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ABSTRACT 

This research investigates communications network routing 

procedures, based on distributed learning automata concepts for 

circuit and packet switched networks. For this application, the 

learning automaton is shown to be an ideal adaptive control mechanism, 

with simple feedback and updating strategies which allow extremely 

practical implementations and perform very close to the desired 

optimum. 

In this thesis, the nature of learning automata routing schemes 

are explored by analytical and computer simulation techniques, 

primarily developing an elementary understanding of the automata 

routing and adaption process. Using simple circuit and message 

switched networks the conditions for minimum blocking probability and 

average delay are established and compared with the equilibrium 

behaviour of learning automata operating under alternative reinforcement 

algorithms. 

Later, large scale simulations of real networks are used to 

demonstrate and relate the learning automata scheme to existing 

routing techniques. These experiments, which are performed on 

sophisticated simulation packages produced for this study, take as 

examples hierarchical and general structured telephone networks and 

packet switched communications networks configured with both virtual 

call and datagram protocols. In addition, studies under failure 

mode conditions, including link, node and focussed overloads, 

conclusively demonstrate the superior performance afforded by the 

learning automata routing approach. 
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CHAPTER 1 

REVIEW OF LEARNING AUTOMATA 

1.1 Introduction 

Learning as defined inis described as any 

permanent change in behaviour resulting from past experience, 

a learning system therefore exhibits the ability to improve on 

previous operations with regard to some well defined 

performance criterion. The automaton approach to 

learning follows logically from this theme, whereby the 

learning automaton interacts with a random environment, 

improving on past performance by suitably varying the 

output strategy in relation to the environmental reaction. 

Typically a learning automaton operates in such a 

manner as to choose an optimal action from an allowable set 

and to apply the selected action to a random environment. 

In turn, the environment responds with a feedback signal 
which initiates an up-dating of the automaton state and 

consequently the future action selection process. 

Consider the automaton/ environment configuration as shown 

in Figure 1.1. This shows an automaton capable of 

performing r-actions, operating on a single random 

environment which in general is a media of which little or no 

apriori information is available. Further, the operation 

of the combination is at discrete intervals of time, the action 

and subsequent response at stage n leading to the automaton 

state of stage n+1. 

1. The Learning Automaton 

The learning automaton (Figure 1.2a) as considered 

in this study may be regarded as a device with specified 

input and output ports, supplemented by an internal 

mechanism 
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mechanism responsible for modifying and recording an 
internal state. 

To study the operation of the automaton in more detail, 

the quintuple A (n) is defined 

A ýn) - 
(21 

2, (P. F (ß, P), G(cP) 

The constituent components of A(n) are as follows: - 

0: Input Set 

The input to the automaton ß(n) at stage n is an 

element of the set 0 and is normally termed the response 

ß(n)E ß>> ß2 ... 
The exact form of this response will be dependent on the 

nature of the environment, i. e. , discrete or continuous, 

as described more fully in a later section. 

a: Output Set 

The output or action a(n) of the automaton at any 

instant n is a member of the finite set a. 

a(n) E aI , a2 ... a } P: State Set 

The state of the automaton at n, denoted by cp(n), is 

also a member of a finite set <p. 

q (n) E 
tý, 

lip? ".. ps sr 

In effect, the state represents the memory of the automaton 

and records the past experience. 

F ((n), (n)) : Transition Function 

The transition function F provides a means of 

determining the next state of the automaton cp(n+l), given 

the response /3(n) and the current state cp(n). 

q(n+1) =F 0(n), cp(n) 

The 
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The role of the transition function is that of an up-dating 

operation such that the automaton state can be modified to 

reflect the experience gained through the received response. 

G (P (n)) : Output Function 

The output function G provides the necessary mapping 
between the state of the automaton P(n) and the performed 

action a(n). 

a(n) =GP (n) 

The above description provides an extremely general 

introduction to the learning automaton which can exist in 

several forms. Further classification and development of 
the concept will be present later along with suggested 

application areas. 

1.3 The Environment 

The term environment is used in learning automaton 

studies to describe some random media on which the 

automaton will operate. Normally, insufficient or no 

apriori information is available to describe the dynamics of 

this media, and it is under these circumstances that the 

learning automaton is an attractive alternative to classical 

techniques. For this study, the environment may be 

def ined mathematically by the triple E (n), Figure 1.2b. 

E (n) = a, (3, c 

where a represents the input set, ß the output or response 

set and c the penalty set. 

A further classification of environmental types leads 

to the definition of three response models: 

1P -model 
2 Q-model 

3 S-model 

In 1 
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In the P-model the response to an action is of a binary 

nature, i. e. ,1 or 0, penalty or reward.. If, however, 

the response is continuous in the region (0,1) then the 

environment is referred to as an S-model. Similarly, 

the Q-model is suited to the intermediate case when the 

response can be one of a finite set of discrete values in the 

range (0,1). 

a: Input Set 

The input to the environment a(n) corresponds to the 

performed action of the automaton which is a member of the 

set a. 

a(n)E a1 1 a2, ... a 

0: Output Set 

In the conventional automaton/ environment configuration, 

the output of the environment ß(n) is the received response 

of the automaton. As described previously the exact 

nature of this is dependent on the environment but in general 

ß(n) is an element of the set P. 

0 (n)E ß1, ß2 } 
c Penalty Set 

In the operation of the described learning system, the 

environment reacts to the performed action with a response 

which is characterised by the penalty set of the media. 

The penalty set therefore indicates the desirability of an 

action, the media responding with a penalty signal or 

penalty weight depending on the environmental model. 

For the P-model, the penalty set dictates the 

probability that a given action will receive a penalty response 

ß(n) = 1. The penalty set c therefore consists of r- 

penalty 
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penalty probabilities. 

where 

C= C1, C2, .. cr 

cri ] ci = prob [ ß(n) =11 a(n) 

which is the probability that given action a was performed, 
the response will be a penalty. 

The penalty set for the S and Q-models are best 

described by a family of distribution functions, one for each 

action. The response to an action will therefore be a 

random variable limited to the range (0,1). For the S 

and Q-models the penalty sets are denoted by 

c= (s1, s2, .. sr) 
{ql, q2, .., qý} 

where si is a continuous distribution function of the penalty 

weight Si and qi is a discrete function for the penalty weight 
Qi. 

In this study of communication network routing, all 
three response models play a significant role, the P-model 

in circuit switched networks and both Q and S-models in 

the store and forward type of network. A complete 
discussion of these aspects is presented in later chapters. 

1.4 Classification of Learning Automata 

Learning automata are classified according to the 

nature of the functions F and G which can best be 

considered as matrix operators, transforming co(n)- cp(n+l) 

and cp(n)--3 a(n). This will be demonstrated and used to 

illustrate the main types of automata in the following 

examples. 

If the elements of both matrices are purely 

deterministic, 
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deterministic, i. e. , the operation of the automaton can be 

uniquely described by a logical operator then the device is 

defined as fixed structure deterministic. Figure 1.3a 

gives an example of such an element including the desired 

form of the F and G operators. Alternatively the 

transition probabilities (valued at 0 or 1 in the 

deterministic automaton) can be allowed to take on any 

value (subject to row and column sum constraints), thus 

describing an automaton which is random in nature and 

consequently classified as a fixed structure stochastic 

automaton. A general example of this type is shown on 
Figure 1.3b, the matrix element pij representing the 

probability of a transition from state i to state j. 

Fixed structure learning automata were first considered in 

an original paper 
(2) 

and developed further as reported in(3) 
(4) 

using the technique of Markov chains. 

In comparison variable structure stochastic automata 
have the potential of greater flexibility and application, the 

concept being initially proposed in(5) . This type of 

automaton is noted by the ability to modify the elements of 

the transition matrix by means of an up-dating or 

reinforcement algorithm. Such an algorithm normally 

exists in one of two forms 

(a) state transitional form 

or 

(b) total state form, 

the latter being used in conjunction with the state probability 

vector p(n), governing the choice of state at stage n. 

In most cases the state set relates directly to the action set 

(r = s) which allows the state probability vector to be equated 

with the action probability vector. Variable structured 

automata have been extensively investigated with the benefit 

of / 
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of mathematical tools such as \Tarkov process theory and in 

addition the results from extensive computer simulation 
(6) 

experiments 

1.5 Stochastic Automata with Variable Structure 

Stochastic Automata with Variable Structure (SAVS) as 
detailed in the previous section are best described in terms 

of the state probability vector p (n) which can also be the 

action probability vector. This vector relates to the 

probability that at instant na certain action will be performed. 

where 

(n) P (n) = 
{1n2n. 

.. Pr 

p. (n) = prob [a(n) = ai ] 

The reinforcement scheme is utilised to continually revise 

this vector as part of the learning process. By convention, 

the reinforcement scheme is represented by the function T 

such that 

P(n+1) = T(P, a, ß)" 

As shown, the up-dated vector is a function of the current 

action probability set, the performed action and received 

response. 

For further consideration of the SAVS the 

re-introduction of A (n) as 

A in) - aý ßýp, T (p, 
' 

is a more suitable and indeed more clear form (Figure 1.2c). 

Again a and ß represent the action and response sets with 

p and T describing the action probability vector and 

reinforcement algorithm respectively. 

Clearly, the reinforcement algorithm plays a crucial 

role in the operation and behaviour of a variable structure 

automaton / 
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automaton and as such must be given a great deal of careful 

and detailed consideration. Classification of such 

algorithms are normally carried out on the basis of their 

performance (to be discussed later) or on the nature of the 

function used in the scheme. If, for example, p(n+l) is 

a linear function of p(n), then the scheme is obviously termed 

linear . In contrast, schemes involving higher orders of 

p(n) are described as non-linear(7) with a further class 

of algorithm, the hybrid scheme 
(8) 

combining linear and 

non-linear components. In the majority of applications, 

the linear schemes are of the greatest interest, the non- 

linear and hybrid algorithms only giving slightly better 

convergence rates under special circumstances. 

Several variations of the linear algorithm have been 

considered including 

LR-i linear reward inaction LR-r linear Reward reward 

(different degrees of reward) 

LR_P linear reward penalty L 
PP 

linear penalty Penalty 
- 

(different degrees of penalty) 

LI_P linear inaction penalty 

In this thesis, emphasis is placed on the LR_I and LR-P 

schemes as they have in the past been shown to be superior 

to the alternatives. Two specific reinforcement 

algorithms are now considered, the P-model LR_P(8) and 

. ýi-- r' --- -a.. 
1 T (9) 

tine a-mou' iL 
R-I ' 

P -model LR 
-P 

for r-Actions 

Reward on a(n) = a, ß(n) =0 

pj#. I 
(n+1) _ (1-a) p3 (n) 0<a, b<1 

p, (n+1) = 1- pj (n+1) 

Penalty ý i#i 
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Penalty on cr(n) = aj ß(n) =1 

p! (n+1) _ (1-b)p (n) 

pj, (n+1) = pj (n)-+ J_b1 ý p- (n) 
r- 

.. . 1.1 

To implement the LR_i algorithm, the punishment 

coefficient b is set to zero, effectively rendering 
the penalty sections of the algorithm in-operative. 

S-model LR-I Algorithm for r-Actions 

a(n) = a;, 9(n) = S; 0< S<< 1 

p. (n+1) = p, (n)+a(1-SL) [1-p(n)] 
pj#L (n+1) = pj (n) -a(1-SL)p, (n) 0<a<1 

.. . 1.2 

1.6 Performance Criteria 

In order that the behaviour of various learning schemes 

can be compared and assessed, it is necessary to set 

quantative norms of behaviour. One convenient and 

frequently used measure is the average received penalty 

M(n) which is defined as 

M(n) -EC ß(n) I p(n)] 

pt (n) cL 

For most learning situations the initial action probabilities 

will be un-biased, i. e. , equal and therefore the initial 

expected penalty M. is given by 

1 
Mo -ý 

-L= 1 

In studies of learning automata, the asymptotic behaviour of 

M(n) relates to the convergence properties of the different 

reinforcement algorithms which can be classified according 

to the following behavioural norms. 

Expedient / 
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Expedient 

A learning automaton is described as expedient if 

convergence is such that 

lim n-+ co E[ M(n)] <M0 

This corresponds to the automaton evolving such that it does 

better than a purely random structure, attempting each 

action with equal probability. One example of this 

behaviour is the LR_P algorithm which theory and 

simulation has shown to be expedient when operating on a 

statistically stationary environment. 

Optimal 

If the behaviour of the automaton is such that 

1im n-ºoo E [M(n)] = cm where cm= Min [ci 

then the device is described as optimal. This is the case 

when the automaton converges to consistently select the 

action which corresponds to the minimum penalty probability. 

In practice however, an optimal automaton is not truly 

realisable, the LR_I scheme for instance being best 

described as E optimal. 

lim n-- coo E [M(n)] 
< cm E where E is small 

positive value 

1.7 Summary and Applications 

The aim of this chapter has been to provide a general 

review of the form and behaviour of learning automata, 

considering both fixed and variable structure types. 

Particular emphasis has been placed on the variable 

structure stochastic automaton with details provided on two 

of the most important reinforcement schemes, the P-model 

LR-P and the S-model LR-I. Additional sections have 

discussed 
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discussed the nature of the random environment and 

considered behavioural norms for the various schemes. 
Several application areas are seen as suitable for the 

stochastic learning automaton, generally involving control 

and allocation strategies. One of the most important and 
best suited is the adaptive routing problem for circuit and 

packet switched communication networks, both of which may 
be regarded as distributed stochastic allocation problems. 

Typically, independent automata at intermediate nodes 
(Figure 1.4a) select an outgoing link for transmission 

(action set) and dependent on the outcome of the operation 

(response) the automata are up-dated. A further allocation 

problem concerns the optimal scheduling 
(10) 

of jobs in a 

multi-processor computer system (Figure 1.4b), the 

goal of the automaton being to maximise the job throughout 

by placing appropriate jobs on a suitable processor. 

In adaptive control, the use of automata as optimising 

components for multi-modal performance indices has been 

studied. Experiments using multi-modal functions 
(11) 

and plant 
(12) 

have shown the technique to be clearly suitable 

for locating global stationary points, even when severe 

noise masks the function which could possibly consist of 

several maximum and minima (Figure 1.5a). The use of 

hardware learning automata also shows great promise 

particularly in adaptive control techniques such as model 

reference schemes (Figure 1.5b) where a need exists for a 

rapid global searching component. In this area the use of 

stochastic processing elements 
(13) 

has proved an extremely 

efficient design tehcnique and using suitably developed 

components, multi-state automata have been constructed(14) 

11 
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CHAPTER 2 

NON-AUTONOMOUS ENVIRONMENTS 

2.1 Introduction 

In Chapter 1, the concept of a random environment 

was introduced merely in sufficient depth to explain the form 

and operation of a learning automaton. As presented, 
the environment was defined to represent some random media 

on which the automaton operates, typically reacting to the 

performed actions with a random response. The 

environment was therefore characterised by the triple E (n) 

which includes a the action set, 0 the response set and 

c the penalty set. 

E (n) = 

In this chapter, a more detailed study of the 

environment is pursued, concerning the nature of the penalty 

set c and leading to the definition of environments which 

help in the understanding of practical automata applications. 

The penalty set described the statistical properties of 

the random response issued by the environment for each 

member of the action set. As shown previously, the 

exact nature of the response is dependent on the type of 

environment and consequently the penalty set is similarly 

connected. For the P-model, a set of penalty probabilities 

was sufficient, whereas the Q and S-models required 

distribution functions to fully describe the response behaviour. 

As of yet, the statistics of the penalty set have been 

thought of as stationary, the response characteristics of the 

media remaining constant for the duration of the operation. 

These environments are suitably termed stationary 

environments. However, in most learning automata 

applications, the environmental characteristics will vary 

with / 

1" 



with time and hence the term non-stationary environment 
is adopted. 

Non-Stationary Environments 

Non-stationary environments are characterised by a 

penalty set c which varies with time. 

Hence 

c=c(n) 

One simple example of this is the switched non-stationary 

environment 
(15) 

where the penalty probabilities of a two 

action automaton are switched as shown in Figure 2. la. 

Under these conditions the point of interest is the mean 

adjustment time, i. e. , the average time required by the 

automaton to reconverge, given the new conditions. 

A more elaborate non-stationary environment can be 

represented by a sequence of switches (Figure 2. lb) in 

which a range of penalty sets are interswitched according to 

some profile. This might typically be the case in a 

telephone network with the traffic load varying according to 

the time of day, e. g. , peak and off-peak periods. 

Non-Autonomous Environments 

A. further and very important class of non-stationary 

environment, is the non-autonomous environment where 

the penalty set is influenced by the actions of the automaton. 

c=c(a) 

The nature of a non-autonomous environment can best 

be described with reference to the following simple example. 

Consider a 2-action automaton selecting between two people 

to carry out an undisclosed job. The automaton allocates 

a person, who carries out the task, incurring a penalty 

response in relation to how well the job was performed. 

This 

18 



This response will obviously depend on the skill of the 

individual, and since the two workers are different, the 

automaton should converge to a suitable allocation strategy. 
However, in a dynamic problem such as this, the ability of 

a person to carry out some function is also dependent on the 

rate at which the individual is required to work. As a 

person is selected to do the task more and more, fatigue 

sets in which decreases his ability to satisfactorily carry out 
the work, with a resulting increase in penalty responses. 
In contrast, the alternative worker who is chosen less, is 

better rested when required to do the job and consequently 

receives more favourable feedback. 

In the routing problem, the network represents a 

non-autonomous environment when an automaton routing 

controller is used to select an outgoing link. By choosing 

a certain link with a high probability, that channel obviously 

becomes less attractive due to increased delay (or call 

blocking), caused by the higher traffic rate. On the 

otherhand, the alternative channel which is not used for an 

interval of time, is handling less traffic and therefore 

produces a better response. 

For the remainder of this chapter, the nature of the 

non-autonomous environment and the interaction with the 

LR-I and LR-P automata are studied. This is further 

supplemented by the consideration of two simple non- 

autonomous environments which have been abstracted to 

gain an understanding of the process. Of the two proposed 

models, Model A is an elementary environment in which 

the penalty probabilities cl (n) and c2(n) are incremented 

and decremented according to which action is performed. 

In Model B. the penalty probabilities are assumed to be 

monotonically increasing functions of the automaton action 

probabilities, 

19 



probabilities, which gives the desired behaviour of a high 

action probability resulting in a correspondingly high penalty 

probability and vice-versa. Finally, a series of 

simulation experiments verify the results shown for the 2- 

state P-model automaton for the various configurations of 

environmental model and learning algorithm. 

