role of IAP 

on spinal mechanics remains controversial; however, recent models do suggest that 

increased IAP provides a mechanism to increase stiffness of the spine, and thereby indicate 

greater stresses experienced (Arzadeh et al. 2012). Despite the apparent popularity of 

modified barbells among powerlifters, there is at present limited information to assess their 

potential effectiveness.   

 

Developing power 

Seminal research conducted by Garhammer and McLaughin (1980) demonstrated that 

power production during maximum resistance squats, bench presses and deadlifts was 

considerably lower than that produced during Olympic weightlifting exercises. As a result of 

the findings, the majority of researchers and strength and conditioning coaches concluded 

that power development was not an important training requirement for the sport of 

powerlifting. Until the proliferation of the Westside Barbell system, the majority of 

powerlifters adhered to training programs which focused on developing force production 

capabilities during low velocity movements. However, one of the main features of the 

Westside barbell system, in addition to the use of heavy resistances, is the training practice 

of lifting sub-maximum loads as fast as possible (Simmons 2007). The rationale for the 

training practice is based on the theory that overcoming sub-maximum loads at fast 

velocities generates significant muscular strain and provides a stimulus to enhance 

muscular power (Simmons 2007, Zatsiorsky 1995). In the Westside Barbell system the 

training practice is commonly referred to as the dynamic effort method or speed repetitions. 

Proponents of the system currently recommend that the dynamic effort method be 

performed with the bench press, squat and deadlift using loads between 40 to 75% 1RM 

(Simmons 2007). The survey conducted in the present study confirmed the popularity of the 

training practice amongst high-level powerlifters. Three quarters of those surveyed reported 

that they regularly performed maximum velocity repetitions in training. A small number of 

athletes reported using loads as light as 30 to 40% 1RM, with the majority reporting use of 

loads between 60 to 70% 1RM. Despite the popularity of the practice, it has not clearly been 

established how powerlifting performance is consequently improved. It has been suggested 

that the training practice can enhance maximum strength as well as muscular power 

(Simmons 2007). In addition, others have proposed that improvements in power may 
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increase 1RM performance by enabling individuals to impart more momentum to the barbell 

during the initial stages of the movement, and therefore progress through the sticking region 

(Mangine et al. 2008). Of the nine athletes interviewed for the present study, six stated that 

power was an important factor in their competitive performance. When these athletes were 

asked to explain why they thought power was important, all responses supported the 

rationales previously stated.  

 

The following excerpts are from two athletes who emphasised the ability of power training to 

directly improve maximum strength - 

 

“Power and strength are pretty much the same thing. If you keep upping the load 

 with speed reps then you up your max load as well.” (09) 

 

“I find power training, plyo‟s (plyometric exercises), good for my max. Speed box 

squats are my best lift for squat. . . bench throws are also good for one rep bench 

press.” (03) 

 

The potential for power training to improve 1RM performance by altering the kinematics of 

the movement is reflected in the following statements collected during interview – 

“Power training helps you get out of the hole in the squat and gives you that first pop 

off the chest in bench (press).” (05) 

 

“The (power) training is as important as strength training. If you watch the top guys 

lift - they don‟t lift slowly, even the heavy weights fly up. . . the power type training is 

what lets you blast through a lift.” (06) 

 

The hypothesis that maximum strength can be improved whilst participating in training 

designed to enhance muscular power has support in the scientific literature. Numerous 

studies investigating the physiological adaptations obtained from power training have 

reported increases in maximum strength over relatively short training periods (Harris et al. 
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2008, McBride et al. 2002, Moss, Refsnes and Abildgaard 1997, Cormie, McGuigan and 

Newton 2010a). However, the same research has demonstrated that increases in strength 

during power training are not as large as those achieved during traditional heavy resistance 

training (Harris et al. 2008, McBride et al. 2002, Moss, Refsnes and Abildgaard 1997, 

Cormie, McGuigan and Newton 2010a). A smaller number of studies have investigated the 

effects of combining heavy resistance training with power training (Lyttle, Wilson and 

Ostrowski 1996, Harris, Stone and OBryant 2000, Mangine et al. 2008). Results have 

shown that superior improvements in strength can be achieved when combining training 

methods in comparison with performing either method in isolation (Harris, Stone and 

OBryant 2000, Mangine et al. 2008). Mangine et al. (2008) compared strength increases 

obtained during a standard resistance training intervention and a training regime which 

combined heavy and sub-maximum resistances performed as fast as possible in a single 

session. The group combining training practices experienced significantly greater 

improvements in 1RM bench press scores than those performing the standard heavy 

resistances in isolation (11.6 vs. 7.1%). The authors suggested that improved results may 

have been achieved through greater neural activation accrued when combing 

methodologies or the addition of power training may have caused adjunct positive 

adaptations such as improved energy storage and release in tendons (Mangine et al. 2008). 

Further research is required to elucidate the mechanisms that may result in augmented 

strength improvements when combining training methodologies. In addition, research into 

how best to combine strength and power training to maximise improvements is also 

required.  

Less evidence is available to support the hypothesis that 1RM performance can be 

improved by manipulating the kinematics of the exercise near the sticking region. Previous 

research has shown it may be possible to alter the position of the sticking region through 

changes in the movement strategy used to perform an exercise. McGuigan (1996) and 

Fernando (1989) both reported that the sticking region in the deadlift exercise occurs during 

the first half of the concentric phase when using a standard lifting technique. In contrast, the 

sticking region occurred more frequently during the second half of the concentric phase 

when using the sumo lift technique (McGuigan and Wilson 1996, Fernando  1989). 

Differences in position of the sticking region were most likely caused by changes in body 

posture and concomitant alterations to the relative positioning of the external resistance and 

internal muscle moment arms and length-tension relationships (McGuigan and Wilson 1996, 

Escamilla et al. 2000). It is important to note that, despite substantial differences in body 

postures adopted between techniques, the position of the sticking region remained 

unaltered for many athletes (Escamilla et al. 2000). This result demonstrates the difficulty in 
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overcoming the disparity between internal and external torque production to alter 

performance of a maximum lift.  

 

Whilst there is no direct evidence that power training may alter the sticking region of an 

exercise, it should be realised that the majority of powerlifters take part in competitions 

where legal performance-enhancing equipment are used (Silver, Fortenbaugh and Williams 

2009). Examples include the use of knee wraps and form-fitting garments made from dense 

mixtures of cotton and polyester. An ergogenic effect is obtained as the garments are 

stretched during the eccentric phase and then return the stored energy during the 

concentric phase (Silver, Fortenbaugh and Williams 2009, Harman and Frykman 1990). The 

elastic recoil is greatest during the initial phase of the concentric movement prior to the 

sticking region. It is believed that power training is more likely to improve 1RM performance 

when it is combined with performance-enhancement equipment (Tate 2006). The proposed 

mechanism is that power training increases the velocity of the exercise, which, when 

combined with the elastic recoil creates substantial momentum to assist in completing the 

movement. This mechanism was described by one of the powerlifters in the present study – 

 

“When you wear a shirt the sticking point happens much closer to lockout. Speed 

benching is all about getting a big pop off the chest so that you max with the shirt to 

build speed and get straight to lockout.” (05) 

 

Additional research investigating the effect of power training on the kinematics of heavy 

resistance exercises with and without performance-enhancement equipment is required to 

enhance understanding of the potential mechanisms of improvement. 

 

Developing Technique 

A large section of contemporary information regarding powerlifting training is devoted to 

optimising technique in the squat, bench press and deadlift. For each exercise a number of 

key technique points have been proposed to create a favourable balance between the 

external resistance and the internal force production capabilities of the body. Research 

conducted by McLaughlin et al. (1977) on lifting techniques used by powerlifters during 

competition revealed a number of kinematic differences in the squat exercise between top 
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tier athletes and those producing lesser performances. The results showed that the best 

powerlifters maintained a more upright posture and exhibited greater restriction in anterior 

displacement of the knee. Similar research conducted by Escamilla et al. (2001)  on the 

deadlift also identified kinematic differences between athletes of various levels. Within each 

weight category the athletes producing the best performances exhibited greater knee flexion 

at lift-off, and positioned the barbell closer to the body throughout the exercise (Escamilla et 

al. 2001). The majority of lay material regarding technique in powerlifting has focused on the 

bench press and squat. A large amount of information has been developed for the bench 

press due to substantial improvements in performance which can be obtained when using 

ergogenic equipment. Form-fitting shirts have been shown to substantially increase 

performance of heavy weight male athletes depending upon the stiffness of the material and 

skill of the individual (Bates 2012). Technique advice on the bench press has largely 

focused on minimising the vertical displacement of the barbell and maximising the elastic 

recoil from the shirt. The majority of athletes interviewed agreed that performance in the 

bench press was greatly affected by the use of ergogenic equipment and that specific 

training to optimise technique was required – 

 

“I can get an extra 40kg with my shirt and that‟s with using single ply only (not the 

stiffest material). One of my training partners can get almost 60kg out of the same 

shirt. For me, the trick is getting it on tight so I hit the centre of the chest plate.” (09)  

 

“I hate using shirts, they‟re so uncomfortable and horrible to get on. But, you have to 

use them. I go from about 200 (kg) without, to on a good day, 240 (kg), 245 (kg) 

with.” (01) 

 

“Most of my reading tells you to squeeze your shoulder blades together, tuck your 

elbows, blow out and bench to the top of your belly and pull the bar apart on the way 

up. I need to flare my elbows at the top to lockout heavy loads.” (06) 

  

“I use a really wide grip and force my back into the bench so the shirt doesn‟t move 

when I‟m benching. Also, you have to keep your head down, as soon as your head 
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rises the shirt moves up. Tuck my elbows on the way down and arch my back to 

stretch the shirt and explode as fast as possible on the way up.” (04)   

 

Due to the specialist technique and equipment required to perform successful competition 

bench presses, it is unlikely that the exercise will transfer improvements to more general 

sporting actions. As a result, the exercise has received minimal attention from the wider 

strength and conditioning community. In contrast, researchers have investigated the effect 

of technique alterations on the stimulus created during the squat, which is commonly 

regarded as one of the best resistance exercises for developing athleticism (Donnelly, Berg 

and Fiske 2006, Hales, Johnson and Johnson 2009, Paoli, Marcolin and Petrone 2009). 

Initial research investigating different squat techniques used by powerlifters and Olympic 

weightlifters revealed that the powerlifting group positioned the barbell lower on their back 

and emphasised loading of the hip joint by restricting anterior displacement of the knee 

(Wretenberg, Feng and Arborelius 1996). The majority of recent technical advice developed 

for powerlifters performing the squat recommends that athletes should adopt a wide stance 

and attempt to maintain a vertical shin position throughout the lift (Simmons 2007, Tate 

2006). These recommendations were made to further emphasise loading of the hip and 

lower back. Some practitioners have suggested that these recommendations will cause the 

mechanics of the exercise to reflect that of the deadlift. This could prove advantageous for 

powerlifters as adaptations would potentially improve both squat and deadlift performance if 

there were a close mechanical relationship between the exercises (Tate 2006). However, 

research thus far has been unable to demonstrate similar kinematic profiles between 

competition squats and deadlifts (Hales, Johnson and Johnson 2009). In order to perform 

the squat as is currently recommended by powerlifters, individuals may require considerable 

technical skill and training experience. To develop proficiency in the movement it has been 

recommended that individuals perform the box squat in training (Simmons 2007). This 

variation includes a small box placed behind the lower leg and requires the performer to 

descend to the box, momentarily pause, and then return to the starting position. The box 

enables the performer to maximise posterior displacement of the hip and maintain a vertical 

shin position by acting as a safety device to catch the individual if the COM is moved behind 

the base of support. Almost half of the powerlifters surveyed in the present study reported 

performing the box squat regularly in training. In addition, the exercise was cited most often 

as the best assistance exercise to improve squatting performance.  
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During interviews it became apparent the powerlifters‟ motives for performing the box squat 

were varied. Some confirmed that they used the exercise primarily as a means to improve 

their squatting technique, whilst other stated that they used the exercise to increase the 

strength of specific muscles or to improve their performance during the bottom portion of the 

movement where the sticking region occurs. Currently, the effectiveness of the box squat is 

promoted by numerous elite powerlifters and appears to be popular with athletes from a 

wide variety of sports. However, research investigating the biomechanical and physiological 

stimulus presented by the exercise is limited. McBride et al. (2010) compared kinetic and 

EMG data obtained from powerlifters performing the traditional squat and box squat. The 

authors reported only minimal differences in peak VGRF and muscle activity measured at 

the thigh. The experimental protocol utilised by Mc Bride et al. (2010) did not calculate joint 

specific data or provide kinematic information regarding the movement strategies used by 

the powerlifters to perform each exercise. Due to the limited information currently available, 

coaches and athletes are unable to make informed judgements regarding the potential 

strengths and weaknesses of the box squat.  

 

Scientific Underpinnings 

The early training regimes employed by strength athletes were developed largely on the 

basis of trial and error (Fry and Newton 2002). The first group of strength athletes to utilise 

systematic research to inform their training regimes were Olympic weightlifters. In the 1970s 

the Soviet Union and other Eastern European countries began to conduct scientific 

research into various aspects relating to the performance of Olympic weightlifting (Fry and 

Newton 2002). In 1986, the well known work of R.A. Roman (The training of the weightlifter) 

was published. The manuscript included detailed kinematic information of weightlifting 

exercises, acute training strategies, and multi-year planning schedules (Roman 1986). 

However, the use of systematic research to inform training practices did not spread to 

strength athletes from other disciplines due to their limited coaching and support structures. 

Only recently has the training material disseminated for powerlifters included reference to 

physiological or biomechanical research. In addition, the majority of this information is 

disseminated through non-peer reviewed internet sources. During interviews carried out for 

this study, when asked to explain their motives for performing different training practices, 

the majority of powerlifters referred to various neurophysiological or biomechanical 

concepts. When discussing the importance of performing repetitions as fast as possible 

multiple powerlifters stated that the practice was important to enhance the ability to “recruit 

more muscle fibres”. In addition, the majority of those interviewed discussed the concept of 
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momentum with regards to high velocity repetitions and ultimately traversing the sticking 

region during maximum lifts. When discussing specific exercises or the use of modified 

barbells and variable resistance material such as chains and bands the majority of those 

interviewed provided mechanical rationales - 

 

“Jump stretch bands and chains give you the same increase in resistance as you 

go up, but the stiffness of the jump stretch bands gives you a much steeper 

increase in resistance. So to get to lockout you have to create a lot of momentum.” 

(04) 

 

“When you do the box squat it makes you swing the hips right back so you end up 

with your upper half bent over which creates massive torque at the back but like 

none at the knee. Big difference with the Olympic squat where your feet are close 

and you end up stressing the knees even though the weight is half as much.” (09)  

 

“They‟re a pain to get a hold of but speciality barbells are the best for targeting 

specific muscles and staying specific. My favourite is the safety squat bar, when 

you put the arms up you can sit far back and keep the head up, using your hips. 

Plus, the safety bar is a bit higher on neck so it makes it even harder for your hams 

(hamstrings) and lower back. My training partner always wants to do trap bar 

deadlifts instead of conventional or sumo. They‟re not the best for me, but you lift a 

lot more weight and Eric Cressey talks a lot about how the angle shares the load 

between legs and there is less torque at the back for injury.” (05) 

 

A cursory review of the many training articles disseminated for powerlifters in the lay 

material reveals that a growing number of authors are degree educated and use in text-

citations to support their claims where possible. This growing trend appears to have 

influenced the training and understanding of powerlifters and may provide an effective 

bridge between researchers and practitioners. However, as these articles are not subjected 

to a rigorous peer-review process, there is potential for misinformation to be published.    

 



 

82 
 

Heuristics 

In combination with the desire to select training practices that are based on clear 

physiological and biomechanical rationales, the powerlifters interviewed in the present study 

all emphasised the need to adopt a trial-and-error approach to determine effectiveness. The 

majority of those interviewed distinguished between effectiveness of a given training 

practice for them personally and the potential utility for others. The concept of individuality 

and the athlete‟s specific needs based upon their phenotype, strength of different regions of 

the body, and lifting technique was expressed frequently during interviews - 

 

“I don‟t have the flexibility in my hips or the hamstring strength to squat ultra-wide 

like a Chuck Vogelpohl (famous powerlifter). For some people it‟s effortless and they 

only look like they are squatting down half as much as I have to, but I tried it and it 

just does not work... not at all.” (07) 

“Tried doing the wave that Westside Barbell uses with the bench press. But after like 

8 weeks it just wasn‟t doing anything for me. I found that I respond much better to 

heavy speed benches, keep the same load for 8 weeks then drop the exercise for 4 

to 6 weeks and then back again but with the weight upped.” (04) 

 

“I have to cut a load of the stuff out. It all works for Jamie (training partner) but a lot 

of it, if anything makes me worse. I need to keep up a high volume of accessory 

work to keep size. Box squats and bands help because I have got long arms and 

weak legs so I always fail at top deadlift and right at hole in the squat. All the tricks 

for my bench do jack (nothing). I pretty much train like a bodybuilder for my bench 

and hit singles, doubles and shirt work closer to comps (competition).” (09) 

 

The statements made by those interviewed are in accord with researchers who suggest that 

the optimisation of training requires both experienced based learning and research driven 

inquiry. For some contemporary training methods, flexibility to alter the training stimulus 

based on feedback is an integral feature (Siff 2003, Mann et al. 2010). An example includes 

the autoregulation method that enables athletes and coaches to adjust the content and 

structure of training to correspond with the performers physiological status on a day-to-day 

and week-to-week basis (Mann et al. 2010) Research has shown that adapting training to 

coincide with a performers current level of preparedness can produce superior results than 
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those obtained with traditional training interventions comprising fixed training sessions set 

weeks in advance (Mann et al. 2010). However, training methods which incorporate 

flexibility to adjust training sessions tend to do so with a restricted number of training 

parameters. In many instances training sessions are still pre-programmed, but variables 

such as the number of sets or repetitions are altered in attempts to match the training load 

with the athlete‟s current physiological status. Future development of training methods may 

seek to include periodic review of an individual‟s progress and alter more fundamental 

aspects of the training regime if warranted. This could prove difficult for certain sports where 

annual periodized plans are restricted by lengthy competition periods. However, in sports 

such as powerlifting where athletes have extended periods of time to prepare for 

competition the process of periodic review and potential restructuring may be beneficial.   
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3.6 Summary and Conclusion 

 

The results from the questionnaires and interviews conducted in this study demonstrate that 

the descriptions of the training methods used by powerlifters in the scientific research are 

no longer representative. Instead, high-level powerlifters study and subsequently implement 

many of the novel practices currently promoted through popular online sources. At present, 

one particular training system appears to be very influential with both lower- and higher-

level powerlifters. The practices incorporated within this system are wide and varied, but 

most are designed primarily to influence the mechanical stimulus of associated exercises. 

This observation corresponds well with the research aims of this PhD project, which is to 

present a detailed analysis of the biomechanical stimulus of contemporary training practices 

used by powerlifters, and to assess their potential efficacy with general athletes. 

 

Whilst it is clear that any attempt to categorise the principal mechanical features of the 

contemporary training practices identified in this chapter is to some degree arbitrary, for the 

purposes of this project such a process was required to proceed in a logical manner. The 

training practices identified were considered to fall into one of four categories, including: (1) 

Speed of movement; (2) Alterations to the external resistance; (3) Movement strategy; and 

(4) Use of ergogenic equipment. The first category represented the training practice of 

performing maximum velocity repetitions with traditional resistance exercises. The second 

category included the use of variable resistance material (bands and chains), and 

unconventional barbells that were designed to create changes in the resistance by altering 

the position of the load. The third category included movement techniques developed by 

powerlifters to maximise performance in the competitive lifts. The final category included the 

use of ergogenic clothing with supramaximal resistances. However, as the ergogenic 

clothing worn by powerlifters was considered unlikely to confer any direct or indirect 

advantages to general athletes, it was determined that this category did not correspond with 

the full set of research aims and therefore was not selected for analysis. Instead, the 

practices listed in the first three categories were considered to be representative of much of 

the contemporary training practices used by powerlifters and regarded as appropriate for 

study in the subsequent chapters. 
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CHAPTER 4. IDENTIFICATION OF PERFORMANCE VARIABLES 

 

4.1 Prelude 

 

Human movement is a complex phenomenon that can be viewed from diverse physical, 

psychological and sociological perspectives. Perhaps the most commonly used perspective 

to study human movement comes from the field of mechanics. When applied to sport, 

mechanical analyses of movement characteristics used by performers to complete specific 

tasks are frequently reduced to the collection of a small number of variables, including 

position, force and time. However, the complexity of the human body and multitude of 

mathematical procedures that can be applied to these variables ultimately creates a large 

number of parameters that provide different information. At present, it is not fully understood 

which mechanical parameters are most closely related to the ability to successfully perform 

various sporting tasks. Greater understanding of these relationships should enable athletes 

and coaches to make more informed decisions when designing or selecting training regimes 

to improve performance. It is the purpose of this chapter to expand on previous research 

investigating the relationships between performance and single mechanical parameters, by 

employing regression analyses to develop predictor models that combine multiple factors. 

The results will be used to select the mechanical parameters measured in subsequent 

chapters to assess whether the powerlifting practices studied in this project could provide 

appropriate mechanical stimuli for general athletes.  
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4.2 Introduction 

 

The ability to effectively sprint, jump and change direction is believed to impact substantially 

on success in a wide variety of sports (Hori et al. 2008, Fry and Kraemer 1991, Cronin and 

Hansen 2005). As a result, numerous studies have sought to identify the factors that 

determine these abilities, with a view to developing more effective training programs (Hori et 

al. 2008, Wisloff et al. 2004, Peterson, Alvar and Rhea 2006, Baker and Nance 1999). 

Previous studies have typically used correlation analyses to identify associations between 

biomechanical variables and athletic tests that provide a measure of performance. Most 

frequently, popular resistance exercises such as the squat (Baker and Nance 1999, Chelley 

et al. 2010, McBride et al. 2009), jump squat (Sleivert and Taingahue 2004, Baker and 

Nance 1999) and clean (Hori et al. 2008, Baker and Nance 1999, Carlock et al. 2004) have 

been used to collect the input data. Of all the variables that have been studied, the 

relationship between maximum strength and athletic performance has been investigated 

most often using data collected primarily from 1RM squat tests. Based on a study of elite 

soccer players, Wisloff et al. (2004) reported correlations of -0.71, 0.78 and -0.68 between 

absolute 1RM values and 30 m sprint time, vertical jump height and 10 m shuttle time, 

respectively. Peterson et al. (2006) obtained slightly higher correlations for similar measures 

of performance with a more heterogeneous group of male and female college athletes, 

reporting correlations between 0.78 and 0.92. Research has also demonstrated that the 

relationship between maximum strength and measures of athletic performance may be 

improved if strength values are normalised relative to body mass (Peterson, Alvar and Rhea 

2006, McBride et al. 2009).  

 

Based on the belief that muscular power is a key factor for performance in many athletic 

tasks (Cronin and Sleivert 2005), a large number of correlation studies have measured 

biomechanical variables during explosive resistance exercises performed with sub-

maximum loads (Hori et al. 2008, Kawamori et al. 2005, Sleivert and Taingahue 2004, 

Baker and Nance 1999). Many of these studies have also attempted to correlate measures 

of performance with variables such as velocity, impulse and RFD. A range of moderate to 

strong correlations have been reported depending on factors such as exercise selection, 

methods used to calculate the biomechanical variables and the sample investigated (Cronin 

and Sleivert 2005). Hori et al. (Hori et al. 2008) measured power production during 

performance of a jump squat with an absolute load of 40kg in a group of Australian Rules 
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football players. The results showed positive relationships with performance in sprinting, 

jumping and quick changes of direction (r = 0.49, 0.54 and 0.39, respectively). Baker and 

Nance (1999) also reported similar correlation values between power and sprinting ability in 

rugby league players, but only after power values were normalised relative to body mass 

(correlation improved from 0.02 to 0.57). In general, performance correlations with variables 

collected during explosive resistance exercises performed with sub-maximum loads have 

not been as large as those established for maximum strength measures. 

 

It has been suggested that a preoccupation with correlation studies has limited 

understanding of the best predictors of important sporting tasks (Cronin and Sleivert 2005). 

Importantly, correlation studies only consider the isolated effect of single predictor variables, 

whereas performance in sporting tasks may be better explained by combining multiple 

variables. Instead, It has been recommended that future studies should adopt regression 

approaches to produce predictor models that combine anthropometric and biomechanical 

variables, as it is likely that both phenotypic and force related capabilities impact on 

performance (Cronin and Sleivert 2005). In comparison to a correlation analysis, multiple 

regression has the advantage of increasing the explanatory power of a given model whilst 

providing information to determine which variables contribute to the prediction and 

conversely, those that do not (Vincent 1994). There have been previous investigations that 

have incorporated strength (Blazevich and Jenkins 1998) or anthropometric variables 

(Davis et al. 2004) with a multiple regression approach to predict performance of common 

sporting tasks; however, to the author‟s knowledge, there have been no studies that have 

included both sets of information in combination with variables believed to reflect important 

features of the force-velocity and force-time curves. Therefore, the purpose of this study 

was to expand on previous investigations and identify which combination of anthropometric 

and biomechanical variables could best explain performance in sprinting, jumping and 

change of direction tasks in well-trained athletes. As previous research has identified 

exercise type and load to be important in influencing the production of biomechanical 

variables (Cormie et al. 2007), data were collected using multiple exercises over a range of 

external resistances.  
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4.3 Methods 

 

A regression based approach was used to obtain predictor models of performance in 

common sporting tasks. Predictor models included anthropometric data and biomechanical 

measures collected during resistance exercises performed with maximum and sub-

maximum loads. The participants ability to sprint, jump and change direction were 

measured to represent performance. Testing was conducted on three separate occasions, 

with a minimum of forty-eight hours between each testing occasion to minimise the 

likelihood of fatigue. On day one, participants performed sprint and change of direction tests 

in an indoor gymnasium. On day two, participants performed maximum strength tests and 

were assessed for anthropometric characteristics using a 3D body scanner (Hamamatsu 

Photonics Model: BLM9036, Japan). On the final day of testing participants reported to the 

human performance laboratory to complete vertical jump tests and perform explosive 

resistance exercises with sub-maximum loads.  

 

Participants 

Thirty well-trained non-professional male rugby union players (age: 24.2 ± 3.9yr; stature: 

182.4 ± 6.7 cm; mass: 94.1 ± 12.3 kg; resistance training experience: 7.3 ± 2.1 yr) 

volunteered to participate in this study. Participants were recruited from a single team 

competing in the Scottish Rugby Union Premier League. Each of the athletes regularly 

performed explosive and maximum resistance exercises as part of their strength and 

conditioning regime. In addition, the athletes regularly performed sprint, vertical jump, and 

change of direction tests as part of their ongoing physical assessment. The study was 

conducted six weeks into the athletes preseason training after a de-load micro-cycle. 

Participants were notified about the potential risks involved and gave their written informed 

consent to be included. Prior approval was given by the ethical review panel at Robert 

Gordon University, Aberdeen, UK.  

 

Day 1: Sprint and change of direction assessment 

Timing gates were placed at the start, 5 m, 10 m and 30 m lines to record three different 

sprint times representing distinct qualities (first-step quickness, acceleration and speed, 

respectively) (Cronin and Hansen 2005). A thorough warm-up which included jogging, 
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dynamic stretches and a series of sub-maximum sprints was completed. At the start, 

participants adopted a 2-point crouched position, 30 cm back from the starting line. Two 

maximum sprints were performed with the best time for each split selected for further 

analysis. ICCs obtained from 5 m, 10 m, and 30 m sprint times were 0.78, 0.89 and 0.95 

respectively. 

 

Ability to change direction was assessed using the 505 agility test (Sheppard and Young 

2006).  A 15 m track was outlined with a start and stop-timing gate placed at the 10 m line. 

Participants sprinted from the start to the end of the 15 m track, where they then turned 180 

degrees and sprinted back past the timing gate. Two trials were performed with change of 

direction made with the left foot, and two trials with the right foot. The best time from the 

four trials was selected for further analysis. The ICC obtained from the two fastest times 

was 0.80. 

 

Day 2: Maximum strength and anthropometry assessment 

On day two of testing the participants first reported to the gymnasium where they performed 

1RM tests in the back squat and deadlift in a randomised order. The athletes were 

accustomed to performing multiple 1RM tests in a single session as part of their regular 

physical assessments. To minimise the likelihood of fatigue influencing results, a 30 minute 

rest period was allocated between tests. Based on a predicted 1RM load, participants 

performed a series of warm-up sets and up to 5 maximum attempts. A minimum of 2 

minutes and a maximum of 4 minutes recovery time were allocated between each attempt. 

Within this time frame participants self-selected when to perform the lift based on their own 

perception of when they had recovered. For both the squat and deadlift, a lift was deemed 

successful if the barbell was not lowered at any point during the ascent phase and upon 

completion of the movement the body posture was held erect with the knee and hip fully 

extended.  

 

Anthropometric measurements were made using a Hamamatsu Bodyline scanner which 

used a Class I laser (eye-safe) device. A total of 14 anthropometric measurements were 

made, including body mass, lengths (stature, trunk, floor to hip, thigh, lower-leg), widths 

(shoulder, chest), and girths (chest, trunk, upper arm, hip, thigh, calf). Two scans of 

approximately 10 seconds in duration were made for each participant. The laser range-
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finder created a pixel point cloud representation of the body surface. From these data, 

proprietary software rendered a polygon shell that could then be graphically shaded for 

viewing and inspection. Using the high resolution scanner mode, which samples using a 

vertical pitch of 2.5 mm, the image created (Figure 4.1) is an accurate model which can be 

viewed as a solid object wire-frame mesh. ICCs obtained from the anthropometric variables 

ranged from 0.95 to 0.99.   

 
 

Figure 4.1: Rendered polygon shell used to measure linear anthropometric measurements 
 

 
 

Day 3: Vertical jump and Explosive resistance exercise assessment 

Upon reporting to the human performance laboratory, the participants performed a thorough 

warm-up which included jogging on a treadmill, dynamic stretches and performance of a 

series of sub-maximum jumps. Once suitably prepared, two maximum vertical jumps with 

arms held stationary at the side of the body were performed. The jump that resulted in the 

greatest vertical displacement was selected for further analysis. The participants then 

performed maximum velocity deadlifts and jump squats using loads of 10, 20, 30, 40, 50, 60 

and 70% of their previously determined 1RM‟s. Two repetitions were performed for each 

condition in a single set, with a minimum 2 minute rest period allocated between conditions 

and a longer rest period (up to 4 minutes) made available if the athlete felt it necessary to 

produce maximum performance. All Jumps and loaded resistance exercises were 

performed with a separate piezoelectric force platform (Kistler, Type 9281B Kistler 
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Instruments, Winterthur, Switzerland) under each foot capturing vertical ground reaction 

force (VGRF) data at 1200 Hz. Force plate data were filtered  using a fourth-order, zero-

phase lag Butterworth filter with a 50 Hz cutoff. Displacement, velocity and power data were 

calculated at the athlete‟s COM during unloaded jumps and at the system COM (athlete + 

external load) during loaded conditions. The kinematic and kinetic variables were calculated 

using the VGRF-time data and a forward dynamics approach that has been reported 

previously in the literature (Kawamori et al. 2005, Harman et al. 1990). Briefly, trials were 

initiated with the participant standing erect and motionless. Once data acquisition was 

initiated, participants performed the eccentric component of the movement to the required 

depth and then accelerated upwards as fast as possible. Changes in vertical velocity of the 

COM were calculated by multiplying the net VGRF by the intersample time period divided 

by the system mass. Instantaneous velocity at the end of each sampling interval was 

determined by summing the previous changes in vertical velocity to the pre-interval absolute 

velocity, which was equal to zero at the start of the movement. The position change over 

each interval was calculated by taking the product of absolute velocity and the intersample 

time period. Vertical position of the COM was then obtained by summing the position 

changes. Instantaneous power was calculated by taking the product of the VGRF and the 

concurrent vertical velocity. RFD was calculated from the slope of the VGRF-time curve 

extending from the transition between eccentric and concentric phases to the maximum 

value of the first peak. Jump height for unloaded vertical jumps was calculated using 

constant acceleration equations and the vertical velocity of the system at take-off (Linthorne 

2001). For the deadlift and jump squat, the largest force, velocity, power and RFD values 

measured across the sub-maximum loads were selected for further analysis. ICC values 

obtained for these variables and the vertical displacement of unloaded jumps ranged from 

0.94 to 0.98. 

 

Statistical Analyses 

Based on findings from previous research demonstrating that force and power are related to 

body mass (Crewther, McGuigan and Gill 2011) and that RFD is related to the peak force 

value obtained (Aagaard et al. 2002), normalised values for these variables were included 

in addition to absolute values measured. Simple ratio scaling was used to normalise RFD 

values relative to the peak force of the slope from which RFD was calculated. Both ratio 

scaling and allometric scaling using an exponent of 0.67 were used to normalise force and 

power values relative to body mass (Jaric, Mirkov and Markovic 2005), with a view to 

establishing which scaling method provided better insight into the relationship with 
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performance. A value of 0.67 was selected due to its theoretical relevance and validation in 

multiple studies (Jaric 2002, Jaric, Mirkov and Markovic 2005, Crewther et al. 2009). 

Pearson correlation coefficients were used initially to quantify relationships of 

anthropometric, biomechanical and performance measures. Suitable predictor variables 

were then regressed using a best subsets approach to create two separate models. The 

first model included anthropometric and biomechanical predictor variables collected during 

the jump squat. The second model included the same anthropometric variables combined 

with predictor variables collected during the deadlift. The fit of each model was assessed 

using adjusted R2 and Mallow‟s Cp statistic. The regression procedures were performed 

using Minitab 15 statistical software (Minitab Inc. State College, PA). 
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4.4 Results 

 

Intercorrelations 

Average values for performance measures, maximum strength scores and basic 

anthropometry are displayed in Table 4.1. Intercorrelations for the biomechanical and 

anthropometric variables are displayed in Tables 4.2 to 4.4. The results show that a wide 

range of trivial to strong, positive correlations were obtained between the biomechanical 

variables. The results also reveal that the intercorrelations were consistently higher for 

variables collected during the jump squat in comparison to the deadlift. As was to be 

expected, some of the strongest correlations were obtained between average and peak 

values of the same variable. In addition, significant relationships were recorded between 

velocity and power during both exercises. Interestingly, peak power was the only variable 

which consistently exhibited significant correlations with 1RM strength measures. 

 

Table 4.1: Anthropometric, strength and performance results (mean ± SD) 

 

Variable 

 Stature (cm) 181.2 ± 6.6 

Body Mass (kg) 94.2 ± 11.1  

Chest girth (cm) 118.6 ± 10.8 

Waist girth (cm) 89.9 ± 12.8  

Deadlift 1RM (kg) 191 ± 19.9  

Squat 1RM (kg) 163 ± 21.3 

Vertical Jump (cm) 41.1 ± 5.1  

5m sprint (s) 1.09 ± 0.05  

10m sprint (s)  1.77 ± 0.08 

30m sprint (s) 4.09 ± 0.18 

505 agility (s) 2.58 ± 0.12 
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Table 4.2: Intercorrelations of biomechanical variables collected during the deadlift 
 

 

1RM 
Squat 

1RM 
Deadlift 

AV PV RFDN APN 
0.67

 
PPN 

0.67
 

AFN 
0.67

 
PFN  
0.67

 

1RM Squat 1 0.52* 0.09 0.17 0.23 0.23 0.43* -0.08 -0.15 

          1RM Deadlift 0.52* 1 0.05 0.01 0.17 0.21 0.55* -0.17 -0.11 

AV 0.09 0.05 1 0.31 0.16 0.42* 0.19 -0.24 -0.13 

          PV 0.17 0.01 0.31 1 0.14 0.37* 0.77* 0.28 0.17 

          RFDN 0.23 0.17 0.16 0.14 1 0.03 0.40* 0.16 0.23 

APN
0.67

 0.23 0.21 0.42* 0.38* 0.03 1 0.21 0.37 0.24 

          PPN
0.67

 0.43* 0.45* 0.19 0.77* 0.40* 0.21 1 0.17 0.12 

          AFN
0.67

 -0.08 -0.17 -0.24 0.28 0.16 0.37 0.17 1 0.70* 

          PFN
0.67

 -0.15 -0.11 -0.13 0.17 0.23 0.24 0.12 0.70* 1 

AV = average velocity, PV = peak velocity, RFDN = RFD/peak force, APN
0.67

 = average power/body 

mass
0.67

, PPN
0.67

 = peak power/body mass
0.67

, AFN
0.67

 = average force/body mass
0.67

, PFN
0.67

 = 

peak force/body mass
0.67

, *correlation is significant (p<0.05) 

 
Table 4.3: Intercorrelations of biomechanical variables collected during the jump squat 
 

 

1RM 
Squat 

1RM 
Deadlift 

AV PV RFDN APN 
0.67

 
PPN 

0.67
 

AFN 
0.67

 
PFN  
0.67

 

1RM Squat 1 0.52* 0.29 0.23 0.29 0.35 0.34 0.15 0.33 

          1RM Deadlift 0.52* 1 0.26 0.27 0.17 0.33 0.39* 0.11 0.32 

AV 0.29 0.26 1 0.72* 0.10 0.77* 0.60* 0.21 0.21 

          PV 0.23 0.27 0.72* 1 0.41* 0.53* 0.83* 0.29 0.42* 

          RFDN 0.29 0.17 0.10 0.41* 1 -0.03 0.43* -0.09 0.29 

APN
0.67

 0.35 0.33 0.77* 0.53* -0.03 1 0.74* 0.58* 0.50* 

          PPN
0.67

 0.34 0.39* 0.60* 0.83* 0.43* 0.74* 1 0.62* 0.75* 

          AFN
0.67

 0.15 0.11 0.21 0.29 -0.09 0.58* 0.62* 1 0.88* 

          PFN
0.67

 0.33 0.32 0.21 0.42* 0.29 0.50* 0.75** 0.88* 1 

AV = average velocity, PV = peak velocity, RFDN = RFD/peak force, APN
0.67

 = average power/body 

mass
0.67

, PPN
0.67

 = peak power/body mass
0.67

, AFN
0.67

 = average force/body mass
0.67

, PFN
0.67

 = 

peak force/body mass
0.67

, *correlation is significant (p<0.05) 
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Intercorrelations for anthropometric variables revealed strong positive relationships within the measurement types but not across (Table 4.4). 

Body mass was shown to correlate strongly with all girths except that of the upper arm. In addition, moderate positive relationships were found 

when pairing body mass with shoulder width and stature. 

 

Table 4.4: Intercorrelations of anthropometric variables 

 
Mass 

Chest
Girth 

Waist 
Girth 

Thigh 
Girth 

Arm 
Girth 

Hip 
Girth 

Calf 
Girth 

Chest
Width 

Shoulder 
Width Stature 

Trunk 
Length 

Hip 
Length 

Thigh 
Length 

Leg 
Length 

Mass 1 0.77* 0.70* 0.93* 0.16 0.84* 0.66* 0.06 0.60* 0.55* 0.31 0.24 0.03 0.33 
 
Girths 

              Chest 0.77* 1 0.57* 0.63* 0.09 0.66* 0.36 0.61* 0.52* 0.14 0.41* 0.05 -0.17 0.14 

Waist 0.70* 0.57* 1 0.72* 0.42* 0.56* 0.49* 0.07 0.33 0.11 0.37 0.06 -0.12 0.12 

Thigh 0.93* 0.63* 0.72* 1 0.17 0.78* 0.61* 0.15 0.47* 0.29 0.46* 0.23 0.07 0.29 

Arm 0.16 0.09 0.42* 0.17 1 0.38* 0.12 0.21 -0.13 -0.3 0.08 -0.18 0.48* -0.29 

Hip 0.84* 0.66* 0.56* 0.78* 0.38* 1 0.65* 0.04 0.39* -0.11 0.26 -0.17 -0.36 -0.11 

Calf 0.66* 0.36 0.49* 0.61* 0.12 0.65* 1 0.12 0.41* -0.06 0.37 -0.10 -0.28 -0.05 

               

Widths 
              Chest 0.06 0.61* 0.07 0.15 0.21 0.04 0.12 1 0.48* -0.06 -0.31 0.09 0.20 -0.05 

Shoulder 0.57* 0.52* 0.33 0.47* -0.13 0.39* 0.41* 0.48* 1 0.28 0.39* 0.13 -0.11 0.28 

               

Lengths 

              Stature 0.55* 0.14 0.11 0.29 -0.3 -0.11 -0.06 -0.06 0.28 1 0.66* 0.93* 0.75* 0.99* 

Trunk 0.31 0.41* 0.37 0.46* 0.08 0.26 0.37 -0.31 0.39* 0.66* 1 0.42* 0.08 0.66* 

Hip 0.26 0.05 0.06 0.23 -0.18 -0.17 -0.10 0.09 0.13 0.93* 0.42* 1 0.90* 0.93* 

Thigh 0.03 -0.17 -0.12 0.07 0.48* -0.36 -0.28 0.20 -0.11 0.75* 0.08 0.90* 1 0.75* 

Leg 0.33 0.14 0.12 0.29 -0.29 -0.11 -0.05 -0.05 0.28 0.99* 0.66* 0.93* 0.75* 1 

* Correlation is significant (p<0.05) 
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Correlations between anthropometric and biomechanical variables revealed that the two 

sets of measurements were largely independent. The anthropometric girth variables 

exhibited moderate inverse relationships with the peak velocity variable; however, these 

correlations became non-significant when controlling for the variation explained by body 

mass.  

 

To investigate the effect of body mass and relative scaling on the values obtained for 

biomechanical variables a series of correlation analyses were completed. The first analysis 

quantified the relationships between absolute values and body mass (Table 4.5). The 

results showed that body mass exhibited significant positive relationships with all variables 

except average and peak velocity. When maximum strength, power and force variables 

were normalised by diving by body mass (Table 4.6) the correlations remained significant, 

but now revealed inverse relationships. The association between body mass and RFD 

became non-significant after dividing by the corresponding peak force values. Allometric 

scaling provided the best method of establishing body-mass independent values for 

maximum strength, power and force variables (Table 4.7). This was demonstrated by the 

attainment of non-significant correlations after dividing by body mass raised to an exponent 

of 0.67.  

 

Table 4.5: Correlations of body mass and absolute values of biomechanical variables 

 

AV PV RFD AP PP AF PF 

1RM 

Deadlift 

1RM 

Squat 

Mass -0.20 -0.38 *0.51 0.55* 0.42* 0.71* 0.81* 0.45* 0.47* 

AV = average velocity, PV = peak velocity, AP = average power, PP = peak power, AF = average force, 

PF = peak force, * correlation is significant (p<0.05) 

 

Table 4.6: Correlations of body mass and isometric scaling of biomechanical variables 

 

AV PV RFDN APN PPN AFN PFN 

1RM 

DeadliftN 

1RM 

SquatN 

Mass -0.20 -0.38 -0.04 -0.42* -0.71* -0.68* -0.71 -0.65* -0.48* 

AV = average velocity, PV = peak velocity, RFDN = RFD/peak force, APN = average power/body mass, 

PPN = peak power/body mass, AFN = average force/body mass, PFN = peak force/body mass, 1RM 

DeadliftN = 1RM deadlift/body mass, 1RM SquatN = 1RM squat/body mass, *correlation is significant 

(p<0.05) 
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Table 4.7: Correlations of body mass and allometric scaling of biomechanical variables 

 AV PV RFDN APN
0.67 

PPN
0.67

 AFN
0.67

 PFN
0.67

 

1RM
0.67

 

DeadliftN 

1RM
0.67

 

SquatN 

Mass -0.20 -0.38 -0.04 -0.11 -0.14 -0.28 -0.26 -0.15 -0.21 

AV = average velocity, PV = peak velocity, RFDN = RFD/peak force, APN
0.67

 = average power/body 

mass
0.67

, PPN 
0.67

= peak power/body mass
0.67

, AFN
0.67

 = average force/ body mass
0.67

, PFN
0.67

 = peak 

force/body mass
0.67

, 1RM
0.67

 DeadliftN= 1RM deadlift/body mass
0.67

, 1RM
0.67

 SquatN
 
= 1RM squat/body 

mass
0.67 

 

Relationships with performance variables 

A range of correlation values were obtained between anthropometric and performance 

variables. All girth measurements exhibited significant (p<0.05) negative correlations with 

performance; that is, with increasing muscular girths, vertical jump, sprinting and change of 

direction performance decreased. However, all correlations became non-significant when 

controlling for the variation explained by body mass. No significant relationships were 

obtained between length or width measurements and performance values. The strongest 

correlations with performance were obtained for maximum strength scores scaled 

allometrically with body mass (Tables 4.8 and 4.9). For the biomechanical variables 

measured with sub-maximum loads, the strength of relationships was influenced by scaling. 

In general, absolute values for force, power and PRDF exhibited small non-significant 

correlations with performance. However, once these variables were normalised relative to 

body mass and peak force respectively, the strength of the correlations increased with most 

variables demonstrating statistical significance (p<0.05, Tables 4.8 and 4.9).   
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Table 4.8: Relationships between performance and biomechanical variables collected 

during the deadlift  

  

Vertical 

Jump 

5 m 10 m 30 m 505 

1RM Dead/BM0.67 0.65* -0.60* -0.81* -0.81* -0.75* 

AV 0.21 -0.19 -0.10 -0.11 -0.12 

PV 0.51* -0.47* -0.49* -0.51* -0.28 

AP/BM0.67 0.51* -0.35* -0.32 -0.49* -0.20 

PP/BM0.67 0.49* -0.44* -0.48* -0.56* -0.48* 

AF/BM0.67 0.74* -0.31 -0.40* -0.50* -0.27 

PF/BM0.67 0.54* -0.27 -0.21 -0.36 -0.36 

RFD/PF 0.16 -0.39* -0.14 -0.19 -0.38* 

*Correlation is significant (p<0.05) 

 

Table 4.9: Relationships between performance and biomechanical variables collected 

during the jump squat  

  

Vertical 

Jump 

5 m 10 m 30 m 505 

1RM Squat/BM0.67 0.80* -0.56* -0.73* -0.82* -0.70* 

AV 0.61* -0.54* -0.56* -0.64* -0.51* 

PV 0.84* -0.60* -0.70* -0.80* -0.63* 

AP/BM0.67 0.34 -0.47* -0.52* -0.62* -0.40* 

PP/BM0.67 0.67* -0.57* -0.71* -0.80* -0.45* 

AF/BM0.67 0.27 -0.24 -0.45* -0.47* -0.33 

PF/BM0.67 0.44* -0.37 -0.61* -0.60* -0.35 

RFD/PF 0.43* -0.41* -0.36 -0.40* -0.51* 

*Correlation is significant (p<0.05) 
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Performance prediction models 

 

Two separate best subsets regression models were developed for each performance 

measure (Table 4.10). The first set of models included normalised strength measures, the 

strongest anthropometric predictors and normalised biomechanical variables collected 

during maximum speed deadlifts. The second set of models included the same strength and 

anthropometric measurements as used in the first set, but included normalised 

biomechanical variables from the jump squat instead of the deadlift. In general, similar 

results were obtained for both sets of models, with three predictor variables providing the 

most appropriate balance between explained variance and model complexity. The greatest 

amount of performance variance could be explained in the 30 m sprint, followed by the 

vertical jump, 10 m sprint, 505 agility test and 5 m sprint (Table 4.10). For both sets of 

models performance was best explained by combining normalised maximum strength 

scores and biomechanical variables rather than anthropometric measurements. 

Performance in the vertical jump was best explained by an athlete‟s maximum strength 

capabilities and their ability to develop high velocities, whereas, performance in the 5 m 

sprint and 505 agility tests were best explained by maximum strength scores and RFD. 

Predictor models for 10 m and 30 m sprints featured primarily maximum strength scores 

and average or peak power values.   
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Table 4.10: Best single-, two- and three-predictor regression models for performance 

measures combining anthropometric, maximum strength and biomechanical variables 

collected during the deadlift or jump squat.                             

 

                     Deadlift 

 

                 Jump Squat 

  Best Predictor 

Adj 

R
2
   Best Predictor 

Adj 

R
2
 

Vertical Jump 

     Single predictor 1RM DeadN 0.62 

 

PV 0.67 

Two predictors 1RM DeadN, PV 0.72 

 

PV, Mass 0.78 

Three predictors 1RM DeadN, PV, PFN 0.78 

 

PV, AV, 1RM DeadN 0.82 

      5m Sprint 

     Single predictor 1RM SquatN 0.33 

 

1RM SquatN 0.33 

Two predictors 1RM SquatN, 1RM DeadN 0.38 

 

1RM SquatN, RFDN 0.39 

Three predictors 1RM SquatN, 1RM DeadN, RFDN 0.42 

 

1RM SquatN, APN, RFDN  0.43 

      10m Sprint 

     Single predictor 1RM SquatN 0.64 

 

1RM SquatN 0.64 

Two predictors 1RM SquatN, PFN 0.68 

 

1RM SquatN, PPN 0.74 

Three predictors 1RM SquatN, PPN, Mass 0.73 

 

1RM SquatN, PPN, Mass 0.76 

      30m Sprint 

     Single predictor 1RM DeadN 0.67 

 

1RM DeadN 0.67 

Two predictors 1RM DeadN, PPN 0.73 

 

1RM SquatN, PPN 0.80 

Three predictors 1RM SquatN, 1RM DeadN, APN 0.78 

 

1RM DeadN, Mass, APN 0.86 

      505 Agility 

     Single predictor 1RM SquatN 0.51 

 

1RM SquatN 0.51 

Two predictors 1RM SquatN, 1RM DeadN 0.56 

 

1RM SquatN, RFDN 0.60 

Three predictors 1RM SquatN, 1RM DeadN, RFDN 0.60   1RM SquatN, 1RM DeadN, RFDN 0.67 

AV = average velocity, PV = peak velocity, RFDN = RFD/peak force, APN = average power/body mass
0.67

, 

PPN = peak power/body mass
0.67

, AFN = average force/ body mass
0.67

, PFN = peak force/body mass
0.67

, 

1RM DeadliftN = 1RM deadlift/body mass
0.67

, 1RM SquatN = 1RM squat/body mass
0.67 
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4.5 Discussion 

 

The results of this study demonstrate that a large amount of variance in performance of 

general movement patterns common to many sports can be explained by an athlete‟s 

relative maximum strength and their ability to produce high outputs in certain biomechanical 

variables. Using the adjusted coefficient of determination, between 70 to 80% of the 

variance in vertical jump, 10 m sprint and 30 m sprint performance could be explained by 

relatively simple three factor models. For the 505 agility and 5 m sprint tests the explained 

variance decreased to between 40 and 65%, indicating that factors other than those 

assessed in the present study are important in determining overall performance. More 

accurate models may require inclusion of technique related factors to increase 

understanding of performance, particularly for the acceleration and change of direction 

tasks. However, higher within-individual variability measured in the 505 agility and 5 m 

sprint tests may also have contributed to reduced explanatory power of the models. 

 

The results of the present study support the findings from a number of previous 

investigations demonstrating strong relationships between maximum strength and 

measures of athletic performance (Wisloff et al. 2004, Peterson, Alvar and Rhea 2006, 

Baker and Nance 1999). Data collected from the most recent studies have also shown that 

the strength of the relationship can be enhanced by normalising maximum strength values 

relative to body mass (McBride et al. 2009). However, a range of factors including the 

variation in the sample‟s athletic capabilities and body masses are likely to impact on the 

strength of relationships obtained. Peterson et al. (2006) investigated the relationship 

between 1RM back squat values and performance in jumping, sprinting and agility tests. 

The participants comprised a heterogeneous group of male and female college athletes 

from a variety of sports. When modelling the entire group, the relationships between 

maximum strength and performance measures were strong and largely unaffected after 

normalising to body mass. When relationships were re-assessed post stratification by 

gender, the strength of relationships between absolute values of maximum strength and 

performance substantially decreased and became non-significant for the male group. Upon 

scaling maximum strength values relative to body mass the strength of relationships 

increased for both males and females with significant values obtained for each gender. The 

results obtained by Peterson et al. (2006) suggest that when large variations in performance 

and strength exist within a sample, absolute values of maximum strength are sufficient to 

reveal relationships between variables. In contrast, when variation is decreased the 
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magnitude of the correlation statistic is reduced (Goodwin and Leech 2006), and 

normalisation of maximum strength scores may be required to identify relationships.  

 

The majority of previous studies that have normalised maximum strength scores when 

investigating the relationship between strength and performance have done so using simple 

ratio scaling (Kawamori et al. 2005, Peterson, Alvar and Rhea 2006, Baker and Nance 

1999). This approach, however, assumes that there is a linear relationship between body 

mass and strength. Most data contradict this assumption and demonstrate that whilst a 

positive relationship between strength and body mass does exist, the strength values of 

progressively heavier individuals fall below projected linear values (Jaric, Mirkov and 

Markovic 2005). More appropriate scaling may be achieved when using methods that 

assume non-linearity between body mass and strength. The theory of geometric similarity 

proposes that human bodies possess the same shape and therefore differ only in size 

(Jaric, Mirkov and Markovic 2005). As a consequence of this theory, it is predicted that any 

area measurement is proportional to body mass raised to the power 0.67 (e.g. area ∝ 

BM0.67). As force production is proportional to muscle physiological cross-sectional area 

(Manso-Garcia et al. 2008), based on the theory of geometric similarity, maximum strength 

scores should be divided by body mass raised to the power 2/3 when attempting to control 

for the effects of mass. This procedure has been used extensively to scale strength with 

body mass in powerlifting and Olympic weightlifting (Manso-Garcia et al. 2008, Challis 

1999) and is commonly referred to as allometric scaling in the literature. In the sport of 

Rugby union, there is considerable variation in body mass across the different playing 

positions. Previous research has shown that, on average, elite forwards are approximately 

20% heavier than elite backs (Duthie et al. 2006). In addition, heavier forwards tend to 

produce greater maximum strength values, whereas, lighter backs tend to perform better in 

tests that require high velocities such as in jumping and sprinting (Duthie, Pyne and Hooper 

2003). In the present study, maximum strength scores were shown to be strongly related to 

body mass. The results also demonstrated that a relationship still existed when using ratio 

scaling, however, the direction changed to reveal an inverse relationship. The results imply 

that absolute maximum strength scores favour the heaviest athletes, whereas normalising 

values by ratio scaling favours the lightest athletes.  When maximum strength scores were 

scaled allometrically using an exponent of 0.67 the correlations with body mass became 

non-significant, demonstrating that this method of scaling is more effective than the ratio 

method for creating strength measures that are independent of body mass. Similar findings 

were obtained by Crewther et al. (2011) using a sample of rugby athletes similar to those 

participating in the present study. Initial correlations between body mass and absolute 
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values of strength scores were shown to demonstrate significant positive correlations. Ratio 

scaling of maximum strength scores then resulted in correlations indicating an inverse 

relationship between body mass and strength. Finally, allometric scaling was shown to be a 

superior method for producing maximum strength scores which were independent of body 

mass (Crewther, McGuigan and Gill 2011). For the allometric scaling procedures the 

authors derived their own scaling exponents for the specific group of athletes based on 

modelling the log transformed data using a least-squares approach. The derived exponents 

for body mass and strength were shown to be consistent with the theoretical value of 0.67. 

The results from Crewther et al. (2011) and the present study demonstrate that for sports 

such as rugby union where considerable variation in body mass exists, maximum strength 

values should be allometrically scaled when evaluating the athletes. 

 

Due to the high velocity and explosive nature of many sporting tasks, a number of studies 

have attempted to quantify the relationship between variables such as power and RFD with 

measures of performance (Cronin and Sleivert 2005, McLellan, Lovell and Gass 2011, 

Sleivert and Taingahue 2004). Results have been more varied than those quantifying 

relationships between maximum strength and performance. Some studies have reported 

strong relationships (McLellan, Lovell and Gass 2011, Sleivert and Taingahue 

2004)(McLellan, Lovell and Gass 2011), whereas others have reported independence 

between the factors (Kukolj et al. 1999). Inconsistencies may be due to a number of factors, 

including the exercise and loads used to obtain variables, variation in scaling methods, and 

the procedures used to calculate actual values (Cronin and Sleivert 2005). Some 

researchers have proposed that maximum strength acts as a general base influencing an 

athlete‟s ability to express other key mechanical variables such as power and RFD (Tan 

1999, Cormie, McGuigan and Newton 2011). These proposals are based on cross-sectional 

research highlighting strong inter-relationships between the variables (Cronin, McNair and 

Marshall 2003), and longitudinal studies demonstrating improvements in power and RFD 

when performing resistance training interventions designed to enhance maximum strength 

(Cormie, McGuigan and Newton 2011). Due to these strong inter-relationships and 

proposed association between sporting activities and mechanical variables reflecting 

explosive force production, it has been suggested that performance in various sporting 

tasks may be better explained by combining mechanical variables rather than selecting 

single factors in isolation (Cronin and Sleivert 2005). The regression models developed in 

the present study support this hypothesis. However, it is also clear that performance in the 

tasks studied in this investigation were principally explained by normalised maximum 
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strength measures, and the addition of other mechanical variables such as average force, 

power, velocity and RFD contributed substantially less.  

 

The models obtained in the present study also revealed that the best combinations of 

variables were to some extent influenced by the nature of the activity. For example, RFD 

featured only in models predicting performance in the 5 m sprint and 505 agility test. In both 

these activities performance is largely determined by the athlete‟s ability to accelerate their 

own body mass from an initial state of low velocity. Research has shown that greater 

propulsive forces are generated when accelerating in comparison to sprinting at faster 

velocities (Cronin and Hansen 2006). The combination, therefore, of both large maximum 

strength and RFD values would provide effective transition from low to high velocities in a 

short space of time. Based on similar reasoning, it may be expected that models predicting 

vertical jump performance which also requires athletes to transition from low to high 

velocities would also feature maximum strength and RFD values. Indeed, a recent 

investigation established that peak RFD values measured during vertical jumps correlated 

strongly with jump height in physically active men (McLellan, Lovell and Gass 2011). 

However, the vertical jump features a single discrete movement in which performance is 

determined by the velocity at take-off, which is approximated very closely by the peak 

velocity obtained during the movement (Linthorne 2001). In contrast, performances in the 5 

m sprint and 505 agility test are dependent upon a more complex series of movements 

which progressively increase the velocity of the body. Due to the cause and effect 

relationship between take-off velocity and performance in the vertical jump, it is unsurprising 

that the regression models identified peak velocity as a primary factor, especially as the 

testing movements were outwardly similar to the performance action. For the 10 m and 30 

m sprints the regression models highlighted the combination of strength and power values 

as the best predictors of performance. As the distance of the sprint increases, velocity and 

therefore contact time with the ground decreases (Cronin and Hansen 2006). Mechanical 

power may reflect an athlete‟s ability to generate substantial ground reaction forces over 

short time periods and their capacity to store and release mechanical energy (Weyand et al. 

2000), all of which would be important in influencing performance in these sprints. Further 

work is required to assess the extent to which specificity may occur between performance 

and the ability to express different mechanical variables.  

 

The use of two distinct resistance exercises (deadlift and jump squat) to collect 

biomechanical data revealed that the explanatory power of regression models is influenced 
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by the selected movement. In general, the two sets of regression models selected similar 

variables as best predictors for each of the performance tests (Table 4.10), demonstrating 

that whilst combining specific mechanical variables with maximum strength may have a 

relatively small effect on the explanatory power of the model, selection of the most 

appropriate variables is consistent. The models incorporating biomechanical variables 

collected during the jump squat consistently explained more of the variation in performance 

than those including data collected during the deadlift. This finding is in agreement with 

results published from a recent study investigating the predictive ability of power values 

collected during a traditional squat or jump squat on sprinting performance. Recruiting a 

sample of well-trained sprinters, Requena et al. (2011) reported that stronger correlation 

coefficients were obtained for absolute and relative power values collected during the jump 

squat in comparison with the same variables collected during the traditional squat. The 

authors proposed that the ability to accelerate the resistance throughout the entire 

concentric phase of the jump squat more closely match the kinematics of sprinting and 

therefore explain the stronger correlation values obtained (Requena et al. 2011). The 

concept of kinematic similarity was most evident in the regression models applied to the 

vertical jump in the present study, where substantially more of the variance was explained 

by models featuring velocity values collected during the closely related jump squat. 

 

The biomechanical variables measured in the present study represent those most 

frequently employed in research investigating resistance training practices. Additional 

variables relating force and time have been described by influential researchers in the field 

of strength and conditioning (Tidow 1990, Zatsiorsky 1995); however, due to inconsistent 

terminology and limited theoretical underpinnings these less traditional variables have been 

studied less frequently. Zatsiorsky (1995) introduced a group of variables which he termed 

starting strength (force at 30 ms), impulse at 100 ms, and the S- and A-gradients which 

characterise the derivative of the force-time curve at different stages of a discrete action. 

Cronin et al. (2003) subsequently investigated the interrelationships between the traditional 

variables of force and power and the novel variables defined by Zatsiorsky (1995). Using a 

supine resistance machine to perform jump squats, the authors reported that the 

correlations within the sets of variables were greater than those between. As a result, the 

authors concluded that the novel variables may partly reflect strength qualities not 

measured by the traditional variables of force and power. However, the data collection 

procedures used by Cronin et al. (2003) did not include velocity or RFD which are partly 

independent to force and power, and potentially could have related more strongly to the 

novel variables. In pilot testing for the present study the variables introduced by Zatsiorsky 
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(1995) were included in the data collection protocol. However, the novel variables 

demonstrated reduced reliability in comparison to those ultimately used in the study. In 

addition, it was reasoned that the combination of force, velocity, power and RFD variables 

provided sufficient information regarding distinct features of the force-velocity and force-time 

curves. Nevertheless, it is acknowledged that there may be many biomechanical variables 

beyond those investigated in the present study which can better explain performance of 

common sporting tasks.    
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4.6 Summary and Conclusion 

 

The results of the present study demonstrate that relative maximum strength of athletes is 

the basic quality that determines their ability to perform various fundamental sporting tasks. 

This finding is closely aligned with the primary goal of training practices employed by 

powerlifters that seek to increase maximum strength whilst minimising the hypertrophic 

response which would place them at a competitive disadvantage. As was discussed in 

chapter three of this thesis, maximum strength as measured through performance of a 

complex movement is dependent upon a variety of factors. At present, it is not fully 

understood if the relationship between maximum strength and performance would be 

altered if athletes employed selected training practices developed by powerlifters that are 

designed to improve performance in a testing movement rather than enhance maximum 

strength capabilities per se. The results of the present study also demonstrate that relative 

maximum strength in isolation only explains approximately 35 to 65% of the variation in 

performance of jump, sprint and change of direction tests. Greater understanding and 

predictive ability can be obtained by combining normalised maximum strength values with 

biomechanical variables measured during performance of explosive resistance exercises. 

For certain tests such as the vertical jump and 30 m sprint, as much as 90% of the variation 

(as measured by the unadjusted coefficient of determination) in performance can be 

explained by combining the most suitable strength and biomechanical variables. Therefore, 

contemporary training practices developed by powerlifters to improve variables such as 

power, velocity and RFD may be beneficial for general athletes if the practices themselves 

prove effective.  
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CHAPTER 5. BIOMECHANICAL MODEL 

 

5.1 Prelude 

 

In order to assess the biomechanical stimulus of the contemporary training practices 

identified in chapters two and three, a range of internal and external mechanical variables 

required calculation. All external variables could be calculated from GRF data and positional 

information obtained from the external resistance. However, calculation of internal variables 

required the use of biomechanical models that could be scaled for each participant. For 

complex movements incorporating multiple joint actions, models that represent the body as 

a collection of interconnected rigid segments are frequently used. The equations of motion 

for individual segments can be calculated with relative ease based on knowledge of 

segment kinematics, inertial properties of the body, and the magnitude of external forces 

applied to the system. The segment kinematic data itself can provide useful information 

regarding body postures and movement strategies employed. However, the goal of most 

biomechanical analyses is to quantify forces and torques to better understand the muscular 

effort produced and the potential that exists for injury. The purpose of this chapter is to 

provide a brief treatise of the kinematic and kinetic models used to calculate the internal 

variables for this project.  
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5.2 Kinematics 

 

Kinematics is a subdivision of mechanics that deals with the geometry of motion without 

considering the forces that cause the motion (Zatsiorsky 1998). In sports and clinical 

settings, kinematic variables are collected to assess the movement strategies selected by 

individuals to perform specific movements. The measurement of kinematic variables and 

therefore descriptions of human movement can be made using a range of methods and 

instrumentation. Near-instantaneous measurements can be obtained when recording 

instruments are attached directly to the body (Robertson et al.  2004). Examples include 

electrogoniometers (Rowe et al. 2000, Hawkins 2000), accelerometers (Mayagoitia, Nene 

and Veltink 2002, James 2006) and magnetic sensors (McKean, Dunn and Burkett 2010, 

Mills et al. 2007). In the field of sports biomechanics, kinematic variables are typically 

collected using image based motion capture systems (Robertson et al.  2004). For the 

current project, a 3D digital optical motion capture system was used. The system measures 

human movement by utilising motion capture cameras that track the position of small 

markers affixed to the body‟s surface through the reflection of light. Once the positional data 

are known, the orientation of each body segment can be estimated using various kinematic 

models. Data collected from multiple segments can then be used to calculate joint angles, 

joint velocities and accelerations. The following sections detail the methods and models 

used to collect kinematic data for the project.  

 

Locating markers in space 

For sport biomechanics applications it is currently recommended that 3D optical motion 

capture systems include a minimum of six cameras to collect adequate data (Milner 2008). 

For the current project the number of cameras used to collect data ranged from seven to 

nine. Each camera creates a two-dimensional image that contrasts the background with the 

light reflected from the spherical markers affixed to the participant‟s body. Based on a pre-

system calibration the position and orientation of each camera is defined relative to an 

origin point selected in the laboratory. Using this information each camera reconstructs the 

marker position data to represent a single line projected back into the capture volume 

(Vicon 2002). The intersections of projected lines from multiple cameras are then used to 

define the three-dimensional coordinates of each marker (Vicon 2002). For the current 

project the cameras were arranged to create a capture volume of approximately 1600 mm 

(anterior-posterior) by 2800 mm (medial-lateral) by 2200 mm (vertical). This capture volume 
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was selected to maximise the resolution of the individual markers. The placement and 

orientation of the cameras were extensively piloted to minimise the likelihood of markers 

being occluded during data capture. 