2.2 Behaviour of a Variable Structure Automaton in a 
Non-Autonomous Environment 

The behaviour of the variable structure automaton 

operating in a non-autonomous environment is considered with 

reference to the steady state behaviour of the LR-I and LR-P 

reinforcement algorithms. For convenience, a 2-state 

automaton interacting with a P-model environment is 

investigated, although the results are generally applicable to 

the r-state case and for the alternative response models. 

2 -Action LR-I Algorithm 

For 2 actions, the LR_I reinforcement algorithm 

may be expressed as 

p (n+1) = pl (n)+ap2 (n) a(n) = aý Reward 

p2(n+1) = p2(n)-ap2(n) ... 2.1 

p1 (n+1) = p1 (n) a(n) = a1 Penalty 

p2(n+l) = p2(n) 0<a< 1 

For a non-autonomous environment 
(16), 

consider the 

expected equilibrium condition of the LR-I automaton. 

Consider the sequence 

P, (0), Pl (1) 
".. p (n) pý (n) 

and defining 

Ap1 (n) E pl (n+ 1) - pl (n) pl (n) 

Using / 

20 



Using Equation 2.1 we write the expected p (n+l) 

Er pl (n+ 1) ]= p1 (n)+ap2 (n) p1(n) E [di(n). 1 
- app (n) p2 (n) ECd2 (n) Lý 

Op1 (n) = ap l(n)p2(n)E1 
di = 1-c, 

ap 1 
(n) p2(n)E 

[c2(n) 
-cI (n) I P, (n) ]... 2) .2 

If the process p1 (n) converges in such a way that 

lim n-+oo Apt (n)--& 0, then Equation 2.2 yields some very 
interesting convergence properties. Considering the 

zeros of the equation we find 

(i) pl (n)-'0 iI(n) 
(ii) p2 (n) -ý 0 p1 (n) 1 

(iii) E [C2(fl)_C1(fl) Ip`i (n)]-+ 0 

The first two conditions arise due to the conventional 

absorbing states of the LR_I algorithm which as stated 

previously is c optimal in a stationary environment. The 

third possibility exhibits a completely different behaviour 

since convergence is related to the evolution of the penalty 

probabilities. In the limit, condition 3 is such that an 

equalisation of the expected penalty probabilities is obtained. 

E [c1(n)j1] 
=EL c2 (n) I Pl J 

2-Action LR_ 
P Algorithm 

(17) 
given ' '. 

. . 2.3 

Turning to the LR 
_P 

algorithm a similar result is 

With the 2-state LR_P reinforcement scheme. 

Pi (n+1) = p1(n)+ap2(n) cr(n) 

p2(n+1) = p2(n)-ap2(n) 

Pl (n+1) = P, (n) -bp1(n) a(n) 

p2(n+l) = p2(n)+bp1 (n) 

Therefore 

= al 

a1 

Reward 

. 2.4 

P enalty 

0<a, b<1 
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Therefore 

E pl (n+1) 

for a=b 

A'1 (n) = aE [p 
2 

(n) c2 (n) - P1 (n) c1(n) P(n)] ... 2.5 

Again considering the limit as n --oo, L1p1 (n) 0 we find that 

E [p, (n) c1(n) p-1 (n)] =E [P2(n)c2(n) `P'1(n)] 
... 2.6 

Whereas the LR 
-I 

automaton converged such as to equalise 

the penalty probabilities, the LR_p algorithm is seen to 

balance the penalty rates, pi cj 

r-Action LR-I Algorithm 

The result for the 2-state LR-I automaton may be 

generalised for the r-action case. From the r-action 

LR-P algorithm Equation 1.1, we can write for r-actions 

Opi (n) 

i 
(n)-ýs0 'ýý " ; *ý As n-,, oo, Op 

2.7 

pj c; = cý p. ... 2.8 
i 

This indicates that for the r-action case each penalty 

probability is equalised. 

E [ce]= E [cb] 

r-Action LR 
-P 

Algorithm 

a, b 1,2 7 ... r 

The operation of a multi-action L1 
ýalgorithm 

in a 

non-autonomous environment is shown in 
}, 

giving 

Api (n) =a pi cý _pic2.9 

Again this confirms the behaviour of the LR_P algorithm 

= pl (n)+ap2pl E dl -apl p2E d2 +bp2 E- bE c [c21 
11 

= p1(n)+aE [P2(n) c2(n) -p1(n) c1(n) Pl (n) ] 

apý rý pi cJ -cý p1 

=a pj pi di -api pj di 

I 

for r-actions giving 

E [paca] l 
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E C= EF Pbobl a b= l, 

SL 
R-I 

Algorithm 

For the 2-action SLR-I algorithm, a similar condition 
to the P-model case is noted 

apt (n) = apt (n) [1p1(n)] E [S2(n)-S1 (n) 
.. 2.10 I1 

taking lim n-+oo, Ap1 (n)-), 0 we obtain 

E [s1 (n) I'Pl (n)] =E [S2nIi (n) 
...?. 11 

Physically this corresponds to the equalisation of the expected 

penalty weights. 

In 
(17) 

a mathematically rigorous treatment of the L 
R-P 

automaton operating in a non-autonomous environment is 

presented. The significant contribution of this work is to 

show that the process pi (n) converges to a normal distribution 
* 

with mean p. Furthermore, it shows how the variance is 

influenced by the learning coefficients a and b, high values 

giving large variance. The matter of learning coefficients 
however, is an extremely complex one, the values representing 

a trade off between steady state accuracy (variance) and 

convergence rate. 

2.3 Environment Model-A 

This model represents an initial attempt 
(16) 

to abstract 

a non-autonomous environment suitable for modelling the 

behaviour of a telephone network under dynamic routing 

schemes. 

For 2-states the environment is as follows: - 

Given a (n) = a1 

cl (n+1) = c1(n)+g1 

c2(n+l) = c2(n) -o 2 
0<ý., e. < 1 

11 
.. 

2.1 2 

Given a(n) = a2 
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Given a(n) = a2 

c1 (n+1) = c1 (n) -cp1 0<c, (n+1) e, - 1 

c2(n+1) = c2(n)+A2 

The above expressions show the selection of an action to 

cause an increase in the related penalty probability and a 

subsequent decrease in the alternative. In general, 8i 

and pi may be functions of pi and ci, but for simplicity, 

they are assumed to be constants. 

It is shown 
(16) 

that for the described environment, the 

following condition exists. 
N-1 

E [c2(n) 
-cl (n) I Pi (n)1 = c2(0) -c1(0)+((ý1 +e2)n- (e1+e2-+"PI+. 02) Pl(n) 

Again considering E [c2-c1] --ý. 0 as lim n o0 

then 
N 

N-1 

p, (n) -ý 
n= 1 

e2-ýT01 

n=1 

81 +62-hpl -hp2 

e0N+0, 
E[ p1 (n)] 

e.. +e 
1' 
Rp . 2.13 

12 14.. (p2 

The sample average of pl (n) is therefore seen to converge to 

a value dictated purely by the characteristics of the abstract 

environme-it. Additionally, expressions for the 

conditional expectancy of the penalty probabilities are given 

by 

_ 
el ez-`pl`P2 

E [c1(n)1P1(n)j cl (0)+ 
9 +62_g01 n 
1 

... 2.14 

I L. 

E If, (n) = c20+ 8[c2(n) 1212 

The above equations show the penalty probabilities to 

assymptotically converge towards a probability of 1 or 0, 

dependent on the relative values of 01 02 and p 1'P2* For 

example, with 01 e2<'°1 P2 both probabilities decrease 

towards 

8162 -`01 'P2 
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towards 0 and in the other extreme, 61 62 >ý1c02 convergence 

is towards 1. 

2.4 Environment Model B 

In an alternative approach to abstract a non-autonomous 

environment, a model is proposed in which the penalty 

probabilities are assumed to be functions of the action 

probability set. 

ci (n) = F{p(n)/ 

Again considering the 2-state case, the penalty probabilities 

are chosen to be only a function of the corresponding action 

probability. 

cl (n) - k, pm (n) 

c2 (n) = k2p2 (n) 
. 2.15 

As shown previously, convergence of the LR_I automaton is 

such that 

E [ci(n)1(n)] =E 
[c2(n)(n)1 

giving 

Pl ... 2.16 

Similarly for the LR-P algorithm we expect convergence 

such that 

klpm = k2p2 p2 = 1- P1 

ý, m ýl "_2 

m 
l__, 

+ mjk 2 

E [2c2 I E [11j1] = 

giving 

Pl 

m"1 m"1 kI p1 k2p2 

. JL. 

Equations 

rtt. l 
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Equations 2.16 and 2.17 give the expected steady state 

action probabilities for the LR-I and LR-P automata 

operating on the specified environment. Further, this 

behaviour is illustrated on Figures 2.2a and 2.2b which 

show convergence diagrams for both schemes in an 

environment with m=1. 

Clearly, the behaviour of both schemes can no longer 

be classified according to the conventional norms of behaviour 

listed in the previous chapter. In the non-autonomous 

environment the optimal automaton is one which converges 

to give the minimum average penalty. Returning to the 

linear environment we write the average penalty M(n). 

M(n) = pici 

_k 
Pm+1+k +1 

l pi 2P2 

The true minimum average penalty is obtained by 

dM==O 
dp1 

this yielding 

Pilo 
ý 

ý 
mV l'1 + mj k2 

. . 2.18 

. . 2.19 

This equation gives the action probability for action 1 which 

results in the minimum average penalty and thus corresponds 

to the optimum output strategy of an automaton operating in 

the specified environment. Comparison with Equation 

2.16 indicates the LR-I automaton to be truly optimal, 

the LR-P tending to be minimally sub-optimal. 

2.5 Experiment Results 

Using a computer model(18) of a 2-state automaton, 

the various combinations of reinforcement algorithms and 

non-autonomous 
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non-autonomous environments were explored. These 

included LR-I/ Model A, LR 
-II 

Model B and 
LR 

_P% 
Model B, the results providing plots of the action and 

penalty probabilities against number of iterations. 

Experiment 1(a) LR_I/Model A 

In this experiment, the LR_I/Model A configuration 

was investigated, the run producing results as shown on 
Figure 2.3. 

a 8 1 
8 2 P1 'P2 

Sample 
A 6e -ý ý 121 verage 

0.02 0.04 0.02 0.01 0.05 0.25 3x10 
4 

As predicted by the theory, the action probability sample 

average tends to a value dictated by the environmental 

parameters 6i and pi. In this case, a sample average 

of 0.246 is obtained, this giving good correlation with the 

theoretical value of 0.25. From Equation 2.14 it was 

shown that both cis should tend to 0 or 1, depending on 

the relative values of 6i and pi. Again this is supported 

by the results, with both penalty probabilities tending to 1 

in 700 iterations. 

Experiment 1(b) LR 
_I/ 

Model A 

As in the previous run, the LR 
_I/ 

Model A configuration 

is considered, this experiment using an alternative set of 

environmental parameters. 

a8 82 X01 ý2 
Sample 
A 8182 -cD1 2 verage 

0.02 0.01 0.05 0.04 0.02 0.75 -3x10 
4 

The results from this run are shown in Figure 2.4 and 

present the alternative action to Experiment 1(a) . This 
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particular experiment shows extreme variance on the penalty 

probability graph which can be explained as follows. As 

the penalty probabilities converge towards zero, the learning 

automaton receives a considerable number of rewards and 
because the up-dating scheme is Reward Inaction, there is 

continual modification of the action probabilities. In the 

previous example, since convergence is to 1, the high 

number of penalty signals are ignored by the LR-I 

reinforcement algorithm. 

Experiment 2 LR_I/Model B 

Experiments 2 and 3 are used to show the 

characteristics of environmental Model B with m=1. 

In this example, the LR_I automaton is used, the run 

producing results as shown in Figure 2.5. 

a k1 
ý 

p1 

0.02 0.2 0.875 0.814 

In accordance with the theory, the penalty probabilities are 

seen to converge to equal values (given variance) with the 

action probability pl converging to a value dictated by the 

environment coefficients and k2. 

Experiment 3 LR 
_P/ 

Model B 

This experiment presents the LR_P/Model B 

combination, the results being displayed on Figure 2.6. 

a b k2 
ý 

P1 

0.02 0.02 0.02 0.875 0.677 

In / 
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In the previous experiment, the equalisation of the penalty 
probabilities was demonstrated by the LR_I%Todel B pair. 
This experiment confirms that in the same environment, 
the LR_P algorithm operates to equalise the penalty rates. 

p1 ý1 p2c2 

2.6 Conclusions 

In an attempt to describe a practical automaton/ 
environment combination, the concept of an non-autonomous 

environment has been introduced. The fundamental 

property of such an environment being the relationship 
between the penalty and action sets, the action selection 

process of the automaton bearing direct influence on the 

environmental response, as is the case in many practical 

applications. 

This chapter has investigated the behaviour of the LR 
-I 

and LR-P reinforcement algorithms, showing the convergence 

conditions in a general non-autonomous environment. 

Further studies have resulted in the abstraction of two simple 

non-autonomous environments to demonstrate the operation of 
the learning schemes and also as an initial attempt at 

modelling the routing operation of the automaton. A first 

elementary non-autonomous environment was implemented in 

the form of Model A. Although this particular model 

proved unrealistic convergence of the penalty probabilities 

being to either 1 or 0, the expected convergence of the 

LR 
-I 

automaton was clearly demonstrated. Model B on 

the otherhand, represents a more realistic approach to a 

non-autonomous environment, the penalty probabilities 

taking on values in the range (0,1), dictated entirely by the 

environmental parameters. 

F rom / 
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From this chapter, several conclusions can be drawn 

regarding the non-autonomous environment and the convergence 

behaviour of the LR-I and LR-P reinforcement algorithms. 

1 In practical applications such as network 

routing, the non-autonomous 

environment provides a suitable 

framework to model the behaviour of 

the adaption process. 

2 The operation of the LR 
-I 

automa ton 

in a non-autonomous environment is 

such that the penalty probabilities ci 

are equalised. The LR 
-P 

automaton also converges to a balance, 

which in this case is the equalisation 

of the penalty rates pi ci . 
3 An optimal automaton operating in a 

non-autonomous environment is one 

which operates to minimise the 

average expected penalty. In 

general, this need not result in the 

automaton converging to a specific 

action. 
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C HA--P-TER 3 

CIRCUIT SWITCHED NETWORKS 

3.1 Introduction 

The purpose of this chapter is twofold; to provide a 
general introduction and review of circuit switched networks 
and also to consider the requirements and form of a 
simulation package, suitable for carrying out experimental 
studies of circuit switched networks and routing schemes. 
In the first sections the network structure and components 
are described, progressing to an overview of the operating 
principles and a discussion of existing routing techniques. 
Later sections are concerned with computer modelling of 

t' 

circuit switched networks and describe two custom prepared 

packages, one designed for a small minicomputer and a 
further, more sophisticated version to run on a mainframe. 
In discussing both simulators, emphasis is placed on the 

program and data structures which utilise some novel 

approaches to the problem of network simulation and in 

addition offer a complete range of services for detailed 

experiments. 

A telecommunications network is a means for providing 
distributed users with complete connectibility, thus 

permitting the transmission and reception of information 

between any end pair. In a telephone network, this 

information is conveyed by a voltage analogue along an 

electrical path between two subscribers with transducers at 

both ends carrying out necessary conversions between 

sound and electrical energy. The telephone network may be 

described as a circuit switched network since individual lines 

in the network are switched to form a path suitable for 

communication, the network providing full connectivity 

without direct links between all stations. 

In / 



In general, a circuit switched network provides 
service through a collection of exchanges or switching 

centres connected by trunk groups, each group containing 
a number of lines which are capable of providing a 

communication path. Operating with these resources, 
the network forms connections by electrically switching 
lines to set up a complete circuit between the source user 
(the caller) and the destination user. Normally this 

operation involves a special signalling message which 
traverses the network, holding open lines through which it 

has passed and on formation of a complete circuit allocates 
it for communication. The call then has the sole use of 
this path for the duration, the lines only becoming available 
for further calls when the caller releases the circuit. 

Routing in a circuit switched network is the decision 

mechanism which determines how the signalling message 

proceeds through the many possible path combinations in 

the network. For maximum network performance an 

optimal routing scheme is required, i. e. , one which 

operates to minimise the chance of a call attempt being 

rejected when the routing signal becomes stranded at an 

intermediate node. To quantify this problem, the call 

blocking probability is defined as the ratio of calls rejected 

to the total number of calls attempted. 

Already in this chapter the telephone network has been 

referred to as an example of a major circuited switched 

network. In addition, several other networks operate on 

a circuit switching principle including the Telex network, 

the DATRAN(19) computer network and military 

communications networks such as Ptarmigan 
(20). 

This 

final type of network is a prime contender for adaptive 

routing, since the tactical communications environment 

offers 
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offers conditions which are highly non-stationary in terms of 
network topology and traffic. 

3.2 Network Components and Operation 

The fundamental function of a communications network 
is the provision of a switched path facility for the transmission 

of information. In very general terms the constituent 
components of a network should include; - 

Switching Centres or Nodes 

A network node may be considered as an intersection of 
several trunk groups with an internal mechanism for 

performing a switching function to connect call circuits. 
For a general network with N nodes, the s etk is the 

collection of nodes, each uniquely identified by a numerical 

address. 

N =51,2, . } 
Trunk Group 

The trunk group Tip , connecting nodes i and j, 

consists of I lines. A set i defines the groups in 

the network. For this network, call attempts from both 

nodes have equal claim on the resource, the available 

lines forming a common pool for i and j. 

T= 
{T12'Tt3 

... Tnn-11 T NxN 

Terminal Equipment 

The terminal equipment in a network serves a dual 

role, acting as a transducer between the user and network 

and also operating to generate and receive network control 

signals. In the simple network shown on Figure 3.1, 

the terminal equipment attached to a node forms a local 

network effectively feeding traffic to the higher level trunk 

network. The routing problem is in the domain of the 

trunk f 
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trunk network operations and consequently the local network 

and terminal equipment can be regarded as a collection of 
traffic sources and sinks. 

C all 

A call of class i, j is a session of communication 
between the calling node i and some node j. All calls 
handled by the system constitutes the network traffic. 

Route 

A route R1j, from node i to j, is an ordered sequence 

of lines Tia, Tab, "'" Tf1 connected to provide a path for a 
call . The network is defined as connected if R1j exists 
for ijEA) . Furthermore, the network is considered 

strategic if IRij I>1 for ijEA/. For this study, strategic 

networks are of primary concern since a good adaptive routing 

scheme should have the ability to utilise all possible routes in 

the network this leading to greater operating reliability. 
As considered initially, the underlying concepts in a 

circuit switched network involves the establishment and 

allocation of a direct communication path between two end 

stations. This is illustrated in Figure 3.2 which shows 

a circuit switched connection between S and D. This 

same diagram also serves to show the need for a routing 

mechanism, the network obviously containing several possible 

paths for all source/ destination pairs. 

The typical operating protocol for establishing a 

connection is shown in Figure 3.3. Initially, the local 

network has made a connection between the caller and the 

trunk node S, which commands the following set-up 

procedure. A routing signal is sent on a line to a suitable 

next node I (selected by the routing scheme at S) and a 

line 
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line in Ts1 is allocated. A similar operation is repeated 

at node I with a line in Tsd providing the final connection in 

the trunk network. Communication between both users is 

possible when the required path in the local network is made 

and the entire path allocated for transmission. Finally, 

on completion of the call, a release signal backtracks along 

the connection, dropping lines for use by other requests. 

3.3 Network Traffic 

The traffic demands from network terminals are 

stochastic processes, influenced by the behaviour and 

circumstances of the calling population. Normally, these 

are characterised by the calling or arrival rate and the call 

duration or holding time which signifies the generation rate 

of call requests at the source node and the length of the 

communication session respectively. 

Arrival Statistics 

For this study, the behaviour of calls ariving at a 

source node is assumed to be a Poisson process with an 

average point to point arrival rate given by X11 calls/ unit 

time. The probability of K arrivals at node i, 

destination j in time T is given by XT 

r 
(XiJ T) e U1 

Prob LK i, j arrivals in TJ = 

Hold Time Statistics 

K' 

The most commonly used distribution(21) for the call 

duration is the exponential distribution in which the 

probability of a call lasting at least t seconds is given by 

p (t) =e 'U 
t 

where 
1= 

mean call hold time . 1-1 

Although two specific distributions have been used to describe 

the nature of the call processes, realistically a more 

involved situation exists. Primarily this is due to the 

non-stationary 
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non-stationary behaviour of the calls, since average calling 

rates and hold times vary from period to period. In 

addition, other factors such as the behaviour of users who 

encounter call blocking etc. , also have a limited effect on 
the true statistics. 

Traffic Flow 

Studies of switching networks are normally best 

performed on the basis of total occupancy rather than the 

arrival rate and hold time and in this context it is convenient 
to introduce the notion of traffic flow. Considering a 
trunk group wherecalls with average hold time arrive 

with rate X the traffic flow U to the trunk is given by 

U=ý.. 
1E 

rlangs. 

Normally the traffic flow is specified in the dimensionless 

unit of Erlangs, one Erlang of traffic flow to one circuit 

suggesting a continuous occupancy of that facility. 

Similarly, a trunk with 10 lines carrying a traffic flow of 

5 Erlangs would expect on average to have half of the lines 

busy. 

3.4 Hierarchical Networks 

The international telephone network now extends to 

virtually every country in the world, permitting 300 million 

users a means of voice communication and in certain 

circumstances, data communication. Networks of this 

scale however, introduce several major design and operating 

problems. Large volumes of traffic between any two 

points are generally routed most economically over direct 

trunks. When the volume of network users is very large 

and hence the effective point to point traffic relatively low, 

the use of direct trunks is no longer a viable proposition. 

Careful / 
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Careful network structuring is essential under these conditions 
to promote efficient network operations, the most widely 
adopted structure formed on hierarchical principles. 

The hierarchical network configuration provides for the 

collection and distribution of traffic from a wide range of 
users while permitting total interconnectability for all points. 
Figure 3.4 displays the geographic layout of a typical 
hierarchical network showing how local areas are serviced by 

switching centres which feed into higher level units covering a 
wider area. Details of the functions performed and the 
terminology differ from country to country but as an example 
the AT and T network of the United States is discussed(22). 

Conceptually, the AT and T hierarchical network 

may be represented as drawn on Figure 3.5. In this 

system the basic network structure consists of a five level 

hierarchy, each level communicating with adjacent levels. 

At the lowest level the end office performs a concentration 

and distribution service for the local network. On the 

next level further concentration and distribution is carried 

out by toll centres concerning end office traffic. Calls 

routed by the toll centres can be progressed further by the 

primary centres which carry out switching on the third 

level of the network. The final levels of the network 

hierarchy are controlled by the major switching centres, the 

secondary centre and the regional centre. 

In addition to the backbone structure of the hierarchy, 

several high usage trunks between strategic centres in the 

network are included. as shown by the broken lines in 

Figure 3.5. When high usage routes are established, 

traffic between the centres involved will first be offered to 

the shortest high usage route and overflow would take place 

through the alternatives to a last attempt on the hierarchical 

backbone / 
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backbone path. 

3.5 Network Routing 

The routing function in a circuit switched network 
decides how a call should proceed through the network, 
selecting one route from many possible paths. There are 
generally two methods 

(22) 
of achieving this: - 

(1) right through routing 

and 

(2) own exchange routing. 

In right through routing the entire route from source to 
destination is determined entirely at the source node. Own 

exchange routing on the otherhand allows for independent 

routing decisions at intermediate nodes as the call is moved 
across the network and is therefore a fully distributed 

routing technique. 

For this study, we are concerned specifically with 
distributed adaptive routing and consequently consider the 

performance of existing own exchange routing schemes. 
In this section, the nature of a circuit switched adaptive 

routing scheme is also discussed with a brief review of 

previous work in this area. 

Directory Routing 

In a directory routing scheme, each node maintains a 

table indicating the next suitable node for a call with a 

certain destination. This table or directory is used on a 
"look up" basis, the call routing mechanism selecting the 

next node in conjunction with a destination "tag" from the 

call. Problems, however, result from this scheme 

since no protocol exists to re-route a call which fails to 

seize a line in the alloted trunk group due to heavy traffic 

or / 
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or component failure. The next scheme offers a more 
suitable approach. 

Alternate Path Routing 

In alternate path routing, the routing scheme is 

allocated a sequence of next nodes to attempt, for calls of each 
possible destination. The operation of such a scheme is 

shown with reference to Figure 3.6 in which calls arrive at 
Node A, destined for Node E. If the direct route AE 
is busy a route may be attempted via Nodes B, C and D. 
It is normally a design constraint that the choice of routes 
should be dependent on the destination in order that 

exceedingly long and cyclic routes are not attempted. 
A straightforward technique to avoid the above problems 

is applied in many networks and involves a "far to near 

strategy". The first choice is the. centre nearest to the 
destination. Later choices are ordered according to the 

available intermediate nodes which although further than the 

best choice are nevertheless nearer than the centre making 
the selection. 

Applying the above strategy to Figure 3.6 and 

assuming calls from A to E, the first choice for switching 

centre A is the direct route AE. If this route is busy, 

the first alternative is via the nearest switch to E, which in 

this case is D. Switching centre D has a direct route 

to E; if this route is busy the call will be blocked since the 

possible routes via C or B would not be permitted. 

Again if route AD is saturated the next alternative route 

from A would be AC. At C the direct route CE can 

be attempted or as an alternative CD. In this manner, 

the valid routes from A to E are seen to be AE, ADE, 

ACE, ACDE, ABE, ABDE, ABCE and ABCDE. 

The 

45 



The above principles can be extended to cover the 

routing function in the hierarchical network as shown on 
Figure 3.7. Consider the problem of providing a route 
between the two primary switching centres P1 and P2. 
Each primary centre is parented to a dif_erent sectional 

centre. Similarly, the secondary centres S1 and S2 

are linked to regional centres R1 and R2 respectively. 
With the previous routing constraints in operation, the first 

choice at P1 is the direct route P1-P2. The alternative 

choices would be via the secondary centres S2 and S1. 

As shown on the diagram centre S! has the options P2, S2, 

R1. Regional centre R?. is permitted the choices P2, S2, 

R2 and R1 with centre R2 taking the direct route to P2 as 
first choice, followed by S2. Finally, S2 has the direct 

route to P as its only possibility. It should be observed 

that the above rules prohibit "ring around" and enables the 

routing decisions to be made at each switching centre 

independent of the call origin or past history. 

Adaptive Routing 

Even the alternate path routing scheme can fail under 

certain circumstances due to a routing doctrine which only 

implements routing decisions on a local basis, having no 

facility to act on feedback from the calls progress in later 

sections of the network. With adaptive routing the possibility 

of reacting to feedback is introduced, allowing the alteration of 

the routing mechanism to suit the given conditions, re-routing 

calls from areas of heavy local traffic and component 

failures to under utilised sections. of the network. 

Unlike the adaptive routing problem in store and 

forward relatively few dynamic routing schemes have been 

proposed for circuit switched networks. Early attempts 

such as reported in 
(24) 

have suggested the use of learning 
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algorithms in military circuit switched networks. Later 

studies 
(25) 

formalising the problem through the notion of 
the learning automaton and carrying out an initial 

investigation to apply the technique to a telephone network. 
In a learning routing scheme independent automata at 

each node select a suitable trunk group from an allowable set. 
A complete routing operation is therefore a chain of decisions, 

the route taking one of several paths. Feedback in such 

schemes is elegantly simple, a blocked call producing a 

penalty response to all automata in the chain, the 

successful call giving a corresponding sequence of rewards. 
This type of operation suggests a completely different policy 
to the previously described alternate path scheme where 
individual trunks were offered traffic until overflow occurred. 
The learning approach may be seen as proportioning the traffic 

flow over the various paths open for calls of different source/ 
destinations, each automaton striving to minimise the 

blocking between itself and the destination. 

The question of the optimal operation of the learning 

schemes may be viewed in conjunction with the following 

network flow assignment problem. 

In general this concerns - 

Given Network Topology and Trunk 
capacities Tab 

Minimise b the overall network blocking 
probability 

With respect to Uäb the offered traffic flow to 
each trunk group. 

To achieve this, the routing scheme has to optimally 

proportion the traffic to each trunk group to minimise the 

blocking probability. The traffic offered in each trunk 

group is controlled by the routing scheme and may be 

considered / 
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considered by 

Unb- Rýij ) where Uiý is the offered 
point to point traffic. 

3.6 Simulation of Circuit Switched Networks 

The use of computer simulation software is now 
recognised as an indispensable aid in investigations of many 
systems and physical phenomena. The simulation of 
circuit switched networks is no exception, the complex 

network topology and multiplicity of events, call arrivals 
from many sources, call completion and routing operations, 

preventing analytical solution in all but a few very simple 

networks. The remaining sections of this chapter are 

ultimately concerned with such a simulation and the details 

of two packages are discussed. Both simulators have been 

designed to handle general topology networks along with user 
defined call statistics and routing schemes and have been 

shown by extensive simulation runs to provide a valuable 

experimental service. 

Computer simulation of communications networks 

requires a Monte-Carlo approach involving the generation of 

random arrivals and call hold times. The calls can then 

be fed to a network model which assumes the role of the 

switching operations and in addition maintains a network 

status with regards to the calls in progress, trunk and queue 

occupancy and also call durations. Moreover, the 

software is required to record the progress of call attempts, 

signifying the routes taken and displaying call blocking 

at intermediate nodes. 

Conceptually the simulation of the network may be 

regarded as the sequencing and handling of a series of events 

in time. To do this two approaches may be considered 

(1) / 
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(1) An event to event or asynchronous 
time scale 

and 

(2) An epoch to epoch or synchronous 
scale. 

In the event to event technique, the software ascertains when 
various events will occur and moves the system clock to the 

point of the nearest event. An epoch to epoch simulator 
steps through time in constant jumps, checking if any component 
wishes to generate an event and if so facilitates the event 
handling. For circuit switched networks of the complexity 

envisaged in this study the decision to an adopt epoch to epoch 
simulation was taken and has since proven to be correct. 
Such a technique is particularly suited to the operation of a 

circuit switched network where typical switching events are 

sufficiently close to warrant a synchronous time scale. 

Nodal Model 

For this study, a simple switching centre has been 

formulated to model the operation of a typical trunk node. 
As shown in Figure 3.8(b) the basic device consists of a 

control and routing mechanism R, trunk senders S1, 
. Sm 

and a sender queue. Fundamentally, the role of the 

routing mechanism is to react to incoming routing and release 

signals, to select an outgoing trunk group for the call and to 

activate a sending mechanism to transmit a routing signal to 

the next node. Since the sender operation takes a finite 

period of time to function, a sender queue provides a facility 

for orderly waiting by calls. The model for the network 

trunks, Figure 3.8(a), consist of a pool of lines, which are 

common to and equally accessable to both ends. 

Traffic Model 

As described previously, the use of Poisson and 

exponential 
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exponential statistics are used to describe the call arrival 
and holding behaviour. To generate exponentially 
distributed hold times(26) the exponential probability 
distribution function y=F (x) is transformed to an inverse 
form x= F-1 (y). A random variable of the correct 
distribution is then generated by warping a uniformly 
distributed deviate by the inverse function 

X= F-' (U) 

For the exponential distribution 

F (x) = l- eµx where 
1 

/2 
is the mean 

F (u) _-1 loge(l - u) uý1,0<u<1 

Therefore by generating uniform deviates from the conventional 

computer random number source the above equation provides 

an exponential distributed random number with the desired 

mean. 

Generating random arrivals in an epoch to epoch 

simulation can be handled in a extremely simple fashion. 

From the probability that the next arrival occurs with the next 
(27) 

At sec 

prob 
D 

<t +At] = 1-e 
xAt t is the time of the arrival 

which expanded gives 
2 

2' 

if )ýOt» 1 

prob l arrival in next At seconds = ), At 

A series of Poisson distributed arrivals can therefore be 

generated by comparing )4t every At time units with a 

uniformly distributed random number. 

u XOt arrival 

u> xAt no arrival 

General Package Structure 
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General Package Structure 

In essence, the proposed simulator consists of a 
three program package and associated data structures. 
The main elements of the package are: - 

1A program to construct a topological 

data structure representative of the 

network and routing scheme under 
investigation with facilities to edit 

and check the data file. 

2 An actual simulation program for carrying 

out experimental runs, taking the 

topological data structure as input 

and producing a log file of the 

simulation. 

3 Finally, an analysis program for 

detailed study of the data produced 
during the simulation run. 

The package programs and data files interact as shown in 

Figure 3.9. In the remaining sections, two 

implementations of the described simulation model are 
described. Initially a simple version was produced to run 

on a LSI 11/ 03 micro-computer and was successfully 

utilised in early simulator experiments. Later, an 

enhanced version to run on a DEC 20 mainframe was 

implemented, the greater processing power and storage 

of the computer permitting studies of much larger networks 

involving many call sources. 

3.7 PDP 11 Simulation Package 

In this simulator design, the network and routing scheme 

are modelled on a LSI 11/ 03 micro-computer with traffic 

generated 
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generated by an external SDK-85 micro-computer. 
Time is referenced by an external clock which 

synchronously interrupts both the network and call source 

processors which are configured as shown in Figure 3.10. 

The SDK-85 call source also acts as an interrupt source, 

randomly interrupting the network to inform of a new 

arrival. 

Prior to simulating a network, the desired topology 

is formed into a data structure which is used as a framework 

for the simulation. The program to do this is operated 

off-line(28) and during execution the user is prompted to 

input data from the keyboard, specifying the nodal data 

(number of senders etc. ,) trunk capacities and details of 

the routing scheme. After formulation this file can be 

used repeatedly for the simulation of the specified network. 

During the simulation phase the data structure is used 

as a basis for a node by node simulation. Calls enter 

the network software from the random call source and are 

allowed to filter through the data structure, moving from 

node to node until the connection is made. Details of 

this are recorded in the holding data structure which forms 

a store for all calls holding in the network, maintaining 

details of the lines in use and the call durations.. When 

a call is successfully completed, or blocked, the relevent 

block of data is written to the log file, indicating the history 

of the call. Upon completion of the simulation, a complete 

record of all calls is stored. 

With the completed log file stored on disk the user can 

utilise the analysis software to extract and display the 

information required from the experiment. Typically 

this would involve the calculation of blocking probabilities, 

number of calls blocked at a particular node and details of 

the / 
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the learning automata conditions. 

Data Structures 

As indicated previously, the topological data structure 
is used to carry the network topology to the simulation 
program. Figure 3.11 displays the overall structure 
format, which has the general form of a ring data structure, 
with nodal beads logically connected with a continuous loop of 
pointers. Each bead contains information and a memory 
allocation to perform the function of the senders, sender 
queue and a process queue. Note that although the senders 
and sender queues are actual network elements, the process 
queue is a functional requirement of the simulator and is 
described later. Supplementary to the nodal data, 

information on the link capacities of the various trunk groups 
is stored in a further data block, which as the simulation 

proceeds details the availability of lines between the nodes. 
The holding data structure is responsible for providing 

a record of the calls currently holding in the network. 

This is illustrated in Figure 3.12 which shows the overall 

structure along with details of the individual call beads. 

Basically, each bead contains a call number, the time left 

in the network and a complete list of nodes connected by a 

call. As calls finish in the network (successful completion 

or blocked) the holding data structure call bead is written to 

the log file on floppy disk. On completion of the simulation, 

the log file contains a complete record of all calls, and is 

ordered on the basis of call termination. 

The use of the topological data structure provides the 

simulation with the flexibility to handle networks of differing 

topology and size, without any changes in the simulation 

software. In addition, the ring structure offers a natural 

format 
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format for the processing of the network on a node by node 
basis. Also, the existence of the holding data structure 
permits an efficient means of storing the notion of a call, 
the final log data file being ideal for detailed analysis of the 
experiment after the actual simulation run. 

Simulation Program 

For this simulator, a real-time program consisting of 
three pseudo-parallel processes has been adopted. These 
take the form of a main process, a real-time clock process 
and a call arrival process; the main process dealing with 
the general running of all nodes, the real-time clock 

process handling network timing and the call arrival process 

allowing for the insertion of new calls. Further, since 
the program cannot be simulating all nodes simultaneously, 

the concept of a process queue is introduced. Calls 

arriving at a node therefore being stored in this queue until 

the program reaches the node, at which point they are 

removed and processed. 

The main process of the program is responsible for the 

system set up and more significantly the switching operation 

of the network nodes. This involves sequentially moving 

from node to node removing calls from the process queues 

and allocating them to free senders. If none are available, 

calls must be inserted into the first in/ first out stack where 

they wait for senders becoming available. Details of this 

is displayed in Figure 3.13, the flow chart showing the 

operation of a typical node. 

At any time during the execution of the main process, 

the real time clock or call source may interrupt the network 

computer. When this occurs the appropriate interrupt 

routine is selected and performed. 

Upon 
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Upon execution of the real-time clock routine 
(Figure 3.14) all network functions of time are processed. 
For instance, calls current in the holding data structure are 
timed down and if found to be complete, are removed from 
the network, freeing facilities for subsequent calls. 
Other conditions affected by the real-time clock are the timing 

mechanisms of the senders and sender queue. When a call 
is timed out of a sender the line to be used is seized and the 

call progressed to the next node. As calls in the sender 

queues are timed out a check is made on the availability of 
senders, which if are still not free, the calls are blocked. 