 

Reference Systems and Marker Sets 

To quantify the three-dimensional motion of the human body using optical motion capture it 

is essential to establish reference systems affixed to the environment and the individual 

body segments. A fixed Global Cartesian Reference System (GCRS) representing the 

space of the external environment was created for the capture volume during calibration of 

each testing session. Local Cartesian Reference Systems (LCRS) were affixed to individual 

body segments through the placement of a minimum of three non-collinear markers. As the 

LCRS and corresponding body segment are considered rigid in each of the models used in 

this project, the motion of the LCRS and corresponding segment are considered equivalent 

(Yamaguchi 2001). Orientation of a body segment relative to the external environment was 

determined by measuring the relative orientation of the LCRS and GCRS. Importantly, once 

the relative location and orientation of the two reference frames were known, points of 

interest in one frame could be expressed in the other (Zatsiorsky 1998). This enabled 

positional information of important landmarks such as the centre of mass of a segment to be 

transformed from the LCRS to GCRS so that variables such as segment displacement and 

velocity could be calculated. There are numerous well defined marker configurations that 

have been used by researchers to affix LCRSs‟ to the different body segments (Robertson 

et al.  2004). These configurations are commonly referred to as marker sets and should 

adhere to the recommendations outlined by Söderkvist and Wedin (Söderkvist and Wedin 

1993): 

 

1. At least three points are required for each segment. 

2. The points should be as widely spaced as possible. 

3. The points should not be collinear. 

4. Markers should be clearly linked to an anatomical reference frame, usually based on 

bony anatomy. 

5. Markers should move as little as possible with respect to the underlying bone, 

therefore areas of thick adipose tissue or large skin movements should be avoided. 

6. Markers should not oscillate as the participant moves. 

7. Markers must be clearly visible to at least two cameras throughout the movement or 
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they will be impossible to track. 

8. Markers should not be placed where they impede or block movement or where they 

are in danger of being knocked off. 

9. Excessive numbers of markers should be avoided. 

 

For the current project an enhanced version of the standard gait analysis marker set was 

used. In addition to the standard 13 markers placed on the pelvis and lower extremities 

(Kadaba, Ramakrishnan and Wooten 1990), the enhanced marker set included 4 markers 

placed on the torso and 4 redundant markers placed on the pelvis and knee to assist in 

reconstruction if markers became occluded. The marker set used is illustrated in Figure 5.1. 

Similar marker sets have been used in previous studies investigating the biomechanics of 

resistance training movements (Hwang, Youngeun and Youngho 2009). Employing the 

standard gait analysis set as a basis for marker placement provides several advantages 

and disadvantages for sports biomechanists (Milner 2008). The advantages include the 

extensive field testing over the past 20 years. In addition, widespread use of the marker set 

has prompted manufacturers of motion capture systems to develop software which 

automates the majority of the data processing required. Vicon‟s Nexus software (Oxford 

Metrics, UK) was used for the current project to process the kinematic and kinetic models 

stemming from the marker set employed. The primary disadvantages of the standard 

marker set is that it may oversimplify certain segments (e.g. the foot), and may be 

inappropriate for use during movements that create large impacts (Milner 2008). 
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Figure 5.1: Marker set used for project 

 

For clarity the figure illustrates a unilateral set; however, markers were placed bilaterally.   

 

Marker Name Marker Location 

C7 Spinous process of the 7th cervical vertebrae 

Clavicle Jugular notch where the clavicle attaches to the sternum 

Sternum Xiphoid process of the sternum 

T10 Spinous process of the 10th thoracic vertebrae 

Hip Redundant Iliac crest at the mid-axillary line 

Asis Anterior superior iliac spine 

Sacrum Mid-way between the posterior superior iliac spines 

Thigh Lower lateral 1/3 surface of the thigh aligned in the plane that 

contains the hip and knee joint centres 

Knee Lateral epicondyle of the femur 

Knee Redundant Medial epicondyle of the femur 

Clavicle 

Sternum 

Hip R 

Asis 

Thigh 

Knee 

Tibia 

Ankle 

Toe 

Knee R 

Sacrum 

Heel 

T10 

C7 
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Tibia Lower later 1/3 surface of the leg  aligned in the plane that contains 

the knee and ankle joint centres 

Ankle Lateral malleolus  

Toe Second metatarsal head 

Heel Calcaneous at the same height as the toe marker 

 

Kinematic Models 

Based on the marker set adopted, an upper (Gutierrez-Farewik, Bartonek and Saraste 

2006) and lower body model (Davis et al. 2004, Kadaba, Ramakrishnan and Wooten 1990) 

were used to affix LCRSs‟ to the thorax, pelvis, thigh, shank and foot. The same models 

were also used to determine subject specific locations of joint centres. The following 

sections outline the models used for each segment.  

 

Upper body 

Thorax 

The primary axis of the thorax is defined as the Z axis which is directed from the midpoint of 

the T10 and sternum markers to the midpoint of the C7 and clavicle markers. A secondary 

X axis is then created, oriented anteriorly and directed from the midpoint of the C7 and T10 

markers toward the midpoint of the clavicle and sternum markers. A third perpendicular axis 

is created which is directed laterally towards the left-hand side of the body. The origin of the 

thorax is located at the clavicle with an offset equal to half the marker diameter. For kinetic 

modelling of the upper body segment the joint centre of the lumbar spine is taken as the 

position of the 5th lumbar vertebrae. The joint centre is calculated to lie along the Z axis of 

the pelvis 0.925 times the distance between hip joint centres.  
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Lower body 

The orientation and location of the LCRSs‟ for the pelvis, femur, tibia and foot are illustrated 

in Figure 5.2. 

 

 

Figure 5.2: Representation of the standard lower body gait analysis marker set and 

kinematic model  

 

Pelvis 

As shown in Figure 5.3, the axis system of the pelvis is defined by three markers positioned 

over the left and right anterior superior iliac spines (ASIS) and the sacrum. The pelvic origin 

is defined as the mid-point of the Y axis joining the ASIS markers. A plane is then defined 

from two vectors, the first joining the ASIS markers, and the second jointing the right ASIS 

to the sacrum. The Z axis is orientated upwards, perpendicular to this plane, and the X axis 

orientated anteriorly from the ZY plane. The location of the hip joint centres (HJC) are 

approximated relative to the pelvic origin. Figure 5.3 illustrates the variables and parameters 
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required for calculation of the left HJC coordinates. The model was developed by Davis et 

al. (2004) using radiographic examination data from twenty five hip studies. Mean values for 

the parameters θ and β, and scaling functions to fit the model for each participant based on 

leg length (𝐿𝑙𝑒𝑔 ) and distance between ASIS markers were developed. Specifically, θ and β 

were found to be 28.4 ( 6.6°) and 18.0  (4.0°) respectively. The scaling factor C (in 

meters) was predicted through linear regression as 

 

𝐶 = 0.115𝐿𝑙𝑒𝑔 − 0.0152        (eq 5.1) 

With this, the location (in meters) of the HJC in pelvic coordinates (𝑥, 𝑦, 𝑧)  relative to the 

embedded LCRS is calculated as 

   

𝑥 =  −𝑥𝑑𝑖𝑠 − 𝑟𝑚  cos 𝛽 + 𝐶 cos 𝜃 sin(𝛽)      (eq 5.2) 

𝑦 = 𝑆  𝐶 sin 𝜃 −
𝑑𝐴𝑆𝐼𝑆

2
          (eq 5.3) 

𝑧 =  −𝑥𝑑𝑖𝑠 − 𝑟𝑚  sin 𝛽 − 𝐶 cos 𝜃 cos(𝛽)       (eq 5.4) 

where: 

S: +1 for right side, -1 for left side 

𝑑𝐴𝑆𝐼𝑆 :  Inter-ASIS distance, measured in static trial by motion capture system, or entered   

manually during clinical examination for obese people 

𝑥𝑑𝑖𝑠 :  Anterior-posterior component of the ASIS – greater trochanter distance, measured 

by clinical examination or given by regression equation 

𝑥𝑑𝑖𝑠 = 0.1288𝐿𝑙𝑒𝑔 − 48.56        (eq 5.5) 

𝑟𝑚 : Radius of marker in metres 
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Figure 5.3: Hip joint centre calculation, based on Davis model 

 

 

Femur 

The Y-Z plane of the femur axis system is defined to lie in the plane containing the HJC, the 

thigh marker and knee marker placed over the lateral epicondyle. The femur origin is 

located at the knee joint centre which is taken to be at the level of the lateral femoral 

epicondyle with an offset in the Y-Z plane, equal to half the width of the knee (measured as 

the distance between femoral condyles). The primary Z axis is orientated from the knee joint 

centre to the hip joint centre. The Y axis therefore lies between the knee joint centre and 

knee marker. The cross-product of unit vectors along the Z and Y axes provide the 

orientation of the X axis which is directed towards the anterior aspect of the knee.  

 

Tibia 

The tibia axis system is defined using a similar algorithm to that used for the femur, with the 

knee joint centre and, tibial and lateral malleolus markers used as reference points. The 

ankle joint centre which also represents the origin of the tibia axis system is located at the 

lateral malleolus site with an offset value equal to half the width of the ankle.  

 

 

 

 

PO 
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Foot 

The foot is defined by a single vector F, which is determined by the relative orientation of 

two segments created within the foot and ankle complex. The first segment is constructed 

using the long axis of the foot (heel to toe) as the primary axis. A second foot segment is 

constructed using the toe and ankle joint centre as the primary axis. The foot vector is then 

established by joining the ankle joint centre with a virtual foot point (ff), as shown in Figure 

5.2. The position of the virtual marker and resulting foot vector are calculated by rotating the 

second segment about two orthogonal axes. The amounts of these rotations are determined 

in the static calibration session, as static offset angles, and are then applied to dynamic trial 

data. The first offset value, static plantarflexion (SP), is calculated as a rotation about the 

ankle flexion axis. This angle is measured between the line joining the ankle joint centre and 

the toe marker, and the line joining the heel marker and the toe marker. The second 

rotation, static foot rotation (SR), is about a foot rotation axis that is perpendicular to the foot 

vector (after applying the static plantarflexion offset) and the ankle flexion axis.  

 

Calculation of joint angles 

The orientation of the upper body segment is calculated relative to the GCRS with the 

anteroposterior and mediolateral planes aligned with the body. For the lower extremities, 

joint angles are calculated through the relative rotation of the LCRS above and below the 

joint (e.g. hip angles are calculated from the relative orientation of the pelvis LCRS and 

thigh LCRS). When the joint is in a neutral position the proximal and distal LCRSs‟ are 

aligned (Ramakrishan and Kadaba 1991). As movement occurs at the joint the relative 

orientation of LCRSs‟ change based on the degree of motion. At each time interval the 

relative orientation of the coordinate systems can be quantified, thereby providing 

information on instantaneous joint angles. In the current project, the relative orientation of 

coordinate systems was quantified by calculating Euler angles (comprise three angular 

parameters that specify the orientation of a body with respect to a reference axes). This 

method is based on the knowledge that any rigid body orientation can be achieved by 

composing three successive rotations around an orthogonal coordinate system that moves 

with the object (Zatsiorsky  1998). Because finite rotations in three-dimensional space are 

non-commutative, there are 12 sequences of rotations that can be used. The choice of 

rotation order is important as it affects the joint angles calculated (Blankevoort, Huiskes and 

Lange 1988). In the current project the first rotation was performed around the mediolateral 

axis (flexion/extension), then the anteroposterior axis (abduction/adduction), and finally, the 

vertical axis (internal/external rotation) (Figure 5.4). This sequence of rotation is commonly 
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used in human movement studies and reflects the successive amounts of rotation that 

generally occurs in three-dimensions for most joints (Robertson et al. 2004, Ramakrishan 

and Kadaba 1991). Rotations were calculated with the proximal LCRS held fixed and the 

distal segment assumed to rotate successively from the neutral aligned orientation to its 

current configuration. The following matrices express rotations around the mediolateral, 

anteroposterior, and vertical axes, respectively.  

 

[Rmed/lat] =  
Cα 0 −Sα
0 1 0

Sα 0 Cα
       [Rant/pos] =  

1 0 0
0 Cβ Sβ
0 −Sβ Cβ

     [Rvertical] =  
Cγ Sγ 0
−Sγ Cγ 0

0 0 1
  

where: 

Cα: cosine of the angle (α) through which the distal LCRS was first rotated.  

Sβ:  sine of the angle (β) for the second rotation, with similar definitions applying to the 

remaining terms.  

 

Figure 5.4: Illustration of Euler angle convention employed 
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The successive rotations are arranged into a single transformation matrix according to the 

rules of matrix multiplication to give 

[R]=    

Cα ∗ Cγ +  Sα ∗ Sβ ∗ Sγ Cβ ∗ Sγ −Sα ∗ Cγ + Cα ∗ Sβ ∗ Sγ
−Cα ∗ Sγ + Sα ∗ Sβ ∗ Cγ Cβ ∗ Cγ Sα ∗ Sγ + Cα ∗ Sβ ∗ Cγ

Sα ∗ Cβ −Sβ Cα ∗ Cβ
   (eq 5.7) 

 

The cosine and sine of the angles α, β and γ are determined by the relative orientations of 

the proximal and distal LCRS‟s. Importantly, each LCRS is constructed from orthogonal unit 

vectors; therefore, the cosine and sine of the angles between the reference systems are 

determined by the following rotational transformation matrix.  

 

[RotationT] =  

𝐈′  ●  𝐈 𝐈′  ●  𝐉 𝐈′  ●  𝐊
𝐉′   ●  𝐈 𝐉′  ●  𝐉 𝐉′  ●  𝐊
𝐊′  

● 𝐈 𝐊′
●  𝐉 𝐊′

●  𝐊
       (eq 5.8) 

 

where: 

Vector components of the proximal LCRS are 𝐈, 𝐉 and 𝐊. 

Vector components of the distal LCRS are 𝐈′, 𝐉′ and 𝐊′. 

 

Each Euler angle is calculated using the following equations 

 

Angle β (adduction) = arcsin −𝐊′● 𝐉        (eq 5.9) 

Angle α (flexion) = arcsin  
 𝐊′ ● 𝐈 

cos  𝛽 
        (eq 5.10) 

Angle γ (internal rotation) = arcsin  
 𝐈′ ● 𝐉 

cos (𝛽)
       (eq 5.11) 
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The extent to which joint angles calculated from the kinematic models correspond to true 

orientations of body segments is dependent upon how closely the LCRSs‟ coincide with the 

actual joint axes. Sensitivity analyses have illustrated non-uniformity in the magnitude of 

errors across the different joint angles. Flexion-extension angles are reported to be the most 

unaffected by perturbations in orientation of LCRS‟s (Kadaba, Ramakrishnan and Wooten 

1990). In contrast, abduction-adduction angles are reported to be most affected, with the 

magnitude of errors influenced by the position of the segment around the flexion-extension 

axis (Kadaba, Ramakrishnan and Wooten 1990).  

 

5.3 Kinetics 

The fundamental goal for many biomechanical investigations of resistance training is to 

conduct kinetic analyses that give insight into the forces and torques that cause motion. 

Direct measurement of muscular forces is methodologically challenging and rarely 

attempted. Instead, the sum of individual forces and moments developed by muscles and 

structures such as ligaments are measured based on the inertial properties of the body and 

the resultant motion. The process of calculating forces and moments from the motion they 

create is referred to as inverse dynamics. Figure 5.5 provides a schematic account of the 

inverse dynamics approach.   

 

Figure 5.5: Schematic overview of the inverse dynamics approach 
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Linked segment equations 

 

To determine the net forces and moments acting on each segment, Newtonian and Euler 

equations of motion are employed, respectively. Figure 5.6 illustrate the approach used to 

calculate joint kinetics for the lower body. The process begins with the most distal segment 

(the foot) and continues proximally. Knowledge of the position and magnitude of the ground 

reaction force vector provides the input for the most distal segment. Based on the kinematic 

and segmental properties of the foot, the net force and moment at the proximal end of the 

joint can then be computed (see equations 5.12 and 5.13). Importantly, the connection of 

segments at a joint ensures that the adjacent segment experiences an equal but opposite 

force and moment. Based on this premise, the input for the next segment is created and the 

process can be promulgated up the kinetic chain. The net force and moment calculated at 

the proximal end of each joint are commonly referred to as the joint force and joint moment. 

These inter-segmental values are conceptual kinetic qualities that are unlikely to be present 

in any single anatomic structure (Crowninshield and Brand 1981). Rather, the values 

represent the summed effect of all structures that produce forces or moments across the 

joint (e.g. muscle forces, ligament forces, tendon forces, bone on bone forces). The 

reduction of individual forces and moments to a single net value may obscure important 

mechanical occurrences. However, the calculation of net joint forces and moments enable 

researchers to infer the magnitudes of muscular actions and overall stress placed on joints 

which are important factors for study of performance enhancement and injury prevention 

(Zajac and Gordon 1989). 
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Figure 5.6: Planar free body diagram illustrating the kinetics of a link-segment model used 

for inverse dynamics analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐹 𝑃𝑛= Joint force acting on the proximal aspect of the nth segment. 𝐹 𝐷𝑛=Joint force acting on the 

proximal aspect of the nth segment. 𝐹 𝑃𝑛+1 = Joint force acting on the proximal aspect of the nth +1 

segment.  𝐹 𝐷𝑛+1 = Joint force acting on the distal aspect of the nth +1 segment. 𝜏 𝑃𝑛  = Joint torque 

acting on the proximal aspect of the nth segment. 𝜏 𝐷𝑛  = joint torque acting on the proximal aspect 

of the nth segment.  𝜏 𝐷𝑛+1 = Joint torque acting on the distal aspect of the nth +1 segment. 𝑊    𝑛  = 

Weight of the nth segment. 𝑊    𝑛+1 = Weight of the nth +1 segment. 
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Calculation of net joint forces 

From Newton‟s second law  𝑭   𝒏𝒆𝒕 = 𝑚𝒂    , proximal and distal forces can be calculated from  

 

𝑭   𝑷𝒏 + 𝑭   𝑫𝒏 + 𝑾     𝒏 = 𝑚𝒂   𝒏                                                                               (eq 5.12) 

 

where: 

𝑭   𝑫𝒏:     net force vector applied distally to segment n 

𝑭   𝑷𝒏:     net force vector applied to the proximal joint centre of segment n 

𝑾     𝒏:     force of gravity applied to the COM of segment n 

𝑚𝒂   𝒏:   mass of segment n multiplied by the linear acceleration of segment n 

 

−𝑭   𝑷𝒏 becomes 𝑭   𝒅𝒏+𝟏 to recursively generate a solvable equation of motion for the proximal 

joint force of the successive segment (n+1)   

 

Calculation of net joint moments 

From Euler‟s angular equation of motion  𝝉  𝒏𝒆𝒕 = 𝑰𝜶    , proximal and distal moments can be 

calculated from 

 

𝝉  𝑷𝒏 + 𝝉  𝑫𝒏 + 𝑾     𝒏 +  𝒑   𝑪𝑮𝒑𝒏 × 𝑭   𝑷𝒏 +  𝒑   𝑪𝑮𝑫𝒏 × 𝑭   𝑫𝒏 = 𝐼𝜶   𝒏                             (eq 5.13) 

 

where: 

𝝉  𝑫𝒏:     net moment applied distally to segment n 

𝝉  𝑷𝒏:     net moment applied to the proximal joint centre of segment n 

𝑾     𝒏:     force of gravity applied to the COM of segment n 

𝑭   𝑫𝒏:     net force vector applied distally to segment n 

𝑭   𝑷𝒏:     net force vector applied to the proximal joint centre of segment n 

𝒑   𝑪𝑮𝑫𝒏: position vector form segment n COM to distal joint force  

𝒑   𝑪𝑮𝒑𝒏: position vector form segment n COM to proximal joint force  

𝐼𝜶   𝒏:    moment of inertia of segment n multiplied by the angular acceleration of segment  

 

−𝝉  𝑷𝒏  becomes  𝝉  𝑫𝒏+𝟏 to recursively generate a solvable equation of motion for the 

proximal joint moment of the successive segment (n+1).   
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5.4 Model Evaluation 

 

Linked segment kinematic and kinetic models have been employed consistently over the 

last three decades to investigate various resistance training practices (Cholewicki, McGill 

and Norman 1991, McLaughlin, Lardner and Dillman 1978, Brown and Abani 1985, 

Flanagan and Salem 2008). Escamilla et al. (2000) were among the first to demonstrate the 

limitations of 2D analyses and the need to employ 3D kinematic and kinetic models when 

attempting to accurately quantify biomechanical parameters during performance of 

resistance exercises. The magnitude of errors imposed during 2D analyses was shown to 

increase as segmental displacements progressively deviated from a single plane (Escamilla 

et al. 2000). However, even with the use 3D methods, there are numerous sources or error 

that can affect the accuracy and validity of linked segment models. Known sources of error 

include: location of joint centres and segment centres of mass; estimation of segment mass 

and moment of inertia; measurement and translation of external forces to the model; 

movement between surface markers and the underlying bone; calculation of linear and 

angular accelerations; and deformation of segments (Plamondon, Gagnon and Desjardins 

1996). Research studies investigating the validity of linked segment models have employed 

a range of methodological approaches. Most frequently, validity and error sources have 

been assessed by comparing joint kinetics calculated when progressing from proximal to 

distal segments (top-down) with the same variables calculated using the opposite 

progression (bottom-up). Kinetic values calculated at the lumbar spine using both 

approaches have exhibited very strong correlation values (Plamondon, Gagnon and 

Desjardins 1996, Kingma et al. 1996). In addition, multiple studies have reported strong 

agreement of kinetic values with differences generally as low as 5 to 15% (Kingma et al. 

1996, Potvin, Ball, et al. 1988). The speed of movement has been shown to influence the 

magnitude of discrepancies between top-down and bottom-up models, thereby confirming 

that a proportion of the error inherent to linked segment models is due to inaccuracies in 

determining segment accelerations (Plamondon, Gagnon and Desjardins 1996). Studies 

investigating the validity of linked segment models have also employed sensitivity analyses 

as a means of assessment. The advantage of this strategy is that different model inputs can 

be varied systematically to measure change in outputs, with the implication that ill-

conditioned models where small perturbations result in large changes are not valid. 

Previous studies have conducted sensitivity analyses with systematic variations in location 

of joint centres (Desjardins, Plamondon and Gagnon 1998) segment parameters (Larieviere 

and Gagnon 1999), joint axes (Kadaba, Ramakrishnan and Wooten 1990), segment 

accelerations (Desjardins, Plamondon and Gagnon 1998), and centre of pressure location 
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(Plamondon, Gagnon and Desjardins 1996). The results have shown that linked segment 

models are generally well conditioned and robust to small changes in input values. The 

effect of small errors has been shown to depend upon the model used and the movement 

investigated (Desjardins, Plamondon and Gagnon 1998). Bottom-up models that 

incorporate force platforms to provide accurate measurement of the external forces applied 

to the system have been shown to be more robust than top-down models (Desjardins, 

Plamondon and Gagnon 1998). However, in analyses similar to the current project where 

very large external ground reaction forces are created, small errors in translation of forces 

to the coordinate system of the foot segment can result in relatively large errors which are 

promulgated up the kinetic chain (Kingma et al. 1996). Careful experimental setup including 

calibration of force platforms and accurate marker placements of the foot segment are 

recommended to limit this source of error (Kingma et al. 1996).    

 

An important consideration for the accuracy of the biomechanical model employed in the 

current project is the calculation of body segment parameters. The values are estimated 

using proportional anthropometric regression equations which require simple 

measurements such as height and mass (Dempster 1955). However, these simple 

measurements cannot account entirely for the variability in body segment parameters. In 

addition, the regression equations were developed from cadaveric specimens of slender 

males. In contrast, the participants of the current project ranged from moderate to extremely 

hypertrophied. To investigate the effect of employing normative based values for segmental 

parameters of hypertrophied males, Chiu and Salem (2006) compared the kinetics 

calculated from normative and subject specific data during performance of the power clean. 

Subject specific data were determined using whole body DEXA scanning. The greatest 

differences between normative and subject specific parameters were obtained for the thigh 

and leg segments. In both cases, the use of normative data resulted in underestimations of 

segment mass. Based on the inverse dynamic equations, these errors resulted in 

overestimations of net joint forces and subsequently overestimations of net joint moments. 

The magnitude of kinetic errors obtained when using normative data were largest during 

phases of the movement where acceleration of the shank and femur were at their largest. 

However, despite the clear systematic nature of errors introduced, the relative magnitudes 

were low, with differences in the region of 0.6 to 1.6% of the values obtained when using 

subject-specific parameters. As a result of the considerable expense required to develop 

subject specific data and its minimal effect on the estimation of kinetic values, the use of 

normative based parameters is considered appropriate for this project.   
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5.5 Summary and Conclusion 

 

The link segment model selected for the current project enables the collection of kinematic 

and kinetic variables that provide useful information on the movement strategies employed 

and subsequent internal stresses created when performing resistance exercises. This 

information is combined with additional biomechanical data in subsequent chapters to 

assess the mechanical stimulus presented by those contemporary training practices that 

have been selected for analysis. The specific model used to collect internal variables has 

been extensively trialled in research studies examining gait, manual lifting and resistance 

training. The research base has established that the model is robust to small errors in inputs 

and provides an appropriate balance between model complexity and validity of inherent 

assumptions. For the purposes of the current project, the biomechanical model is included 

in studies that feature repeated measures designs where participants serve as their own 

control. These research designs limit the impact of errors on study conclusions due to 

reduced variability between conditions. In addition, by collecting data in a single testing 

session using the same calibration settings and marker placements, errors between 

resistance practices are minimised, thereby assisting in the ability to detect differences in 

biomechanical variables where they exist.   

  



 

127 
 

CHAPTER 6. EFFECTS OF MOVEMENT VELOCITY 

 

6.1 Prelude 

 

Perhaps the most substantive conceptual development in the contemporary training of 

powerlifters is their performance of fast velocity repetitions with sub-maximum loads. 

Traditionally, the training practices of powerlifters have focused almost exclusively on the 

use of heavy loads performed with relatively slow velocities. As reported in chapter three, 

the majority of powerlifters now believe there are biomechanical and neurophysiological 

advantages to performing exercises such as the squat, bench press and deadlift as fast as 

possible. Among these proposed advantages include the improvement of muscular power, 

which is considered one of the most important fitness variables for determining success in 

many sports. However, some researchers have argued that performance of fast velocity 

repetitions should be restricted to exercises (e.g. clean, snatch, jump squat and bench 

throw) that exhibit specific mechanical profiles. In general, the squat, bench press and 

deadlift are believed to exhibit profiles that are incompatible with the development of high 

velocities and therefore unlikely to improve muscular power. There is, however, limited 

evidence to support this conclusion. The purposes of this chapter are twofold, firstly, to 

investigate the biomechanical stimulus created when a standard powerlifting exercise is 

performed as fast as possible using a range of sub-maximum loads. Secondly, this chapter 

seeks to assess the potential for this training practice to develop muscular power. To 

achieve this latter aim, the biomechanical stimulus of the powerlifting exercise will be 

compared with the power clean, an exercise commonly prescribed to develop muscular 

power.   
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6.2 Introduction 

 

The importance of movement velocity as a variable which can influence adaptations to 

chronic resistance training has only recently been acknowledged. Traditionally, prescription 

of resistance training for health or performance improvements omitted guidelines for 

movement velocity (Feigenbaum and Pollock 1999) or provided vague recommendations, 

suggesting that „controlled‟ or „moderate‟ velocities be used (Hass, Feigenbaum and 

Franklin 2001, Pereira and Gomes 2003). Ambiguity in previous guidelines reflects the 

paucity of research that was available at the time. Studies investigating the effects of 

movement velocity on acute and chronic resistance training performance were initially 

conducted using isokinetic and hydraulic equipment (Pereira and Gomes 2003). Isokinetic 

devices were selected as they enabled researchers to precisely control the velocity of 

simple uni-joint movements. However, limitations exist for very fast velocities where only a 

small portion of the movement is isokinetic due to relatively large amplitudes of the 

acceleration and deceleration phases (Gleeson and Mercer 1996). Hydraulic devices were 

also investigated due to their potential to modify resistance based on the input velocity 

provided, although, in contrast to isokinetic technology, the devices are unable to constrain 

movement to a constant velocity.  

 

The majority of studies investigating Isokinetic training at slow speeds (20 to 99°/s) reported 

significant improvements in torque production across a wide range of testing velocities, with 

some general trends indicating that the magnitude of improvements were greatest near 

those used in training (Caiozzo, Perrine and Edgerton 1981, Pipes and Wilmore 1975, 

Moffroid and Whipple 1970). Results from isokinetic studies of fast speeds (100 to 300°/s) 

are more varied, with some studies reporting improvements in torque production across a 

range of velocities (Pipes and Wilmore 1975, Coyle et al. 1981, Timm  1987) and others 

demonstrating that improvements were limited to fast velocities (Caiozzo, Perrine and 

Edgerton 1981, Ewing et al. 1990). Inconsistencies in results could be due to a range of 

methodological factors including training velocities used and tested, the resistance training 

program followed (i.e. training frequency, number of sets, repetitions and rest periods 

allocated), and the data collection procedures employed. Overall, the results from isokinetic 

studies suggest that a degree of velocity-specificity may exist; however, improvements of 

varying magnitude can generally be obtained at velocities above and below that used in 

training.  
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Results from studies incorporating hydraulic machines have been more varied than those 

using isokinetic devices. No general trends have emerged with approximately an equal 

number of studies reporting generality in adaptations (Petersen et al. 1989, Petersen, Miller 

and Wenger 1984) and others reporting improvements specific to the velocities used in 

training (Bell et al. 1992, Aagaard et al. 1996). Similar methodological limitations apparent 

in isokinetic studies also apply for research conducted using hydraulic equipment. On the 

basis of these initial studies it is unsurprising that prescriptions of resistance training were 

previously limited in terms of guidelines for movement velocity.  

 

More recently, research investigating the effects of movement velocity on resistance training 

adaptations has featured isoinertial loading. It is clear from the relatively simple mechanics 

of isoinertial loads (in comparison with that created by isokinetic devices), that movement 

velocity is determined by neural drive and the subsequent impulse applied by the 

musculoskeletal system as well as the magnitude of the resistance. With very light 

resistances an individual can choose to lift the load with a variety of acceleration profiles 

resulting in slow to fast velocity movements. However, as the resistance increases, the 

maximum velocity that can be obtained is reduced, irrespective of the intention of the 

individual (Cronin, McNair and Marshall 2003). Delineation between intended movement 

velocity and actual movement velocity has led to two conflicting theories regarding 

adaptations to resistance training (Cormie, McGuigan and Newton 2011). The first theory, 

which received conflicting results from isokinetic and hydraulic studies, postulates that 

physiological adaptations are not influenced by individuals‟ intentions and instead are 

dependent upon the actual movement velocity generated. The opposing theory contends 

that the ability to produce high forces during fast velocity repetitions can be enhanced 

irrespective of the actual movement velocity produced, provided there is intention to move 

as fast as possible.  

 

Investigations comparing purposeful fast and slow movements using the same external 

resistance are unable to provide support for the theory of intention as there is no means to 

discern whether adaptations are due to the movement velocity or the intention behind them 

(Cormie, McGuigan and Newton 2011). The strongest piece of evidence supporting the 

theory of intention includes the findings from the frequently cited research of Behm and Sale 

(1993). The authors recruited male and female physical education students to a training 

intervention where the dorsiflexor muscles of each leg were stimulated unilaterally with 

different regimes of work. With one foot the participants performed fast velocity (300°/s) 
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ankle flexions, and with the other only isometric actions were permitted. For both muscle 

actions participants were instructed to attempt to displace the load as fast as possible. The 

results of the study demonstrated that muscles from both legs adapted similarly and 

exhibited significant improvements in torque production during high velocity movements. In 

addition, similar changes to isometric force-time characteristics were reported for the 

muscles of each leg during voluntary and evoked actions. The authors hypothesised that 

similar temporal force characteristics and high rates of neural activation produced during 

both isometric and high velocity muscle actions were responsible for the equivalent 

adaptations (Behm and Sale 1993). Unfortunately, similar research designs have not been 

conducted with more complex movements and better trained participants. However, on the 

basis of the results generated by Behm and Sale (1993) and the face validity of the 

approach, it is now commonly recommended that athletes should attempt to lift loads as fast 

as possible when seeking to develop muscular power or the ability to produce large forces 

during high velocity actions (American College of Sports Medicine 2009, Newton and 

Kraemer 1994). 

 

The terminology used to identify the practice of lifting loads as fast as possible is varied and 

largely inconsistent. The most popular and general expression used by researchers is 

explosive resistance training (ERT) (American College of Sports Medicine  2009, McBride et 

al. 2002, Newton and Kraemer 1994). Depending upon the exercises included, researchers 

may also use the expression ballistic training (Kraemer and Fleck 2004). In contrast, 

popular terminology used by practitioners includes speed repetitions, compensatory 

acceleration and the maximum dynamic method (Jones et al. 1999, Zatsiorsky  1995, 

Cressey et al. 2007). For the purposes of this thesis, ERT which is the most general and 

encompassing of the terminologies will be used.  