Calls arrive in the network when the call generator 
interrupts the network processor. On this occurrence, 
the call source and destination numbers are read from the 

hardware and an entry made in the process queue of the 

source node. Additionally, space in the holding data 

structure is allocated for the new call. Figure 3.15 

highlights the flowchart for this process. 

Call generator 

The call generator provides a source of random call 

interrupts for the network computer each interrupt 

representing the birth of a new call. When the generator 

decides that a call has arrived, two binary. numbers are 

presented to the network, indicating the source and 

destination of the call. Such an arrangement permits 

the use of a single call source, this having the advantage 

of a reduction in cost and complexity. 

Generation of the Poisson distributed interrupts is 

implemented as described previously. From the call 

arrival rate X11 the probability that a call will arrive in the 

next second is found. Comparing this value with a random 

number (derived from a puesdo random binary sequence) 

permits 
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permits a decision on interrupt pulse generation. This 

algorithm has proved adequate for the purpose and provided 
the maximum value ofis restricted no problems are 

encountered. 

Operation of the complete call generator is as follows 

(Figure 3.16). After initialisation, the software waits for 

a pulse from the real-time clock. When this occurs, the 

arrival probability for the first call source is read from a 

programmable call stack and used in the manner described 

previously to reach an arrival decision. If the outcome 
dictates a new call the call source and destination are 

obtained from the stack and the processor interrupt line set. 

This function is continued until all entries in the stack have 

been offered the opportunity to generate an arrival. At 

the end of this sequence, the program marks time for the 

next clock pulse and the entire operation repeats. 

The described call generator has been implemented 

on an Intel SDK-85 micro-computer system using a small 

but versatile program. Subsequent modification to the 

software allows for dynamic switches between alternative 

sets of data, thus enabling the simulation of non-stationary 

arrival statistics. 

3.8 DEC 20 Simulation Package 

The previously described simulation package has been 

used extensively for experiments on small networks, including 

topologies of up to 12 nodes. However, several 

limitations have restricted the effective use of this system as 

a large scale, general use simulation package. These 

include - 
1 The power and 16-bit architecture 

of the microprocessor has proved a 

severe 

56 



severe limitation on the processing 

speed of the system. 

2 Large experiments were restricted 
by the limited storage and data 

transfer capacity of the floppy disks. 

3 The simplicity of the call generator 

prevented the simulation of networks 

with more than 10 arrival sources. 
4 The software lacked facilities for the 

dynamic injection of faults, i. e. , link 

and node failures and also the ability 

to provide realistic non-stationary 

traffic statistics. 

5 Finally, further experiments would 

require provisions to make additional 

on-line logging of important parameters. 

With the above points noted a second simulation package 

was produced to run on a DEC 20 mainframe computer, 

with the obvious benefits of processing power and storage 

capacity. In addition, it has been possible to produce a 

more user oriented design with the inclusion of interactive 

graphics facilities to specify the topology and to aid with the 

analysis of the experiments. Although several restrictions 

were found with the previous implementation it can be said 

that in general the simulation principles were in order and 

subsequently these form the basis of the new design. 

New Design 

As in the previous design, a three program package 

forms the main elements of the simulator although in this 

version several extra files are formed during the simulation 

(Figure 3.9). In the pre-simulation software the user can 

graphically 
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graphically specify (via a Tektronix 4014 Graphics 

Terminal) a network of any topology, setting up the trunk 

capacities and routing rules along with the arrival statistics 

of the traffic. Facilities also exist to edit the network, 
i. e. , reposition, delete and add components, these 

normally used in conjunction with utility services to redraw 
and window the picture to different scales; both extremely 
useful for work on large networks. Details of this program 
and other elements of the package are to be found in(2 9) 

Additional facilities offered by this software gives the 

option of setting up node and link failures, these being 

triggered at a pre-specified point in the simulation. 
Arrival rate switches can be programmed in much the same 

way. 

The bulk of the actual simulation program is essentially 
the same as that described for the LSI 11 package. One 

major difference however being the integration of the node 

processing, time handling and call generation elements into 

one program to run on a conventional multi access computer 

system. The use of ring data structure techniques has 

been maintained for the topological file and extended to cope 

with the log file as well. In this simulator access to the 

data structures is through a virtual memory system, the 

software transparently swapping pages of both files between 

main memory and disk. 

Figure 3.17 shows the basic structure of the 

topological data structure with Figure 3.18 detailing the 

individual component beads. Clearly the ring and direct 

pointers assist greatly in moving logically through the structure, 

manipulating calls from node to node and seizing the 

appropriate lines. The log data structure (Figure 3.19 

and Figure 3.20) is also ideally suited for efficient call 

processing / 
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processing. Basically, this structure consists of two 

main rings with call beads connected to either the holding or 
finished rings, new calls first joining the holding ring and 

on completion transferring to the finished ring. 

3.9 Summary 

A very general introduction to circuit switched 

communication networks, high-lighting the aspects relevant 
to this study has been given. Also, a simple computer 

model has been proposed and software developed to carry out 
a range of experiments on networks operating under 

conventional and adaptive routing schemes. 

In summarising the decisions made, the following 

points are emphasised; 

The simulator is designed to handle 

a general topology trunk network, 

the local network components 

acting as sources and sinks of 

traffic. 

2A simple nodal and traffic model has 

been proposed, although due to the 

modular nature of the software these 

could be altered to include greater 

detail. 

3 The use of ring data structures offers 

a novel and extremely effective 

method of handling the complexity 

of a network simulation. 
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Figure 3.1 Components ofi a circuit switched network 



Figure 3.2 Circuit switched connection 
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Figure 3.3 Signalling in a circuit switched network 



Figure 3.4 Geographic layout of a hierarchical network 
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Figure 3.6 Al rernafe rou ring in a simple nerwýork 
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CHAPTER 4 

LEARNING AUTOMATA ROUTING IN ELEMENTARY CIRCUIT 

SWITCHED NETWORKS 

4.1 Introduction 

In this chapter, the learning automaton is introduced 

as a prospective distributed routing controller through 

theoretical and simulation studies of an elementary 4 node 

network. By using this simple network, the operation of 
the automaton can be studied in isolation thus permitting a 
detailed understanding of the learning process and the 

interaction between the controller and network. A further 

advantage in starting with a small network is the opportunity 

for gaining confidence with the simulation software which in 

later experiments is used to study networks with more 

complex topologies. 

Initially, experiments using one automaton are observed, 

the routing controller selecting one of two possible paths for a 

single call source. Later experiments introduce two call 

sources and consequently two automata operate together in 

the same network. Also, the 4 node network is extended 

to a6 node topology and the influence of the initial 

conditions on the LR_P and LR_I reinforcement algorithms 

investigated. 

In all, three routing schemes are considered for 

comparison, including 

1 Alternate Path Fixed Rule. 

2 Automaton routing controller with 

the LR_I reinforcement algorithm. 

3 Automaton routing controller with 

the LR_P reinforcement algorithm. 

For the network proposed, the aim of the routing scheme is 

the 
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the efficient allocation of network facilities, which if used 
optimally gives a greater call throughput and also a lower 
blocking probability. Measurement of the network 

performance under all routing schemes is carried out in the 

experiments and in addition, the steady state action and 
penalty probabilities noted. 

The simulation results are shown to provide further 

confirmation of the theoretical predictions concerning the 
behaviour of the LR-I and LR-P automata in 

non-autonomous environments. Furthermore, through a 
series of identification experiments an understanding of the 

network response characteristics are obtained, this leading 

to theoretical predictions on the equilibrium conditions of the 

automata and further predictions on the truly optimum routing 

strategy. 

4.2 Theory 

Central to this chapter is the four node network shown 
in Figure 4.1, the traffic consisting of calls arriving at 

node 1, going to node 3 and also at node 3 going to 1 

with arrival rates X13 and X31 respectively. The capacities 

of the four trunk groups are as labelled on the diagram. 

For fixed routing, the alternate path scheme is defined 

by stating the sequence for attempting the allowable trunk 

groups; 

Rij = 
[iaiiib. 

. .] 
where Rid is the routing scheme at node i, destination j, 

the sequence dictating Ti. as the first choice etc. 

With the learning schemes, automata at nodes 1 and 3 

select on action which corresponds' to one of two possible 

sequences. For example, the automaton at node 1 has 

an action a1 representing the sequence [T121 T14] , this 

being performed with probability p1. Subsequently a2 

corresponds 
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corresponds to the sequence [T14, T121 , this occurring with 

probability p2. A similar arrangement exists for the 

automaton at node 3 with a1 denoting the sequence 
[T32, T34] with a2 for ['4J12]. 

Feedback to an automaton occurs when the routed call 
successfully reaches the desired destination or all options in 
the chosen sequence are attempted without finding a line. 

The penalty set of the automaton is therefore the probability 
that a sequence does not find a line for any option, 
i. e., 

ci = prob 
[call 

is blocked on sequence i] 

By letting N represent the total number of calls processed 
by an automaton and N1 N2 the number of times each action 
is performed, it follows: - 

N1 N2 
p1 =N and p2- N 

and 

cl =N1 c2= 
Nbl Nb2 

N2 

Iim N---p- oo 

where ""bi is the number 
of blocked calls due to 
action i 

For the particular case X31 = 0, the overall blocking 

probability of the network is by definition (again N--ºoo) 
Nbl 

+Nb2 
CT =N= Pl Cl +p2c2 ... 4.1 

c2+pl [c1 - c21 

Before proceeding further, several assumptions must be 

noted, which in a real network can be justified. 

1 Calls rejected from the network may not 

be resubmitted. 

2 Calls in progress can not be pre-emptied, 

in other words, all calls have equal 

priority. 

3 I 
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3 The call set up time is negligible in relation 
to the average call hold time. 

4 No mechanism exists for retrieving calls 

stranded at an intermediate node. 

Traffic Flow in the Network 

By considering the traffic flow in the network (x31 = 0) 

the difference between the alternate path and the learning 

routing schemes can be shown. Considering first the flow 

patterns produced by an alternate path scheme, (Figure 4.2) 

the flow associated with second attempts Ub1, resulting 
from blocking on T12 , is clearly dependent on the routing 

sequence and the blocking probabilities on the individual 

trunks. In contrast, the flow produced by the random 

routing policy of the learning automata (Figure 4.3) is also 
influenced by the action probabilities of the automaton and 

through variation of these a means of optimising the carried 

traffic is provided. 

Blocking Probability 

Again with X31 = 0, the probability that a call from 

source X13 being routed successfully by the alternate path 

scheme is 

dT = bi(1-b4)(1-b&+(1-bi)(1-b2) .. . 4.2 

Similarly for the learning automata schemes . 4.3 

dT p2 
[(1-b4)c1-b3)+b41-b1xl-b2] +Pl 

[(1-b1)(1-b2)+b1(1-b4)(1-b3)] 

In the present form very little can be done with the expressions for 

for the overall blocking probability, although techniques 
(30) 

can be applied to solve for the individual trunk blocking 

probabilities of the alternate path scheme. However, by 

artificially generating certain conditions several extremely 

interesting characteristics of both schemes can be displayed. 

Let 
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Let us consider two conditions, Case 1 with 12 > l1 and 
13> l4 and Case 2 with l4 > l3 and 11 > l2 

Case 1 

Since l2 > lj and l3 > 14 all blocking takes place on ý2 

and T14 and consequently b2 =0 and b3 = 0. The overall 
blocking probability for the alternate path scheme is therefore 

given by 

bT= 1-dT 

= 1- [bl(l'by)+(l-bl)] 

= b1b4 
. 4.4 

Giving for the learning scheme 

bT - 1-P2 C(1-b4)+b4(1-41 

= P1 b1 b4+p2b1b4 

- b1 b4 

+pl [(1-b1 )+b1(1-b4)1 

This interesting result revealing that under the conditions 

given both schemes should perform equally well, each 

producing the same blocking probability. 

Case 

Taking the second condition of l1 > l2 and 14 > 13 

causes b, and b4 =0 since calls blocked at nodes 2 and 4 

immediately drop lines from 1, thus maintaining a surplus to 

prevent blocking on T12 and T14. 

Again for the alternate path scheme 

bT = 1-(1-b2) 
. 4.5 

and for the learning scheme 

bT = 1- [p2(1-b+p1(1-b2)] 

= p1b2+p2b3 

This 

. . 4.6 
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This current configuration shows a situation where the 

alternate path scheme provides a blocking probability of b2, 

i. e. , call blocking occurs on T23 whereas the learning 

scheme with a random routing strategy, attempts both T43 

. and T23 

Automaton Penalty Probabilities 

For the same network configuration (X31 = 0) the penalty 

probabilities for each action may be obtained 

cý = býb4+b2(1-bý)+býb3(1-b4) 

c2 = b, b4+b3(l - b4) +b2b4 (1- bl) 

For case 1 cl, c2 may be reduced to give 

^ 
.. <1, r 

Cl )b 4 
G b1 b4 

This showing the penalty probabilities to be equal for both 

actions. 

The conditions of case 2 produce a different result, 

cl = b2 

c2 b3 

which are also the path blocking probabilities for the paths via 

node 2 and node 4 respectively. For this case the 

sequence action probabilities are transformed into specific 

trunk selection probabilities, pl representing the probability 

of selecting T23 with p2 the probability of selecting T43 . 
The expected penalty probability for the network is therefore 

cT p1 b2+p 2b3 

Reinforcement Algorithms 

In Chapter 2, the non-autonomous environment was 

described and the operation of the LR-I and LR-p 

reinforcement algorithms in such environments explored. 

For 
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For the LR_i scheme convergence was shown to result in 

E [cl] =E [c2 

and the LR_P producing an equilibrium behaviour such that 

E[ p1 c11 E [p2c2 

Considering the conditions of case 2 and a LR-I 

reinforcement algorithm, the operation of the automaton is to 

equalise the blocking probabilities on the two paths between the 

source and destination, giving 

b3 b2 

Nbl Nb2 

NJ N2 
lim N-+00 

The LR_p also converges to give a balance in the network, 

such that 

p1b 2 p2b3 

simply 

N1 Nbl N2 Nb2 

N N1 N N2 

Nbl = Nb2 

lim N-ioo 

Whereas the LR-I scheme equalises the blocking probability 

the LR_P automaton acts to equalise the number of blocked 

calls or on a timed basis, the blocking rates. 

Erlangs Loss Formula 

A major contribution in switching theory was made by 

the mathematician Erlang who was first to quantify the 

probability of blocking on a trunk group. In the Erlang 

Loss Formula 
(31) 

the probability that a call requesting use 

of a line is blocked is given by 

bz / 
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b= pti ' 
tok! ... 4.8 

k=0 
where p =/µ, >= call arrival rate, l/µ = mean call time 

and I the number lines in the trunk group. 

For the 4 node network (case 2) the effective input 

rate for paths 123 and 143 is p1 X13and p2X13respectively. 

The path blocking and penalty probabilities may be written: 

(P' p)t2 112! 

cl = Lz 
T(pj p)k/ 
k-0 

(P2p)13 / l3" 
c2= Lc 

PI ý kl (P, 
k-0 

The overall blocking probability is therefore 

(Pý p)ýl / 12` (P2p)ýI/ 1.31 
CT t-2- 

I- 
+ t= 

p Ppl p ), Ik 
k=0 

(P2P)k /kl 
k=0 

.. . 4.9 

The condition for minimum blocking probability can now be 

found through differentiation of c and equating to zero. 

This gives the following relationship which must be satisfied 

for optimal network performance. 

c1[12+1+pp1(1-c1)] = c2[13+1+p2P(1-c2)] 

4.3 Identification Experiments 

In order to verify the mathematical model of the simple 

network/ automaton system a sequence of controlled 

experiments was performed on the network of Figure 4.1, 

with X31 = 0,11 = 30, L2 = 20,14 = 40 and l3= 10. 

Using / 
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Using a simple random routing scheme the penalty probabilities 
(in this case equal to the path blocking probabilities) c1 and 

c2 were measured for varying values of action probability and 
for a range of call rates X. Typical experimental results 
for X13 = 10 calls min are shown on Figure 4.4 along with 
the theoretical predictions from Erlangs formula for a mean 
holding time 

1=6 
mins. This good correlation between 

experimental and theoretical results was found to hold for X13 

ranging from 5 to 30 calls min. 

Extending from the results of the above mentioned 

experiment something can be shown of the operating nature of 
the learning schemes. On Figure 4.5 we plot graphs of 

c1, c2' p1c1 and p2c2 as a function of the action probability 

p1, for X13 = 10 calls/min and 
1=6 

mins/call. Also, 

with the aid of Equation 4.9 the total blocking probability CT 
is plotted as a function of pt . 

On this diagram the interesting areas are the cross- 

over points of the c1, c2 and p1 c1, p2c2 graphs. From 

the intercepts of the c1 and c2 curves the steady state 

action probability pý for the LR-I scheme is obtained, 

which for Figure 4.5 gives a value of p1 = 0.67. Similarly 

for the LR-P automaton the intercept of the p1 c1 and p2c2 

plots provide the equilibrium action probability p1 = 0.58. 

Clearly the cT curve is very flat within the range of 

the LR-P and LR-I steady state action probabilities which 

tends to support later experimental evidence of both schemes 

giving virtually identical blocking probabilities. Figure 4.6 

shows the variation of the optimal action probability for 

various values of X13 using the same network. As X13 is 

decreased from 30 to 5 calls/ min a change in the optimal 

action probability from 0.58 to 0.66 is noted. A further 

diagram (Figure 4.7) shows a family of convergence curves 

for 
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for the same varying traffic. As illustrated, the p for 

the LR_p scheme moves from 0.525 to 0.65 as X is 
decreased, the L 

R-I p1 tending to show little variation over 
the same range. 

4.4 4 Node Network Simulation 

Experiment 14 Nodes 1 Source 

In this experiment the 4 node network is operated with 
the following network parameters 

xI3 = 10 calls min lj = 30, L2 = 20, L4 = 40, L3 = 10 

Routing Rules 

Fixed rule at Node 1 

Learning Automata at 

Fixed Rule 

BP 
Calls Blocked Node 2 

LR_I_ Scheme (a = 0.02) 

BP 
Calls Blocked Node 2 
Calls Blocked Node 4 

LR_P Scheme (a =b=0.02 

[T12, T14J 

:a_ 
L2, T141 a- 

[T14 

500 1 000 1 500 
Calls Calls Calls 

. 628 . 651 . 673 
314 651 1007 

. 464 . 49 . 501 
144 328 508 

88 162 243 

BP . 458 . 498 . 504 
Calls Blocked Node 2 119 257 382 
Calls Blocked Node 4 110 241 374 

Automaton Steady State Conditions 

T121 

Pi c1 c2 Pi 'l p2 C2 

L . 667 . 507 . 487 - - R-I 

L . 58 . 44 . 59 . 255 . 
248 

R_p 

In / 

Node 1 
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In this experiment, we see the learning schemes accessing all 
useable network capacity in a topology which always gives 
sub-optimal results for a fixed rule. The configuration 
detailed, corresponds to case 2 in Section 4.2, where the 

alternate path fixed rule was shown only to attempt one path, 
which in this experiment consists of only 20 lines, 

consequently leading to a blocking probability of 0.673. 

The learning schemes on the otherhand, manage to utilise all 
30 lines and as confirmed by tables of Erlangs formula 

(32) 

blocking probabilities in the region of 0.5 are obtained. 
The steady state automaton behaviour matches well with 

previous theoretical predictions. In the LR_I experiment 

we see the penalty probabilities, in this case also the 

blocking probabilities, being equalised (given slight 

experimental variance). The action probabilities are seen 

to converge to the values predicted in the previous 

identification experiments, this being in accordance with the 

trunk capacity ratio. This can also be shown using a simple 

linearisation of the blocking probability equation. 

Let 

cl p, k/ L2 c2 p2k/ t3 P1 = 1-p2 

For the LR_i algorithm 

c1 = c2 

* L2 
P1 t2+L3 

and . 
for the LR_P 

P2 2 k/L 2 p2 k/ L3 

Vii} 3 

=. 667 

=. 58 

The experiment with the LR_P automaton also behaved in the 

manner 
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manner predicted by the simple theory. In the table above 
the equalisation of the condition p1c1 = p2c2 is met, with the 

action probabilities converging to the value found from 

Figure 4.5. Further evidence of the LR_P convergence 

can be noted in the number of calls blocked at N ode 2 and 4, 
these showing the expected equalisation of the blocking rates. 

Experiment 24 Nodes 1 Source 

In the following experiments the last network 

configuration is maintained but now with X13 

>31 = 10 calls min. 

Routing Rules 

Fixed rule at Node 3 

Learning automata at Node 3 

Fixed Rule 

=0 and 

500 1 000 1 500 
Calls Calls Calls 

BP 
. 426 . 53 . 55 

Calls Blocked Node 3 213 530 825 

LR 
-I 

Scheme (a = 0.02) 

BP . 468 . 472 . 478 
Calls Blocked Node 3 234 472 717 

LR_p Scheme (a ab=0.02) 

BP . 482 . 501 . 508 
Calls Blocked Node 3 241 501 762 

Automata Steady State Conditions 

^e 

P1 c1 c2 P1 p2c2 

L . 618 . 465 . 498 - - R-I 

L . 58 . 486 . 539 . 284 . 227 
R-P 

Due to the network topology in this experiment, the automaton 

actions correspond to routing sequences and hence the penalty 

probabilities 
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probabilities no longer equate to the path blocking probabilities. 
However, it is possible to transform the sequence 

probabilities to path probabilities and penalty probabilities to 
( 

path blocking probabilities 
33) 

. This is done in the following 

way 

prob [path 321 is attempted] 

7r4 
4 

prob [path 341 is attempted 

72 = 

7T4 = 

total number of a, + number of a2 second attempts 

total attempts on both paths 

total number of a2+ number of a1 second attempts 

total attempts on both paths 

b2 
4 

prob [call is rejected on path 321] 

b4 prob [call is rejected on path 341] 

b2 = number blocked on path 321 
total attempts on path 321 

number blocked on path 341 
total attempts on path 341 

From the above relationships, the transformed probabilities 

give 

72 b2 1ý' 7rb2 7rb4 

L . 552 . 578 . 714 319 . 32 
R-I 

L 54 . 618 . 724 . 334 . 284 
R-P 

In this experiment all three schemes are shown to provide a 

comparable routing service, each attaining an overall blocking 

probability in the region of 0.5. In comparison to the last 

experiment, the learning schemes have no advantage over the 

alternate path scheme in this network configuration but would 

in the event of a failure assume a better routing strategy as 

shown in experiment 1. 

Experiment 34 Nodes 2 Call Sources / 
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Experiment 34 Nodes 2 Call Sources 

Again using the same network topology but now with two 

call sources >13 =5 calls/min, X31 =5 calls/min, the 
following simulation runs were performed with the stipulated 
routing schemes. 

Routing Rules 

Fixed Rule Node 1 

Learning Automata Node 1 

Node 3 

: [T12, T14] Node 3: [T32' T341 

' al - [T12 ' T141 a2 ' 
[T14' T12 1 

: a1 _ [T32' T341 a2 . 
[T34-' T32] 

Fixed Rule 

Overall BP 
BP X13 
BP 

"31 
LR_I Scheme (a = 0.02) 

500 1 000 1 500 
Calls Calls 

. 494 
. 511 

. 637 
. 636 

336 . 378 

Calls 

528 

. 64 3 

. 411 

Overall BP. 436.48 
. 498 

BPý, 13 . 554 . 591 
. 618 

BP ý-31 . 327 . 376 . 39 

LR 
-P 

Scheme (a =b=0.02) 

Overall BP 
BP >, 13 
BPX31 

. 448 
. 496 . 51 

. 537 . 586 . 61 

. 364 
. 41 . 41 

Automata Steady State Conditions 

1 P1 3 P1 c1 1 c1 2 c3 2 

L . 675 . 787 . 598 . 641 . 378 . 433 R -I 
L . 59 . 54 . 543 . 707 . 402 . 42 

R -P 

pi action i at node j 

This experiment has been carried out to show an automata routing 

scheme optimising the network performance under multi- 

source conditions. As demonstrated,, both LA schemes 

provide I 
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provide a similar grade of service, outperforming the fixed 

rule by approximately 0.025. 

4.5 6 Node Network Simulation 

The objective of the following experiments is the study 

of the steady state automaton action probabilities in relation to 

the initial conditions. As is shown in the results the steady 

state conditions of the LR_I are influenced by the initial action 

probability vector, the ergodic LR_P scheme however 

converging to a unique equilibrium irrespective of the initial 

action probabilities. 

In order to carry out further experiments with the 

2 path arrangement detailed in previous experiments, the 

4 node network was modified to a6 node topology as shown 

in Figure 4.8. This has the desired effect of transforming 

the actions of both automata from routing sequences to specific 

path selections and equating the penalty probabilities to path 
blocking probabilities. 

Experiment 1 Un-biased Initial State 

For the network of Figure 4.8 with X14 = X41 =5 calls/ 

min, l= 40, l1 = 20, L2 = 10 and all automata with equal 

action probabilities pij = 0.5. 

LR 
-I 

Scheme (a = 0.02) 1 000 2 000 3 000 
Calls Calls Calls 

Overall BP 
X14 BP 
X41 BP 

LR 
_P 

Scheme (a =b=0.02) 

Overall BP 
ý14 BP 
ý41 BP 

Automata Steady State Conditions 

. 502 . 519 . 529 

. 505 . 531 . 543 

. 499 . 507 . 515 

. 508 . 52 . 515 

. 511 . 521 . 517 

. 505 . 519 . 513 

I 
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Automata Steady State Conditions 

P1 P4 1 c1 c1 2 c4 1 c4 2 

LR-I . 304 
. 935 

. 532 
. 582 

. 494 
. 552 

LR-P . 57 
.6 . 473 

. 632 
. 446 

. 661 

This experiment yields a very interesting result. As 
shown by the blocking probability, results both schemes give a 
virtually identical performance to the previous measurements. 
The same applies to the LR_P steady state conditions, 
demonstrating the nature of the ergodic reinforcement 

algorithm to converge to a unique action distribution. In 

contrast the convergence of the LR_I scheme has obviously 
been affected by the initial conditions, with a clearly 

noticeable change in the action probabilities. The penalty 

probabilities on the otherhand remain unchanged (given 

acceptable variance), the scheme continuing to equalise the 

path blocking probabilities. 

Assuming a linear relationship between the blocking 

and action probabilities bi = kpi /Ji = ki pi the LR_I automaton 

converges under all conditions such that 

prob 
[blocking 

on path 1] = prob 
[blocking 

on path 2] 

k1 14p1 + X41 pl ý k2 (ý14 p2 +ý4 p2 ) 
k 

. .. 
i 

-L, % 42 = ý, ý. 'k14p1 '-A'41''1 - ""14'"`41) 
2+ 

ý 

l1 
(X14+>, 41) l1 

+ 
12 

Equation 4.10 reveals the condition to be met for steady 

state operation of the automata at both ends of the network. 

Clearly no unique value of pl or p4 exists, steady state 

existing for all values of p; and p; which satisfies the 

condition. I 

4.10 
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condition. 

4.6 Summary and Conclusions 

Working on a thesis of understanding the detailed 

operation of individual routing controllers a series of analytic 

and simulation studies on simple 2 path networks have been 

reported. These have shown the operation of the learning 

schemes, demonstrated the influence of the reinforcement 

algorithms and in addition defined short-comings in the 

alternate path routing scheme under certain conditions. 
Further experiments with the LR 

-I 
and LR 

-P 
routing 

schemes have investigated the effect of the initial conditions 

on the steady state behaviour of the automata. As expected, 

the ergodic LR-P scheme always converged to a unique 

distribution, 

From this chapter several important conclusions can be 

summarised. 

1 Even in a simple network, circumstances 

can prevent the alternate path routing 

scheme from making efficient use of the 

available network facilities. 

2 In the case when an optimal alternate 

path scheme is possible, the adaptive 

schemes can only match the alternate 

path performance. 

3 However, when only a sub-optimal 

fixed scheme is implemented the learning 

schemes show an improvement by 

utilising the unused network capacity. 

4 Although neither the LR-I nor LR-P 

schemes converge to the true optimum, 

the nature of the performance curve is 

such 
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such that they both give very near to 

optimal results. 

5 As expected, the ergodic LR-P algorithm 

gives convergence to steady state action 

probabilities independent of the initial 

conditions. In contrast, the LR-I 

scheme converges to values influenced by 

the starting values, although still operating 

to equalise the penalty probabilities. 

In the next two chapters the learning automata routing 

schemes are extended to operate in larger, more practical 

networks. As will be shown, the results obtained endorse 

the conclusions drawn from these simple experiments and in 
, addition, show the learning schemes to be vastly superior to 

fixed schemes under network fault conditions. 
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CHAPTER 5 

LEARNING AUTOMATA ROUTING IN HIERARCHICAL 
-Aý-D 

MESH STRUCTURED NETWORKS 

5.1 Introduction 

Previously we have considered the problem of learning 

automata routing in abstract models and simple networks. 
Specifically for the class of networks considered it was 
demonstrated that both the Linear Reward Inaction and 
Linear Reward Penalty schemes gave extremely close to 

optimal results. In this chapter, traffic routing in more 

complex hierarchical and generalised networks is considered 

using both alternate path and LR_I automata routing schemes. 
Theobjective is to compare and demonstrate the operation of 

the adaptive routing in a more involved environment. 

For these simulations, three networks have been utilised, 

including two hierarchical networks (8 and 12 nodes) based 

on the conventional telephone network and a general mesh 

structured network corresponding to the higher levels of the 

network hierarchy. In addition, experiments have been 

carried out to model the networks under fault conditions such 

as link and node failure by removing lines and injecting 

additional call sources at selected points in the network. 

These studies provide conclusive evidence to support the 

adaptive action of the learning scheme and categorically 

demonstrate the advantage over conventional fixed rules. 

In the course of the experiments several desirable 

properties of learning automata routing are noted. As 

mentioned previously the ability to cope with adverse network 

conditions such as component failures and traffic overloads 

is observed. Also shown is the load balancing effect 

whereby the individual source blocking probabilities tend to 

equalise, suggesting a fairer allocation of network facilities. 

Finally, / 
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Finally, since the automata scheme employs such a simple 
feedback strategy (call routed successfully or blocked) the 
technique could be readily applied to existing networks with 
the minimum inconvenience. 

5.2 Implementation of Adaptive Routing Schemes using 
Learning Automata 

In the simple networks relatively few routing decisions 

were required for the successful operation of the network, 

since only two paths were open to calls. In larger networks 
this is no longer the rule, with many paths possible 

for a wide range of traffic sources. The implementation 

of learning automata schemes for such networks is now 
discussed with reference to both the call set up and feedback 

operations. 

Routing Mechanism 

The notion of a stochastic learning automaton forms an 

ideal building block for the implementation of de-centralised 

adaptive routing schemes for large networks. Under such 

circumstances, the establishment of a route R1j for a call 

of class (i, j) (source node i, destination j) requires a 

chain of distributed routing decisions each 
k 

carried out by an independent automaton A (at node k) 

whose action set corresponds to the outgoing trunk groups of 

the current node ( TkQ, Tkb, .. .). The resulting path 

therefore consists of an ordered collection of lines 

R (Lia, i. .. . igj ) 

In a typical network (Figure 5.1), the routing mechanism at 

at node k, Ak , is required to process calls in transit for 

the remaining N-1 nodes and as such must make a routing 

decision based on the proposed destination. For 

implementation 

105 



implementation of this Ak normally would consist of N-1 

automata structures with module AA acting as a controller 

at node k for calls of destination j. The general form of 
the routing automaton may be summarised by an expanded 
description of the variable structure automaton. 

aý . 

Ak1 - ak pk1 , Tk (a, ß, P) JJ 

The action set of the automaton as mentioned 

previously corresponds to the outgoing trunk groups of 

the current node. This set might specify any trunk 

leading to a neighbour of k (excluding the group which 

the call arrived on), or if a Markovian constraint is 

applied, any from a limited range. The Markovian 

constraint is applied to prevent the formation of routes 

which are cyclic, i. e. , pass through a node more 

than once. 

ßk The response to Aý results from the outcome of 

the routing operation, the P-model ideally suited to 

this application with a penalty signal indicating a 

blocked call and reward for a successful route 

establishment. 

pk The action probability vector of Aý contains 

the probabilities of selecting specific trunk groups. 

pkr 
[prob Tkr is attempted] 

Tk (a, ß, p) : The reinforcement algorithm at Aý is 

responsible for modifying the vector pý in accordance 

with the trunk selection and the received response. 

In general, each automaton might operate under different 

algorithms, using a range of learning coefficients. 

Flow Splitting 

As a consequence of the distributed nature of this 

approach, many alternative paths are possible for each 

source 
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source /destination pair. This ability to load split 
(Figure 5.2a) is a desirable property and the function of 
this scheme to proportion various degrees of traffic is 

highlighted by the probability Fj that some path s is used 
by i, j calls is 

S 
V 
1i" I1r ý k; 

- 
Sý 

TT Pl. 
kr 

where S is the set of nodes on 
path s. 

This expression further demonstrates the ability of the 

distributed automata to influence the global routing strategy 

of the scheme, the overall probability of selecting the various 

paths evolving as individual automata receive feedback from 

the network. 

Feedback Mechanism 

When the call propagation is halted, the call either 

reaching the destination or becoming stranded at an 

intermediate node due to no available lines, all automata 

linked in the chain are up-dated. As in the simple 4 node 

network, a binary response is employed, a successful 

routing operation resulting in a reward and a blocked route 

producing a penalty. 

Rij completed 

Rij blocked 

k 
ßý =0 kES 

ßý=1 

Figure 5.1 displays typical routing operations in a network, 

showing attempts to route calls of class (i, j) and (i, g). 

In the first example, a call at i, requiring a path to j, is 

progressed to node m which in turn moves the call to n 

and finally to j, thus completing a successful operation and 

consequently AJ , Aý and Am receive reward signals 

(ßi _ßn = pm= 0). The call of class (i, g) on the otherhand, 
1J1 

although successfully routed to node f, cannot complete the 

desired path due to no available lines from f to the destination. 

The / 
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The up-dating mechanism therefore punishes all automata in 

the chain, i. e. ,. and Ag 

In this global feedback arrangement automata experience 

penalty reward responses in relation to the blocking probability 

over the paths available from the present node to the 

destination. For the automaton Aý 
, the probability of 

receiving a penalty for action r is given by 

ckr -ý Ps, ý. sEQ 
11 

given that Q is the set of feasible paths resulting from ajkr 

and Bkj is the blocking probability on path s between k and 

J 

Bk j bkä (1- bkaý bab+(1- bkobbc+ . 4g is the blocking 
probability on Tfg 

Global Behaviour of the LR 
-I 

Scheme 

With the LR 
-I 

reinforcement algorithm implemented 

for all automata, the equilibrium behaviour at node k may 

be described by 

E 
[cr] 

=E 
[ckb] 

a, b=1,2 ... r 

This suggests that each automaton in the network attempts 

to equalise the blocking probabilities resulting from the 

alternative actions at the current node. Furthermore, 

since every automaton is concerned with equalising the 

blocking probability between the destination and the present 

stage, the global effect is an equalisation of the total path 

blocking probabilities (Figure 5.2b). 

E 
[ý] 

=E 
CBU 

a, bEV, V is the set of 
feasible paths between 
i and j. 

Global Behaviour of the LR 
-P 

Scheme 
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Global Behaviour of the LR P Scheme 

Under similar circumstances the LR_P scheme 

operates to balance the penalty rates at each stage 
(Figure 5.2c) in the network. For Aý convergence is 

such that 

E=E 
[pca 

J1 
[pb 

Ckb J1 a, b=1,2... r 

Self-tuning Adaptive Routing 

As mentioned previously, two possible operating 

strategies may be considered for learning automata routing 

By invoking a Markovian constraint on the allowable range of 

actions at each automaton only routes which are loop-free 

are formed. Therefore all routing will be carried out on 

a choice of pre-determined routes, the individual automata 

acting to optimally proportion traffic to the various options. 

Since the automata can only perform within the constraints of 

the allowable paths the scheme may be best regarded as a 

self-tuning routing scheme. 

Self-Organising Adaptive Routing 

An alternative strategy is to relax any restrictions on 

the action sets of individual automata, permitting the selection 

of any trunk group, but excluding the trunk used to arrive on. 

Operation of such a scheme can be described as self- 

organising, the routing mechanism having complete freedom 

to seek out the optimal paths in the network, eventually 

converging to exclude actions which result in loops and 

exceedingly long paths. In routing schemes of this type 

the feedback of a path length parameter is a desirable and 

necessary feature, the response to the automata resulting from 

the outcome of the call and the number of lines accululated. In 

the experiments that follow, the self-tuning technique is 

demonstrated although in the next chapter the self-organising 

scheme / 
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scheme is shown in operation under normal and adverse 

network conditions. 

Practical Considerations 

Prior to implementing the learning automata scheme in 

a real network certain aspects concerning the nature of the 

learning algorithms and mechanisms for performing 

alternative actions must be considered. 