 

At present, the practice of ERT is recommended for athletes by two of the largest 

professional bodies in strength and conditioning (American College of Sports Medicine 

2009, Baechle and Earle  2008); however, there are aspects of the training practice that are 

not well understood and require further investigation. In particular, research to determine 

which exercises are best incorporated with ERT is warranted. To increase the likelihood of 

adaptations transferring to sports performance it is recommended that exercises performed 

explosively should involve muscular action across multiple joints and create large power 

outputs (Kraemer and Fleck 2004). Exercises that can meet these criteria are 

conventionally grouped into four categories: 1) plyometric; 2) traditional; 3) ballistic; and 4) 
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weightlifting (Cormie, McGuigan and Newton 2011). Plyometric exercises are characterised 

by rapid SSC muscle actions and are typically performed with minimal or no external 

resistance. Musculature of the upper and lower body can be targeted with a range of 

plyometric medicine ball throws and jumping variations, respectively. Despite minimal or no 

external loading the vertical forces and net joint moments created during plyometric 

exercises can be extremely large and comparable to exercises performed with significantly 

greater external resistance (Bobbert, Huijing and van Ingen Schenau 1987). The primary 

advantage of plyometric exercises is the high degree of specificity that can be obtained with 

many sporting movements. However, for some researchers plyometrics are considered 

distinct from the practice of ERT due to the reduced external loading and rapid SSC muscle 

actions which are believed to present divergent physiological and biomechanical stimuli 

compared with the other types of resistance exercises (Cormie, McGuigan and Newton 

2011). In particular, plyometric exercises are considered to make greater use of the stretch 

reflex and proprioceptive structures, whilst creating unique force-time characteristics (Siff  

2003). 

 

The category of traditional resistance exercises comprises a wide range of movements that 

are currently recommended for ERT by powerlifters and are the focus of this chapter. The 

term traditional is made in reference to the use of these exercises in the 1960s when 

resistance training was first adopted by athletes such as American football players to 

improve performance. The squat, bench press and deadlift are the standard movements 

that have come to characterise traditional resistance exercises. However, more recently, the 

terminology has been used to characterise resistance exercises that are considered distinct 

from ballistic and weightlifting movements based on the need to reduce the system velocity 

to zero at the end of the propulsive phase (Kraemer and Fleck 2004). That is, with 

traditional resistance exercises such as the squat, the load can be lifted as fast as possible 

during the initial stages of the concentric movement but must be decelerated so that at full 

extension the barbell-lifter system is motionless. In contrast, during the jump squat which is 

considered a ballistic movement, the load and body can be positively accelerated 

throughout the concentric phase and projected from the ground (Newton and Kraemer 

1994). It is primarily as a result of the need to decelerate the system during traditional 

resistance exercises that the majority of researchers in strength and conditioning 

recommend that ERT should not be performed with these movements (American College of 

Sports Medicine  2009, Newton and Kraemer 1994, Cormie, McGuigan and Newton 2011). 

Interestingly, prior to the recent popularisation of ERT, an influential powerlifting champion 

promoted the use of performing traditional resistance exercises as fast as possible to 
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increase strength, power and athleticism (Hatfield  1982). The training practice was 

identified as compensatory acceleration and was subsequently investigated by Jones et al. 

(1999). The authors compared maximum strength and power increases over a fourteen 

week intervention period with college American football players. The participants were 

randomly allocated to the control or experimental condition. Both groups performed the 

same training regime for the bench press with the exception that those in the control 

condition performed each repetition at a sub-maximum velocity while those in the 

experimental condition performed each repetition as fast as possible. Both training groups 

improved their 1RM bench press and seated medicine ball throw, with significantly greater 

improvements obtained by those in the experimental condition (+9.9 kg vs. +5.0 kg, and 

+0.7 m vs. +0.3 m, respectively). The results demonstrate that performing ERT with 

traditional resistance exercises can improve performance related tests of strength and 

muscular power in well trained athletes, and may also produce superior results to standard 

resistance training practices. The findings of Jones et al. (1999) seemingly contradict the 

position of many researchers that traditional resistance exercises are not suitable for ERT. 

However, the research was restricted to the bench press, which is an exercise that may 

have limited transfer to most sporting movements. In addition, the study does not address 

whether better results may have been obtained if the training was performed with ballistic or 

weightlifting movements as is recommended.  

 

The first study to compare the effects of resistance training programs comprised of 

traditional resistance exercises or weightlifting movements was conducted by Hoffman et al. 

(2004). Twenty members of a college American football team were position matched and 

separated into one of the training conditions. At the completion of the fifteen week 

intervention both groups improved their maximum strength, forty yard sprint speed and 

agility performance. The results indicated that group differences existed with those 

performing weightlifting exercises demonstrating significantly greater improvements in 

vertical jump and trends towards greater improvements in lower body maximum strength 

and speed. The results presented by Hoffman et al. (2004) have been used as evidence to 

support the position that weightlifting exercises are superior for athletic development. 

However, the study by Hoffman et al. (2004) was conceptualised as a comparison of 

traditional views of powerlifting training versus the methods used by Olympic weightlifters. 

As a result, the group performing the traditional resistance exercises did not attempt to 

perform repetitions as fast as possible, thereby making it difficult to establish whether the 

results were caused by the exercises used or the method by which they were performed. 

Future studies that seek to determine if powerlifting or weightlifting practices are more 



 

133 
 

effective for athletes should ensure that all repetitions are performed with the intent to lift the 

load as fast as possible to remove this potential confounding factor.  

 

Within current research paradigms it is to be expected that any future studies comparing 

powerlifting and weightlifting training would employ the same relative resistances and 

attempt to equate the overall volume of training to ensure these factors do not influence the 

result. However, at present it is not clear how factors such as the external resistance 

influence the stimulus of traditional resistance exercises performed explosively, making it 

unclear whether a comparison using the same relative loads is appropriate. The powerlifters 

interviewed for the current project used a wide range of exercises and loads when 

performing ERT with the belief that different combinations provided distinct stimuli and 

adaptations. In contrast, previous research investigating the biomechanical stimulus of 

traditional resistance exercises performed explosively has been limited, with studies 

focusing on the bench press across a narrow range of loads (Elliott, Wilson and Kerr 1989, 

Lander et al. 1985). In addition, the variables analysed have been restricted to external 

variables such as the ground reaction force and velocity of the barbell, which provide no 

information regarding movement strategies and distribution of internal stresses. As a 

necessary first step to characterise the biomechanical stimulus created with traditional 

resistance exercises performed explosively a more complete biomechanical investigation 

must be completed. This is the purpose of this chapter, with the deadlift selected for 

analysis due to its popularity and rapid extension of the lower body joints which is 

characteristic of many sporting movements. To assess the potential effectiveness of the 

training practice to develop muscular power the biomechanical stimulus of the power clean 

was also measured to provide a comparison. The power clean is considered by many 

researchers and practitioners in strength and conditioning to be the “gold standard” exercise 

for developing power and also features similarities in gross movement pattern with the 

deadlift (Chiu, Moore and Favre 2007, Stone et al. 2006).  
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6.3 Methods 

 

Experimental Approach to the Problem 

A cross-sectional, repeated measures design was used to quantify and compare kinematics 

and kinetics of the deadlift performed at maximum and sub-maximum velocities, and the 

power clean performed at maximum velocity only. The experimental approach provided 

original information regarding the mechanical stimulus of a traditional resistance exercise as 

it was progressed from its standard use at sub-maximum velocity to implementation within 

an ERT framework. Comparisons between maximum velocity deadlifts and power cleans 

were included to assess the validity of claims by researchers that traditional resistance 

exercises are not suited for ERT. A range of internal and external biomechanical variables 

were collected to assess the output of the exercise and the internal stresses created at 

different segments of the body. Data were collected for each participant over two sessions 

separated by one week. Session one was performed in the gymnasium and involved one-

repetition maximum (1RM) testing in the deadlift and power clean. Session two was 

performed in the laboratory where participants performed repetitions for each condition 

using loads of 40, 60 and 80% of their recorded 1RM. Kinematics and kinetics were 

analysed during the second session only. Multiple loads were used in the same testing 

session to maximise reliability of comparisons (i.e. with regard to factors such as marker 

placement and current physiological status). The testing sessions were extensively piloted 

to ensure that confounding effects of fatigue were minimised.   

 

Participants 

Twelve male strongman athletes participated in the study (age: 27.4 ± 4.5 yr; stature: 182.5 

± 3.3 cm; mass: 112.1 ± 19.2 kg; resistance training experience: 11.7 ± 4.4 yr). Participants 

were recruited from heavyweight and under 105 kg Scottish strongman competitions. 

Variations of the deadlift and power clean are regularly included in strongman competitions 

and each participant had a minimum of two years regular training experience with each 

exercise. Participants were notified about the potential risks involved and gave their written 

informed consent to be included. Prior approval was given by the ethical review panel at 

Robert Gordon University, Aberdeen, UK.  
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1RM Testing 

All participants were experienced in performing 1RM tests in the deadlift and power clean 

and could predict their maximum strength accurately. Based on a predicted 1RM load 

participants performed a series of warm-up sets and up to 5 maximum attempts. A minimum 

of 2 minutes and a maximum of 4 minutes recovery time were allocated between attempts. 

Within this time frame participants chose to perform the lift based on their own perception of 

when they had recovered. No supportive aids beyond the use of a weightlifting belt were 

permitted during the tests. Both exercises were initiated with the barbell resting on the floor. 

Participants were instructed to catch the barbell during the power clean in a “quarter squat” 

position. Any attempt which was received in a full squat position with upper thighs parallel to 

the floor was ruled unsuccessful (Kawamori et al. 2005). Deadlifts were performed with a 

conventional shoulder width stance and deemed to be successful if the barbell was not 

lowered at any point during the ascent and upon completion of the movement the body 

posture was erect, the knees were straightened and shoulders retracted. The order of 1RM 

tests were randomised with a 30 minute rest period allocated for recovery between 

exercises.   

 

Sub-maximum Load Testing 

Prior to performing maximum speed repetitions participants engaged in their own specific 

warm-up. Generally, this began with two to four sets of the deadlift and power clean with a 

light load (e.g. < 40% 1RM) for 6 to 10 repetitions. Participants then began to perform 

repetitions at maximum speed with progressively heavier loads. Once participants were 

suitably prepared, data were collected initially with the sub-maximum velocity deadlifts 

performed with 40, 60 and 80% 1RM in ascending order. Participants were instructed to 

perform the repetitions at a moderate speed indicative of training used to develop muscular 

hypertrophy. Once completed, participants then performed maximum velocity deadlifts and 

power cleans with the same relative loads (i.e. 40–80% 1RM) in a randomised order. Trials 

were randomly presented to minimise the confounding effects of fatigue and potentiation. 

One trial comprising two repetitions was performed for each load and condition to assess 

intra-trial reliability. A minimum two minute rest period was allocated between trials with a 

longer rest period of up to four minutes made available if the participant felt it necessary to 

produce a maximum performance. Instructions were given at the beginning of each trial to 

perform the concentric portion of each repetition with maximum effort attempting to lift the 

load as fast as possible whilst maintaining contact with the ground throughout the deadlift. 
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For each trial the repetition that produced the greatest peak barbell velocity was selected for 

further analysis.   

 

Biomechanical Analyses  

The sub-maximum load trials were performed with a separate piezoelectric force platform 

(Kistler, Type 9281B Kistler Instruments, Winterthur, Switzerland) under each foot, in a 

capture area defined by a seven-camera motion analysis system (Vicon MX, Vicon Motion 

Systems, Oxford, UK). Marker position and ground reaction force data were captured at 200 

and 1200 Hz respectively. Based on a frequency content analysis of the three-dimensional 

coordinate data, marker trajectories were filtered using a digital fourth-order low-pass 

Butterworth filter with a cut-off frequency of 6 Hz. Internal kinematics and kinetics were 

calculated using the models presented in chapter five. Instantaneous velocities and 

accelerations were calculated by numerical differentiation of the position data (Hildebrand 

1974). Kinematic and kinetic measures for the hip, knee and ankle were calculated for both 

left and right sides and averaged to obtain single values. The starting point for each trial 

was defined as the point where the centre of the barbell was raised 2 mm vertically above 

its initial resting height. The end of each trial was defined as the point where the centre of 

the barbell reached maximum vertical elevation. The increment of 2 mm was selected 

because force application at the beginning of the movement caused the barbell to oscillate 

and generate additional noise to the positional data. Pilot testing revealed that the selected 

cut-off was the smallest value consistently greater than the magnitude of the added noise. 

Instantaneous external power values were calculated as the product of the vertical ground 

reaction force and corresponding barbell vertical velocity. Power values were also 

measured at the level of the joint by taking the product of the flexion-extension net joint 

moment and flexion-extension angular velocity. The moment arm of the resistance was 

found by calculating the horizontal distance from the centre of the barbell to the relevant 

joint centre.  
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Statistical Analyses 

Intra-trial reliability for each variable analysed was assessed by intraclass correlation 

coefficient (ICC). As recommended by Baumgartner (2006), ICCs were calculated with a 

correction factor for number of repetitions performed per trial (n = 2) and number of 

repetitions used in the criterion score (n = 1). Intra-trial reliability for all variables reported 

were high with values ranging from 0.88 to 0.98. Two distinct sets of analyses were made to 

compare: a) the effect of repetition velocity (sub-maximum vs. maximum velocity deadlifts); 

and b) the effect of exercise (power clean vs. deadlift, both at maximum velocity). In both 

sets of analyses, potential differences in kinematics and kinetics were investigated using a 

2x3 (condition x load) repeated measures ANOVA. Significant main effects were further 

analysed with Bonferroni adjusted pair-wise comparisons. Statistical significance was set at 

p<0.05. All statistical procedures were performed using the SPSS software package (SPSS, 

Version 17.0, SPSS Inc., Chicago, IL).  
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6.4 Results 

 

Effect of repetition velocity 

As the magnitude of the external resistance increased, the time taken to complete 

repetitions in both sub-maximum and maximum velocity deadlifts increased also. Repetition 

duration, vertical barbell displacement and velocity values across loads are presented in 

Table 6.1. The data show that during maximum velocity deadlifts the barbell was 

consistently elevated to a greater height and that average and peak velocity values were 

significantly greater than those obtained during the control repetitions.  

 

Table 6.1: Displacement and velocity characteristics of maximum and sub-maximum 

velocity deadlifts (mean±SD) 

 Sub-maximum  deadlift Maximum  deadlift 

 40% 1RM 60% 1RM 80% 1RM 40% 1RM 60% 1RM 80% 1RM 

Repetition 

duration (s) 
1.54 ± .23* 1.65 ± .21* 1.97 ± .19* 0.67 ± .05 0.84 ± .10 1.44 ± .23 

Displacement 

(m) 
0.62 ± .07 0.59 ± .07 0.55 ± .04 0.78 ± .08* 0.72 ± .09* 0.65 ± .05* 

Average 

velocity (ms
-1

) 
0.41 ± .19 0.36 ± .16 0.28 ± .10 1.15 ± .13* 0.88 ± .14* 0.45 ± .06* 

Peak   

velocity (ms
-1

) 
1.01 ± .24 0.80 ± .22 0.60 ± .11 1.81 ± .22* 1.33 ± .21* 0.77 ± 0.09* 

*Significantly greater than corresponding condition (p<0.05). 

 

Distinct force-time profiles were obtained for maximum and sub-maximum velocity deadlifts. 

Figure 6.1 illustrates representative curves for the different conditions. These were 

produced by resampling the individual data sets by approximating values with a polynomial 

function (maximum 6th order) over an integer domain consisting of 500 data points, and then 

averaging values for the group. The curve representing the sub-maximum condition shows 

that RFD during the initial phase of the movement is low and that once peak force is 

obtained there is a gradual decrease to a lower level where values remain stable until the 

end of the movement. In contrast, with maximum velocity deadlifts there is an initial 

decrease in force, then rapid rise in values to a peak where values remain relatively stable 
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until the end phase of the movement where force quickly falls towards zero.   

 

Figure 6.1: Representative force-time curves of maximum and sub-maximum velocity 

deadlifts 
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In addition to differences in force production, significant main effects of repetition velocity 

were also obtained for orientation of the hip and knee at the start of the movement. 

Significant Interaction effects of velocity and load revealed that differences in orientation of 

the hip and knee were greatest at the lightest load and failed to reach significance at the 

heaviest load. The results showed that participants initiated sub-maximum velocity deadlifts 

with increased hip and knee flexion angles (Table 6.2).  
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Table 6.2: Sagittal angles of maximum and sub-maximum velocity deadlifts at the start of 

movement (mean±SD) 

 Sub-maximum  deadlift Maximum  deadlift 

 40% 1RM 60% 1RM 80% 1RM 40% 1RM 60% 1RM 80% 1RM 

Torso flex/ext° 48.8 ± 9.5 51.9 ± 12.3 57.6 ± 12.9 55.8 ± 10.0* 56.2 ± 11.2 59.6 ± 13.3 

Hip flex/ext° 97.6 ± 6.2* 94.8 ± 6.4* 92.9 ± 6.4 90.3 ± 7.1 89.6 ± 7.0 92.7 ± 7.0 

Knee flex/ext° 86.3 ± 10.9* 81.8 ± 10.5* 74.9 ± 9.9 71.7 ± 10.2 70.6 ± 9.4 70.5 ± 9.6 

Ankle flex/ext° 25.4 ± 4.1 21.3 ± 4.1 22.8 ± 3.6 22.3 ± 3.8 21.7 ± 4.7 23.2 ± 4.6 

*Significantly greater than corresponding condition (p<0.05). 

 

 

The increased velocity obtained when performing repetitions as fast as possible was 

achieved by significant increases in angular velocity of the torso, hip, knee and ankle. For 

the lightest loads peak and average joint velocities were up to 4 times faster for the 

maximum effort condition and up to 1.5 times faster when lifting the heaviest load. 

 

Significant main and interaction effects of load and repetition velocity were also obtained for 

joint moments and joint powers.  The interaction effects revealed that joint moments and 

powers were augmented during maximum velocity repetitions with the magnitude of the 

difference greatest when the external resistance was low. As the external resistance 

increased, values still remained significantly greater during maximum velocity repetitions 

compared with sub-maximum repetitions, however, the magnitude of the difference 

decreased. Increases in joint moments and powers during maximum velocity deadlifts were 

similar for the torso, hip and knee, with the greatest increases obtained at the ankle. 

 

Deadlift and Power Clean Comparison 

The athletes were able to lift twice as much in the deadlift as compared with the power 

clean (1RM deadlift: 280.9 ± 48.8 kg; 1RM power clean: 139.2 ± 19.4 kg). Therefore, as 

expected, the greater absolute loads lifted during the deadlift resulted in significant main 

effects for GRF and velocity of the barbell (Table 6.3). The relative increases in force 

obtained with the deadlift were considerably less than the relative reductions experienced in 

velocity of the barbell. As a result, the external power values calculated during the power 

clean were significantly greater than those produced during the deadlift (Table 6.3). 
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Table 6.3: Comparison of force, velocity and power data obtained during the power clean 

and deadlift (mean±SD) 

 Power Clean Maximum  deadlift 

 40% 1RM 60% 1RM 80% 1RM 40% 1RM 60% 1RM 80% 1RM 

Average  

Force (kN) 
1.51 ± .23 1.70 ± .21 1.91 ± .23 1.97 ± .29* 2.45 ± .32* 2.88 ± .39* 

Peak 

Force (kN) 
2.40 ± .47 2.69 ± .39 2.86 ± .29 2.66 ± .40* 2.98 ± .46* 3.23 ± .48* 

Average 

velocity (ms
-1

) 
1.64 ± .10* 1.44 ± .19* 1.28 ± .14* 1.00 ± .13 0.69 ± .14 0.35 ± .06 

Peak   

velocity (ms
-1

) 
2.72 ± .22* 2.46 ± .38* 2.01 ± .28* 1.61 ± .22 1.11 ± .21 0.57 ± .09 

Average Power 

(kW) 
2.20 ± .38 2.19 ± .34* 2.18 ± .33* 1.93 ± .27 1.66 ± .29 0.95 ± .12 

Peak 

Power (kW) 
4.78 ± .61* 4.94 ± .71* 4.66 ± .48* 4.05 ± .62 3.16 ± .62 1.79 ± .23 

*Significantly greater than corresponding condition (p<0.05). 

 

In addition to differences obtained in discrete force values (average and peak), the overall 

profile of force-time curves for the deadlift and power clean were found to be distinct. Figure 

6.2 illustrates representative force-time curves for each exercise. During the initial stage of 

the power clean total force and RFD was less than that developed for the deadlift. During 

the middle stages of the power clean force quickly dropped to zero before increasing rapidly 

to a second peak. The bimodal force profile developed during the power clean had a 

significant effect on PRFD with values consistently five times greater than that produced 

during the deadlift across all loads.  
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Figure 6.2: Representative force-time curves of the power clean and deadlift 
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Figure 6.3 illustrates the close relationship between the force-time profile and joint angle-

time curve of the knee during the middle and latter stages of the power clean. In contrast to 

the simple progressive extension curve that was measured at the knee during the deadlift, a 

prominent second phase where the knee flexes and then rapidly returns to extension was 

observed during the power clean. Interestingly, one of the participants utilised a similar 

extension-flexion-extension knee joint pattern when performing repetitions in the deadlift 

(Figure 6.4). For the same individual the force-time curve developed during the deadlift was 

distinct from the rest of the group and exhibited the same bimodal profile and higher PRFD 

values measured during power cleans.  
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Figure 6.3: Representative force-time and knee joint-time curves obtained during the power 
clean 
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Figure 6.4: Distinct force-time and knee-joint time curves obtained during the deadlift 
(single individual) 
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The extent of the acceleration phase expressed relative to the repetition duration and 

barbell displacement revealed significant main effects of exercise type. Across all loads the 
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extent of the acceleration phase was greatest for the deadlift compared with the power 

clean (Table 6.4). At the point at which the participants began to decelerate, the velocity of 

the barbell was measured to calculate the kinetic energy transferred to the external 

resistance during the acceleration period. The results show that greater velocity created 

during the power clean transferred more kinetic energy despite the two-fold greater masses 

lifted during the deadlift. 

 

Table 6.4: Acceleration and kinetic energy data for the power clean and deadlift (mean±SD) 

 Power Clean Maximum  deadlift 

 40% 1RM 60% 1RM 80% 1RM 40% 1RM 60% 1RM 80% 1RM 

% Time  

Acceleration 
59.1 ± 3.2 60.1 ± 3.0 68.3 ± 4.1 73.9 ± 4.1* 80.4 ± 3.8* 78.2 ± 5.4* 

% Bar Travel 

Acceleration 
62.2 ± 3.0 65.6 ± 3.6 69.2 ± 3.9 75.5 ± 5.3* 83.8 ± 6.1* 79.9.± 5.4* 

Kinetic 

Energy (J) 
159 ± 32* 172 ± 51* 166 ± 24* 121 ± 28 91 ± 18 29 ± 8 

*Significantly greater than corresponding condition (p<0.05). 

 

Comparisons of the internal kinematics and kinetics revealed significant main effects for 

sagittal joint angles, with greater amounts of flexion obtained at the hip, knee and ankle at 

the start of the concentric phase of the power clean (Table 6.5). For each segment, 

significant interaction effects of load and exercise were obtained for peak joint velocities. 

The results revealed that joint velocities remained relatively consistent across loads in the 

power clean, whereas, peak values dropped considerably between 60% and 80% 1RM 

loads in the deadlift. Despite the large differences in velocity measured at the barbell, joint 

angular velocities were similar for the deadlift and power clean during the two lightest 

conditions (Table 6.5). Significant main effects of load and exercise were also obtained for 

peak joint moments at each segment. Greater values were obtained during the deadlift for 

the hip, ankle and torso, with the power clean producing greater peak joint moments at the 

knee. The divergent patterns of joint moments and velocities across the loads resulted in a 

more complex outcome for joint powers (Table 6.6). At the knee joint greater peak joint 

power was produced during the power clean across all loads. Whereas, for other joints, 

power values were similar for both exercises during the lighter load conditions and generally 

were greater during the power clean at the heaviest load.     
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Table 6.5: Sagittal plane angles for the power clean and deadlift at the start of movement 
(mean±SD) 

 Power Clean Maximum  deadlift 
 40% 1RM 60% 1RM 80% 1RM 40% 1RM 60% 1RM 80% 1RM 

Torso flex/ext° 50.3 ± 10.1 50.4 ± 12.5 51.0 ± 14.4 55.8 ± 10.0* 56.2 ± 11.2 59.6 ± 13.3 

Hip flex/ext° 102.0 ± 5.8* 103.2 ± 6.5* 103.0 ± 8.4* 90.3 ± 7.1 89.6 ± 7.0 92.7 ± 7.0 

Knee flex/ext° 86.4 ± 8.2* 85.3 ± 9.7* 80.7 ± 10.2* 71.7 ± 10.2 70.6 ± 9.4 70.5 ± 9.6 

Ankle flex/ext° 29.6 ± 3.7* 30.5 ± 3.9* 29.0 ± 4.1* 22.3 ± 3.8 21.7 ± 4.7 23.2 ± 4.6 

*Significantly greater than corresponding condition (p<0.05). 

 

Table 6.6: Peak joint- velocity, moment and power data for the power clean and deadlift 

(mean±SD) 

 Power Clean Maximum  deadlift 

 40% 1RM 60% 1RM 80% 1RM 40% 1RM 60% 1RM 80% 1RM 

Torso       

Peak Velocity  233 ± 56 227 ± 33 200 ± 36 231 ± 64 194 ± 43 100 ± 23 

Peak Moment  294 ± 53 300 ± 46 310 ± 42 334 ± 42* 386 ± 51* 410.± 61* 

Peak Power  368 ± 134 355 ± 165 388 ± 120 279 ± 85 320 ± 104 240 ± 83 

Hip       

Peak Velocity  314 ± 68 289 ± 64 267 ± 62* 310 ± 65 250 ± 75 124 ± 27 

Peak Moment  210 ± 22 223 ± 26 240 ± 29 251 ± 26* 299 ± 31* 325 ± 38* 

Peak Power  693 ± 215 750 ± 239 685 ± 174 748 ± 194 780 ± 153 440 ± 121 

Knee       

Peak Velocity  217 ± 52 240 ± 57 237 ± 63 267 ± 58 230 ± 72 104 ± 43* 

Peak Moment  118 ± 56* 122 ± 38* 154 ± 44* 72 ± 22 88 ± 25 90 ± 28 

Peak Power  241 ± 128 264 ± 89 301 ± 190* 150 ± 116 155 ± 92 87 ± 24 

Ankle       

Peak Velocity  172 ± 88 230 ± 89 250 ± 78 294 ± 68* 306 ± 70* 120 ± 67 

Peak Moment  141 ± 29 164 ± 29 186 ± 33 175 ± 21* 208 ± 29* 216 ± 22* 

Peak Power  217 ± 76 369 ± 140 501 ± 190* 512 ± 184* 500 ± 160* 164 ± 89 

Peak velocity (°s
-1

), Peak Moment (Nm), Peak Power (W). *Significantly greater than corresponding 

condition (p<0.05). 
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6.5 Discussion 

 

The present study investigated the biomechanical effects when progressing from sub-

maximum to maximum velocity repetitions in a traditional resistance exercise such as the 

deadlift. In addition, the biomechanical stimulus created during maximum velocity 

repetitions was compared with that produced during the power clean. The results of the 

study revealed that the increased velocity obtained when attempting to lift the load as fast 

as possible enhanced a range of kinematic and kinetic variables. The comparison of the 

stimulus created between the deadlift and power clean demonstrated that in addition to the 

expected differences there were a number of interesting similarities which have previously 

not been discussed in the literature. Collectively, the results from this study provide support 

for the practice of performing ERT with an exercise such as the deadlift and thereby 

contradict recommendations made by the majority of researchers in the field of strength and 

conditioning.   

 

 

Recent studies investigating the effects of repetition velocity during performance of free-

weight exercises have focused on comparisons of sub-maximum velocities categorised as 

fast, moderate and intentionally slow (Hatfield et al. 2006, Lachance and Hortobagyi 1994, 

Sakamoto and Sinclair 2006). Results of these comparisons have demonstrated that fast 

repetitions produce greater values for force, power, RFD, muscle recruitment and overall 

training volume (Hatfield et al. 2006, Lachance and Hortobagyi 1994, Sakamoto and 

Sinclair 2006). In previous studies fast repetitions were defined as cadences of one second 

or less, with moderate velocities extending from one to two seconds (American College of 

Sports Medicine 2009, Morrisey et al. 1998). According to these categorisations, the 

athletes in the present study performed all sub-maximum velocities in the deadlift at 

moderate speeds. Despite individuals self selecting the velocity used to perform each 

repetition, variation across the group was small with the duration of lifts increasing 

disproportionately with heavier loads. A similar progression was obtained for maximum 

velocity deadlifts. These results suggest that the athletes regulated their performance during 

the sub-maximum trials not by attempting to adhere to a set cadence, but by exerting a 

relative percentage of their maximum capability. Based on this assumption, it is not 

surprising that increased effort applied during maximum velocity repetitions resulted in 

greater values for force, RFD, joint moments and joint powers. However, results that would 

have been difficult to predict a priori include different joint orientations adopted at the start of 

the movements and alterations to the vertical displacement of the barbell. Greater hip and 
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knee flexion angles measured during lighter load conditions with sub-maximum velocity 

deadlifts may reflect the reduced effort and the selection of a body posture which is 

frequently advocated but less effective from a mechanical perspective (Hales  2010). In 

contrast, the more extended hip and knee angles used during maximum velocity lifts would 

enable greater forces to be produced through enhanced muscle length-force characteristics 

and reduced resistance moment arms (Hales, Johnson and Johnson 2009, Hales  2010), 

thereby creating the highest repetitions speeds possible. This hypothesis also explains why 

participants adopted the same joint angles during the heaviest load condition where 

considerable effort must be exerted even when attempting to complete the lift at sub-

maximum velocity. 

 

The increased barbell elevation measured during maximum velocity deadlifts reflects the 

different constraints of each condition. To avoid projecting the body into the air the greater 

velocity created during maximum effort repetitions must be actively decelerated or partly 

transformed into increased mechanical energy of the external resistance. Analysis of joint 

angle-time curves of the ankle reveal that there was significantly greater plantar flexion at 

the end of maximum velocity repetitions and that the amount of plantar flexion decreased as 

the load became heavier. By rapidly plantar flexing the ankle at the end of the deadlift, 

power can be transferred from the knee to the ankle through the action of the biarticular 

gastrocnemius, contributing to an overall deceleration at the knee (van Ingen Schenau 

1989). The conditions that produced the greatest velocities resulted in the largest plantar 

flexion angle which at least partly explains the increased elevation of the barbell. It is also 

possible that additional vertical elevation was achieved by allowing the shoulder girdle to 

rise or the elbows to flex. Additional research conducted from this PhD project 

demonstrated that the act of plantar flexing the ankles at the terminal stage of the deadlift 

significantly increased force, velocity and power compared to repetitions that were 

terminated with the heel on the ground (Swinton, Agouris, et al. 2010a). From the same 

work it was suggested that plantar flexion provides a longer period for force production and 

acceleration which could explain the increase in mechanical variables measured.  

 

Researchers that have recommended against performing traditional resistance exercises 

explosively have done so based primarily on the belief that the exercises require extensive 

periods of deceleration and reduced force production to slow velocity to zero at the end of 

the movement (Kraemer and Fleck 2004, Newton and Kraemer 1994). The first 

investigation to analyse force and acceleration profiles throughout the duration of a 
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traditional resistance exercise was conducted by Lander et al. (1985). Their results showed 

that when a load of 75% 1RM was lifted explosively in the bench press, approximately one 

quarter (26.5 ± 4.7%) of the exercise duration was spent decelerating the load. A similar 

experiment using a slightly heavier resistance of 81% 1RM was completed by Elliot et al. 

(1989). The deceleration period reported was considerably greater than that found in the 

previous study (Lander et al. 1985), and was shown to be even longer in duration than the 

acceleration period (51.7% vs. 48.3% respectively). Elliot et al. (1989) suggested that 

dissimilar results between the two studies may have been due to order effects from the 

different experimental protocols. A third study conducted by Newton et al. (1997) also 

incorporated the bench press with a much lighter load of 45% 1RM. The investigators gave 

participants clear instructions to lift the load as fast as possible and reported that the 

acceleration phase comprised approximately 60% of the movement duration. It is unclear 

why such large variation exists across the different studies and may be due to factors such 

as the experimental population, the data collection protocols and the analysis procedures 

used. It is possible that individuals with more experience in performing the movement 

explosively develop strategies that enable them to accelerate the load for longer periods. In 

addition, each of the previous studies measured acceleration from the second derivative of 

the barbells position data. This method does not take into consideration acceleration of the 

system as a whole and is prone to errors that must be smoothed using data filtering 

procedures (Kipp, Harris and Sabick 2012). Differences in filtering techniques and errors 

within the measurement system may also have contributed to the variation in results.  

 

In the present study acceleration of the system mass which comprised the participant‟s 

body and the external resistance was calculated directly using the VGRF data. The results 

show that even with loads as light as 40% 1RM, approximately three quarters of the 

movement can be spent accelerating the load. As the external resistance increased, the 

percentage of the movement comprising positive acceleration increased to approximately 

85%, with some participants accelerating the load for almost 90% of the movement. The 

different results obtained between the present study and those reported previously may be 

influenced by the exercises selected. The bench press is a relatively simple exercise that 

involves only a small number of joints and therefore provides limited movement strategies to 

decelerate or transfer mechanical energy to the external resistance. In contrast, the deadlift 

includes coordinated movement across a greater number of segments which enables more 

complex control strategies to be implemented. The finding that a traditional resistance 

exercise such as the deadlift can be used to produce acceleration for the majority of the 
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movement runs contrary to recommendations made by many strength and conditioning 

researchers. 

 

In addition to concerns regarding the acceleration profile of the movements, many 

researchers have proposed that traditional resistance exercises should not be used with 

ERT as they produce substantially less power than ballistic or weightlifting exercises (Stone 

et al. 2006). The first study to compare the power produced during traditional resistance and 

weightlifting exercises was conducted by Garhammer and McLaughlin (1980). The authors 

reported that average power produced during the snatch was approximately double that 

produced during the squat. Further research from the same primary author concluded that 

similar differences in average power production existed between the deadlift and clean 

(Garhammer  1993). It was concluded that lower power produced during the squat and 

deadlift was attributable to relatively slow vertical velocities generated throughout the 

movement (Garhammer  1993). However, the studies were carried out during powerlifting 

and weightlifting competitions where participants were lifting maximum loads. From 

previous studies it is known that the largest power values are produced with sub-maximum 

loads for traditional resistance exercises (≈ 30 to 60% 1RM), whereas maximum power is 

produced with loads close to 100% 1RM during weightlifting movements (Cormie, 

McGuigan and Newton 2011). To more appropriately investigate power production and 

related variables the present study included an extensive biomechanical analysis over a 

range of loads. The power clean was selected rather than the squat clean as this particular 

variant is less technically demanding and has been shown to create similar kinematic and 

kinetic profiles to the full movement (Souza, Shimada and Koontz 2002). Results from the 

present study confirm that greater average and peak external power is produced during a 

weightlifting movement compared to a traditional resistance exercise. However, the 

magnitude of the difference is considerably less than that reported by Garhammer (1993). 

The results show that maximum power values were approximately 20% greater during the 

power clean compared with deadlift (4.9 kW vs. 4.1 kW). As both exercises were initiated 

with the barbell positioned stationary on the floor a forward dynamics approach to calculate 

external power was not suitable. Instead, external power was calculated as the product of 

the vertical GRF and vertical velocity of the barbell. There are limitations with this method 

as it assumes that velocity of the barbell is representative of the systems velocity. Recent 

research has suggested that this assumption may be erroneous with most resistance 

exercises and consistently lead to overestimations of power (Lake, Lauder and Smith 2012). 

Therefore, whilst the data provide some insight into the external power produced and make 
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available numerical values which can be compared to previous studies, interpretation of the 

results must be made with caution.  

 

To compare the biomechanical stimulus of the deadlift and power clean it is important not 

only to consider external power, but also the force profile, joint angular velocities, joint 

moments and internal joint powers. The power clean has been shown previously to produce 

force-time curves that are distinct from non-weightlifting exercises (Souza, Shimada and 

Koontz 2002); in particular, the movement creates a distinctive bimodal pattern. The entire 

force-time curve comprises three major sections which correspond to the first pull, the 

unweighting phase and the second pull (Souza, Shimada and Koontz 2002). Each of the 

athletes in the present study reproduced these distinct phases. The second pull is 

considered to be the most important feature of the power clean as it is this phase where 

peak values of kinetic variables are produced and the motion is thought to be similar to 

many important sporting actions (Stone et al. 2006). Comparisons of the force-time profiles 

of the deadlift and power clean confirmed that VGRF values were generally greater during 

the deadlift, but only the power clean included a distinct bimodal pattern. Analysis of the 

time derivative of the force-time curves revealed that the unweighting and subsequent 

second pull phases of the power clean enabled production of substantially higher RFD 

values than those produced during the deadlift. As found here and in previous studies 

(Souza and Shimada 2002), a clear connection exists between the joint-angle profile of the 

knee and the force-time characteristics expressed during the unweighting and second pull 

phases. In the literature the motion of the knee during these phases is referred to as the 

double-knee bend (Stone et al. 2006). The movement is presumed to augment kinetic 

variables through a SSC action which may exploit a combination of mechanisms including 

the use of stored elastic energy, the myotatic reflex, optimisation of muscle length 

relationships and enhancement of muscle activation patterns (Stone et al. 2006). In the 

present study, one of the participants utilised the same double-knee bend technique during 

the deadlift which resulted in a force profile similar to that observed for the power clean. 

Interestingly, the participant who adopted this technique was the only individual who 

produced similar peak RFD values for both the power clean and deadlift. It is therefore 

possible that the inclusion of the double-knee bend technique during explosive deadlifts 

could provide a better stimulus than conventional techniques to enhance RFD. In addition, 

incorporation of the double-knee bend technique during the deadlift could potentially serve 

as an appropriate progression when teaching the power clean to athletes. Future research 

is required to determine whether the data obtained here from the single participant can be 

replicated in a larger sample.  
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Despite the substantially greater barbell velocities obtained during the power clean, the joint 

angular velocities revealed that the highest values obtained across the loads were similar 

for both exercises. In general, angular velocities obtained during the power clean only 

diminished slightly as the external resistance was increased. One notable exception to this 

trend was observed at the ankle joint, where peak angular velocity increased with heavier 

loads. In contrast, substantial decreases in joint angular velocities were obtained with the 

deadlift as the load increased from 60 to 80% 1RM. This finding reinforces why previous 

investigations of the deadlift during competitions fail to produce data representative of the 

biomechanical stimulus created when using lighter resistances.  

 

The heavier absolute loads lifted in the deadlift compared with the power clean resulted in 

significantly greater joint moments at the lumbar spine, hip and ankle. Conversely, 

significantly greater peak knee moments were obtained during the power clean. Divergent 

results obtained at the knee joint were likely caused by differences in moment arms that 

exceeded the effect of the resistance magnitude. During the deadlift the bar was kept close 

to the shin and thigh ensuring that the moment arm at the knee was small. In contrast, 

increased knee angles at the start of the power clean and during the second pull created 

much larger resistance moment arms, which would have increased the overall resistance 

and thereby explain the larger net joint moments produced. The use of inverse dynamics to 

calculate net joint moments and angular velocities provides the opportunity to calculate joint 

powers. Where external power provides information at the barbell or lifter-barbell system, 

joint power provides information of the rate of mechanical work applied to specific segments 

of the body (Zatsiorsky 2002). This information may be useful in the design of resistance 

training programs to enhance performance in specific sporting movements (Kipp, Harris and 

Sabick 2012). Only a few studies have provided internal power values during resistance 

training exercises (Enoka  1988, Kipp, Harris and Sabick 2012). This may be due to the 

expensive equipment and labour intensive data collection and processing procedures 

required. Studies that have been conducted have shown that joint power is affected by load 

magnitude in a similar manner to that observed with external power (Kipp, Harris and 

Sabick 2012). However, research comparing internal and external power values has shown 

that the two variables do not necessarily correlate with one another, particularly for lighter 

resistances where values appear to diverge (Kipp, Harris and Sabick 2012). For the power 

clean maximum peak values generally occurred at 60 or 80% 1RM loads, whereas 

maximum peak joint power values for the deadlift were obtained at 40 or 60% 1RM. In 

addition, there tended to be a large drop off in peak power values with the deadlift at the 

80% 1RM loads. Despite differences obtained in the pattern of values across the loads, 
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similar maximum values were produced for the deadlift and power clean. The one exception 

was at the knee joint where peak power values were significantly greater during the power 

clean in comparison to the deadlift. These results illustrate the limitations of relying solely on 

external power to provide information on the rate at which energy is applied to the different 

segments of the body. In addition, the results provide further evidence that 

recommendations made by researchers to avoid performing traditional resistance exercises 

with ERT are unwarranted. Further research should be conducted to investigate the 

temporal characteristics of joint power values to determine if the information can be used to 

enhance the mechanical specificity and transfer of training to sporting actions.  

 

Comparisons of the length and duration of the acceleration phase during the deadlift and 

power clean revealed that the magnitude was significantly greater during the deadlift. It has 

been acknowledged that weightlifting exercises such as the power clean can include a 

relatively extensive period of deceleration; however, the exercises are still recommended by 

researchers as it is suggested that there is minimal active deceleration and instead energy 

is transferred to the barbell and subsequently slowed by the effects of gravity (Cormie, 

McGuigan and Newton 2011). To investigate this proposed mechanism and determine the 

extent to which the same process may be adopted in the deadlift, the kinetic energy of the 

barbell was calculated at the point at which the overall system began to decelerate. The 

results showed that more kinetic energy was transferred to the barbell during the power 

clean as a result of the greater velocities created (Table 6.4). However, the results also 

demonstrated that during the lighter load conditions substantial amounts of kinetic energy 

were transferred to the barbell during the deadlift, with some athletes exhibiting more 

proficiency than others.  
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6.6 Summary and Conclusion 

 

The current study demonstrates that performing an exercise such as the deadlift with the 

intent to lift the load as fast as possible significantly increases values obtained for many key 

mechanical variables in comparison to the standard practice of lifting loads with sub-

maximum velocity (and hence sub-maximum effort). These results provide strong support 

for one of the primary training practices promoted by contemporary powerlifters.  

 

To investigate whether the practice may be beneficial for general athletes the 

biomechanical stimulus created with the deadlift was compared with the power clean, which 

is one of the most popular exercises prescribed to athletes. The results highlighted that the 

stimulus developed with the two exercises are more closely related than researchers would 

previously have considered. In general, greater velocities were obtained during the power 

clean, especially with heavier relative loads. However, similar maximum peak joint velocities 

and peak joint powers were produced with both exercises. Additionally, the heavier absolute 

loads lifted with the deadlift resulted in greater net joint moments. Collectively the results 

suggest that the deadlift would be an appropriate exercise for athletes when attempting to 

develop muscular power or general athleticism. It is important to note that these findings 

characterise only the basic approach used by powerlifters to develop their explosive 

performance. As highlighted in chapter three, the majority of powerlifters seek to enhance 

maximum velocity lifts through the addition of variable resistance material such as bands 

and chains, and through the use of unconventional barbells and altered movement 

strategies. These complimentary training practices will be investigated in chapters seven 

and eight.   
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CHAPTER 7. MANIPULATION OF THE EXTERNAL RESISTANCE 
 

7.1 Prelude 

 

As highlighted in chapter three, one of the central features of powerlifters‟ contemporary 

training practices includes the manipulation of the external resistance. Two of the most 

popular and visually recognisable methods are the inclusion of variable resistance material 

in the form of bands and chains, and the use of unconventional barbells. Both methods are 

used primarily as strategies to augment the biomechanical stimulus created when 

performing traditional resistance exercises explosively. In particular, the addition of bands 

and chains are believed to extend the duration of high level force output during the 

propulsive phase of the movement. In contrast, unconventional barbells are used to alter 

the distribution of mechanical stress created by the external resistance. This latter process 

is believed to have the potential to enhance the overall stimulus and enable athletes to 

target specific segments of the body. As the use of chains and bands has become 

synonymous with the contemporary training practices of powerlifters, a substantial research 

base has been created over a relatively short time period. However, the specific loading 

characteristics that have been investigated thus far do not adhere to those commonly used 

by high-level powerlifters. Conversely, the use of unconventional barbells has received 

almost no academic consideration. Therefore, the purpose of this chapter is to compare the 

biomechanical effects of variable resistance materials and unconventional barbells with 

suitable controls. The experiments were also designed to determine if the practices could 

be used to augment the stimulus created when performing traditional resistance exercises 

explosively.  
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7.2 Introduction 

 

Simple models which are used to conceptualise the potential stimulus from a bout of 

resistance training may feature the exercise, the magnitude of the resistance and the 

number of repetitions performed as the primary variables. Using such a model, it may be 

assumed that loading of tissues is primarily influenced by the magnitude of the resistance 

and the specific exercise selected. As found in chapter three of this thesis, many 

powerlifters view their performance in a specific exercise as being limited by the weakest 

link in the kinematic chain or region with the lowest force capability. As a result, powerlifters 

frequently select combinations of loads and exercises to target specific segments of the 

body and/or regions of the movement believed to limit performance. However, just as the 

transfer of resistance training to sports performance is dependent upon a number of 

principles of specificity, so too is the transfer of adaptations between different exercises 

(Bondarchuk 2007). To increase the likelihood of adaptations improving performance, 

powerlifters often perform the specific exercise but restrict the range of motion to focus on 

the region of the movement where performance is at its lowest (Simmons 2007). This 

section of the movement has been termed the sticking region and corresponds to the 

location where the vector sum of the resistive and propulsive torques is at its minimum 

(McGuigan and Wilson 1996). This training practice generally requires athletes to select 

sub-maximum resistances and perform short amplitude movements above and below the 

sticking region (Siff 2003). Taking the method to its limit, powerlifters may position the load 

at the sticking region and perform maximum isometric actions (Siff 2003). This strategy is 

supported by research which has demonstrated that isometric training generally produces 

the largest improvements in maximum force at or near the joint angles used in training (Kitai 

and Sale 1989, Weir et al. 1995).  

 

A significant break-through in the training methods of powerlifters was made when 

resistance was conceptualised as more than a given number of kilograms (i.e. a 

magnitude). Through understanding that resistance could be considered as a composite of 

factors including the type of resistance material and its location relative to joint centres, 

novel training practices have emerged. The majority of powerlifters now regularly alter the 

composition of resistance material through the inclusion of bands and chains. The total 

resistance then varies throughout an exercise depending on the distance of the barbell from 

a datum and the subsequent stretch of elastic material or mass of chains unfurled from the 
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floor. Generally, full repetitions are performed and the variation in resistance can be used to 

provide appropriate overload at specific regions of the movement. In contrast, 

understanding the importance of the load‟s position relative to joint centres enables more 

emphasis to be placed on targeting the weakest link in the kinematic chain rather than 

specific regions of the movement. This training effect can be achieved by simply translating 

the position of the barbell during a given exercise. A common example includes the high-bar 

vs. low-bar positioning in the squat which has been shown to influence the distribution of 

mechanical stress at the hip and knee (Wretenberg, Feng and Arborelius 1996). However, 

the amount of translation that can be achieved with a conventional barbell is generally 

limited to a short distance. Instead, powerlifters have developed a range of unconventional 

barbells which enable greater translation of the external resistance. The most popular 

unconventional barbells include the hexagonal-, cambered- and safety squat-barbell (Figure 

7.1).  

 

 

 

 

 

 

Figure 7.1: The hexagonal- (left), cambered- (middle) and safety squat-barbell (right) 

 

Of the two methods commonly used by powerlifters to manipulate the external resistance, 

the inclusion of bands and chains has received more considerably attention from 

researchers. Biomechanical investigations have assessed whether the inclusion of variable 

resistance material can enhance the stimulus of explosive repetitions. In an early study 

conducted by Cronin et al. (2003) the effects of rubber bands on EMG activity and 

movement velocity were investigated. The testing movements included the traditional squat, 

jump squat and augmented jump squat with the inclusion of rubber bands. A single 

familiarisation session was provided but no additional information was given regarding the 

participants proficiency with any of the testing movements. The results showed that peak 

velocity and EMG activity of the vastus lateralis were greater during the jump squat 
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conditions compared with the traditional squat (1.0 ms-1 vs. 0.6 ms-1 and 63.5% vs. 29.2%, 

respectively). However, no additional effects were obtained when rubber bands were 

included. Unfortunately the authors did not include an additional condition to assess 

whether the stimulus of the traditional squat could be improved by adding the variable 

resistance material. This comparison was investigated in a study conducted by Ebben and 

Jensen (2002). The participant population comprised a heterogeneous group of male and 

female athletes with large variation in maximum strength capabilities. The authors found no 

significant differences in peak force or EMG activity (quadriceps and hamstrings) between 

squats performed with or without rubber bands. The authors did report that participants 

noted qualitatively, squatting with rubber bands “felt” different. The results of the study 

should be interpreted with caution as limited information was provided regarding the 

participants‟ experience with variable resistance material and the rubber bands accounted 

for only 10% of the overall load which is unlikely to create differences in such a 

heterogeneous group. In a study conducted by Wallace et al. (2006) the effects of attaching 

very stiff rubber bands to the traditional squat was investigated. Participants performed the 

experimental and control repetitions with a total resistance equal to 65 and 80% 1RM. For 

the experimental condition 20 and 35% of the overall resistance was replaced with the 

rubber bands. The results showed that variable resistance material could be used to 

produce significantly greater peak force and power values compared with the control 

condition. Interaction effects also revealed that the magnitude of improvements depended 

on the combination of the overall resistance and percentage contribution from rubber bands. 

The greatest increases were obtained when using the heaviest overall load, with 

participants‟ peak force increasing by 5 and 16% when rubber bands accounted for 20 and 

35% of the total resistance, respectively. The greatest increases in peak power were also 

obtained with the heaviest overall load; however, optimal results were obtained when rubber 

bands accounted for only 20% of the overall resistance (24% vs. 8% improvement). The 

authors hypothesised that increases in mechanical variables were due to provision of 

greater resistance at the positions where the length-tension relationship of muscles were at 

their optimum (Wallace and Winchester 2006). 

 

Fewer studies have investigated the biomechanical stimulus created when the variation to 

resistance has been achieved by the inclusion of chains. In contrast to the relative ease with 

which rubber bands can be stored and attached to the barbell, heavy chains provide more 

of a logistic challenge. However, the contribution to the resistance may be more precisely 

calculated when using chains as compared with resistance created from rubber bands 

which will be influenced by a material‟s viscoelastic properties (McMaster, Cronin and 
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McGuigan 2009). The first study to investigate the use of chain resistance was conducted 

by Ebben and Jensen (2002). The authors reported that the inclusion of chains had no 

effect on kinetics or EMG activity during the back squat. Coker and colleagues also failed to 

report any effects on the kinematics and kinetics of the snatch (Coker, Berning and Briggs 

2006) and clean (Berning, Coker and Briggs 2008). In contrast, Baker and Newton (2009) 

reported that the inclusion of chains significantly increased mean and peak lifting velocities 

during the bench press. Conflicting results between studies may be explained by the 

different magnitudes of chain resistance used. In each of the previous studies repetitions 

performed with a constant barbell load were compared with repetitions where a portion of 

the mass was substituted with chains. Studies reporting no significant differences 

substituted 6 to 10% of the barbell mass with chains (Ebben and Jensen 2002, Berning, 

Coker and Briggs 2008, Coker, Berning and Briggs 2006), whereas, Baker and Newton 

(2009) obtained significant increases in lifting velocity when substituting on average 25% of 

the barbell mass. The contrasting results suggest that a minimum amount of chain mass 

may be required to alter exercise kinematics and kinetics. Based on their own findings and 

results from similar studies investigating the use of rubber bands, Baker and Newton (2009) 

recommended that chain masses greater than 15% of a lifters maximum strength should be 

used when attempting to alter the mechanical stimulus of an exercise. However, information 

from lay sources (Simmons 2007) and interviews conducted in chapter three of the current 

project reveal that powerlifters routinely use chain and band resistances which account for 

up to 60% of their 1RM. It is important, therefore, that research is conducted which includes 

loading characteristics representative of that used by the athletes that consistently use the 

practice.   

 

Each of the biomechanical studies that have investigated the use of bands and chains has 

ensured that all repetitions were performed explosively. This design corresponds with the 

primary use of variable resistance material which is to enhance the stimulus of ERT, 

particularly when using traditional resistance exercises. Interestingly, only one study thus far 

has investigated the central hypothesis that increasing resistance from stretched bands or 

unfurled chains enables maintenance of high force production until the end of the 

movement. Israetel et al. (2010) recruited ten recreationally weight trained males to perform 

the back squat with and without rubber bands. Force data was sampled at 1000Hz and 

collected across the eccentric and concentric phases of the motion. An average force-time 

curve was obtained for the group by resampling individual data on a normalised time scale. 

In support of the hypothesis, the results showed that significantly greater force was obtained 

during the final 10% of the concentric movement when using rubber bands. Despite 
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equating the average load lifted in each condition, the authors set the resistance in the 

experimental condition to comprise almost entirely resistance from rubber bands (the only 

inertial load was that of the barbell). This type of loading is not representative of the 

practices used and promoted by powerlifters and therefore further research is required to 

test the central hypothesis of variable resistance material.  

 

An additional important aspect of variable resistance material that has not been investigated 

in sufficient depth is the interaction effect of the overall resistance and the percentage 

comprised from either bands or chains. Only two studies that have investigated the effects 

of chain resistance have used more than one barbell load in their experimental protocol 

(Berning, Coker and Briggs 2008, Coker, Berning and Briggs 2006). In addition, both 

studies included loads that differed by only 5% 1RM (75 vs. 80% 1RM). A similar lack of 

multiple loading conditions has featured in studies investigating the use of rubber bands. 

One notable exception includes the work conducted by Wallace et al. (2006). As previously 

discussed, the authors included total resistances of 65 and 80% 1RM and featured two 

different rubber band conditions comprising 20 and 35% of the total resistance. The 

interaction effects reported provide some initial insight into possible relationships between 

the total and variable resistance. However, to effectively prescribe variable resistance 

material further study of the interaction between inertial and variable loads is required.  

 

In contrast to the relatively large number of studies that have investigated the 

biomechanical stimulus of variable resistance material, to the author‟s knowledge there has 

only been one study published that has investigated the use of an unconventional barbell. 

The study was conducted by Lander et al. (1986) and compared joint kinetics of six 

experienced male weightlifters performing the squat with a regular barbell and a cambered 

barbell (Figure 7.1). The unconventional barbell had an adjustable frame that could be used 

to alter the vertical distance of the weightlifting plates relative to the crossbar. The authors 

proposed that the unconventional barbell could be used to reduce the stress on the lumbar 

area by reducing the muscular effort required to stabilise the torso in the mediolateral 

direction (Lander, Bates and Devita 1986). The participants performed three different 

conditions with the same 5RM load. During the first condition the barbell COM was set at 

shoulder height, whereas during the second and third conditions the barbell COM was 

lowered by 18 and 36% of the participant‟s height. No significant differences were obtained 

for kinetics analysed at the spine, hip, knee or ankle. However, the authors suggested that 
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reduced IAP values measured with the unconventional barbell indicated lower compression 

forces experienced at the lumbar spine. 

 

Another unconventional barbell which is also believed to reduce the mechanical stress 

experienced at the lumbar spine is the hexagonal barbell. This apparatus is frequently used 

when performing the deadlift and is the most popular unconventional barbell used by 

powerlifters and general athletes (Shepard 2009). To minimise the likelihood of sustaining 

an injury during regular deadlifts athletes are instructed to position the barbell close to the 

body throughout the movement to reduce the torque of the resistance (Graham 2000). With 

a conventional barbell the moment arm of the external resistance can be reduced only up to 

the point where the barbell impinges on the body. The hexagonal barbell was created in 

order to overcome this restriction and further reduce the resistive torque on the body. The 

design of the barbell positions individuals within its frame and arranges the load closer to 

the hip and torso (Figure 7.1). It is also commonly believed that the hexagonal barbell 

redistributes mechanical stress created during the deadlift, with reductions at the lumbar 

spine transferred to joints such as the knee (Shepard  2009). However, there have been no 

published reports or empirical data supporting this theory of altered distribution of the 

mechanical load.  

 

This limited information in relation to both variable resistance material and unconventional 

barbells makes evaluation of current training practices difficult. Consequently, to expand on 

the work from the previous chapter and assess whether either practice could be used to 

enhance the stimulus associated with ERT, the deadlift was used as the base exercise. 

Chains were selected to study variable resistance material as more precise loads could be 

formed to correspond with a percentage of each participant‟s 1RM. In addition, the 

hexagonal barbell was selected to compliment the deadlift and increase generalisability of 

the results based on the popularity of the exercise.   
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7.3 Methods 

 

The current investigation was divided into two separate studies (Study 1 and Study 2). 

Study 1 investigated the effects of including chain resistance when performing explosive 

repetitions in the deadlift. Study 2 compared the biomechanical stimulus created when 

performing explosive deadlifts with either a straight or hexagonal barbell.  

 

7.3.1 Study 1: Analysis of external kinematics and kinetics of deadlifts performed 

with and without chain resistance 

 

Experimental approach to the problem 

A cross-sectional, repeated measures design was used to compare the external kinematics 

and kinetics of the deadlift performed with and without the inclusion of chain resistance. The 

investigation was restricted to external kinematics and kinetics as these were the primary 

variables of interest with this particular training practice. Each participant performed the 

deadlift with 30, 50 and 70% 1RM loads across three conditions: 1) maximum velocity 

(MAX); 2) maximum velocity with 20% 1RM chains (MAX20); and, 4) maximum velocity with 

40% 1RM chains (MAX40). The MAX condition comprised a constant barbell resistance 

using standard weightlifting plates. Variable resistance was created for the MAX20 and 

MAX40 conditions by using a combination of weightlifting plates and chains. Multiple chain 

and barbell loads were incorporated to investigate potential interaction effects and cover a 

range of loading parameters commonly used by high-level powerlifters.  

 

Participants 

Twenty three experienced resistance trained athletes (15 powerlifters and 8 rugby union 

players) volunteered to participate in this study (age: 26.8 ± 5.9 yr; stature: 180.5 ± 4.2 cm; 

mass: 107.5 ± 21.0 kg; deadlift 1RM:  227.1 ± 49.3kg; resistance training experience: 10.7 ± 

4.1 yr). Each of the athletes regularly performed ERT and had a minimum of one year‟s 

resistance training experience using chains. Prior to experimental testing participants were 

notified about the potential risks involved and gave their written informed consent. Approval 
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for this study was provided by the ethical review panel at Robert Gordon University, 

Aberdeen, UK.  

 

Study design 

Data were collected for each participant over two sessions separated by one week. The first 

session was performed in the gymnasium and involved 1RM testing in the deadlift. During 

the second session participants reported to the laboratory where they performed the deadlift 

with 30, 50 and 70% 1RM loads across the three conditions (MAX, MAX20 and MAX40). 

External kinematic and kinetic variables were analysed during the second session only.  

Session 1 (1RM Testing Procedures) 

Each participant regularly performed 1RM tests and could predict their maximum strength 

accurately. The 1RM testing protocol used for the deadlift was the same as that outlined in 

chapter six. Once 1RM testing was complete, participants performed a single deadlift 

repetition at maximum velocity with 30, 50 and 70% of their heaviest load lifted. 

Displacement of the barbell was recorded to calculate the sets of chains required for the 

second testing session.  

 

Session 2 (Velocity and Chain Testing Procedures) 

Participants performed their own specific warm-up which generally consisted of 3 to 5 

minutes jogging on a treadmill, and then 2 to 4 deadlift sets with a light load (e.g. < 40% 

1RM) for 6 to 10 repetitions. Once suitably prepared, participants performed the MAX, 

MAX20 and MAX40 trials with 30, 50 and 70% 1RM loads in a randomised order. Two 

metre chains varying in size from 2.54 to 0.64 cm links were attached to the barbell for 

MAX20 and MAX40 conditions so that the chain mass at the top of the movement was 

equal to 20 or 40% of the lifters 1RM, respectively. The average resistance lifted in the 

chain and non-chain conditions were equated by subtracting half the mass of chains at the 

top of the movement from the initial barbell load. For example, during the MAX20 conditions 

the barbell load was reduced by 10% of the lifters 1RM so that the total resistance was 10% 

less than the constant barbell condition at the bottom, equal at the midpoint, and 10% 

greater at the top. Participants were instructed to hold the barbell stationary at the end of 

the concentric action to calculate the chain mass raised from the floor. The actual mass of 

chains lifted by the group was equal to 21.1 ± 3.6% 1RM and 38.2 ± 4.9% 1RM. participants 
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were instructed to keep their elbows straight throughout the deadlift and not to jump with the 

weight. If these requirements were not met the trial was repeated. Participants were 

permitted to elevate their heels at the terminal stage of the movement as long as the 

forefoot remained in contact with the ground. Two repetitions were performed in each trial to 

facilitate calculation of intra-trial reliability. The repetition that produced the greatest peak 

velocity was selected for further analysis.   

 

Measurement of Kinematic and Kinetic Variables 

Maximum velocity trials were performed with a separate piezoelectric force platform (Kistler, 

Type 9281B Kistler Instruments, Winterthur, Switzerland) under each foot, in a capture area 

defined by a seven-camera motion analysis system (Vicon MX, Vicon Motion Systems, 

Oxford, UK). The centre of the external load was tracked in three-dimensional space by 

placing retroreflective markers at the ends of the barbell and calculating the position of the 

midpoint. Marker position and ground reaction force data were captured at 200 and 1200Hz 

respectively. The area under the VGRF-time curve was integrated using Simpson's Rule 

(Hildebrand 1974) to calculate impulse. Velocity and acceleration were calculated by taking 

the first and second derivative of the marker position data using a Lagrangian five point 

differentiation scheme (Hildebrand 1974). Relative phase of acceleration was calculated by 

expressing the positive acceleration data of the barbell relative to the duration of the 

repetition and the total vertical displacement of the barbell. Instantaneous power was 

calculated as the product of the VGRF and corresponding barbell vertical velocity. The 

starting point of the concentric action was defined as the point where the centre of the 

barbell was raised 2 mm vertically above its initial resting position. The end of the concentric 

action was defined as the point where the centre of the barbell reached maximum vertical 

elevation. 

 

Statistical Analysis 

Intra-trial reliability for each variable analysed was assessed by ICC. As recommended by 

Baumgartner (2006), ICCs were calculated with a correction factor for number of repetitions 

performed per trial (n = 2) and number of repetitions used in the criterion score (n = 1). The 

corrected ICC values ranged from 0.80 to 0.96. Potential kinematic and kinetic differences 

were analysed using a 3x3 (condition x load) repeated measures ANOVA. Significant main 

effects were further analysed with Bonferroni adjusted pair-wise comparisons. Statistical 
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significance was accepted at p<0.05. All statistical procedures were performed using the 

SPSS software package (SPSS, Version 16.0, SPSS Inc., Chicago, IL). 

 

 7.3.2 Study 2: A biomechanical comparison of straight and hexagonal barbell 

deadlifts   

 

Experimental Approach to the Problem 

A cross-sectional, repeated measures design was used to quantify and compare kinematics 

and kinetics of the deadlift exercise using two distinct barbells. Internal joint kinematics and 

kinetics were calculated to investigate whether the choice of barbell had an effect on 

exercise technique and the internal stresses developed when lifting the same absolute load. 

External kinematics and kinetics (e.g. vertical GRF, velocity and RFD) were calculated 

across a range of sub-maximum loads to investigate whether unconventional barbells could 

be used to enhance the biomechanical stimulus for ERT. Data were collected for each 

participant over two sessions separated by one week. The first session was performed in 

the gymnasium and involved 1RM testing in the straight barbell deadlift (SBD) and the 

hexagonal barbell deadlift (HBD). During the second session participants reported to the 

laboratory where they performed the SBD and HBD across loads of 10 to 80% of their 

predetermined SBD 1RM. Kinematics and kinetics were analysed during the second 

session only.  

 

Participants  

Nineteen male powerlifters participated in the study (age: 30.2 ± 5.6 yr; stature: 181.5 ± 4.8 

cm; mass: 114.5 ± 22.3 kg; SBD 1RM:  244.5 ± 39.5 kg; HBD 1RM: 265.0 ± 41.8 kg; 

resistance training experience: 13.7 ± 5.2 yr). Participants were recruited from the Scottish 

Powerlifting Association and were active competitors at the time of data collection. Based 

on the powerlifters most recent competition results the average Wilks score of the group 

was 403.6 ± 39.1, thereby characterising the athletes at international standard 

(Vanderburgh and Batterham 1999, Keogh et al. 2009). The study was conducted three 

months after a regional competition where the majority of participants were nearing the end 

of a training cycle aimed at matching or exceeding their previous competition performance. 

All participants were notified about the potential risks involved and gave their written 
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informed consent, approved by the ethical review panel at Robert Gordon University, 

Aberdeen, UK. 

 

Session 1 (1RM Testing Procedures) 

Participants were competitive powerlifters who were experienced in performing 1RM tests 

and could predict their maximum strength accurately. 1RM testing for the SBD and HBD 

were performed in a randomised order with a 30 minute rest period allocated for recovery 

between exercises. The specific procedures used for each test were the same as that 

described in chapter six. 

 

Session 2 (Maximum velocity repetitions) 

Participants performed their own specific warm-up which generally consisted of 2 to 4 SBD 

and HBD sets with a light load (e.g. < 40% 1RM) for 6 to 10 repetitions. Once suitably 

prepared, participants performed SBD and HBD trials with 10, 20, 30, 40, 50, 60, 70 and 

80% of their SBD 1RM in a randomised order. Two repetitions were performed in each trial 

to facilitate the assessment of intra-trial reliability. Participants were instructed to perform 

each repetition with maximal effort, attempting to lift the load as fast as possible. A minimum 

2 minute rest period was allocated between trials with a longer rest period made available if 

the participant felt it necessary to produce a maximum performance. Participants were 

instructed to keep their elbows straight throughout the lift and not to jump with the weight. If 

these requirements were not met the trial was repeated. Participants were permitted to 

elevate their heels at the terminal stage of the movement as long as the forefoot remained 

in contact with the ground. For each trial the repetition that produced the greatest peak 

velocity was selected for further analysis.   