Learning Coefficients 

The choice of learning algorithm parameters a and b 

in general represents a trade off in speed and accuracy, 

coarse values producing fast convergence at the expense of 

high action probability variance and consequently inaccurate 

steady state behaviour. In constrast, automata with 

small values give good equilibrium results but lack the 

response to adapt with fast changes in the network. 

Moreover, to achieve a truly optimum performance, it 

might be necessary to allocate different parameters to the 

various automata in the network, although as of yet this 

problem has not been studied. 

Maximum Path Length 

In order to prevent excessive call lengths, a maximum 

path length constraint is a helpful addition to a practical 

routing scheme. This may be a necessary physical 

constraint which is imposed by signal losses in the network, 

for instance to maintain a specified signal to noise ratio. 

Repeated Routing Attempts 

In the experiments with the small networks an action 

of the automata was designated to the sequence which the 

allowable paths were attempted. In the case of two paths 

this proved an entirely satisfactory arrangement, a2 action 

automaton / 
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automaton providing the necessary number of actions. 

However for N paths a N! action automaton is required to 

cover all combinations of trunk selection, which unfortunately 

proves unsuitable for networks where several options exist at 

a node. 

A suitable modification on the original scheme is to 

allow individual actions to correspond to a specific trunk 

group. If the first choice has failed due to no lines then the 

remaining trunks are again considered, after temporarily 

removing the failed entry and re-normalising the action 

probabilities. This operation repeats until either the call is 

successfully routed or dropped from the network. 

5.3 8 Node Hierarchical Network 

The network used in the following sequence of 

experiments is shown along with the associated call sources 

on Figure 5.3. The design is based on the logical paths 

available between two end users in different regions of a 

conventional hierarchical structured telephone network. 

Further, the implementation of both routing schemes, 

alternate path and learning automata s are governed by the 

previously described routing limitations and as such promote 

the realism of the experiments. The results presented in 

this section also include a group of experiments modelling the 

network under fault conditions and as is shown, the adaptive property 

proves a valuable asset under these circumstances. 

For the adaptive schemes the LR_I reinforcement 

algorithm provides the up-dating function, using learning 

parameters a=0.02, b=0.0. Also, the experiments 

were run using the PDP 11 simulation package(34), since 

at this stage in the project, the mainframe simulation software 

had not been fully prepared. Duplicate experiments with 

the 
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the 8 node network were later used to confirm the correct 
operation of the second version. 

Experiment 1 Normal Network Conditions 

In this experiment, the network is allowed to operate 

under engineered loads and with no induced faults. 

By carrying out a max-flow analysis on the network it was 
found that for both the fixed and adaptive schemes the effective 

number of lines from 1 to 8 is 110. Consultation with 
the tables in(32) shows that for this capacity blocking 

probabilities in the region of 0.11 to 0.138 might be 

obtained. 

In all, two traffic conditions are attempted, a single 

source ßiß = 20 calls/min and a dual traffic set 

ý8 = X81 = 10 calls/min. For these simulations, the 

following results were obtained. 

ý8 =20 calls min 

Fixed Rule 
(LR 

-I 
Scheme) 

Overall BP 

500 
Calls 

. 06(. 088) 
Calls Blocked Node 1 30(40) 

7- (-) 

>18 >81 = 10 calls min 

Overall BP 
BP X18 
BP X81 
Calls Blocked Node 

. 088(. 054) 
083(. 052) 
093(. 056) 

1 18(-) 
2 5(7) 
7 3(13) 
8 18(7) 

1 000 
Calls 

. 09(. 142) 
91(104) 

- (38) 

. 094(. 079) 

. 108(. 069) 

. 081(. 088) 
40(7) 

9(37) 
13(28) 
32(7) 

1 500 
Calls 

. 115(. 125) 
173(147) 

- (41) 

. 111(. 086) 
116(. 073) 
106(. 099) 

66(11) 
20(68) 
21(43) 
60(7) 

With the results obtained from this series of simulations it 

can clearly be noted that the learning schemes converge to 

give comparable results with the optimal fixed rule. 

Although the blocking probabilities have not been altered in 

any appreciable manner, it is interesting to note the shift in 

congestion / 
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congestion patterns, i. e. , the various schemes tending to 

have different numbers of blocked calls at nodes 1,2,7 and 
8. Furthermore, the blocking probability obtained compares 
favourably with the predictions for 110 trunks. 

Although only a small cross section of a large and complex 

network has been simulated, the experiments described 

provides a valuable insight into the operation of the learning 

automata routing in a large network. 

Experiment 2 Fault on Trunk T78 

By failing trunk group T78 i. e. , ý8 = 0, it can be 

shown that the fixed rule encounters severe problems while 

routing calls from 1 to 8. This behaviour is a direct 

consequence of the local routing policy of the alternate path 

scheme, since once passed on from a node the call cannot 

attempt any previous options when blocking is met at a later 

stage. Further analysis reveals that the optimal fixed 

rule for >18 can only access 30 lines whereas the adaptive 

scheme, after converging, can possibly utilise 80. 

Again consulting with the blocking probability tables shows the 

expected values for blocking to be 0.75 for the fixed rule and 

0.35 for the automata. For this experiment 3 simulation 

runs are described, with X18 = 20 calls/ min, X81 = 20 calls/ 

min and >18 = X81 = 10 calls/ min. 

ýg = 20 calls/ min 

Fixed Rule 500 1 000 1 500 
(LR_I Scheme) Calls Calls Calls 

Overall BP. 702(. 344) . 733(. 353) . 738(. 355) 

Calls Blocked Node 7 351(172) 733(353) 1 107(553) 

X81 =_20 calls/ min 

Overall BP. 458(. 43) . 483(. 476) . 47 1(. 48) 

Calls Blocked Node 8 229(215) 483(476) 706(720) 

X18 - 41 = 10 calls/min / 
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X18 = >81 = 10 calls/min 500 1 000 1 500 
Calls Calls Calls 

Overall BP. 46(. 386) 
BP >18 

. 685(. 428) 
BP >81 238(. 284) 
Calls Blocked Node 2-(-) 

7 170(110) 
8 60(69) 

. 494(. 377) 
693(. 39) 
284(. 363) 

356(201) 
138(176) 

51(. 39) 

. 709(. 353) 
307(. 426) 

(7) 
537(263) 
228(315) 

From the significant change in the blocking probabilities, it 

can be seen that T78 is an extremely important part of the 

network. As predicted, the fixed rule results show a 
large increase in the blocking probability for 118 calls, this due 

to the schemes inability to access more than 30 lines. 

In contrast, the learning scheme, with the power to attempt 

call routing over extra paths makes full use of the 80 lines. 

The results for 181 = 20 calls/ min illustrates the influence 

of T78 on 181 calls which for both routing schemes has a 

similar effect and consequently both schemes give similar 

results. Finally, it is interesting to note the results 

obtained from the dual source simulation and to study the 

individual source blocking characteristics. Prior to the 

automata converging the difference in blocking (118-X81) is 

noted as 0.14. However, on convergence the automata 

show load balancing properties which reduce this to 0.07, 

the automata thus giving a fairer allocation strategy. 

Experiment 3 Fault on Node 7 

In this experiment, node 7 is "eliminated" by 

removing trunk groups T», T37, T67 and T78. A gain 

carrying out the max-flow analysis we find that for X18 calls 

the fixed rule can utilise 70 trunks with the learning scheme 

converging on 80. Under these conditions once more 

the learning scheme will out-perform the fixed rule although 

the difference will be ti; stantially reduced as compared 

with 
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with the previous experiment. 

X18 = 20 calls/ min 

Fixed Rule 
(LR 

-I 
Scheme) 

Overall BP 
Calls Blocked Node 1 

2 

X81 =20 calls/ min 
Overall BP 

500 1 000 1 500 
Calls Calls Calls 

. 38(. 322) 
, 395(. 324) 

. 401(. 339) 
- (77) - (198) - (369) 

190(84) 395(136) 602(140) 

. 428(. 43) . 458(. 48) 
Calls Blocked Node 8 214(215) 

X18 = X81 = 10 calls/min 

Overall BP 
BP X18 
BP X81 
Calls Blocked Node 

36(. 3) 
245(. 239) 

. 467(. 36) 
1- (4) 
2- (1) 
6 59(55) 
8 121(90) 

458(480) 

. 417(. 29) 
321(. 222) 
505(. 359) 

- (20) 

- (5) 
156(96) 
121(167) 

. 493(. 467) 
739(706) 

. 434(. 307) 
349(. 225) 
519(. 394) 

- (63) 

- (17) 
261(111) 
390(269) 

Although node 7 was completely removed from the network, 

the system blocking probabilities were lower than those 

obtained in the previous experiment. This can be explained 

as follows. With node 7 completely out, calls are 

pushed further up the hierarchy where they can tap the 

capacity of the direct links from 5 and 8. With T78 alone 

in a fault condition calls get trapped at node 7 and because 

of the lack of feedback no other paths are attempted. As 

in the previous experiment the results for the fixed rule and 

learning automata are comparable for X81 = 20 calls min. 

This condition allows both schemes access to 60 lines, thus 

leading to blocking probabilities in the region of 0.46. 

Experiment 4 Focused Overload Conditions 

In order to highlight the problems of assymrnetric traffic 

and focused overloads, an additional call source is added to 

node 7 (X78. As expected, and confirmed by the results, 

the 
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the introduction of such conditions are a major influence on 
the performance of the routing scheme. In this particular 
example the result of the overload is a reduction in the 

effective number of lines available to calls of X18 and X81 

with the subsequent increase in blocking probability. 

l18 = 20 calls/min 

Fixed Rule 
(LR-I Scheme) 

Overall BP 

BP 
ýa 

Calls locked Node 7 

>81 = 20 calls min 

Overall BP 
BP Xj 
BP Xýg 
Calls Blocked Node 7 

8 

X81 = X18 = 10 calls/min 

X78 = 10 calls min 

500 
Calls 

1 000 
Call s 

1500 
Calls 

. 314(. 242) 

. 251(. 177) 

. 434(. 371) 
157(121) 

. 256(. 296) 
192(. 182) 
378(. 572) 

65(87 
63(61) 

Overall BP. 302(. 26) 
BP >18 . 301(. 257) 
BP X81 . 072(. 086) 
BPX. 78 . 484(. 426) 
Calls Blocked Node 2- (- ) 

7 140(117) 
8 11(13) 

345(. 278) 

. 27(. 186) 

. 491(. 456) 
345(278) 

. 344 (. 314) 

. 276(. 197) 

. 471(. 54) 
164(184) 
180(136) 

367(. 302) 
377(. 251) 
196(. 162) 

. 52(. 492) 

- (3) 
303(250) 

64(49) 

. 401(. 2 91) 
312(. 195) 

. 477(. 472) 
602(436) 

379(. 356) 

. 308(. 256) 
516(. 542) 

266(285) 
303(249) 

381(. 305) 
378(. 24) 
192(. 167) 
558(. 499) 

- (16) 
480(377) 

92(64) 

Again the adaptive routing scheme proves a worthwhile service 

in the network which although in a failure-free condition suffers 

performance degradation through a traffic asymmetry in the 

form of a focused overload. For instance, the X18 = 20 calls/ 

min case, when routed by a fixed rule gave an overall 

blocking probability of 0.401 compared to the 0.291 of the 

learning scheme. 

To summarise the results from this last series of 

experiments it is useful to construct a table showing the 

overall 
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overall blocking probabilities for the different network 

conditions. 

>18=20 X81=20 ý8=xv = 10 

Normal . 115 
. 111 

Conditions 
. 

125 
. 086 

Trunk T78 . 738 
. 471 

. 51 
Failed 

. 355 . 48 
. 39 

Node 7 
. 401 

. 493 . 434 
Failed . 339 . 467 . 307 

Focused 
Overload A01 . 379 

. 381 

>78 . 291 . 356 . 305 

Fixed 
Learning 

Several salient features can be observed from this table 

regarding the comparative studies between the fixed and 

learning routing schemes. In the first row the results for 

the network operating under normal conditions is presented, 

indicating the equal ability of the learning scheme and the 

optimal fixed rule. Next the influence of a failed T78 on 

calls from X18 is shown, in this case the learning scheme 

clearly providing a better routing service. Similar 

conditions are again noted for the adverse conditions caused 

by the failure of node 7 and the injection of additional calls 

at node 7, the learning scheme operating in such a way as 

to tap network capacity unused by the alternate path scheme 

with the distinctive improvement in service. 

5.4 12 Node Hierarchical Network 

A network similar to that used in the previous 

experiments is expanded to 12 nodes and is as shown in 

Figure 5.4. Once more experiments using the conventional 

fixed 
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fixed rule and a LR_I learning scheme are presented, the 

network operating under both normal and fault conditions. 

Further analysis of the network leads to the conclusion that 

T78 is still the most sensitive component for failure and as 

a result gives the worst case conditions. 

Experiment 1 Normal Network Conditions 

In this experiment the network is operated under normal 

conditions using engineered loads and fault-free components. 

For all call sources set to 10 calls/min the following 

results were obtained. 

Calls 500 1 000 1 500 2 000 

BP 162 .0 52 () 
. 206(. 159) . 245(. 189) . 25(. 21) Overall 

BP 118 . 235(. 079) . 280(. 212) 321(. 265) . 345(. 28) 
BP X81 

. 
088(. 017) . 140(. 122) . 15(. 13) . 152(. 167) 

BP 1812 . 084(0) . 095(. 083) . 131(. 099) . 133(. 142) 
BP 112 8" 235(. 109) . 304(. 216) . 368(. 259) , 368(. 25) 

Blocked 
Calls 
Node 2- (2) - (11) - (20) - (37) 

7 60(24) 149(109) 265(198) 359(266) 
8 21(-) 57(37) 103(59) 141(101) 

11 - (-) - (2) - (6) - (16) 

As in previous experiments for networks operating under 

normal conditions the learning scheme is seen to produce 

comparable results with the optimal fixed rule. It should 

be noted that although both routing schemes produced similar 

overall blocking probabilities, the LR 
-I 

scheme manages 

to provide a better service distribution for the individual 

sources, again suggesting a fairer allocation strategy by 

the automata. This fact is also brought out in the 

congestion distribution in the network with the fixed scheme 

causing blocking at only two nodes and the learning scheme 

spreading the blocked calls over four. 

Experiment 2 Fault on Trunk T78 
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Experiment 2 Fault on Trunk T78 

As in a previous experiment a network fault is introduced 

by open circuiting trunk group T78, effectively rendering the 

fixed rule sub-optimal for two of the sources (X12 8 and X18). 

The following results were obtained for both fixed and learning 

routing with all sources generating 10 calls/min. 

Calls 

BP 
Overall 
BPX18 
BP X81 
BPX812 
BP >12 8 
Blocked 
Calls 
Node 2 

7 

500 1 000 1 500 2 000 

. 436(. 33) 

646(. 487) 

. 029(. 263) 
206(. 098) 
765(. 485) 

188(117) 
30(48) 

. 472(. 358) 
. 479(. 39) 

. 496(. 393) 

. 707(. 455) . 715(. 458) . 723(. 417) 
196(. 337) 

. 231(. 359) . 247(. 357) 
223(. 173) 

. 192(. 247) 
. 

243(. 295) 

. 761(. 463) . 774(. 496) . 67(. 501) 

367(226) 560(354) 747(456) 
105(132) 158(231) 245(329) 

As expected the learning automata scheme is able to make the 

most of the unused network capacity to produce lower blocking 

probabilities than the fixed rule. Once more the influence 

on the service distribution is noted, the adaptive scheme 

clearly attempting to balance the grade of service to individual 

users. 

From the results of both experiments it is possible to 

plot graphs showing the blocking probability against the number 

of calls handled. On Figure 5.5 four overall blocking 

probability graphs have been drawn. 

1 Fixed rule under normal conditions 

2 Learning scheme under normal conditions 

3 Fixed rule under fault conditions T78 = 0) 

4 Learning scheme under fault conditions 

In accordance with prior results, the fixed rule and 

learning schemes operating under normal conditions show 

virtually 
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virtually identical steady state behaviours, proving the ability 

of the adaptive routing technique to match the performance of 

an optimal alternate path scheme. With group T78 removed, 
the learning scheme is shown to outperform the fixed rule 

which as suggested previously is no longer optimal. It 

should however be noted that initially (first 200 calls) the 

learning scheme gives higher blocking probabilities than the 

fixed rule. This can be attributed to the transient learning 

phase of the 'automata, primarly attempting all routing 

alternatives to finally converge to the optimal routing strategy. 

5.5 10 Node Mesh Network 

In the upper levels of the network hierarchy (regional 

centres) and in small private networks the overall structure 

of the net may be regarded as a mesh. To ensure that 

networks of this variety are covered an additional set of 

experiments have been included to study the use of learning 

automata routing schemes in this case. 

Experiment 1 Normal Operating Conditions 

Following previous experimental procedure, a lower 

bound to the network performance is found by staging a 

simulation with fault-free components under engineered loads. 

Considering one call source X17 = 10 calls min the following 

results were obtained. 

Fixed 500 1 000 1500 2000 

Rule (L 
I 

Scheme- 

Overall BP. 314(. 178) . 315(. 148) . 291(. 137) . 298(. 131) 

Blocked 
Calls 
Node 2- (88) - (147) - (204) - (238) 

3 157(-) 315(-) 436(-) 596(-) 
8- (1) - (1) - (1) - (1) 

By / 
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By intention, no attempt in preparing this experiment was 

made to produce an optimal fixed rule to purposefully show 

the automata converging to the desired optimum strategy. 

Further, an analysis of the network reveals that for calls from 

X17 45 lines are made available by the fixed rule with the 

learning automata converging on 60. The results obtained 

confirm this with the overall blocking probability measured 

as 0.298 for the fixed rule as opposed to 0.131 for the 

learning scheme. 

Experiment 2 Fault on Trunk Group TO 

For this experiment the previous mesh structured 

network and traffic conditions was used, but in order to 

simulate a failure T67 was set to contain no lines. A gain 

a max-flow analysis of the network indicates that the fixed 

rule is sub-optimal, accessing only 20 lines in comparison 

to the adaptive scheme converging on 55. 

Calls 500 1 000 1 500 2 000 

Overall BP. 7(. 264) 682(. 272) . 698(. 275) . 68(. 269) 
Blocked 
Calls 
Node 2- (82) - (160) - (249) - (313) 

6 350(28) 682(72) 1047(115) 1360(127) 
8- (22) - (40) - (48) - (98) 

With T67 in a failed condition calls destined for node 7 tend 

to be blocked at node 6 when routed by the fixed rule. 

The learning scheme on the otherhand utilises the additional 

capacity offered by nodes 4,5,9 and 10 and as a result 

produces a significantly lower blocking probability. 

Experiment 3 Focused Overload by X67 

A traffic asyrr-metiy is caused by injecting an additional 

source of calls at node 6, effectively eroding the available 

lines for the prime source. For the experiment both 

sources 
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sources provide a rate of 10 calls min. 

Calls 

Overall BP 
BPý, 17 
BP X67 
Calls 
Blocked 
Node 2 

6 
8 

500 

. 786(. 582) 

. 762(. 449) 

. 81(. 73) 

- (38) 
393(216) 

- (37) 

1 000 

. 808(. 602) 

. 778(. 455) 
837(. 755) 

- (121) 
808 (444) 

- (37) 

1 500 

819(. 581) 
801(. 414) 
838(. 748) 

(175) 
1229(659) 

- (37) 

2 000 

817(. 577) 
792(. 413) 
842(. 741) 

(2 62) 
1 634(856) 

- (37) 

As suggested by previous simulation experiments, the learning 

scheme produces a better performance by utilising the extra 

capacity in the network. In comparison, the alternate path 

scheme operating on a purely local routing policy cannot attempt 

the additional routes, this reflected in the higher overall 

blocking probabilities. 

To supplement the numerical data, graphs of the 

blocking probabilities were drawn as a function of calls in, 

attempting to show the transient behaviour of the learning 

schemes. The fixed rule, as expected, allows the 

network to fill up in an, orderly manner, heavy traffic 

overflowing into the secondary routes as desired. The 

learning scheme on the otherhand exhibits a"learning phase" 

with the blocking probability initially rising above the steady 

state value to drop to the final condition. Figure 5.7 

displays the overall blocking probability graphs for normal 

and T67 failed conditions with Figure 5,8 showing the 

individual blocking probabilities for X17 and X67 for the 

various routing schemes. 

5.6 Conclusions 

By carrying out a set of experiments on both 

hierarchical and mesh structured networks, this study has 

endeavoured 
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has endeavoured to cover all topographical aspects of the 

modern telephone system, proving the learning automata 
technique to be a suitable contender for adaptive routing. 
Even in the hierarchy where routing operations are suitably 

constrained by a set of governing rules the problems of 
focused overloads and component failures can cause significant 

performance degredation. As demonstrated by the 

experiments the use of an adaptive scheme provides a more 

efficient means of allocating network facilities which as 

shown must be performed using global knowledge of the 

network. 

From this chapter, several major conclusions can be 

drawn on the nature and performance of the learning automata 

schemes. In addition further evidence has been produced 

to support conclusions brought forward in the previous chapter. 

1 Under normal conditions the learning 

scheme, operating in steady state, can 

match the routing performance of the 

optimal fixed rule. 

2 When adverse conditions cause the fixed 

rule to produce non-optimal routing 

decisions, the learning scheme operating 

under similar conditions has the ability 

to adapt from previous routing strategy, 

re-converging to utilise the unused network 

capacity. 

3 The ability of the learning scheme to perform 

load sharing is a desirable attribute. 

This is shown in operation with the tendency 

for the adaptive scheme to equalise the 

individual source blocking probabilities 

and to modify the congestion distribution 

for the nodes in the network. 
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Figure 5.2a Flow splitting 

Figure 5-2b Path blocking probability equalisation 

Figure 5.2c Blocking rare equalisdion 
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Figure 5.6 10 Node mesh network 
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CHAPTER 6 

APPLICATION OF LEARNING AUTOMATA ROUTING IN A 
PRACTICAL COMPLEX NETWORK 

6.1 Introduction 

In previous chapters, theoretical and simulation 

studies of learning automata routing have been presented, 
initially considering simple network configurations to permit 
investigations of the convergence behaviour of individual 

automata and the relationship with optimum performance. 

Later experiments, based on cross sections of the 

hierarchical telephone network consisting of up to 12 nodes, 

but with limited traffic sources allowed further evaluation of 

the adaptive routing technique including the impositions of 

network faults and asymmetric traffic conditions. A need 

therefore exists to demonstrate the LA routing scheme in 

a realistic network with a complete traffic set and to further 

compare the technique with the optimal fixed rule under 

static and non-stationary network conditions. In addition, 

a study of the realistic network provides the opportunity to 

investigate the self-organising learning automata scheme. 

Bell Network 

For the following sequence of experiments, formal 

specifications of a 10 node network topology, optimal 

alternate path routing scheme and a set of traffic statistics 

were obtained from Bell Laboratories 
(35) 

and are presented 

fully in Appendix 1. The essential data for this network 

was derived using off-line optimisation techniques, to 

produce a compatible network/ routing rule design for the 

given constraints of the network topology and estimated 

traffic. It therefore offers an ideal test-bed for comparing 

and 
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and proving the adaptive scheme, since the operation of the 

optimal fixed rule may be considered as a performance 
datum, dictating a lower bound on the expected behaviour. 

Self-Organising Routing 

As suggested in an earlier chapter, the self -organising 
routing scheme requires no prior knowledge of the network, 

allowing each automaton to select any of the outgoing trunk 

groups at a node. This arrangement may be regarded as 

a true adaptive routing scheme and presents an ideal routing 
technique for several communication networks, particularly 

military implementations, where both the topology and traffic 

behaviour are highly non-stationary. Furthermore, the 

optimal fixed scheme proposed for the simulations also 

consists of all possible options at a node and makes no 

attempt to invoke the Markovian constraint to exclude cyclic 

paths. 

Since both routing schemes introduce the possiblity of 

ring-around, a maximum path length condition is established 

to limit the maximum lines a single call can collect. 

Calls which do not successfully reach the destination within 

the allotted number of lines are dropped from the network, 

to be re-attempted by the source user. For this study, 

the maximum call length is set to 6 lines. 

6.2 Performance Measurement 

The size and complexity of this new network has posed 

interesting problems concerning the measurement and evaluation 

of the network routing scheme performance and as a result 

consideration has been given to suitable techniques which 

indicate the behaviour of the network and routing scheme. 

For studying the operation of the network, the overall 

blocking probability and traffic carrying properties are 

proposed 

133 



proposed as convenient performance criteria. Supplementary 

information regarding the degree and rate of adaption are 

provided by the abstract measures of entropy and average 

path length, these projecting changes in the routing scheme 

structure. 

Blocking Probability 

The blocking probability is defined as the ratio of the 

calls unable to be serviced (rejected from the network) to the 

total number generated by all sources. 

BPA Number of calls rejected 
Number of calls attempted 

In the results that follow the total rejected calls consists of 

calls blocked by no lines and also calls which are still 

unconnected after the maximum path length. 

Network Traffic 

In public utilities such as the telephone network, 

revenue is earned on the basis of total information carried 

and for this reason studies of switching networks are 

normally made according to the total network occupancy. 

In this study, indications of the network occupancy are based 

on the following criteria. 

Total Traffic Carried 

The total traffic carried, c may be regarded as the 

sum of hold times hi for all calls serviced by the network 

over the simulation period. For a simple tariff scale 

this figure of merit can be directly related to the revenue 

earned. 

c= Thi 

Calls Currently in Network 

The measurement of calls currently in the network 

gives 
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gives a dynamic indication of network performance, 

specifying the total calls in progress at an instant of time. 

This is conveniently displayed in a graphical form which 
ideally shows the variation of the network traffic condition as 

the simulation progresses. 

Average Path Length 

The average path length n is a measure of the mean 

number of lines required by a call and is consequently a 

criterion for the efficient usage of network facilities. 

_ 
Number of lines in use 
Number of calls in network 

Again this is drawn in a graphical form and is a useful 

measure to observe the adaption of the routing scheme. 

Routing Scheme Entropy 

The use of entropy 
(10) 

as a measure of dis-organisation 

is used in many areas of engineering and physics and is 

mathematically stated 
n 

H= >. pi log pi bits 
1-1 th 

(where pi is the probability of performing the i action) 

In this form, the entropy is a practical method for studying 

the order or structure of the routing scheme, and in a general 

network is given by 

Hrs(n) = pýk log pjk bits 
iEN jeD kcR 

where N is the set of nodes, D the set of destinations and 

R the allowable actions at each automaton in the network. 

From the entropy, the redundancy, Rrs(n) can also 

be stated 

Rrs (n) 1-Hrs (n) 

where H' is the normalised entropy given by 

'I Hrs - 
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Hrs 
Hrs where Hm is the maxim urn 

Hr entropy 

As the adaptive scheme converges to a suitable routing 

structure the redundancy of the routing scheme might be 

expected to increase as certain routes are given preference 
by the evolution of individual automata. 

Therefore 

dRrs 
> 

dn 

It follows 

d [1- 
rs/Hr, n] 

>0 
dn 

which gives 
dHm dHrs 

Hrs > Hm 
dn dn 

For the schemes suggested in this thesis the maximum entropy 

Hm remains constant for the duration of each experiment 

since the number of automata involved is fixed, with no 

automata joining or leaving the network. The above 

inequality can thus be modified to suit 

dHrs 
<o 

dn 

This implies that for adaption or learning, the routing 

schemes must operate in such a way as to reduce the entropy. 

A decrease in the routing scheme entropy may be regarded 

as a reduction in the disorganisation of the scheme or an 

increase in redundancy as individual controllers learn of 

the network conditions. 

6.3 Alternate Path Scheme 

0 
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6.3 Alternate Path Scheme 

The results for the optimal alternate path routing 

scheme are described. For this experiment the topology 

and traffic statistics documented in Appendix 1 are used, 
the optimal sequences for the fixed routing scheme also as 
listed. As shown by the profile of Figure 6.1, the traffic 

statistics are switched to produce puesdo non-stationary 

arrival rates, further adding to realism. of the simulation. 

The fundamental reason for running a simulation 

experiment with an optimal fixed rule is to provide a bench 

mark result from which all other experiments can be 

compared. The data obtained from this experiment is 

subsequently superimposed as a datum point for the 

experiments that follow. 

Results 

Calls 2 000-4 000 4000-7000 7 000-10 000 

Overall BP 0.053 0.021 0.027 

Calls 0-10 000 

Traffic 810.17 hours 

The above table provides a numerical measure of the time 

averaged blocking probability for the three pertinent regions 

of the simulation (Figure 6.1). Also, a graph of the 

blocking probability as a function of calls handled is provided 

(superimposed on each graph of blocking probability for the 

LA schemes). Clearly, these both indicate a 

satisfactory performance by the fixed rule under the 

engineered conditions and typically demonstrates a 

performance expected from a real network. 

In addition to the results of the blocking probability, (Figure6.2) 

the traffic carrying capability of the network is illustrated by 

the 
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the Total Traffic Carried and graphs showing the variation 

of calls in progress against calls handled. The line 

utilisation of the network/ routing scheme is demonstrated with 

a graph of the average path length. Initially, with the 

network empty, calls tend to use the direct path between 

source and destination but as the network reaches steady state 

calls must also be routed over secondary routes. This ýs 

reflected in the average path length increasing from the 

minimum 1 line call to a value of around 1.2 lines/call. 

These low values suggest an efficient usage of network 

facilities and in conjunction with the other performance 

criteria show the operation of an optimal routing scheme. 

This experiment provides an excellent result for 

comparison of the adaptive schemes to be presented later. 

Furthermore, the performance obtained gives good 

correlation with the original specifications of the network and 

confirms the optimality of the design. 

6.4 Self -Organising Learning Automata Schemes 

In the following simulation experiments, learning automata 

routing in a self-organising scheme is demonstrated using the 

predescribed network (same topology and traffic conditions), 

aiming to minimise call blocking. The routing scheme 

utilises a LR-I reinforcement algorithm in each automaton 

and in an attempt to enhance the performance, variations of 

the basic scheme are proposed and simulated. 

Basic Learning Automata Scheme 

For this simulation the learning automata scheme is 

operated using the simple feedback strategy described in 

previous chapters where 

ýcr 
1 

1 / 
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ßkr =1 call blocked 

ýkr =0 call routed successfully 

In other terms, this strategy is only concerned with whether 

a call is routed successfully or is blocked, irrespective of 
how many lines are used in setting up the call. Although 

this arrangement might be expected to produce sub-optimal 

results for a self-organising scheme it nevertheless proves 

an interesting technique since an extremely simple and 

practical feedback policy is employed. 

Results 

Calls 2 000-4 000 4000-7000 7 000-10 000 

Overall BP 0.121 0.0 89 0.101 

Calls 0-10000 

Traffic 74 9.62 hours 

The blocking probability results (table above and Figure 6.2a) 

show a marginal increase in the overall blocking probability 

when compared to the results from the previous experiment. 

It is interesting to note the form of the blocking graph; the 

early performance of the routing scheme giving high values 

of blocking probability which decrease as the learning scheme 

adopts a suitable routing structure for the given conditions. 

The calls in progress graph (Figure 6.2b) also reflects the 

degradation in the network performance with less traffic 

carried by the network for the same sample size. 

Since this experiment considers an adaptive routing 

scheme, the entropy and average path length graphs are of 

considerable interest. As suggested, the entropy curve 

(Figure 6.3b) displays the required reduction in entropy 

(dH/dn<0), % 
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(dH/ do <0), this falling from a maximum of 252 bits to a 

value around 110. This graph also indicates convergence 

to be complete after approximately 7 500 calls. 

The average path length graph as shown on Figure 6.3a 

gives a completely different behaviour from the fixed rule 

result. Whereas the fixed rule produced a minimum path 
length initially, increasing to a higher steady state, the 

adaptive scheme adopts a high average path length in the 

early stages and converges to a reduced steady state value. 

This can be attributed to the learning schemes initial lack of 

structure, the adaption of individual automata bringing the 

measure down as the optimum paths are found. 

Although the results obtained from this experiment 

show a poorer performance than the optimal fixed rule, the 

self-organising ability of the learning automata scheme has 

nevertheless been satisfactorily demonstrated. From 

completely unbiased initial conditions the routing rule has 

converged in such a manner as to attempt the minimisation of 

the blocking probability. It must be emphasised that in 

this experiment comparison has been drawn with an optimally 

designed fixed rule, which under the design conditions and 

load, gives the best attainable performance. 

However, in some circumstances, formal design of 

an optimal routing scheme is not possible, due primarily to 

insufficient data such as traffic estimates. Moreover, 

such a design can be of limited use, particularly when the 

network topology and traffic are highly non-stationary. 

Tactical defence networks such as Ptarmigan fall into this 

category, differing from civil systems not only in equipment 

engineering but also in traffic and operating aspects. 

Unlike the conventional telephone system military traffic 

predictions are entirely a matter of guesswork with the 

peak 
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peak and off peak periods being strongly related to tactical 

events, thus making reliable traffic estimates for routing 

rule design a difficult task. 

Reduced Option Learning Automata Scheme 

In an attempt to improve on the performance of the 

basic learning scheme a routing scheme is proposed with less 

allowable actions per automaton, which for this example is 

the first three elements of the optimal fixed rule; 

Results 

Calls 2 000-4 000 4 000-7 OOC 7 000-10 000 

Overall BP 0.161 0.082 0.047 

Calls 0-10 000 

Traffic 756.44 hours 

A study of the above table and Figure 6.4a shows a good 

improvement in the blocking characteristics of the network/ 

routing scheme combination, particularly in the latter stages 

of the simulation when convergence is complete. A similar 

enhancement of the routing scheme performance is indicated 

by the traffic measurements, the graph of calls in progress 

showing on average, a greater call carrying ability with 

respect to the simple scheme suggested previously. 

As in the earlier adaptive routing experiment, the 

average path length and entropy graphs provides a means to 

study the dynamics of the routing scheme. In this case 

they show the consequences of reducing the action sets of 

the automata with the maximum entropy Hm taking a lower 

value than previously noted. Likewise the plot (Figure 6.5a) 

of the average 
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average path length against calls handled shows convergence 
to a lower steady state of 1.75. 

Despite the obvious improvements in performance, this 

scheme has several restrictions which limit effective usage. 
Prior to establishing the routing scheme, knowledge of the 

network topology is required, and if the best three options 

are to be chosen, some off-line optimisation procedure must 
be implemented. Furthermore, the limited range of 

actions severly constrains the operation of the routing scheme 

under failure conditions. The results from the experiment 
do however promote the ability of the LA scheme as a means 

of producing a favourable performance. 

Path Length Feedback Scheme 

Whereas the previous scheme tended to improve the 

network/ routing scheme behaviour by limiting the choice of 

the automata, it is suggested 
(36) 

that utilising the path 

length of calls as an additional feedback parameter is a further 

and more desirable means for improvement. This scheme 

has the desirable property of minimising ring-around conditions 

and long path lengths and hence supports a more efficient 

strategy. kr ßj 

<M 
Path Length 

>M 

Call Status 
Blocked Routed 

Penalty Reward 

Penalty Penalty 

For the scheme implemented, M was set to two lines with 

the previously mentioned path maximum maintained at 6. 

This policy has the desired effect of encouraging the 

automata to route calls along the routes which utilise the 

minimum of network facilities, effectively permitting other 

source destination pairs access to the unused capacity. 

Results / 
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Results 

Calls 2 000-4 000 4 000-7000 7 000-10 000 
Overall BP 0.107 0 074 0.058 

Calls 0-10 000 

Traffic 765.15 hours 

The table and graph (Figure 6.6a) shows the influence of the 

path length feedback on the blocking behaviour of the learning 

automata routing scheme. In comparison with the 

measured performance of the basic LA scheme, this 

modified algorithm converges to a lower blocking probability 
in a shorter period of time. This tends to confirm proposals 

that the availability of additional information (path length) 

improves the ability of the scheme to converge on an optimal 

strategy. The traffic measurements (Figure 6 6b) displays 

a similar improvement, the lower blocking probability 

resulting in a greater number of calls in progress. 

The average path length graph also helps present this 

current scheme as the best alternative to the optimal fixed 

rule under the design conditions. In the steady state 

region of the graph (Figure 6.7a), the average path length 

is noted as approximately 1.6 lines/call, an improvement 

over all other automata experiments. 

The path length feedback scheme offers the best 

approach to self-organising routing of all the learning 

schemes demonstrated, being truly adaptive with no apriori 

information assumed by the scheme. Furthermore, 

implementation in a real network is a practical proposition, 

the scheme utilising the straightforward P-model 

algorithm / 
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algorithm and a simple measure for the path length, both of 

which are compatible with existing network operations. 

In retrospect, a more suitable technique of employing 

the path length parameter can be adopted. This new 

feedback policy is demonstrated on Figure 6.8b alongside 

the original variant Figure 6.8a, which as discussed 

earlier only rewards when a call is successfully routed within 

the allotted number of lines. In the modified strategy, 

a call routed on a path greater than the up-dating length 

constraint, rewards the automata nearest to the destination 

(a maximum of Yr up-dates) and penalises the remaining 

automata in the chain. This arrangement is seen as a 

superior up-dating mechanism as it gives the opportunity to 

reward automata which find the proposed destination but also 

helps restrict the formation of long and cyclic paths, which 

are seen to be wasteful of network resources. 