 

Biomechanical Analyses  

The sub-maximum load trials were performed with a separate piezoelectric force platform 

(Kistler, Type 9281B Kistler Instruments, Winterthur, Switzerland) under each foot, in a 

capture area defined by a seven-camera motion analysis system (Vicon MX, Vicon Motion 

Systems, Oxford, UK). Marker position and ground reaction force data were captured at 200 

and 1200Hz respectively. Based on a frequency content analysis of the three-dimensional 

coordinate data, marker trajectories were filtered using a digital fourth-order low-pass 
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Butterworth filter with a cut-off frequency of 6 Hz. Internal kinematics and kinetics were 

calculated using the models presented in chapter five. Instantaneous velocities and 

accelerations were calculated by numerical differentiation of the position data (Hildebrand 

1974). Kinematic and kinetic measures for the hip, knee and ankle were calculated for both 

left and right sides and averaged to obtain single values. The starting point for each trial 

was defined as the point where the centre of the barbell was raised 2 mm vertically above 

its initial resting height. The end of each trial was defined as the point where the centre of 

the barbell reached maximum vertical elevation. Instantaneous power values were 

calculated as the product of the vertical ground reaction force and corresponding barbell 

vertical velocity. The moment arm of the resistance was found by calculating the horizontal 

distance from the geometric centre of the barbell to the joint centres.  

 

Statistical Analyses 

Intra-trial reliability was calculated using the same correction factor described in study 1. 

ICC values for all variables ranged between 0.88 and 0.96. A 2-way repeated measures 

ANOVA (2 barbell type x 8 load) was used to evaluate potential differences in kinematic and 

kinetic variables between the exercise variations and across loads. Significant main effects 

were further analysed with Bonferroni adjusted pair-wise comparisons. Statistical 

significance was accepted at p<0.05. All statistical procedures were performed using the 

SPSS software package (SPSS, Version 16.0, SPSS Inc., Chicago, IL). 

  



 

167 
 

7.4 Results 

 

7.4.1 Study 1: Analysis of external kinematics and kinetics of deadlifts performed 

with and without chain resistance 

 

Significant interaction effects of load and condition were obtained for average velocity, peak 

velocity, average power, and impulse (p<0.05). Interaction effects demonstrated that the 

relative increases and decreases of mechanical variables as a result of including chains 

became more pronounced as the barbell load increased. The inclusion of chains 

significantly increased peak force and impulse (p<0.05), and significantly decreased 

average velocity, peak velocity, average power, peak power, and peak RFD (p<0.05) 

(Figure 7.2).  

 

To investigate whether the inclusion of chains enabled high force production to be 

maintained throughout the concentric action, force values were averaged across 10% 

intervals of the vertical barbell displacement and normalised relative to the peak value 

generated during the repetition (Figure 7.3). The results illustrate that inclusion of chain 

resistance enabled significantly greater relative force to be maintained during the latter 

portions of the concentric action.  
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Figure 7.2: Kinematic and kinetic data for chain conditions (MAX20, MAX40) with 30, 50 

and 70% 1RM loads. Data are expressed as a percentage difference relative to the values 

obtained for the corresponding non-chain condition (MAX).  

 

 

 

Peak force = PF, peak velocity = PV, peak power = PP, peak rate of force development = PRFD, 

impulse = IMP. Error bars represent + 1SD 
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Figure 7.3: Mean vertical ground reaction forces during the concentric phase of MAX, 

MAX20, MAX40 conditions. Data are expressed as a percentage relative to the peak force 

value obtained. 

 

 

 

* Significant (p<0.05) difference between MAX and MAX20. 
#
 Significant (p<0.05) difference between 

MAX and MAX40. 
†
 Significant (p<0.05) difference between MAX20 and MAX40 for corresponding 

segment of movement.  
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The velocity of the barbell was also measured throughout the concentric action. Figure 7.4 

shows mean values obtained during the 50% 1RM load for all 3 conditions. The results 

show that velocity of the barbell was significantly (p<0.05) greater when using chains during 

the very early stages of the movement, however, as the repetition progressed velocity with 

chain resistance decreased significantly below (p<0.05) that obtained with the constant 

barbell load. 

 

Figure 7.4: Velocity during the concentric phase of maximum repetitions (MAX, MAX20, 

MAX40) with the 50% 1RM load. Values are averaged over 10% intervals of the vertical 

barbell displacement and interpolated to assist with comparison.  
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* Significant (p<0.05) difference between MAX and MAX20 for corresponding segment of movement. 

#
 Significant (p<0.05) difference between MAX and MAX40 for corresponding segment of movement. 

†
 Significant (p<0.05) difference between MAX20 and MAX40 for corresponding segment of 

movement. Standard deviations across the ROM were similar between conditions and are illustrated 

on a selection of trials to maintain clarity. 
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7.4.2 Study 2: A biomechanical comparison of straight and hexagonal barbell 

deadlifts   

 

No significant main effects of load were found for the orientation of the torso, hip, knee or 

ankle at the start of the concentric phase of the deadlift movement. Therefore, joint angles 

for the SBD and HBD were averaged across loads and are presented in Table 7.1. The 

pattern of movement at each joint was assessed by measuring joint angles over 10% 

intervals of the vertical barbell displacement. Statistical analyses revealed no significant 

main effects of load or barbell type for angles generated at the torso, hip or knee during the 

deadlift movement. A significant main effect of load was obtained at the ankle joint (p<0.05). 

The results showed that as load increased the maximum amount of ankle plantar flexion 

achieved at the conclusion of the concentric phase decreased.  

 

Table 7.1: Joint angles at the starting position of the SBD and HBD averaged across loads 

(mean±SD)  

   Torso (°)  Hip (°)  Knee (°)  Ankle (°)  

SBD 55.2 ± 9.8 89.8 ± 14.1 72.5 ± 13.7 
 

28.2 ± 10.5 
 

HBD 52.9 ± 9.8 91.8 ± 11.6 78.8 ± 11.2* 
 

29.1 ± 10.1 
 

* Significantly greater than corresponding condition (p<0.05) 

 

Significant main effects (p<0.05) were obtained for peak moments obtained at the lumbar 

spine, hip and knee when comparing the different barbells (Table 7.2). The results 

demonstrated that repetitions performed with the hexagonal barbell created significant 

increases in peak moments at the knee and significant decreases in peak moments at the 

lumbar spine and hip compared to repetitions performed with the straight barbell. These 

results were reflected in significant differences for the path of the barbells and 

corresponding resistance moment arms created (Figure 7.5 and Table 7.4). Significant main 

effects (p<0.05) following the same pattern for the joint moments, were also found for joint 

powers (Table 7.3). When these powers were summed across the joints, significantly 

greater values were found for the HBD compared with the SBD (p<0.05). 
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Table 7.2: Peak joint moments for the SBD and HBD across the loading spectrum 

  
10% 

1RM 

20% 

1RM 

30% 

1RM 

40% 

1RM 

50% 

1RM 

60% 

1RM 

70% 

1RM 

80% 

1RM 

SBD Spine Peak 

Moment  (N·m 

±SD)  

245.0 

(46.3)* 

273.9 

(52.6)* 

305.2 

(54.1)* 

326.6 

(61.2)* 

363.8 

(67.4)* 

391.6 

(70.4)* 

418.6 

(70.7) 

446.9 

(73.9) 

HBD Spine Peak 

Moment (N·m 

±SD)  

209.3 

(48.6)*  

227.1 

(54.1)* 

252.0 

(60.8)* 

272.1 

(70.7)* 

310.6 

(84.7)* 

342.5 

(89.4)* 

377.8 

(92.3) 

409.2 

(98.3) 

SBD Hip Peak 

Moment  (N·m 

±SD)  

205.5 

(48.9)* 

225.2 

(44.7)* 

251.2 

(41.0)* 

267.6 

(36.4)* 

298.9 

(58.4)* 

321.0 

(56.6)* 

338.7 

(62.0)* 

353.0 

(63.6) 

HBD Hip Peak 

Moment  (N·m 

±SD)  

185.9 

(30.2)* 

197.4 

(30.7)* 

224.2 

(33.6)* 

242.0 

(38.0)* 

257.2 

(37.5)* 

278.8 

(50.0)* 

300.1 

(53.9)* 

325.6 

(59.4) 

SBD Knee Peak 

Moment (N·m 

±SD)  

74.5 

(31.3)* 

78.1 

(33.2)* 

80.4 

(34.9)* 

84.9 

(36.0)* 

87.5 

(31.7)* 

90.0 

(29.7)* 

92.1 

(23.4)* 

96.0 

(17.8)* 

HBD Knee Peak 

Moment (N·m 

±SD)  

109.5 

(34.8)* 

119.8 

(41.8)* 

130.0 

(48.6)* 

137.2 

(49.1)* 

147.0 

(47.8)* 

157.4 

(41.2)* 

168.4 

(53.9)* 

182.5 

(56.6)* 

SBD Ankle Peak 

Moment (N·m 

±SD)  

138.3 

(33.1) 

155.1 

(30.7) 

177.9 

(34.6) 

194.7 

(38.5) 

204.8 

(43.9) 

215.4 

(44.6) 

229.4 

(44.6) 

232.8 

(44.0) 

HBD Ankle Peak 

Moment (N·m 

±SD)  

145.0 

(25.4) 

160.9 

(24.9) 

178.3 

(31.9) 

207.5 

(34.8) 

213.3 

(37.3) 

227.3 

(43.4) 

236.7 

(51.8) 

246.8 

(59.4) 

* Significant difference between SBD and HBD for corresponding load (p<0.05).  
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Table 7.3: Peak joint powers for the SBD and HBD across the loading spectrum 

  
10% 

1RM 

20% 

1RM 

30% 

1RM 

40% 

1RM 

50% 

1RM 

60% 

1RM 

70% 

1RM 

80% 

1RM 

SBD Spine Peak 

power  (W ±SD)  

260.7 

(38.3) 

299.5 

(41.4)* 

331.2 

(44.5)* 

347.3 

(49.2)* 

361.5 

(55.1)* 

350.0 

(50.4)* 

293.3 

(39.8)* 

269.7 

(33.1)* 

HBD Spine Peak 

power  (W ±SD) 

251.5 

(31.3)  

274.4 

(40.5)* 

262.3 

(40.8)* 

261.1 

(38.9)* 

233.2 

(27.2)* 

225.9 

(29.6)* 

228.8 

(31.3)* 

183.8 

(19.5)* 

SBD Hip Peak 

power  (W ±SD) 

725.2 

(148.1)* 

805.8 

(164.3)* 

824.8 

(157.0)* 

756.6 

(141.3)* 

731.9 

(139.4)* 

698.6 

(122.7)* 

567.0 

(114.3)* 

446.9 

(103.9) 

HBD Hip Peak 

power  (W ±SD) 

633.2 

(120.2)* 

690.9 

(137.3)* 

728.3 

(139.1)* 

660.7 

(128.6)* 

615.1 

(117.9)* 

527.3 

(110.0)* 

485.2 

(103.4)* 

424.9 

(96.4) 

SBD Knee Peak 

power  (W ±SD) 

125.3 

(68.4)* 

122.0 

(65.8)* 

139.1 

(64.5)* 

125.2 

(47.8)* 

118.5 

(40.4)* 

106.4 

(40.0)* 

52.4 

(29.1)* 

36.1 

(16.1)* 

HBD Knee Peak 

power  (W ±SD) 

224.8 

(53.0)* 

261.7 

(55.3)* 

294.9 

(59.1)* 

335.1 

(65.2)* 

421.4 

(70.8)* 

390.4 

(66.3)* 

311.5 

(56.7)* 

227.7 

(40.4)* 

SBD Ankle Peak 

power  (W ±SD) 

438.2 

(120.4)* 

486.0 

(117.9)* 

647.3 

(147.6)* 

661.8 

(158.3)* 

708.0 

(171.6)* 

773.8 

(165.0)* 

532.6 

(140.1)* 

312.2 

(104.5)* 

HBD Ankle Peak 

power  (W ±SD) 

647.9 

(106.2)* 

760.7 

(114.5)* 

926.1 

(166.8)* 

1133.0 

(195.8)* 

1246.3 

(201.6)* 

934.2 

(190.4)* 

725.0 

(141.1)* 

529.8 

(100.7)* 

SBD Sum Peak 

power  (W ±SD) 

1549.9 

(133.9)* 

1713.8 

(159.2)* 

1942.5 

(178.1)* 

1890.7 

(170.5)* 

1919.0 

(179.4)* 

1928.4 

(168.6)* 

1445.9 

(144.1)* 

1065.0 

(103.6)* 

HBD Sum Peak 

power  (W ±SD) 

1756.2 

(142.4)* 

1986.5 

(161.3)* 

2211.6 

(181.4)* 

2389.8 

(196.0)* 

2515.3 

(207.9)* 

2076.3 

(183.5)* 

1750.4 

(149.2)* 

1365.4 

(122.2)* 

* Significant difference between SBD and HBD for corresponding load (p<0.05).  
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Figure 7.5: Barbell path during the SBD (left) and HBD (right) across the loading spectrum 
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Table 7.4: Resistance moment arms for the SBD and HBD averaged across loads 

  
L5/S1 (cm) 

(±SD) 
Hip (cm) 

(±SD) 
Knee (cm) 

(±SD) 
Ankle (cm) 

(±SD) 

SBD - 21.0 (3.0)* - 21.4 (3.8)* + 8.4 (2.4)* 
 

- 16.5 (2.1)* 
 

HBD - 14.4 (3.0)* - 14.5 (2.6)* - 1.9 (0.8) * 
 

- 11.9 (1.8)* 
 

+ Direction of resistance moment arm creates extensor moment.  

- Direction of resistance moment arm creates flexor moment. 

* Significant difference between SBD and HBD (p<0.05). 

 

Each of the powerlifters that participated in the study lifted a heavier 1RM load in the HBD 

than the SBD resulting in an overall significant difference (265.0 ± 41.8 kg vs. 244.5 ± 39.5 

kg, p<0.05). Significant main effects of load and barbell type (p<0.05) were obtained for 

peak force, peak velocity and peak joint power summed at the lumbar spine, hip, knee and 

ankle (Figure 7.6). Significantly greater values were obtained for each of these variables 

when performing the HBD. A significant main effect of load was obtained for the relative 

time spent accelerating the resistance (Table 7.5). 
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Figure 7.6: Load-force, load-velocity and load-joint power relationships. * Significant 

(p<0.05) difference between SBD and HBD for corresponding load. Error bars represent + 

SD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 7.5: Relative time accelerating resistance during the SBD and HBD  

  
10% 

1RM 

20% 

1RM 

30% 

1RM 

40% 

1RM 

50% 

1RM 

60% 

1RM 

70% 

1RM 

80% 

1RM 

SBD Relative 

Time (±SD)  

59.7%  

(3.6) 

62.2%  

(7.5) 

67.3%  

(5.2) 

70.5%  

(7.3) 

75.1%  

(6.7) 

79.8%  

(8.8) 

82.4%  

(6.0) 

80.6%*  

(4.3) 

HBD Relative 

Time(±SD)  

59.1%  

(6.5)  

61.6%  

(6.4) 

65.0%  

(4.4) 

70.3% 

(3.5) 

74.6% 

(4.1)* 

80.6% 

(5.8) 

83.5% 

(5.1) 

87.2%* 

(4.1) 

* Significant difference between SBD and HBD for corresponding load (p<0.05). 
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7.5 Discussion 

 

The results from the two studies reported in this chapter demonstrate that variable 

resistance material and unconventional barbells can be used to enhance the biomechanical 

stimulus of a resistance exercise. The data obtained also support many of the anecdotal 

statements made previously by powerlifters regarding specific outcomes of each training 

practice. The following sections include discussion of the biomechanical effects measured 

and the potential for each training practice to enhance the stimulus associated with ERT.  

 

The present study investigating the inclusion of chain resistance is the first to use 

combinations of barbell and chain loads of the magnitude commonly used and promoted by 

powerlifters. Previous studies investigating the effects of chain resistance have used 

comparatively much lighter chain loads than those used here. Ebben and Jensen (2002) 

substituted 10% of the barbell mass with chains during performance of the back squat with 

a 5RM load. Based on research equating a 5RM load with a resistance of 80% 1RM 

(Reynolds, Gordon and Robergs 2006), the chain mass substituted by Ebben and Jensen 

(2002) equalled approximately 8% of the athletes‟ 1RM. Lighter chain resistances have 

been used in studies investigating the biomechanics of weightlifting exercises. Coker and 

colleagues substituted only 5% of the participant‟s 1RM for chains during performance of 

the snatch (Coker, Berning and Briggs 2006) and power clean (Berning, Coker and Briggs 

2008). Unsurprisingly, the studies conducted by Ebben and Jensen (2002) and Coker and 

colleagues (2008, 2006) reported no significant effects when substituting chains for any of 

the biomechanical variables measured. Baker and Newton (2009) were the first authors to 

include chain resistances approaching loads typically used by powerlifters. The 

experimental protocol compared a constant barbell resistance of 75% 1RM with a variable 

resistance that equalled 60% 1RM at the bottom of the movement and increased to a 

maximum 75% 1RM at half the total vertical displacement. The variable resistance was 

shown to develop significantly greater mean and peak velocity values compared with the 

constant barbell resistance. However, it is likely that the increase in velocity reported by 

Baker and Newton (2009) occurred at least in part because of the different average load 

lifted between conditions. In the variable resistance trials the combined chain and barbell 

load was less than the constant barbell resistance during the bottom half of the exercise 

and did not increase beyond the constant barbell resistance at any point during the 
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movement. As a result, the average load lifted was less in the variable condition and 

therefore an increase in movement velocity should be expected.  

 

In the present study the average loads in the variable and constant resistance conditions 

were equated to investigate the effects of including chains without this confounding 

influence. Using this experimental protocol the results demonstrate that the inclusion of 

chains increases force and impulse, whilst concurrently reducing velocity, power and RFD 

(Figure 7.2). The reduction in peak and average velocity obtained with the inclusion of 

chains contradicts the previous findings reported by Baker and Newton (2009). Dissimilar 

results are most readily explained by the equating of average loads in the present study. 

Figure 7.4 illustrates that velocity in the MAX20 chain condition (load closest to that used by 

Baker and Newton (2009)) was greater than the constant barbell load until the overall 

resistances were of near equal magnitude. As the combined chain and barbell resistance 

continued to increase the velocity for the MAX20 chain condition fell below the comparison 

trial. Overall, the slower velocities obtained for the variable resistance during the second 

half of the movement must have exceeded the initial improvements to cause a reduction in 

average velocity. The negative effects on velocity during the variable resistance trials were 

greater in magnitude than the concomitant increase in force, explaining why average and 

peak power values were also reduced when chain resistance was included. The results of 

the present study also demonstrate that the combination of heavier chain and barbell loads 

resulted in greater relative increases in force and impulse, and greater relative decreases in 

velocity, power and RFD (Figure 7.2).  

 

When the present study was conducted it was believed by most researchers and 

practitioners that resistance from chains and rubber bands provided the same effect. Simple 

models of both materials suggested that resistance increased linearly with displacement of 

the barbell. Subsequent work completed on the viscoelastic properties of rubber bands by 

McMaster et al. (2010) demonstrated that the length-tension relationship of rubber bands 

was best represented by quadratic polynomials where stiffness was at is greatest during the 

initial stage of elongation. However, it was generally expected that this non-linear feature 

would have minimal impact in distinguishing the biomechanical effects of bands and chains. 

On the basis of results obtained here and the large discrepancies between those reported 

by Winchester et al. (2005) for similar resistance with rubber bands, it became apparent that 

the dynamic properties of the resistance materials are distinct. At the same time, 

Arandjelović (2010) published equations of motion for bands and chains based on known 
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forces and the work-energy principle (derivation of the equations presented by Arandjelović 

(2010)) are displayed in appendix III, and appear in their explicit form in equation 7.1 and 

7.2 below). The equations of motion presented by Arandjelović (2010) for bands and chains 

were shown to be fundamentally different. For a given amount of force, the acceleration 

when including bands is limited by the mass of the barbell, and the stiffness and 

displacement of the bands. In contrast, when including chains the acceleration is limited by 

the mass of the chains, the mass of the barbell and the square of the system velocity. The 

different mechanical effects exhibited by bands and chains in the dynamic case can be 

explained by the different inertial properties of the materials. Rubber bands have negligible 

mass and therefore contribute to resistance through stiffness and displacement of the 

material only. In contrast, chains provide a substantial mass element that creates resistance 

by gravitational acceleration and through change in momentum which occurs when 

individual links are accelerated to the velocity of the barbell from initial stationary positions 

(Arandjelovic  2010). Based on the different equations of motion established by Arandjelović 

(2010), it is expected in circumstances where the static properties of bands and chains are 

matched that the acceleration and therefore velocity of the movement will be slower when 

including chains.  

 

𝑧1  =  
𝐹  −   𝑘𝑧

𝑚
    − 𝑔.   (eq7.1) 

𝑧2 =  
𝐹−  

1

2
𝛼𝑧 2    

𝑚+𝛼𝑧
− 𝑔.   (eq7.2) 

 

Where, 𝑧1  is the acceleration of the barbell with rubber bands attached, 𝑧2  is the 

acceleration of the barbell with chains attached, F is the vertical ground reaction 

force, m is the mass of the barbell, g is the acceleration due to gravity, z is vertical 

position off the ground, k is the stiffness of the rubber band and α is the mass per 

unit length of the chains. 

 

The altered dynamics that chains impose when they are attached to the barbell could 

explain the biomechanical differences obtained in the present study. The sub-maximum 

loads used in the experimental protocol would have enabled relatively fast velocities to be 

produced in the early stages of the movement. These fast velocities and subsequent large 
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changes in momentum of the chain links would immediately act to slow the barbells ascent. 

(see equation 7.2). As a result, this mechanism may explain the reduced average and peak 

velocity values obtained when chain resistance was included. Additionally, when comparing 

the velocity of the different chain conditions throughout the range of motion it is evident that 

the mass of the chains had an important effect (Figure 7.4). The equation of motion derived 

for the combined barbell and chain system shows that the velocity term which detracts from 

the acceleration is multiplied by a coefficient equal to the mass per unit length of the chain 

(see equation 7.2). This feature of the dynamics is likely to explain why velocity with the 

heavier chain resistance (MAX40) fell substantially below the lighter condition (MAX20) 

even during the first half of the movement when the total resistance was less. Increases in 

peak force measured during repetitions with chains may also be due to the decrease in 

movement velocity and the well established inverse relationship that exists between the two 

variables (Cronin, McNAir and Marshall 2003, Rahmani et al. 2001). However, it is likely 

that greater absolute loads lifted during the second half of the movement when including 

chains also contributed to increases in peak forces measured.  

 

The present study was the first to test the theory that the inclusion of chain resistance with a 

traditional resistance exercise enables greater force production to be maintained during the 

latter stages of the concentric action. The results confirmed the theory and illustrated that 

greater relative forces were maintained when heavier chains resistances were included. 

This single finding may suggest that the inclusion of chain resistance could be used to 

enhance the stimulus created when a traditional resistance exercise is combined with ERT. 

However, the concurrent large reductions in velocity, power and RFD values obtained when 

chain resistance was included indicate that this is unlikely to be the case. Interestingly, 

when the athletes in the present study were asked if they perceived any difference in 

performance with the inclusion of chains, the majority believed that repetitions were faster 

and more explosive with chain resistance. At present it is not clear why there is such a 

discrepancy between the actual and perceived performances.  

In contrast to the mixed findings with the inclusion of chain resistance, the results from 

study two presented in this chapter, demonstrated that the unconventional hexagonal 

barbell could be used to enhance the majority of variables analysed. Differences obtained 

between deadlifts performed with the straight and hexagonal barbell are explained by 

changes in position of the external resistance relative to segments of the body. At the 

beginning of the movement the resistance was positioned closer to the athletes (as 

measured by the horizontal distance between the load and ankle joint centre) when using 
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the hexagonal barbell. The different positioning of the load at the start of the exercise 

significantly affected the initial knee angle resulting in greater flexion with the HBD. Using 

the starting position of the load as a reference point, the hexagonal barbell reduced 

horizontal displacement away from the body by an average of 75% compared to the straight 

barbell (Figure. 7.5). For loads greater than 60% 1RM, the hexagonal barbell increased 

displacement towards the body by an average of 22%. The change in positioning of the load 

due to the design of the hexagonal barbell significantly reduced moment arms of the 

resistance at all joints across the loads (Table 7.4). As a result, peak moments developed at 

the lumbar spine, hip and ankle during the HBD were significantly lower than that developed 

during the SBD (Table 7.2). In contrast, the peak moment at the knee was significantly 

increased when performing the HBD, despite the reduction in the magnitude of the 

resistance moment arm. This result is explained by the different direction of the resistance 

moment created. During the SBD the load remained in front of the knee and created an 

extension moment that reduced the muscular effort required to extend the joint. Conversely, 

during the HBD the load remained behind knee for the majority of the movement and 

created a flexor moment that increased the muscular effort and subsequent peak moment.  

 

The ability to manipulate joint moments based on selection of a barbell provides relevant 

information for strength and conditioning coaches. For contemporary powerlifters the 

evidence obtained here supports their use of unconventional barbells to alter mechanical 

stress and potentially target specific areas of the body that are believed to limit individual 

performances. The particular case investigated in the present study provides relevant 

information regarding the important lumbar area. The conventional deadlift performed with 

heavy loads is commonly viewed as the most challenging and appropriate exercise to 

develop the muscles around the lumbar spine (Cholewicki, McGill and Norman 1991). The 

results of this study confirm that the SBD can be used to produce very large net joint 

moments at the L5S1 joint and should be performed if the training goal is to target the 

lumbar area. In contrast, the HBD results in a more even distribution of the load across the 

joints of the torso and lower extremities. Therefore, strength and conditioning coaches 

searching for an alternative to the squat may find the HBD to be an effective alternative with 

both exercises exhibiting similar joint moment profiles (Flanagan and Salem 2008). For 

individuals with a history of lower back pain or currently in the final stages of rehabilitation, 

performing the deadlift with the hexagonal barbell rather than the straight barbell may be a 

more prudent strategy to recruit the lumbar area whilst more evenly distributing the load 

between the joints of the body. 
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The comparison between the SBD and HBD clearly demonstrates the potential for 

unconventional barbells to enhance the stimulus of ERT. The results show that performing 

the deadlift with the hexagonal barbell resulted in significantly greater values for peak force, 

peak velocity, peak joint power and RFD. The increased values are likely to be the result of 

a more even distribution of the load and improved ability to accelerate the resistance due to 

its positioning. In additional work published from this thesis, it was shown that similar 

improvements in force, velocity, power and RFD could be obtained when weighted vertical 

jumps were performed with the hexagonal barbell held at arms‟ length compared to a 

straight barbell positioned across the posterior shoulder girdle (Swinton et al. 2010b). At 

present it is not known whether these improvements in the biomechanical stimulus are 

restricted to the hexagonal barbell or whether other unconventional barbells can offer 

similar advantages. Further research should be conducted to gain a better understanding of 

the effects of altering the spatial relationship between body segments and resistance to 

assess best practice.  

 

An extensive research effort has been devoted to identifying loads that maximise power due 

to the belief that these are the most effective resistances to train with (Cronin and Sleivert 

2005) However, some researchers have commented that effective resistances are likely to 

cover a range of loads that may depend on the specific phase of an athlete‟s development 

(Frost, Cronin and Newton 2008). As discussed in chapter six, it has been recommended 

that researchers avoid calculating power from the product of the GRF and the barbell 

velocity as this method may not reflect the actual power generated (Lake, Lauder and Smith 

2012). Instead it was recommended that power be calculated from direct integration of the 

GRF data and knowledge of the system mass, or through inverse dynamics and the 

calculation of net joint power (Lake, Lauder and Smith 2012). In the present study, power 

was measured using both internal and external calculations with values summed for the 

torso, hip, knee and ankle for the former. The results demonstrated for both methods that 

maximum peak power values were produced with 30% 1RM for the SBD and 50% 1RM for 

the HBD. A similar increase in load that caused maximum peak power values was found in 

our study comparing weighted jumps performed with the straight or hexagonal barbell 

(Swinton, Agouris, et al. 2010b). At present, it is not clear what factors caused the shift in 

the load-power relationship, however, it may be speculated that the greater maximum 

resistance that can be lifted with the hexagonal barbell was influential. 
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7.6 Summary and Conclusion 

 

The studies presented in this chapter have demonstrated that two of the most popular 

training practices used by contemporary powerlifters have the potential to substantially alter 

the biomechanical stimulus of an exercise. Combining information from recent research and 

the results reported here demonstrate that the biomechanical stimulus created when 

incorporating either chains or rubber bands can be very different. Despite results illustrating 

that chains can be used to maintain high levels of force throughout the exercise movement, 

the data also show that heavy chain resistance has a negative effect on a range of variables 

believed to be important for adaptations with ERT. In contrast, additional resistance in the 

form of rubber bands has been shown in other studies to maintain high levels of force whilst 

increasing velocity power and RFD. Therefore, it is suggested that powerlifters and general 

athletes could benefit from including rubber bands with exercises used when performing 

ERT. Whereas, chain resistance may be better suited to training aimed at increasing 

maximum strength where reduced resistance is created during the sticking region and 

subsequently increases to match the mechanical advantage of the lifter towards the end of 

the movement.   

 

The second study presented in this chapter highlighted that change in the position of the 

external resistance through the use of an unconventional barbell has the potential to alter a 

wide range of internal and external kinematics and kinetics. Importantly, the results expand 

on those from the previous chapter demonstrating that the biomechanical stimulus created 

with a traditional resistance exercises such as the deadlift can be further enhanced for ERT. 

Additionally, the specific results obtained with the hexagonal barbell deadlift suggest that 

the exercise could be an effective variation for the squat and may be appropriate to use in 

the final stages of low back rehabilitation.  
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CHAPTER 8. ALTERING MOVEMENT STRATEGIES 

 

8.1 Prelude 

 

As highlighted in chapter three, a substantial portion of the information disseminated 

regarding contemporary powerlifting training is devoted to optimising technique in the squat, 

bench press and deadlift. For each exercise a number of key technical points have been 

proposed to create a favourable balance between the external resistance and the internal 

force production capabilities of the body. In general, these technical points refer to common 

postures which should be adopted at critical points during the movement. Of the three 

competition exercises the majority of technique related information disseminated by 

powerlifters has focused on the squat. Almost all technical recommendations for the 

exercise feature a movement strategy which is commonly referred to as sitting back. The 

key technical feature of this strategy is to maintain as vertical a shin position as possible 

throughout the entire movement. The overall pattern that emerges from this constraint 

appears to be very different from that observed during traditional squatting movements. It is 

widely advocated that powerlifters learn the movement by first performing the box squat 

which provides assistance with maintaining balance. Additionally, the box squat itself is 

promoted as an effective exercise to combine with ERT to enhance athleticism. The 

purpose of this chapter is to compare the biomechanical stimulus created during a 

traditional squatting motion with that created during the movement strategy recommended 

by powerlifters (with and without a box). The results of the study will provide novel 

information for individuals considering adopting the squatting practices promoted by 

powerlifters in attempts to enhance performance and athleticism.  
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8.2 Introduction 

 

The squat is one of the most widely utilised resistance exercises for strength development 

in both athletic and rehabilitation settings. As a result of its widespread use, the exercise 

has been the focus of a large number of biomechanical studies (McLaughlin, Lardner and 

Dillman 1978, McBride et al. 2010, Escamilla et al. 2001b, Fry, Smith and Schilling 2003, 

Escamilla et al. 2001a). The results present the squat as a complex movement which 

requires coordinated actions of the torso and all major joints of the lower extremities. 

Furthermore, this complexity enables individuals to select different movement strategies to 

perform the exercise. From a performance enhancement and injury risk perspective, it is 

commonly recommended that movement strategies used to perform the squat should seek 

to minimise anterior displacement of the knee (Chandler and Stone 1991). In particular, it is 

most frequently stated that individuals should avoid displacing the knee past the toes. This 

recommendation is based on findings that restricting anterior displacement reduces internal 

forces at the knee and emphasises recruitment of the hip extensor muscles (Chandler and 

Stone 1991, Chiu, Heiler and Sorenson 2009).  

 

The first study to investigate the effects of controlling anterior knee displacement during the 

squat was conducted Fry et al. (2003). The investigators measured joint torques produced 

at the hip and knee when squats were performed under two conditions with differing 

amounts of knee displacement. During the first condition participants were instructed to 

displace the knee beyond the toes, whereas, during the second condition displacement was 

restricted by placing a perpendicular vertical board immediately anterior to the participants‟ 

toes. Restricting anterior displacement was shown to produce lower torques at the knee and 

greater torques at the hip in comparison to the unrestricted movement. The authors also 

reported that restricting anterior displacement of the knee created a more horizontal torso 

position, which was suggested to indicate greater shear forces were developed at the 

lumbar spine. The authors proposed that participants adopted an increased horizontal 

posture to compensate for changes in positioning of the lower leg and to maintain the 

system COM over the base of support. The results obtained by Fry et al. (2003) have 

caused some to propose that restricting anterior displacement of the knee during squatting 

may create potentially injurious forces at the lower back (Chiu, Heiler and Sorenson 2009). 

Restricting displacement of the knee is a key feature of the squatting technique promoted 

by powerlifters. However, instead of proposing that the knee remain posterior to the toes, 
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many powerlifters recommend zero displacement of the knee whilst maintaining a vertical 

shin position throughout the entire movement (Simmons 2003). To achieve this technique, 

many powerlifters adopt a wide stance and focus on moving the hips posteriorly during the 

descent phase of the movement. In practical settings, this movement strategy is often 

referred to as “sitting back” and is the main feature of what is considered to represent the 

powerlifting squat (Hales, Johnson and Johnson 2009, Chiu, Heiler and Sorenson 2009) 

(Figure 8.1). It is important to note that whilst this technique is considered to represent a 

distinct exercise from the traditional squat (Hales, Johnson and Johnson 2009), it may be 

more accurate to consider the two movements to represent opposite ends of a spectrum. 

However, the convention of referring to the powerlifting technique as a separate exercise 

will be adopted for this chapter.  

 

The majority of powerlifters choose to perform the powerlifting squat in training and in 

competition as they believe the movement strategy enables the heaviest load to be lifted 

(Simmons 2003). Mechanisms used to explain the assumed advantage include a reduction 

in vertical displacement requiring less mechanical work, and more effective distribution of 

the resistance with stress being transferred from the knee and ankle to the hip and lower 

back (Simmons 2003). In addition, some powerlifters have suggested that this style of 

squatting creates similar mechanical demands to the deadlift, which may enable training 

aimed at one exercise to cross over and improve the other (Tate 2006). However, a recent 

study comparing the kinematics of the squat and deadlift during a single powerlifting 

competition indicated that the movements exhibit distinct profiles and therefore a direct 

cross-over effect was considered unlikely (Hales, Johnson and Johnson 2009). 

 

In contrast to previous findings suggesting that reduced knee displacement creates a more 

inclined torso position (Fry, Smith and Schilling 2003), observation of skilled powerlifters 

reveals that many individuals can maintain a near vertical shin position whilst adopting 

relatively upright postures. At present, is not fully understood how these individuals 

successfully perform this task. However, to develop proficiency in the movement it is 

recommended that powerlifters perform the box squat in training (Tate, 2006, Simmons 

2003) (Figure 8.1). The additional apparatus enables the performer to maximise posterior 

displacement of the hip and maintain a vertical shin position by acting as a safety device to 

catch the individual if the COM is moved behind the base of support. Additionally, the box 

squat has also been recommended for general athletes to increase lower body strength and 

RFD (Brown, Nitka and Pyka 1998, Brown, Shepard and Sjostrom 2003).  
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Based on recommendations by powerlifters and recent large improvements in world best 

performances, both the powerlifting squat and box squat are now popular exercises used by 

general athletes to develop strength and power (McBride et al. 2010, Chiu, Heiler and 

Sorenson 2009). However, some researchers and practitioners have questioned the safety 

and effectiveness of both exercises (Chiu, Heiler and Sorenson 2009, Brown, Shepard and 

Sjostrom 2003). To date, only a limited number of studies have quantified biomechanical 

variables during the powerlifting squat or box squat. Multiple investigators have collected 

data from squats performed during powerlifting competitions (McLaughlin, Dillman and 

Lardner 1977, Escamilla et al. 2001a), however, research has established that techniques 

used are highly variable, with some competitors selecting more traditional movement 

patterns (Hales, Johnson and Johnson 2009). Less information is available regarding the 

biomechanics of the box squat. McBride et al. (2010) compared kinetic and EMG data of 

powerlifters performing the exercise and what was described as a standard squatting 

movement. The authors reported that the inclusion of the box had minimal effect and similar 

values for force, power and muscle activity measured at the thigh were obtained. The 

experimental protocol utilised by Mc Bride et al. (2010) did not calculate joint specific data 

or provide kinematic information regarding the movement strategies used by the 

powerlifters to perform each exercise. Due to the limited information available at present, 

coaches and athletes are unable to make informed judgements regarding the 

appropriateness of the powerlifting squat or box squat. Therefore, it was the aim of this 

study to provide detailed kinematic and kinetic comparisons of the different techniques, with 

the traditional squat used as a reference. In fulfilling this aim, the study objectives included 

data collection for each exercise over a range of loads performed with the intent to 

overcome the load as fast as possible to simulate the training protocols used frequently to 

develop muscular strength and power.  
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Figure 8.1: Traditional Squat (top left), Powerlifting Squat (top right) and Box Squat 

(bottom) 
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8.3 Methods 

 

Experimental Approach to the Problem 

A cross-sectional, repeated measures design was used to quantify and compare kinematics 

and kinetics of the traditional squat, powerlifting squat and box squat. The experimental 

approach provided original information regarding movement strategies used to perform 

each exercise and comparative data to assist practitioners in exercise instruction and 

training prescription. The participants comprised well-trained powerlifters with extensive 

experience in performing each exercise. Data were collected for each participant over two 

sessions separated by one week. Session 1 was performed in the gymnasium and involved 

1RM testing in the squat. Session 2 was performed in the laboratory where participants 

performed maximum speed repetitions for each exercise using loads of 30, 50 and 70% of 

their recorded 1RM. Kinematics and kinetics were analysed during session 2 only.  

 

Participants 

Twelve male powerlifters participated in the study (age: 27.2 ± 4.2 yr; stature: 180.3 ± 4.8 

cm; mass: 100.2 ± 13.1 kg; squat 1RM:  220.2 ± 36.2 kg; resistance training experience: 9.2 

± 3.1 yr). All participants had a minimum of 3 yrs experience performing each exercise. The 

study was conducted three months after a regional competition where the majority of 

athletes were nearing the end of a training cycle aimed at matching or exceeding their 

previous competition performance. Participants were notified about the potential risks 

involved and gave their written informed consent to be included. Prior approval was given 

by the ethical review panel at Robert Gordon University, Aberdeen, UK.  

 

1RM testing 

All participants chose to perform the squat 1RM test using the powerlifting technique they 

used in competition. No supportive aids beyond the use of a weightlifting belt were 

permitted during the test. Based on a 1RM load predicted from performance in recent 

training sessions participants performed a series of warm-up sets and up to 5 maximum 

attempts. A minimum of 2 minutes and a maximum of 4 minutes recovery time were 

allocated between attempts. Within this time frame participants chose to perform the lifts 

based on their own perception of when they had recovered. All repetitions were performed 
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to a depth where the thighs became parallel with the floor. Each attempt was deemed 

successful if the appropriate depth was reached and the barbell was not lowered at any 

point during completion of the ascent phase. 

 

Squat variation testing 

Prior to performing maximum speed repetitions participants engaged in their own specific 

warm-up. Generally, this began with 3 to 5 sets of light squats (e.g. < 40% 1RM) for 6 to 10 

repetitions. Individuals then performed a series of maximum speed repetitions prior to any 

data collection. Once suitably prepared, participants performed all three exercises with 

loads of 30, 50, and 70% of their predetermined 1RM. One trial comprising two repetitions 

was performed for each load and condition to assess intra-trial reliability. The nine trials 

were performed in a randomised order with a minimum 2 minute rest period allocated. A 

longer rest period of up to 4 minutes was made available if the participant felt it necessary 

to produce a maximum performance. Instructions were given during the traditional squat to 

allow the knee to travel past the toes during the descent phase. For the powerlifting squat 

and box squat instructions were given to move the hip posteriorly and to maintain as vertical 

a shin position as possible. During the box squat participants were permitted to displace the 

COM behind the base of support during the final portion of the descent and were instructed 

to pause for a minimum of 1 second on the box. Instructions were given to perform the 

concentric portion of each repetition with maximum effort attempting to lift the load as fast 

as possible whilst maintaining contact with the ground throughout the movement. For each 

trial the repetition that produced the greatest peak barbell velocity was selected for further 

analysis.   

 

Biomechanical Analyses  

The squat variation trials were performed with a separate piezoelectric force platform 

(Kistler, Type 9281B Kistler Instruments, Winterthur, Switzerland) under each foot, in a 

capture area defined by a nine-camera motion analysis system (Vicon MX, Vicon Motion 

Systems, Oxford, UK). Marker position and ground reaction force data were captured at 200 

and 1200Hz respectively. Based on a frequency content analysis of the three-dimensional 

coordinate data, marker trajectories were filtered using a digital fourth-order low-pass 

Butterworth filter with a cut-off frequency of 6 Hz. Internal kinematics and kinetics were 

calculated using the models presented in chapter five. Instantaneous velocities and 
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accelerations were calculated by numerical differentiation of the position data (Hildebrand 

1974). Kinematic and kinetic measures for the hip, knee and ankle were calculated for both 

left and right sides and averaged to obtain single values. The starting point for each trial 

was defined as the point where the centre of the barbell began its descent. The beginning of 

the concentric phase was demarcated as the first frame after the barbell reached its lowest 

elevation. The end of the concentric phase was defined as the point where the barbell 

reached maximum vertical elevation. Squatting technique was assessed by using 

quantitative and qualitative means. Quantitatively, technique was assessed by measuring 

joint angles during the first frame of the concentric movement. For qualitative analyses 

representative joint angle-time curves were selected and compared across techniques. 

Similar quantitative and qualitative analyses have been used previously to describe 

techniques used to perform the squat (Fry, Smith and Schilling 2003, Escamilla et al. 

2001a) Peak net joint moments and RFD values were calculated to assess the potential 

effectiveness of each exercise for ERT. RFD was calculated from the slope of the vertical 

GRF-time curve extending from the transition between eccentric and concentric phases to 

the maximum value of the first peak. 

 

Statistical Analysis  

Intra-trial reliability for each variable analysed was assessed by ICC. As recommended by 

Baumgartner (2006), ICCs were calculated with a correction factor for number of repetitions 

performed per trial (n = 2) and number of repetitions used in the criterion score (n = 1).  

Intra-trial reliability for all variables reported was above 0.88. Potential differences in 

kinematic and kinetic variables measured during the squats were analysed using a 3x3 

(squat type x load) repeated measures ANOVA. Significant main effects were further 

analysed with Bonferroni adjusted pair-wise comparisons. Statistical significance was 

accepted at p<0.05. All statistical procedures were performed using the SPSS software 

package (SPSS, Version 17.0, SPSS Inc., Chicago, IL).  
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8.4 Results 

 

Linear Kinematics 

The powerlifting squat and box squat were performed with a significantly wider stance than 

the traditional squat (89.6 ± 4.9cm, 92.1 ± 5.1cm, 48.3 ± 3.8cm, respectively). Linear 

displacements of the barbell and joint centres in the anterior-posterior direction revealed 

differences across techniques (Table 8.1). The largest effects were noted during the 

eccentric phase where greater posterior hip displacements and reduced anterior knee 

displacements occurred during the powerlifting squat and box squat compared to the 

traditional squat. These differences were reflected in the overall displacement of the system 

COM. During the eccentric phase the system COM was displaced anteriorly during the 

traditional squat and posteriorly during the powerlifting squat and box squat.  

 

Angular Kinematics 

Potential differences in squatting posture were primarily assessed by recording segmental 

angles during the first frame of the concentric phase. The values were averaged across 

loads as the external resistance was found to have minimal effect (Table 8.2). Similar torso 

angles were obtained for the traditional squat and powerlifting squat. However, at the start 

of the concentric phase a significantly more upright torso was recorded for the box squat. 

Angular differences across the exercises were observed at all three joint axes of the hip. 

The wide stance squats (powerlifting and box) displayed significantly greater abduction 

angles than the traditional squat. In addition, significantly greater hip flexion and internal 

rotation was recorded during the powerlifting squat compared with the other exercises. 

Significant differences were also obtained for the knee and ankle, with greater flexion 

angles obtained at both joints during the traditional squat. 

.  
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Table 8.1: Anterior-posterior displacements calculated across the eccentric and concentric 
phases (mean ± SD)  
 
  Traditional Powerlifting Box 

 30% 1RM    
 Bar (cm) 9.5 ± 2.1*† 5.1 ± 2.2*‡ -6.8 ± 6.0†‡ 
 COM (cm) 3.2 ± 2.8*† -6.8 ± 3.1* -8.4 ± 3.5† 
 Hip (cm) -15.5 ± 2.6*† -21.1 ± 3.2*‡ -28.7 ± 5.1†‡ 
 Knee (cm) 22.4 ± 4.3*† 16.4 ± 3.3*‡ 13.9 ± 2.7†‡ 
     

Eccentric 50% 1RM    
 Bar (cm) 8.4 ± 1.8*† 4.1 ± 2.2*‡ -7.1 ± 6.4†‡ 

 COM (cm) 3.5 ± 2.7*† -4.2 ± 3.0* -7.9 ± 4.0† 
 Hip (cm) -15.6 ± 1.8*† -18.1 ± 2.9*‡ -25.3 ± 6.2†‡ 
 Knee (cm) 20.7 ± 3.1† 17.3 ± 4.1‡ 14.4 ± 3.5†‡ 
     
 70% 1RM    
 Bar (cm) 7.4 ± 1.8*† 3.8 ± 1.9*‡ -5.9 ± 2.9†‡ 
 COM (cm) 4.1 ± 3.4*† -2.8 ± 2.4* -3.7 ± 3.2† 
 Hip (cm) -15.1 ± 2.7† -16.0 ± 6.2‡ -23.6 ± 6.0†‡ 
 Knee (cm) 19.9 ± 2.6† 18.2 ± 5.0‡ 13.7 ± 3.9†‡ 
     
 30% 1RM    
 Bar (cm) -5.8 ± 2.1† -4.2 ± 2.2‡ 9.4 ± 4.1†‡ 
 COM (cm) -2.5 ± 1.2*† 6.7 ± 2.3*‡ 10.6 ± 2.9†‡ 
 Hip (cm) 18.1 ± 3.4† 20.2 ± 2.8‡ 29.0 ± 3.3†‡ 
 Knee (cm) -21.6 ± 4.1*† -18.2 ± 3.1*‡ -13.1 ± 2.5†‡ 
     

Concentric 50% 1RM    
 Bar (cm) -6.2 ± 1.9*† -3.6 ± 2.4*‡ 10.8 ± 3.7†‡ 
 COM (cm) -2.0 ± 0.8*† 7.6 ± 1.6*‡ 11.3 ± 2.2†‡ 
 Hip (cm) 16.2 ± 3.1*† 19.2 ± 1.9*‡ 29.0 ± 3.4†‡ 
 Knee (cm) -22.8 ± 4.2*† -18.3 ± 3.2*‡ -13.3 ± 2.3†‡ 
     
 70% 1RM    
 Bar (cm) -6.1 ± 1.9† -3.7 ± 2.7‡ 9.9 ± 4.0†‡ 
 COM (cm) -2.0 ± 0.8*† 8.4 ± 5.0* 9.5 ± 1.8† 
 Hip (cm) 14.7 ± 3.3† 17.5 ± 2.0‡ 26.6 ± 3.1†‡ 
 Knee (cm) -20.3 ± 3.6† -19.2 ± 3.2‡ -13.7 ± 3.4†‡ 

* Significant difference between traditional and powerlifting (p<0.05) 
† Significant difference between traditional and box (p<0.05) 
‡ Significant difference between powerlifting and box (p<0.05) 
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Table 8.2: Joint angles at the start of the concentric phase (mean ± SD)  
 

 Traditional Powerlifting Box 

Torso (flexion °) 33.5 ± 4.6† 33.1 ± 4.5‡ 26.9 ± 3.8†‡ 

Hip  (flexion °) 104.3 ± 4.9* 112.6 ± 5.8* 105.7 ± 5.6 

Hip (abduction°) 28.0 ± 5.5*† 38.4 ± 4.7* 37.5 ± 2.2† 

Hip (int rotation °) 19.3 ± 3.3* 27.4 ± 4.1*‡ 20.9 ± 2.1‡ 

Knee (flexion °) 121.1 ± 3.4*† 112.1 ± 4.3*‡ 103.8 ± 5.2†‡ 

Ankle (flexion °) 37.2 ± 3.9*† 26.7 ± 5.1*‡ 14.4 ± 4.2†‡ 

Shank (horizontal°) 53.2 ± 3.1*† 68.9 ± 4.1*‡ 76.3 ± 3.8†‡ 

* Significant difference between traditional and powerlifting (p<0.05) 
† Significant difference between traditional and box (p<0.05) 
‡ Significant difference between powerlifting and box (p<0.05) 
 

 
 
A qualitative assessment of the lifting technique adopted for each exercise was obtained by 

selecting representative joint angle-time curves. Comparatively homogenous traces were 

obtained for the traditional squat (Figure 8.2). The results illustrate that the hip and knee flex 

and extend together with similar magnitudes. Also, similar patterns of flexion then extension 

were observed for the torso and ankle during the traditional squat. Assessment of the joint 

angle-time curves for the powerlifting squat and box squat revealed participants selected 

one of two distinct techniques to perform the movement (Figures 8.3 and 8.4 illustrate 

representative curves for the distinct patterns used in the powerlifting squat). The first 

technique exhibited similar flexion and extension angles for the hip and knee as observed 

during the traditional squat (Figure 8.3). However, the movement also included substantially 

more rotation of the femur around the vertical and anterior-posterior axes than observed 

during the traditional squat. The second technique observed exhibited two distinct phases 

during the eccentric portion of the movement (Figure 8.4). Initially, movement was isolated 

in the sagittal plane at the hip joint. Upon reaching a critical hip flexion angle the knee and 

ankle simultaneously flexed along with concurrent abduction and internal rotation of the 

femur. Whilst the same overall movement patterns were observed for the powerlifting squat 

and box squat, the actual magnitude of torso inclination and ankle flexion during the 

eccentric phase were reduced when the box was introduced.  
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Figure 8.2: Representative joint angle-time curve for the traditional squat 

 

 Dashed line indicates transition from eccentric to concentric 

 

Figure 8.3: Representative joint angle-time curve for a distinct movement pattern observed 

during the powerlifting squat 

 

Dashed line indicates transition from eccentric to concentric 
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Figure 8.4: Representative joint angle-time curve for a second distinct movement pattern 

observed during the powerlifting squat 

 

Dashed line indicates transition from eccentric to concentric 

 

 

Angular Kinetics 

Peak joint moments and moment arms are displayed in Table 8.3. Moment arms were 

calculated relative to the barbell centre and correspond with the time interval of the peak 

joint moment. Positive values indicate the barbell was anterior to the joint centre and 

negative values indicate a posterior barbell location. Significant differences were obtained 

for all joint moments and moment arms across the exercises. The greatest differences in 

peak joint moments were recorded at the spine and ankle. At both joints, the largest peak 

moments were produced during the traditional squat, followed by the powerlifting squat, 

then box squat. The addition of a box resulted in significant changes to a number of 

moment arms and peak joint moments. In particular, the use of a box decreased peak 

extension moments at the spine and hip and increased peak extension moments at the 

knee.  
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Table 8.3: Peak joint moments and corresponding moment arms (mean ± SD)  
 

  Traditional Powerlifting Box 

    Moment arms 
(cm)  

   

30% 1RM       L5/S1 23.5 ± 3.0† 22.9 ± 2.6‡ 18.2 ± 2.3†‡ 
       Hip 26.6 ± 2.7† 26.1 ± 2.1‡ 21.1 ± 2.2†‡ 
       Knee - 9.1 ± 1.8*† - 7.5 ± 1.2*‡ - 13.9 ± 1.9†‡ 
       Ankle 10.1 ± 2.0*† 5.3 ± 1.0*‡ 2.5 ± 1.7†‡ 
     
    Moments (Nm)    
       L5/S1 (ext) 266 ± 36*† 222 ± 21* 203 ± 19† 
       Hip (ext) 200 ± 26* 222 ± 29*‡ 193 ± 28‡ 
       Hip (abd) 58 ± 18* 75 ± 25* 64 ± 28 
       Hip (int rotation) 35 ± 16* 48 ± 18*‡ 26 ± 10‡ 
       Knee (ext) 166 ± 28† 161 ± 24‡ 197 ± 28†‡ 
       Ankle (ext) 82 ± 15*† 56 ± 8*‡ 41 ± 11†‡ 
     

    Moment arms 
(cm) 

   

50% 1RM       L5/S1  22.6 ± 2.3† 21.9 ± 2.2‡ 18.3 ± 2.6†‡ 
       Hip  25.9 ± 2.5† 25.8 ± 2.4‡ 21.3 ± 2.8†‡ 
       Knee - 10.5 ± 1.9*† - 8.0 ± 1.4*‡ - 14.7 ± 2.1†‡ 
       Ankle 9.5 ± 1.8*† 5.6 ± 1.5* 2.5 ± 2.1† 
     
    Moments (Nm)    
       L5/S1 (ext) 320 ± 42*† 261 ± 30* 233 ± 21† 
       Hip (ext) 240 ± 29† 253 ± 33‡ 213 ± 35†‡ 
       Hip (abd) 63 ± 29* 84 ± 27* 69 ± 35 
       Hip (int rotation) 42 ± 24 50 ± 19‡ 26 ± 17‡ 
       Knee (ext) 188 ± 32† 176 ± 27‡ 221 ± 29†‡ 
       Ankle (ext) 93 ± 17*† 64 ± 16* 58 ± 15† 
     

    Moment arms 
(cm) 

   

70% 1RM       L5/S1 22.1 ± 2.5† 22.4 ± 2.3‡ 19.7 ± 2.8†‡ 
       Hip 25.2 ± 2.9 26.2 ± 2.1‡ 23.3 ± 3.0‡ 
       Knee  - 10.1 ± 1.1*† - 8.1 ± 0.8*‡ - 15.2 ± 2.8†‡ 
       Ankle  9.9 ± 2.2† 5.6 ± 1.6 2.4 ± 2.1† 
     
    Moments (Nm)    
       L5/S1 (ext) 354 ± 49*† 308 ± 39* 279 ± 35† 
       Hip (ext) 256 ± 35*† 281 ± 32*‡ 230 ± 37†‡ 
       Hip (abd) 70 ± 30* 94 ± 26* 79 ± 35 
       Hip (int rotation) 43 ± 24 55 ± 22 38 ± 28 
       Knee (ext) 201 ± 39 192 ± 36 229 ± 39 
       Ankle (ext) 104 ± 20*† 78 ± 10* 71 ± 14† 
* Significant difference between traditional and powerlifting (p<0.05) 
† Significant difference between traditional and box (p<0.05) 
‡ Significant difference between powerlifting and box (p<0.05) 
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Significant main effects of exercise type were also found for peak joint powers (Table 8.4). 

The largest differences were obtained at the Torso and ankle, where the greatest values 

were produced during the traditional squat. Significant main effects were also found at the 

hip where the largest peak joint power values were produced during the powerlifting squat.   

 
 

Table 8.4: Peak joint powers (mean ± SD)  
 

  Traditional Powerlifting Box 

       Torso (W) 238 ± 45† 203 ± 38 195 ± 28† 

30% 1RM       Hip (W) 415 ± 61*† 450 ± 48*‡ 347 ± 49†‡ 

       Knee (W) 408 ± 58† 410 ± 49‡ 464 ± 41†‡ 

       Ankle (W) 115 ± 28*† 83 ± 27*‡ 54 ± 21†‡ 

     

       Torso (W) 211 ± 42† 185 ± 40‡ 180 ± 23†‡ 

50% 1RM       Hip (W) 409 ± 64* 462 ± 50*‡ 371 ± 47‡ 

       Knee (W) 416 ± 53 420 ± 48 450 ± 47 

       Ankle (W) 120± 30*† 76 ± 25*‡ 58 ± 19†‡ 

     

       Torso (W) 180 ± 50† 174 ± 43‡ 145 ± 24†‡ 

70% 1RM       Hip (W) 372 ± 61* 440 ± 47*‡ 396 ± 41‡ 

       Knee (W) 409 ± 42 395 ± 40 400 ± 38 

       Ankle (W) 94 ± 21*† 64 ± 20*‡ 48 ± 17†‡ 

* Significant difference between traditional and powerlifting (p<0.05) 
† Significant difference between traditional and box (p<0.05) 
‡ Significant difference between powerlifting and box (p<0.05) 

 

 

External Kinematics and Kinetics 

The external stimulus of each exercise was assessed through measurement of the GRF, 

velocity, power and RFD. The vertical GRF maintained an overall similar profile for each 

exercise across loads. However, it was observed that as the external load increased the 

vertical GRF-time curve became more bimodal, with an increase in the relative size of the 

second peak. The group average vertical GRF-time curves performed with a load of 70% 

1RM are displayed in Figure 8.5. The greatest differences in vertical GRF were observed 

during the box squat. There were no rapid increases in force production during the transition 

between eccentric and concentric phases as was evident with the other exercises. In 
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addition, as the individual sat and paused there was a gradual transfer of load from the 

system to the box resulting in a substantial reduction in force production. Across the loading 

conditions, significantly greater peak vertical GRF was obtained for the traditional squat and 

powerlifting squat compared to the box squat (Table 8.5). Significant differences were also 

obtained for peak velocity, peak power and RFD. The greatest differences were obtained for 

RFD where 3- to 4-fold larger values were obtained for the box squat.     

 

 

Figure 8.5: Group average force time curves obtained with a 70% 1RM load 

 

Circles indicate transition between phases of the squat (eccentric/concentric) and 

(eccentric/box/concentric) 
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Table 8.5: External kinematics and kinetics (mean ± SD)  
 

  Traditional Powerlifting Box 

     Peak Force (N) 2166 ± 194 2165 ± 182 2080 ± 280 

30% 1RM     Peak Velocity (ms-1)               1.68 ± 0.15† 1.61 ± 0.19‡ 1.44 ± 0.12†‡ 

     Peak Power (W) 2901 ± 293† 2825 ± 315‡ 2472 ± 288†‡ 

     RFD (Ns-1) 4801 ± 1572† 4963 ± 1542‡ 16390 ± 4204†‡ 

     

     Peak Force (N) 2448 ± 295† 2400 ± 270‡ 2265 ± 306†‡ 

50% 1RM     Peak Velocity (ms-1)               1.39 ± 0.14 1.34 ± 0.13 1.31 ± 0.11 

     Peak Power (W) 2702 ± 114 2695 ± 161 2589 ± 307 

     RFD (Ns-1) 5319 ± 1334† 5333 ± 1443‡ 16980 ± 3199†‡ 

     Peak Force (N) 2680 ± 309† 2685 ± 301‡ 2528 ± 302†‡ 

70% 1RM     Peak Velocity (ms-1)               1.18 ± 0.16 1.16 ± 0.12 1.12 ± 0.09 

     Peak Power (W) 2637 ± 137 2589 ± 135 2484 ± 301 

     RFD (Ns-1) 5083 ± 1227† 5868 ± 1972‡ 14537 ± 3612†‡ 

* Significant difference between traditional and powerlifting (p<0.05) 
† Significant difference between traditional and box (p<0.05) 
‡ Significant difference between powerlifting and box (p<0.05) 
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8.5 Discussion 

 

The results of the present study reveal significant biomechanical differences between three 

popular movement strategies used to perform the squat exercise. One of the most 

significant technical differences noted was the stance width used for each technique. All of 

the athletes in the present study self-selected a narrow stance when performing the 

traditional squat and a wide stance when focusing on restricting anterior displacement of the 

knee during the powerlifting squat box squat. Previous research investigating the effects of 

stance width on squatting biomechanics has reported a number of findings similar to those 

obtained here (Escamilla et al. 2001a). Using video data collected during a powerlifting 

competition, Escamilla et al. (2001a) reported that athletes performing wide stance squats 

exhibited greater hip flexion and smaller plantarflexion angles than those performing narrow 

stance squats. These results correspond with the significant differences in joint angles 

recorded in the present study between the narrow stance traditional squat and the wide 

stance powerlifting squat. In addition, Escamilla et al. (2001a) reported similar effects of 

stance width on hip and ankle moments. In particular, wide stance squats were found to 

produce significantly larger hip extension moments and smaller ankle extension moments. 

In contrast to the findings of the present study, Escamilla et al. (2001a) reported that overall 

joint-time curves for the torso and lower body were similar between narrow and wide stance 

squats. However, data collected by Escamilla et al. (2001a) were recorded during an active 

competition and the authors were unable to influence the lifting techniques employed; 

whereas, in the present study athletes were instructed to let the knee travel past the toes 

during the traditional squat and to maximise posterior displacement of the hip during the 

powerlifting squat and box squat. These instructions resulted in different movement 

strategies beyond alterations to stance width. The joint-time curves for the traditional 

(narrow stance) squat were consistent across participants and featured simultaneous 

flexion then extension of the hip and knee, with greater range of motion obtained at the 

knee joint (Figure 8.2). During the powerlifting squat and box squat (wide stance) two 

distinct techniques were observed. The first technique also featured simultaneous flexion 

then extension of the hip and knee. However, the movement was combined with 

significantly greater ab/adduction and int/external rotation of the femur compared to that 

measured during the traditional squat (Figure 8.3). The second technique observed during 

wide stance squats featured two distinct phases during the eccentric portion of the 

movement (Figure 8.4). The first phase consisted of isolated hip flexion to approximately 40 

degrees. Upon reaching this point, the second phase of the movement was initiated and 

comprised rapid flexion of the knee and ankle, combined with substantial abduction and 
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internal rotation of the femur. The different movement strategies selected were clearly 

influenced by the stance width adopted. When attempting to displace the knees past the 

toes a narrow stance may have been selected to facilitate tracking of the patella over large 

knee flexion angles. In contrast, a wide stance was most likely adopted when attempting to 

maximise posterior displacement of the hip in order to decrease the height of the system 

COM and increase overall stability. 

 

When discussing the advantages and potential risks associated with each type of squat, 

researchers and practitioners have generally focused on the kinetics associated with the 

exercise (Chiu, Heiler and Sorenson 2009). Based largely on research conducted by Fry et 

al. (2003) it is commonly believed that squats that minimise anterior displacement of the 

knee produce greater muscular forces at the hip and require a more horizontal torso 

position to remain balanced. Importantly, it is suggested that this torso position creates 

larger forces and moments at the lumbar spine, thereby increasing the risk of developing 

lower back injuries (Fry, Smith and Schilling 2003). The results from the present study 

support claims that greater muscular forces are generated at the hip when attempting to 

maintain a more vertical shin position. This conclusion is based on significant differences in 

peak joint moments measured between the traditional squat and powerlifting squat. In 

contrast to the findings of Fry et al. (2003), the results obtained here demonstrate that 

positioning of the torso is not dependent on the amount of anterior knee displacement. In 

addition, the largest peak moments at the L5/S1 joint in the present study were measured 

during performance of the traditional squat and not the powerlifting squat as would have 

previously been expected. Collectively, the results contradict previous suggestions that 

there is a greater risk of developing lower back injuries when performing variations such as 

the powerlifting squat. Contrasting results may be due to a number of methodological 

differences between the studies. Participants recruited by Fry et al. (2003) were 

recreationally trained and attempted to adopt similar movement strategies when performing 

the traditional squatting technique and the variation with restricted anterior knee 

displacement. Conversely, participants in the present study were competitive powerlifters 

with sufficient experience in both exercises to select different movement strategies. Based 

on consistent technical features adopted by all athletes in the present study, it is clear that 

maintaining a relatively upright torso position whilst restricting anterior displacement of the 

knee is best achieved by adopting a wide stance and achieving significant range of motion 

at the hip joint in all three planes of motion. This may have implications for individuals who 

choose to perform the powerlifting squat or restrict anterior displacement of the knee but 

have limited movement capabilities at the hip joint.   
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Differences in peak joint torques recorded for each exercise were largely a result of the 

relative displacements of the barbell and joint centres. Performance of the traditional squat 

created relatively large anterior displacements of the barbell, knee and system COM during 

the eccentric phase (Table 8.1). In contrast, use of the box enabled individuals to maximise 

posterior displacement of the hip which resulted in an overall posterior displacement of the 

barbell. Visual observation of box squat repetitions revealed that many of the powerlifters 

displaced the system COM behind the base of support during the final stages of the 

eccentric movement. The use of the box to safely maximise posterior displacement created 

an ordered succession of squatting motions with the traditional squat situated at one end of 

the spectrum and the box squat at the other. A number of peak joint moments analysed in 

the present study reflected this ordered succession. At the ankle joint, peak extension 

moments were greatest during the traditional squat, followed by the powerlifting squat, then 

box squat. These differences would have been caused by variation in displacement of the 

system COM. Greater anterior displacements created during the traditional squat would 

require increased joint moments to compensate for the greater total resistance 

(Wretenberg, Feng and Arborelius 1996). Based on the results of previous research (Fry, 

Smith and Schilling 2003, Wretenberg, Feng and Arborelius 1996) and large differences 

noted across techniques for anterior knee displacement, a similar ordered effect was 

expected for peak moments developed at the knee joint. However, the results showed that 

the largest peak moments were obtained during the box squat, with similar smaller values 

obtained during the traditional squat and powerlifting squat. For each exercise the peak 

knee extension moment was developed during the initial stage of the concentric movement. 

As individuals maintained a more upright torso position when performing the box squat, the 

greater resistance moment arm created explains the larger peak moment recorded. The 

magnitude of the resistance moment arm created at the knee joint was similar between the 

traditional squat and powerlifting squat. As a result, no significant difference was measured 

between the two exercises. This result contradicts findings from previous research reporting 

reduced knee moments when maintaining a more vertical shin position (Fry, Smith and 

Schilling 2003). However, previous results were associated with an increased forward lean 

of the torso which did not occur in the present study. It is also important to note, that the 

overall mechanical stress experienced at the knee may not be adequately described by the 

peak moment alone. Evidence has shown that compressive and shear forces at the knee 

increase with larger flexion angles and greater displacement of the femur relative to the tibia 

(Schoenfeld  2010, Escamilla et al. 2001b, Wretenberg, Feng and Arborelius 1996). As a 

result, it is expected that greater overall stress at the knee joint will occur during the 

traditional squat.  
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Significant kinetic differences were also obtained at the hip joint. Across exercises, the 

largest peak moment was obtained during performance of the powerlifting squat. This result 

may be due to a number of biomechanical and physiological factors. The increased forward 

lean of the torso during the powerlifting squat in comparison to the box squat would have 

created a larger resistance moment arm at the hip, which would explain the difference in 

peak extension moment found. However, a significant difference was also obtained 

between the powerlifting squat and traditional squat despite both exercises creating similar 

resistance moment arms. The difference may have been caused by variation in recruitment 

of the muscles surrounding the hip joint. Researchers have previously commented that 

powerlifters intentionally emphasise hip extension when performing wide stance squats 

(Wretenberg, Feng and Arborelius 1996). Support for this claim can be found in multiple 

studies which have reported increased muscle activity of the gluteus maximus when squats 

are performed with wider stance widths (McCaw and Melrose 1999, Paoli, Marcolin and 

Petrone 2009). In addition to creating the largest extension moment at the hip, the 

powerlifting squat also produced the largest peak abduction and peak axial rotation 

moments. These larger kinetic values correspond with greater frontal and transverse 

rotations of the femur during the powerlifting squat compared to the other exercises.  

 

Recently, there has been interest in altering the position of the femur during squatting 

exercises to target specific muscle groups (Escamilla et al. 2001b, Pereira et al. 2010, 

Signorlie et al. 1995). Anecdotally, it is believed that performing the squat with the hip in 

external rotation increases muscle activity of the quadriceps and hip abductors (Signorlie et 

al. 1995). Research conducted thus far has failed to demonstrate changes in quadriceps 

activity with altered rotation of the femur (Escamilla et al. 2001b, Signorlie et al. 1995); 

however, data exists to suggest that muscle activity of the hip abductors can be influenced 

(Pereira et al. 2010). Previous studies have attempted to control the position of the femur by 

fixing the orientation of the foot. However, during the present study significant axial rotation 

was measured despite the foot remaining still. For each exercise the movement was 

initiated with the foot abducted and the hip externally rotated. As the movement progressed, 

foot position remained fixed as the hip moved in and then out of internal rotation. Results 

from other kinematic studies incorporating 3D motion capture systems have reported similar 

results for athletes performing the squat (Decker, Krong, et al. 2009, Wu, Lee, et al. 2011). 

This observation may have implications for potential injuries at the knee joint as evidence 

has shown that hip adduction combined with internal rotation of the femur during knee 

flexion exercises is associated with increased valgus stress and repetitive injuries such as 

anterior cruciate ligament strain, iliotibial band friction syndrome and patellofemoral pain 
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syndrome (Ireland 2002, Leetun et al. 2004). During the bottom portion of the squat where 

internal rotation of the femur was at its greatest, the athletes in the present study were able 

to maintain appropriate alignment of the femur and tibia through substantial abduction of the 

hip. During the powerlifting squat where internal rotation and hip flexion is maximised, 

untrained individuals and those with restricted movement capabilities may be unable to 

maintain hip abduction. This may lead to those individuals descending into an adducted and 

internally rotated posture which could create inappropriately large stresses at the knee.  

 

In order to obtain a more complete understanding of the biomechanical stimulus presented 

by an exercise, recent research has focused on the external kinematics and kinetics created 

(Cormie et al. 2007, Zink et al. 2006, Kawamori et al. 2006). Most frequently, variables such 

as force, velocity, power and RFD have been measured (American College of Sports 

Medicine 2009). The data obtained have also been used to rank exercises based on the 

belief that those which acutely maximise the production of each variable provide the best 

stimulus for longitudinal improvement. To ensure the biomechanical stimulus is maximised 

for each variable, repetitions in the present and previous studies were performed with the 

intention to lift the load as fast as possible (Cormie et al. 2007, Zink et al. 2006, Kawamori 

et al. 2006). The results obtained here demonstrate that large forces can be produced in all 

three squatting exercises even when light resistances are displaced with maximum velocity. 

Across the 30 to 70% 1RM loads, peak vertical GRF for the group was approximately 2.1 to 

2.8 times body weight. The largest effects of squat variation on force and all other external 

kinematics and kinetics recorded were obtained during the box squat. Group average force-

time curves showed reduced peak values and changes to the overall profile with the box 

squat compared to the other exercises (Figure 8.5). During the traditional squat and 

powerlifting squat a large increase in force was measured during the transition period 

between eccentric and concentric phases. However, during the box squat, athletes were 

able to decrease force production during this transition period and use the box to partially 

slow the movement of the system COM. Following a sustained reduction in force as the 

athletes paused on the box, force was then rapidly increased during the concentric phase. A 

similar reduction in peak force when performing the box squat was reported in a recent 

study conducted by McBride et al. (2010); the authors suggested that lower forces produced 

during the box squat compared to a standard squatting movement was the result of reduced 

stretch-shortening activity from pausing on the box. The powerlifters in the present study 

were instructed to follow their individual practices regarding the length of time paused on 

the box, as long as a minimum period of one second was adhered to. On average, the 

group paused for 1.7 seconds with times ranging from 1.3 to 2.3 seconds. Research has 
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shown that as duration between eccentric and concentric phases increases, there is a 

progressive reduction in contribution from the stretch shortening cycle (Wilson, Murphy and 

Pryor 1994). The long pauses obtained during the box squat are therefore likely to explain 

the reduced force production in comparison to the other exercises studied.  

 

The largest effect of squat variation observed on external variables was an increase in RFD 

measured during the box squat. The results showed 3 to 4-fold greater values in RFD when 

squats were performed with the box. As RFD and the squat exercise are both considered 

important elements of training for athletic improvement (Cronin and Sleivert 2005), the 

finding that significantly greater values can be obtained when using the box could have 

important implications for training prescription. Whilst it remains unclear which training 

practices are most effective for long-term improvements in RFD, many believe that 

performing explosive resistance exercises that create high values in the variable will be 

successful (Cronin and Sleivert 2005). The large disparity in values obtained between the 

exercises may provide researchers with an effective model to study RFD using movements 

that are transferable to many sporting actions.  

 

Internal and external peak power values followed a similar pattern across loads. Maximum 

values were generally produced at 30 or 50% 1RM with relatively small decreases in 

magnitude obtained at 70% 1RM. Across loads the largest external power values were 

produced during the traditional and powerlifting squat, with significantly lower values 

produced during the box squat. It is also likely that the reduced power values created during 

this exercise are the result of differences in expression of the SSC phenomenon. 

Measurement of internal power values provided additional information by recording values 

at the different joints. The greatest differences between exercises were found at the torso 

and ankle where the largest joint power values were produced for the traditional squat, 

followed by the powerlifting squat then box squat. Significant main effects were also 

obtained at the hip, where the larger peak moments and displacements measured during 

the powerlifting squat also resulted in the highest joint power values. For each of the 

squatting movements the majority of the total power produced was developed at the hip and 

knee. This finding may assist practitioners who aim to improve performance of explosive 

sporting movements that feature a similar distribution pattern.  
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8.6 Summary and Conclusion 

 

The present study investigated the practice of altering the movement strategy of an exercise 

to change the associated biomechanical stimulus. In the contemporary training of 

powerlifters this practice is combined most frequently with the squat. The investigation 

demonstrated that the movement strategy used to perform the squat could be altered 

through the constraint of maintaining as vertical a shin position as possible. The results 

confirmed that changes to the movement strategy had a significant effect on a range of 

kinematic and kinetic variables. In particular, the altered techniques resulted in substantial 

kinematic and kinetic changes at the hip and reduced kinetic output at the ankle. 

 

The investigation also demonstrated that the movement strategy and associated 

biomechanical stimulus could be altered further by performing the box squat. Incorporating 

the additional apparatus enabled participants to maximise posterior displacement of the hip 

whilst maintaining an upright torso position. This posture resulted in significant kinetic 

changes at all joint measured. External kinematics and kinetics were also affected when 

performing the box squat. Decreases in force, power and velocity were measured and most 

likely caused by attenuation of the SSC action when pausing on the box. However, the 

altered movement strategy also resulted in 3 to 4-fold greater RFD values. This final result 

suggests that the box squat could be an effective exercise for athletes to develop their 

ability to produce large amounts of force over relatively short time periods.   
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CHAPTER 9. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

9.1 Summary 

 

This PhD summarises the work from the initial stages of a proposed larger research project 

to determine the effectiveness of contemporary powerlifting training practices for general 

athletes. The specific aims of this PhD were, firstly, to identify the contemporary training 

practices used by powerlifters and secondly, to provide a detailed analysis of the 

biomechanical stimulus created. In addition, a third aim of the PhD was to assess whether 

the training practices investigated could provide appropriate mechanical stimuli for athletes 

of other sports. The aims of the PhD have been achieved through the implementation of five 

separate, though related studies as part of a research design that progressed from 

descriptive to experimental work.  

 

The contemporary training practices of powerlifters were identified in study one through use 

of questionnaires and semi-structured interviews. The sample comprised many of the 

United Kingdom‟s top male powerlifters competing at that time. The study revealed that the 

participants training practices were heavily influenced by information disseminated through 

online sources. Analysis of the lay literature and the interviews conducted revealed that 

each of the contemporary training practices adopted by powerlifters was associated with a 

proposed mechanism that explained how the practice might improve performance. Many of 

the proposed mechanisms were biomechanical in nature, and therefore, correspond well 

with the aims and design of this PhD. The training practices that were identified in the study 

were categorised based on their underlying mechanical premise. A total of four categories 

were considered, including: (1) Speed of movement; (2) Alterations to the external 

resistance; (3) Movement strategy; and (4) Use of ergogenic equipment. Only the first three 

categories were considered to comprise training practices that had the potential to improve 

the performance of athletes other than powerlifters, and therefore only these categories 

were investigated further.  
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The aim of assessing whether the training practices identified could provide appropriate 

mechanical stimuli for general athletes was first addressed by investigating the variables 

that influenced performance of common sporting tasks. A regression based approach was 

adopted to obtain predictor models that combined multiple variables. Based on the 

suggestions of previous researchers (Cronin and Sleivert 2005), anthropometric and 

biomechanical variables were included in the analyses. However, the best one-, two- and 

three-factor predictor models included biomechanical variables only. The results 

demonstrated that maximum strength expressed relative to body mass is the basic quality 

that determines an athlete‟s ability to perform common sporting tasks such as sprinting, 

jumping and changing direction. The explanatory power of the models was increased by 

combining the athletes‟ relative strength scores with their ability to produce high velocity, 

power and RFD values. The results also suggested that there may be an element of 

specificity with different mechanical variables appearing more prominently in models for 

particular sporting tasks. The adjusted coefficients of determination for the best three factor 

model ranged from 0.43 to 0.86 across the different sporting tasks. These results 

demonstrated that force, velocity, power and RFD variables explain a substantial amount of 

the variation in performance of common sporting movements, and therefore provide suitable 

measures to assess the mechanical stimuli created with the novel training practices. 

 

To provide a detailed analysis of the biomechanical stimulus associated with the training 

practices, internal variables (including joint angles, velocities, moments and powers) as well 

as external variables required calculation. A rigid segment model comprising the foot, 

shank, thigh, pelvis and thorax was used to calculate the internal variables. Evaluation of 

the model revealed that similar designs have been tested extensively with resistance 

training movements and demonstrated robustness to small errors in inputs. Importantly, the 

model provided an appropriate balance between complexity and validity of inherent 

assumptions.  

 

The first experimental study investigated the training practice of performing traditional 

resistance exercises with the intent to lift the load as fast as possible. The deadlift exercise 

was selected for analysis due to its popularity amongst powerlifters and the rapid extension 

it requires in the lower body joints, which is characteristic of many sporting movements. In 

addition, aspects of the deadlifts gross movement pattern was considered to be similar to 

the power clean, which is regarded as one of the most effective exercises for developing 

power and was used as a model comparator for the study. The deadlift was performed at 
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sub-maximum and maximum velocity across a range of external loads. The results showed 

that performing the movement with the intent to lift the load as fast as possible significantly 

increased the expression of almost all internal and external kinematic and kinetic variables 

measured, thereby demonstrating a more effective mechanical stimulus to induce 

adaptations. Comparisons of the deadlift with the power clean revealed that the mechanical 

stimulus associated with each exercise was more similar than previously would have been 

considered. Significantly greater external force values were obtained with the deadlift, 

whereas, significantly greater velocity, power and RFD values were obtained with the power 

clean. However, the internal variables revealed similar maximum joint velocity and joint 

power values for both exercises across the loads, with larger net joint moments generally 

obtained with the deadlift.  

 

The second experimental study investigated the effects of manipulating the external 

resistance. The study investigated two of contemporary powerlifters‟ most popular and 

visually recognisable training practices, namely, the use of variable resistance material and 

unconventional barbells. Chain resistance was selected to investigate the effects of variable 

resistance, and the hexagonal barbell selected to investigate potential changes when 

altering the position of the external load. The deadlift was performed with both practices to 

expand on the work from the previous study. Resistance trained athletes experienced in 

using chain resistance performed repetitions with weight plates only and with a combination 

of weight plates and chains. The magnitude of the chain resistance included was 

substantially greater than that used in previous studies, but reflected the loads used by 

high-level powerlifters. The results showed that the inclusion of chains had a significant 

effect on all external kinematic and kinetic variables calculated. Temporal analysis of the 

VGRF data demonstrated that the inclusion of chains enabled significantly greater forces to 

be maintained at the final stages of the movement. This result confirmed the hypothesis of 

powerlifters and other proponents of this training practice. However, the results also 

revealed that the addition of chain resistance resulted in significant decreases in velocity 

and power, with greater effects obtained when using heavier barbell and chain loads. This 

result contradicted the perceptions of the athletes in the study and those that promote the 

practice. At present it is not clear why there is such a large discrepancy between the actual 

and perceived outcomes when using chain resistance.  

A large number of mechanical changes were also obtained when using the hexagonal 

barbell. Comparisons of the deadlift performed with the straight or hexagonal barbell 

revealed that the irregular shape enabled athletes to produce significantly greater force, 
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velocity, power and RFD values. The rigid body models revealed that deadlifts performed 

with the hexagonal barbell produced significantly greater net joint moments at the knee, 

whilst significantly reducing the net joint moments experienced at the hip and lumbar spine. 

Differences in production of internal and external kinematic and kinetic variables could be 

explained by changes in positioning of the external resistance and the subsequent 

resistance moment arms created. Importantly, the results expand on those obtained from 

the first experimental study and demonstrate that the biomechanical stimulus created with 

the contemporary training practices may be further enhanced by combining practices. 

 

The final experimental study investigated the effects of altering the movement strategy used 

to perform the squat. This was achieved by instructing the participants to maximise the 

posterior displacement of the hip and to maintain as vertical a shin position as possible. In 

the literature, this movement strategy describes the powerlifting squat. The participants also 

followed the same instructions whilst performing the squat onto a box (also referred to as 

the box squat). In agreement with observations from the lay material, the powerlifters in the 

study met the constraints by adopting a wide stance and creating relatively large ranges of 

motion at the hip joint in the frontal and transverse planes. In addition, two distinct 

movement patterns were observed based on the relative timing of the hip and knee during 

the descent. The results showed that force, velocity, power and RFD values were relatively 

unaffected by performing the powerlifting squat in comparison to a traditional squatting 

motion; whereas, the disruption between the eccentric and concentric phases of the motion 

when pausing on the box significantly decreased force, velocity and power, whilst 

significantly increasing RFD. Despite minimal differences in external variables measured 

between the traditional and powerlifting squat, a number of significant differences in the 

internal variables were found, including the joint moments and powers produced at the 

spine, hip and ankle. Analysis of internal variables produced during the box squat revealed 

that, in direct contrast to the available anecdotal information relating to this exercise, the 

movement results in decreased moments at the spine and increased moments at the knee 

compared with other squatting movements.  
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9.2 Conclusions 

 

The work reported in this thesis has expanded the existing knowledge of the contemporary 

training practices of powerlifters and their potential benefit for general athletes. Specifically, 

the results have shown that a collection of the most popular practices have the potential to 

substantially alter and enhance the biomechanical stimulus of more traditional training 

regimes. In presenting these novel findings, the work provides clear initial support for the 

use of these contemporary practices with general athletes. The findings from each of the 

experimental studies plus additional related work have been disseminated in peer reviewed 

journals closely aligned with the discipline of strength and conditioning. The impact of this 

work has already influenced discussions amongst practitioners regarding the most effective 

training methods to enhance the athletic potential of individuals competing in sports that 

require the development of large force and power outputs, thereby fulfilling one of the major 

goals of applied research. Importantly, the thesis as a whole provides a framework with 

which to interpret and apply the novel results within current paradigms used in strength and 

condition.  

 

Additionally, this work has highlighted the importance of collecting empirical data when 

assessing the stimulus created by a training practice. Many of the biomechanical effects 

obtained correspond with the anecdotal information disseminated by athletes that regularly 

performed the practices. However, some important results (e.g. the negative effects of chain 

resistance on velocity and power, and the distribution of net joint moments during box 

squats) characterising the biomechanical stimulus were contrary to that promoted by 

athletes and coaches, reinforcing the importance of scientific study.  

 

As each of the training practices investigated in the study demonstrated the potential to alter 

the biomechanical stimulus of a resistance exercise, there are opportunities to enhance 

training adaptations with each practice depending upon the particular goals. The following 

practical applications are made based upon the data collected:  

 

 Athletes seeking to develop muscular power should perform resistance exercises 

with the intent to lift the load as fast as possible. In contrast to statements made by 
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other researchers in strength in conditioning, this work supports the use of 

performing traditional resistance exercises, such as the deadlift, explosively as a 

means to directly enhance power. However, it is noted that there may be other 

exercises such as jump squats and Olympic weightlifting movements that provide a 

more effective stimulus and may be selected preferentially, particularly when only a 

limited number of exercises are to be selected. 

 

 The biomechanical effects of including variable resistance in the form of either 

bands or chains are likely to be distinct. Due to reductions in acute expression of 

velocity and power, it is recommended that training with heavy chain loads (i.e. ≥ 20 

1RM) be used primarily to develop maximum strength.  

 

 When using the deadlift to increase strength or power, the exercise should generally 

be performed with the hexagonal barbell to maximise the biomechanical stimulus. 

For variation, or to specifically target the lumbar erectors, the straight barbell deadlift 

may be a more effective option. The redistribution of muscular effort when 

performing the deadlift with the hexagonal barbell also suggests that the exercise 

could be used as an appropriate variation for the squat.  

 

 The back squat should be considered as existing on a spectrum with the close 

stance traditional movement at one end and the wide stance powerlifting-style 

movement at the other. When the goal is to evenly distribute the muscular effort 

throughout the segments of the body, a movement pattern close to the traditional 

movement should be selected. However, if the goal is to target the musculature of 

the hip or reduce stress at the ankle, the powerlifting-style movement should be 

selected.   

 

 For those athletes seeking to develop proficiency in the powerlifting-style movement, 

the box squat should be incorporated as part of their skill acquisition training. In 

addition, the box squat may provide an appropriate means for athletes to enhance 

their ability to produce high RFD values.  
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9.2.1 Limitations 

It is important to be aware of the following limitations when interpreting and applying the 

results from this thesis: 

 Whilst the powerlifters surveyed and interviewed were of an elite level, the sample 

size was relatively small and therefore may not accurately represent the training 

practices of other groups of powerlifters. Importantly, the training practices identified 

in the study should not be considered as an exhaustive list of those currently used.  

 

 The biomechanical variables selected to model performance in common sporting 

tasks (and subsequently used to assess the biomechanical stimulus of the 

contemporary training practices) represent a small sample of those which are 

potentially applicable.  

 

 Only single sets and repetitions were performed at each load in the experimental 

studies. Modelling more realistic training sessions would have introduced variability 

in sets, repetitions and recovery intervals creating substantial complexity and the 

need for far larger and unrealistic numbers of participants. As a result, the kinematic 

and kinetic findings of this study may differ from that produced in standard sessions 

comprising multiple sets and repetitions.  

 

9.3 Recommendations for future work 

 

As discussed in the introduction to this thesis, the scientific investigation of any training 

practice requires extensive study employing a wide range of methodological approaches. 

The aim of this type of applied research is to create a robust evidence base that can be 

used to positively impact sporting performance of athletes. To develop the research on the 

practices investigated here and potentially influence practice, a logical progression of study 

must be pursued. The structure of the PhD corresponds with the initial research stages 

proposed by Bishop in his „applied research model for the sport sciences‟ (Bishop  2008). 

The recommendations for future work on this topic closely follow the progression outlined in 

the same model.  
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It is recommended that the next stage of the research process include longitudinal 

interventions to assess whether the practices studied have a substantial effect on physical 

performance, and markers of sporting performance. Studies should be characterised by the 

tight control of variables with well trained participants included to maximise external validity. 

Overall quality of studies could be enhanced by including cross-over designs with control 

and comparison groups. Similar methodologies to those used in this PhD to collect external 

mechanical variables should also feature in longitudinal designs to more effectively 

characterise the mechanical stimulus and determine whether changes occur with 

adaptations. Importantly, physiological variables can also be assessed to analyse the 

metabolic and hormonal stimulus produced, and identify the site of adaptations (i.e. neural, 

muscle architecture, myocellular). 

 

If the longitudinal investigations demonstrate that the training practices can be used 

effectively to enhance physical and sporting performance, then the final stages of the 

research model should be completed. Bishop (2008) recommends that potential barriers 

(and motivators) to uptake should be explored at this stage of the process. It is argued that 

an understanding of the issues coaches must deal with (e.g. injuries, concurrent training, 

lack of equipment, expertise) and the infrastructure required to achieve implementation 

must be gained (Bishop  2008). Research in this area has not been published in the sport 

science literature, but could be useful in creating uptake in novel training practices. In 

addition, findings from this stage of the process may lead to refinements of the training 

practices or scope of research conducted in previous stages of the model. For example, 

coaches may wish to know if the training practices are suitable for athletes to perform 

during competition periods where the overall physical load is high. To resolve the issue, 

intervention studies may be repeated with similar athletes or trained populations with 

concurrent training to simulate the required environment.  

 

The final stage of the research process should attempt to gain evidence that the training 

practices can be implemented with high level athletes and are as effective (if not more so) 

than current practices. It may be appropriate at this stage of the process to transition from 

group based studies to idiographic research featuring single-subject designs to facilitate 

understanding of the real-world effects. The advantages of this approach is that each 

participant acts as their own control, information can be obtained over lengthy time periods 

(which are required for elite athletes to display improvements), and it avoids ethical issues 

such as certain athletes receiving the control condition. To effectively study the training 
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practices investigated here, multiple introduction and removal phases of a practice would be 

required, with periods allocated to the combination of practices. These intervention phases 

would be preceded by a relatively length baseline period to establish the inherent variability 

of the athletes‟ performance.  

Due to the complex nature of research and the advancement of training practices it is not 

envisaged that the research model presented will flow linearly from start to finish. Rather, a 

bidirectional process is likely to occur with findings obtained from distinct sections 

influencing each other. In the process of completing this PhD several areas of interest which 

may influence the earlier stages of the research process have arisen, these include:  

 

 Consideration of further refinement to contemporary training practices identified – for 

example, use of the double knee bend technique when performing the deadlift, 

identification of best simultaneous combinations of bands and chains, technology to 

provide immediate feedback regarding production of important biomechanical 

variables, use of smart fabrics to create ergogenic clothing with greater crossover to 

general athletes. 

 

 Consideration of applicability to females, whose relevant anatomical and 

biomechanical parameters may differ from males. 

 

 Consideration of the most effective methods to develop proficiency with the various 

training practices. 
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APPENDICES 

 

Appendix I: Study One Questionnaire 

 

Personal information and results will be kept confidential and anonymous. The purpose of this 

information is solely to produce an academic report detailing the training practices of top level 

powerlifters. 

 

NAME: --------------------------------------------------------------------------------  

DATE OF BIRTH:  --------------------------------------------------------- 

WEIGHT CLASS:  ---------------------------------------------------------- 

Email:  ---------------------------------------------------------------------------------- 

                                           

1)  Once warmed up do you perform your squat repetitions: 

 

 As fast as possible  At speeds less than   Mixture of maximum 

 (maximum)          maximum   & less than maximum 

 

 

2)  Once warmed up do you perform your bench press repetitions: 

 

 As fast as possible  At speeds less than  Mixture of maximum 

 (maximum)           maximum  & less than maximum 

 

 

3)  Once warmed up do you perform your deadlift repetitions: 

 

 As fast as possible  At speeds less than  Mixture of maximum 

 (maximum)            maximum  & less than maximum 
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4) During your training do you ever perform the squat at maximum speed with weights at or lower 
than 70% of your maximum (1RM)? I.e. “speed squats.” 
 

    Yes   No 

 

 

5)   If you answered yes to question 4, what loads (as a % of your maximum) do you use to perform 

your speed squats? (Please select more than one if appropriate.) 

 

     0-10%       10-20%       20-30%       30-40%       40-50%       50-60%       60-70%  

 

 

6)   During your training do you ever perform the bench press at maximum speed with weights at or 

lower than 70% of your maximum (1RM)? i.e. “speed bench press.” 

 

    Yes   No 

 

 

7) If you answered yes to question 6, what loads (as a % of your maximum) do you use to perform 

your speed bench presses? (Please select more than one if appropriate.) 

 

     0-10%       10-20%       20-30%       30-40%       40-50%       50-60%       60-70%  

 

8)   During your training do you ever perform the deadlift at maximum speed with weights at or 

lower than 70% of your maximum (1RM)? I.e. “speed deadlift.” 

 

    Yes   No 
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9) If you answered yes to question 8, what loads (as a % of your maximum) do you use to perform 

your speed deadlifts? (Please select more than one if appropriate.) 

 

     0-10%        10-20%       20-30%           30-40%        40-50%           50-60%            60-70%  

 

 

10) Do you ever include lower body plyometric drills (i.e. explosive jumping) as part of your power 

lifting training? 

 

    Yes   No 

 

 

11) Do you ever include upper body plyometric drills (i.e. rebound medicine ball throws) as part of 

your power lifting training? 

 

    Yes   No 

 

 

12) Do you ever include Olympic weight training lifts as part of your power lifting training? (Please 

select more than one if appropriate.) 

 

    No         Yes the Clean      Yes the Snatch    Yes the Jerk         Yes the high Pull  

 

13) Do you ever include elastic bands as part of your powerlifting training? (Please select more than 

one if appropriate.) 

 

    No             Yes for the              Yes for the         Yes for the            Yes for 

                          Squat                     Bench Press               Deadlift         Assistance Exercises 

 

 

    



 

220 
 

14) Do you ever include chains as part of your powerlifting training? (Please select more than one if 

appropriate.) 

 

    No             Yes for the              Yes for the          Yes for the            Yes for 

                          Squat                     Bench Press               Deadlift         Assistance Exercises 

 

 

    

15) Do you perform box squats as part of your powerlifting training? 

   No    Yes, less than               Yes, the same as             Yes, more than  

      Free Squats            Free Squats                  Free Squats 

 

 

16) Do you ever use “boards” when bench pressing as part of your powerlifting training? 

 

    Yes   No 

 

 

 

 

17) Do you use some form of periodization in your organizing powerlifting training? 

 

    Yes   No 

 

 

18) What assistance exercise do you believe best improves your squat? 

 

------------------------------------------------------------------------------------------ 
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19) What assistance exercise do you believe best improves your bench press? 

 

------------------------------------------------------------------------------------------ 

 

20) What assistance exercise do you believe best improves your deadlift? 

 

------------------------------------------------------------------------------------------ 

 

Please sign here to acknowledge that you have granted permission for your results to be included in 

an academic report. 

 

 

----------------------------------------------------------------------------------------------- 

 

 

Thank you for your assistance 
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Appendix II: Study One Semi-Structured Interview Schedule 

 

 

 

Question 1: Can you tell me a little bit about your background in powerlifting? 

 

Question 2: Do you think information on powerlifting training has changed recently? 

 

Question 3: Do you think the training practices of powerlifters have changed recently? 

 

Question 4: How would you describe your training practices? 

 

Question 5: Do your training practices change the closer you get to competitions? 

 

Question 6: Are there any training practices you perform that you think may be quite unique? 

 

Question 7: Are there any training practices incorporated by other powerlifters that you don‟t 

agree with? 

 

Question 8: How do you structure your powerlifting training? 

 

Question 9: How do you progress your powerlifting training? 

 

 

 

  

http://www.google.co.uk/imgres?q=rgu+logo&um=1&hl=en&safe=active&sa=N&rls=com.microsoft:en-gb:IE-SearchBox&rlz=1I7GGLL_en-GBGB371&biw=1280&bih=807&tbm=isch&tbnid=Vz7Um53sm-yEpM:&imgrefurl=http://www.angus.ac.uk/business/bamanagement.asp&docid=nRcOiSGSjV8-UM&imgurl=http://www.angus.ac.uk/business/_images/rgu-logo.png&w=421&h=100&ei=v86XUMeSF7OT0QWipYCYBQ&zoom=1&iact=hc&vpx=783&vpy=310&dur=171&hovh=80&hovw=336&tx=148&ty=52&sig=109866456589697877740&page=1&tbnh=42&tbnw=177&start=0&ndsp=23&ved=1t:429,r:21,s:0,i:136
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Appendix III: Derivation of equations of motion for the barbell, barbell + bands and 
barbell + chains, based on the work-energy principle 

 

Barbell:  

The work done on the barbell is equal to the sum of the change in potential energy and 

change in kinetic energy of the barbell respectively: 

 

𝐹 𝑑𝑧 =      𝑚𝑔 𝑑𝑧       +          𝑑    
1

2
𝑚𝑧 2   .  (1) 

Where F is the force applied, dz is the infinitesimal displacement in the vertical direction, m 

is the mass, g is the acceleration due to gravity, z is the vertical position and a dot over the 

symbol indicates time differentiation (thus 𝑧  is the vertical velocity and 𝑧  is the vertical 

acceleration). 

 

Dividing both sides of (1) by dt gives, 

𝐹 
𝑑𝑧

𝑑𝑡
 =   𝑚𝑔 

𝑑𝑧

𝑑𝑡
   +    

𝑑

𝑑𝑡
   

1

2
𝑚𝑧 2   , 

 

Carrying out time differentiation and using the chain rule for differentiation of the change in 

kinetic energy of the barbell gives, 

 

𝐹𝑧  =   𝑚𝑔𝑧     +    𝑚𝑧 𝑧 , 

Solving for acceleration gives,  

𝑧  =
𝐹

𝑚
  − 𝑔. (2) 

 

Barbell + Rubber Band: 

For the following equation it is assumed that the resistance caused by the rubber band is 

linear and depends upon the stiffness (k) and the displacement (z). The work done on the 

barbell and rubber band is then equal to the sum of the change in potential energy of the 

barbell, the change in elastic energy of the rubber band, and the change in kinetic energy of 

the barbell respectively: 

𝐹 𝑑𝑧 =   𝑚𝑔 𝑑𝑧   + 𝑑  
1

2
𝑘𝑧2   +  𝑑  

1

2
𝑚𝑧 2  .  (3) 

Dividing both sides of (3) by dt gives, 
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𝐹 
𝑑𝑧

𝑑𝑡
 =   𝑚𝑔 

𝑑𝑧

𝑑𝑡
   +

𝑑

𝑑𝑡
   

1

2
𝑘𝑧2    +    

𝑑

𝑑𝑡
   

1

2
𝑚𝑧 2  , 

 

Carrying out time differentiation and using the chain rule for differentiation of the change in 

elastic energy of the rubber band, and change in kinetic energy of the barbell gives, 

 

𝐹𝑧  =   𝑚𝑔𝑧     +   𝑘𝑧𝑧  +    𝑚𝑧 𝑧 , 

 

Solving for acceleration gives, 

 

𝑧  =  
𝐹  −    𝑘𝑧

𝑚
    − 𝑔.  (4) 

 

Barbell + Chain: 

For the following equation the mass of the chain added to the barbell is expressed as 𝛼𝑧, 
where 𝛼 is the mass per unit length of chain. The work done on the barbell and chain is then 

equal to the sum of the change in potential energy of the barbell, the change in potential 

energy of the chain, the change in kinetic energy of the barbell, and the change in kinetic 

energy of the chain respectively: 

 

𝐹 𝑑𝑧 =   𝑚𝑔 𝑑𝑧   +    𝛼𝑧𝑔 𝑑𝑧     +    𝑑   0.5𝑚𝑧 2   +   0.5𝛼𝑧𝑧 2   .  (5) 

 

Dividing both sides of (5) by dt gives, 

 

𝐹 
𝑑𝑧

𝑑𝑡
 =   𝑚𝑔 

𝑑𝑧

𝑑𝑡
    +    𝛼𝑧𝑔 

𝑑𝑧

𝑑𝑡
     +    

𝑑

𝑑𝑡
   

1

2
𝑚𝑧 2   +   

1

2
𝛼𝑧𝑧 2  , 

 

Carrying out time differentiation and using the chain rule for differentiation of the change in 

kinetic energy of the barbell, and the product and chain rule for differentiation of the change 

in kinetic energy of the chain gives, 

 

𝐹𝑧  =   𝑚𝑔𝑧     +    𝛼𝑧𝑔𝑧       +     𝑚𝑧 𝑧       +    
1

2
𝛼  𝑧 3  +   2𝑧𝑧 𝑧  ,      
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Rearranging and using 𝑧  and 𝑧  as a common factors gives, 

 

𝑧 𝑧  𝑚 +  𝛼𝑧 = 𝑧  𝐹 − 𝑔 𝑚 + 𝛼𝑧 −  
1

2
 𝛼𝑧 2 , 

 

Solving for acceleration gives, 

𝑧 =  
𝐹 −   

1
2 𝛼𝑧 2   

𝑚 + 𝛼𝑧
− 𝑔.  (6) 
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