Start-up Bias 

In the schemes presented so far, the automata 

convergence has been from a completely unbiased condition, 

i. e... all actions equally likely. However, in most 

prgctical applications, the geography of the network is likely 

to be known and it should be possible to bias the initial action 

probabilities in favour of the most direct paths, 

In the unbiased scheme, the initial state of an 

automaton was given by 

P (0) =I where the automaton has r 
possible actions 

For the biased scheme, the initial action probabilities are 

structured such as to encourage the automata to take the 

better paths in the early stages of operation, without 

imposing rigid constraints should a need exist to adopt an 

alternative l 
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alternative routing strategy 

p1 (0) =. 5, p2 (0) =. 25, p3 (0) =. 125» 
. . Pn-1(0) Pn iý) 

Where action i corresponds to the i element in the 

descending order of shortest paths. 

Results 
I 

Calls 2 000-4 000 4000-7 000 7 000-10 000 

Overall BP 0.13 0.011 0.054 

Calls 0-10000 

Traffic 792.78 hours 

The blocking probability results (Figure 6.9a) for this 

experiment indicate the initial bias of the action probabilities 

to be effective in improving the early behaviour of the routing 

scheme . As shown on Figure 6.10a the average path 

length graph also shows the consequence of the technique, 

restricting this to less than 1.8 lines/call throughout the 

experiment. Furthermore, the latter stages of the 

simulation again illustrates the advantages of the path length 

constraint scheme, in this case giving good results for the 

mid and final regions of the run. 

The global convergence of the scheme, displayed by 

the entropy graph (Figure 6.10b) gives the effect of the 

initial bias on learning automata. Primarily, a new Hm 

is noted, reduced in value due to the initial structure of the 

action probabilities. Also noted, is the improved 

convergence of the scheme, a lower entropy being reached 

in a shorter period of time. 

The idea of establishing a start-up bias for the action 

probabilities has been shown to be an effective method of 

encouraging f 
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encouraging a rapid convergence by the automata and improvirig 

the global convergence of the routing scheme. It still 
however leaves the scheme completely flexible to handle 

unforseen events which require re-convergence and also 

allows automata to operate in the desired independent manner. 

6.5 Dynamic Injection of Abnormal Traffic 

As indicated in previous chapters, the benefits of a 

learning automata routing scheme are truly realised when 

failure or abnormal conditions prevail, a formally designed 

fixed rule no longer able to provide an optimal routing service. 

In this section, the effect of dynamically imposing adverse 

traffic conditions on the network is investigated, showing the 

operation of the optimal fixed rule under non-engineered 

loads and the capability of the adaptive scheme to 

reconverge so as to provide a better routing structure . 
The generation of adverse traffic conditions is seen as 

a most effective means of disrupting the normal operation of 

the network without escaping from realistic bounds in order 

that a significant change in operating conditions can be noted. 

In this particular study, the switching between the normal 

traffic matrix (Appendix 1, Table 1) to an alternative 

traffic set with the same overall load (Appendix 1, Table 4) 

is performed according to the profile shown on Figure 6.11. 

For the two experiments that follow, the routing schemes 

implemented are the optimal alternate path scheme and the 

path length constrained learning automata scheme, set with 

the parameters suggested in previous experiments. 

Optimal Alternate Path Scheme 

The alternate path scheme specified in Appendix 1 is 

utilised as the routing algorithm in a 12 000 call sample, 

no ý 
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no attempt being made to modify the routing sequences despite 
the change in traffic. Again the results from the optimal 
fixed scheme are used to provide a datum for comparing the 
adaptive scheme. 

Results 

Calls 4 000-6 000 6 000-9 000 9 000-12 000 

Overall BP 0.063 0.35 0.371 

Calls 0-6 000 6 000 - 12 000 

Traffic 481.82 hours 325.0 hours 

From the blocking probability results shown it is evident that 

the fixed rule is no longer optimal after the switch to the 

second traffic group. Although still numerically equal in 

totals the traffic situation is now distributed in a different 

manner and thus causes problems to the rigid routing policy 

of the alternate path routing scheme. Similarly, the 

effects of the non-optimal performance by the routing scheme 

is shown in the traffic measurements, these indicating a 

significant decrease after the change to the adverse traffic 

conditions. 

The average path length gives further proof of the 

inability of the alternate path scheme to service the new 

traffic conditions. Prior to the switch the average path 

length is noted as approximately 1.2 lines call. The 

new condition however causes a significant increase, in this 

experiment to about 2.3 lines/call, suggesting a non-optimal 

performance from the scheme. 

The results from this experiment clearly indicate the 

dependence of optimal routing on the offered traffic conditions, 

showing how the distribution of individual traffic sources 

influence / 
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influence the behaviour of the fixed scheme. It further 
demonstrates the inflexible nature of the alternate path 
scheme in dealing with abnormal conditions and shows the 

need for a routing scheme with a variable structure capable of 

providing satisfactory service whatever conditions are met. 

Learning Automata Scheme 

In this experiment the path length feedback scheme is 

implemented as the routing algorithm in the network and 

subjected to the traffic statistics introduced previously. 

Results 

Calls 4 000-6 000 6000-9 000 9 000-12 000 

Overall BP 0.099 0.363 0.332 

Calls 0-6 000 6 000-12 000 

Traffic 424.32 hours 333.34 hours 

From the blocking probability graph (Figure 6.12a) it is well 

illustrated that the optimal fixed rule gives a good routing 

service when design conditions prevail, allowing the scheme 

to operate as originally designed. The learning automata 

scheme initially lacking structure also converges to provide 

a reasonable result in the same period, although inferior to 

the optimal design. However, the introduction of the 

abnormal traffic set highlights the limitations of a fixed rule, 

with a noticeable increase in the blocking probability. On 

the otherhand, the versatility of the learning scheme is such 

that after experiencing (learning) the change in traffic, the 

restructuring of the routing probabilities helps provide a 

better blocking behaviour. 

The average path length (Figure 6.13a) provides a 

convenient medium for displaying the learning ability of the 

adaptive 
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adaptive routing scheme. At the outset of the experiment 

convergence of the automata is shown by a decrease in the 

average path length. After the traffic switch a similar 

effect is noted with the average length showing an increase 

followed by a reduction, reflecting the re-convergence of the 

routing scheme to suit the experienced conditions. 

The results of this experiment provides further evidence 

to support the adaptive powers of the LA routing scheme which 

as suggested can cope with conditions poorly serviced by a 

fixed scheme. Although the behaviour of the scheme has 

tended to be marginally sub-optimal in relation to the alternate 

path scheme under design loads and conditions, the learning 

scheme has the flexibility to out-perform the fixed rule when 

conditions become other than those originally specified. 

6.6 Summary and Conclusions 

The operation of a self-organising automata routing 

scheme has been demonstrated and compared with an optimal 

fixed rule in a complex network. Variations of the basic 

learning scheme have been suggested, including the use of 

the path length as an additional feedback parameter and the 

biasing of the initial action probabilities to speed the convergence 

process. From the results obtained several conclusions 

can be drawn regarding the nature of learning automata routing 

in large networks and their relationship with optimal fixed 

rules. 

Under design conditions, the optimal 

alternate path routing scheme provides 

a service which gives excellent blocking 

and traffic carrying performance. 

Moreover, in the same circumstances, 

the operating protocol of the alternate 

path 
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path scheme, first attempting the most 
direct paths, gives an efficient and 

effective routing operation. 
2 The self-organising ability of the learning 

automata routing technique has been suitably 
demonstrated, the scheme converging to 

give a marginally sub-optimal performance 

with respect to the formally designed fixed 

rule. As suggested, such a service is 

adequate in certain types of network where 

it is usually impossible and impractical to 

produce an optimal design for the alternate 

path scheme. 

3 The added constaint of path length helps 

improve the performance of the basic 

learning automata scheme by encouraging 

call routes to follow the most direct paths, 

without restricting the scheme from 

adopting alternative routing strategies if 

required. 

4 As shown in the final experiments the 

occurrance of other than design condit__)ns 

cause the fixed path scheme to produce 

sub-optimal results. Likewise, the 

learning scheme, although in the early 

stages is also disrupted, re-converges 

to produce a better performance. 

General Comments 

In this series of experiments the use of an externally 

specified network has been necessary to further promote 

the technique of learning automata routing. The topology 

of ý 
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of this network however tends to support the alternate path 

routing technique, since many direct paths are possible 
between source destination pairs, favouring the " `ar to 

near" policy of the fixed scheme. In a less highly 

connected network it could be construed that the learning 

automata scheme might be of greater advantage, particularly 

when the average path length is in excess of 2 lines/call, 

the global feedback policy permitting individual routing 

controllers to react to down chain restrictions, otherwise 

impossible to the isolated operation of an alternate path 

scheme. 

The learning automata approach to adaptive routing has 

much to be commended. From an engineering standpoint 

the simple feedback strategy, which is fundamentally 

inherent in the network operation, is compatible with existing 

network operating protocols. Therefore, to fully 

implement such a scheme, little alteration of existing 

hardware is required, the only significant changes being to 

the routing procedures of the switching centre software. 

Also, since the scheme operates in a completely de-centralised 

manner, using simple up-dating algorithms, little additional 

load is imposed on the processing facilities of individual 

exchanges. 
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CHAPTER 7 

STORE AND FORWARD SWITCHED NETWORKS 

7.1 Introduction 

The transmission of digitally coded information has 

shown tremendous growth over the last decade and will 

undoubtedly continue to expand in the future. Primarily, 

this can be attributed to the growing awareness and rapidly 

developing use of computer networks which serve to provide 

distributed computing facilities to a wide range of 

geographically dispersed users. Also relevant is the 

growth of digital electronic switching techniques and through 

these the implementation of more complex network protocols 

and routing schemes. 

A typical computer network (Figure 7.1) is a structured 

collection of data processing and communications orientated 

computers, interlinked by high bandwidth links which provide 

a full duplex transmission capability. Within the complete 

network, there exists a communication network or subnet, 

whose function is to facilitate long haul communications for 

the data processing tasks of the host computers which make 

up the host subnet. In this study, wP are specifically 

interested in the internal operations of the communications 

subnet, and can regard the host computers as merely a 

series of message sources and sinks. 

Within the communications subnet, data transmission 

is handled by the IMPs (Interface Message Processors), 

which switch messages between links, allowing for a 

progressive flow between the message source and 

destination. Also shown on Figure 7.1 is a TIP 

(Terminal Interface Processor) which in addition to 

performing the normal functions of an IMP, gives users 

without a local host, access to the net-%w, work. One factor 

which 
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which distinguishes the data transmission mechanism of a 

computer network, from other types, is the unique switching 
technique. Whereas the telephone network uses line or 

circuit switching, the computer network operates on a store 

and forward principle, which experience has shown to be far 

more effective to handle the high arrival rates and short 

message lengths, found in digital communications. Under 

these circumstances, the call set up procedure and resulting 

delay of the circuit switching proves prohibitive in all but a 

few computer network applications. 

Store and Forward Switching, as the name implies, 

involves the queueing of messages in network nodes until a 

suitable outgoing link is free for transmission. When the 

link does become available the message, or part of it, is 

transmitted at a rate governed by the capacity of the link, to 

be received and buffered at the next node. A message 

traversing the network is therefore seen to hop from node to 

node (Figure 7.2), the data being buffered at each node, 

until finally the destination is reached. These networks 

therefore introduce buffering or queueing delay and thus the 

message delay or response time plays a critical role in the 

system design. 

In studies of store and forward networks, the 

performance criterion of fundamental concern in most cases 

is the mean end to end delay, with respect to the movement 

of a message from the source node to the destination node. 

This provides a measure of the average transit time for a 

message and allows for an assessment of the network response 

time. Ideally, minimal delay is required and in addition, 

delay characteristics which show minor variation with 

increasing traffic. An efficient routing doctrine has 

influence on this aspect and in networks where traffic and 

topology f 
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topology are non-stationary, the provision of a suitable 

adaptive routing scheme should help achieve the desired 

response times by making better use of the available capacity. 
In the sections that follow, three distinct topics are 

discussed. First, the nature of store and forward networks 

is developed and details of the network components, operating 

protocols and design issues are reviewed. Secondly, an 

extensive summary of existing adaptive routing techniques 

is presented, relating the performance and general operating 

principles of these schemes and suggesting suitable areas for 

the application of the learning automata. Finally, the 

technique of modelling store and forward networks by digital 

computer is discussed, with details of three software 

simulators, produced for this study. 

7.2 Network Components and Protocols 

Similar to the circuit switching counterpart, the store 

and forward network is an interconnected set of switching 

centres or nodes and communications links, fed by a series 

of message sources. There are however, significant 

differences in the nature of the individual components and also 

in the operating protocols which govern their use. 

Store and Forward Node 

Conceptually, the store and forward node is a series 

of input and output queues which can store digital messages. 

In general an input and output queue per link is provided, 

which under normal operating procedures function on a first 

in/first out basis. Switching between queues is performed 

by a stored program processing element which also carries 

out additional duties such as routing, link control and error 

recovery operations. As with the circuit switched node, 

the element is uniquely identified by a numerical address. 

communication Link ý 
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Communication Link 

Unlike the trunk group connecting two circuit switched 

nodes, the link in a store and forward network consists of 

only two lines, the link Lij providing a line for transmission 

between i and j and also a line for transmission between j 

and i. The operation of Lij is described as full duplex, 

since both nodes can simultaneously communicate with each 

other. The capacity of Lid , Cif , specifies the maximum 

data transmission rate for a message on Lij (in both 

directions) and is normally dimensioned in units of bits sec. 

Neglecting the phase delay of the line, the time required to 

send a message of k bits is therefore k/Cij seconds. 

Traffic Sources 

The host computers and network terminals constitute the 

sources and sinks of message traffic in a network, which are 

of course random processes. Similar to the circuit 

switched network, this traffic is characterised by the point 

to point average message arrival rates Xis (source i, 

sink j) and the mean message length l/µiß bits/message. 

In analytic studies the message arrival statistics are normally 

assumed to be Poisson distributed, with the exponential 

distribution used to describe the message length process. 

Operating Protocols for Store and Forward Networks 

The operating protocols in the network are the formal 

rules by which the communication is governed, the two main 

types including message switching and an improved variant, 

packet switching. Essentially, the first networks operated 

on a message switching protocol, later networks using the 

more efficient technique of packet switching. 

Message Switching 

In message switching, the entire message irrespective 

of I 
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of length, is transmitted as a complete data block, from 

node to node in the network. This is demonstrated 

conceptually on Figure 7.3a, showing a message transmission 

over three links, the end to end delay for the message related 
to the sum of the three individual link delays. Assuming 
Po isson/Exponential statistics, it is possible to 

analytically specify the average delay experienced by a 

message on a link, using the M/M/1 queueing arrangement(27). 
For a link with capacity C, handling messages arriving at 

a rate X with mean length 1/µ the average delay is given 

by 

T= 1 
µC ->, 

Studying this in more detail reveals two components, a mean 

transmission delay and a queueing delay 

1+ ýµC 

µC PC-X 

Packet Switching 

The major difference between message and packet 

switching is the procedure in the latter which decomposes 

messages into fixed length segments or packets, which can 

be transmitted as separate units, the original message being 

reconstituted at the destination. The advantages of such 

an operation are clearly shown by Figure 7.3b, the pipe- 

lining of packets reducing the overall message delay. 

Analysis of the packet delay is unfortunately more involved 

than the message switching example since the queue 

experiences Poisson arrival statistics with a constant service 

rate. The average delay is therefore provided by the 

M/G/ 1 queueing theory 
(27) 

and gives 

T=/ 
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T 
2->, gC 
2µC-2X 

11 a/uC 
= µC+ 2uC -x 

Further classification of packet switched networks 
introduces the Datagram and Virtual Call operating protocols, 
both of which offer a distinctive communication service using 

packet switching principles. 

Datagram Packet Switched Network 

In theDatagram network, Figure 7.4a, each packet 

is treated, as an isolated unit and routed accordingly, with the 

constituent packets of a common message perhaps taking 

separate paths between the source and destination. This 

has the desirable effect of spreading traffic throughout the 

network, utilising the available capacity. It does however, 

result in packets arriving out of sequence and requires a 

facility to implement re-ordering. 

Virtual Call Packet Switched Network 

The operation of a Virtual Call Network, (Figure 7.4b), 

is analogous with circuit switched networks, where before 

communication can take place a set-up procedure establishes 

a direct connection between the information source and sink. 

Similarly, the virtual call packet switched network operates 

by forming a logical channel over which a data packet sequence 

is sent, the switching continuing on a store and forward 

basis. 

In modern computer networks both the datagram and 

virtual call protocols will find ever increasing use, the 

datagram type of operation is ideally suited to networks which 

carry significant proportions of short, interactive traffic and 

the virtual call network for situations when large file transfers 

are 
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are required. In this study of learning automata routing 

methods, it is proposed to investigate schemes which are 
suitable to both types of network. 

Design Issues 

With regards to the correct and optimal operation of a 
store and forward network, three important design issues must 
be faced, including the problems of routing, flow and 

congestion control. 

Flow Control 

The flow control scheme is the mechanism by which a 

network throttles and regulates the rate that data is transmitted 

in the network. At a link level, simple flow control 

techniques such as stop-and-wait and the sliding window 
(37) 

prevent nodes transmitting packets at a rate which cannot be 

handled by the receiving node, which perhaps is inundated by 

packets from many other nodes. Flow control is also 

necessary at a higher level to control a source host sending 

messages to a slower destination which does not have the 

capability to process the data at the same rate. In these 

circumstances, the flow control scheme reduces the possibility 

of a packet back-log developing in the network. 

Congestion Control 1: 

Congestion control is concerned with the avoidance and 

recovery from a network state in which the network performance 

is degraded in some way because of an excessive number of 

packets in transit within the network. In some circumstances, 

the congestion may be local, that is confined to a limited 

region of the network, or more seriously, it may exist 

throughout the network. Proposed congestion control 

schemes have included the Isarithmic scheme 
(38) 

, which 

operates using a constant stock of permits, which packets must 

first f 
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first secure before entering the network. Congestion is 
thus controlled by restricting the maximum number of packets 
within the subnet. 

It is generally agreed that the flow control mechanisms 
in a network are not sufficient to prevent congestion, although, 

poor flow control might be at the root of congestion problems 
in some networks. Local congestion, as mentioned 

previously, may be alleviated by an efficient adaptive routing 

scheme, which on detecting heavy saturation in a particular 

section, rapidly reacts to utilise alternative paths. 

Routing Scheme 

The reliability of a store and forward communication 

network is critically dependent on the behaviour and performance 

of the routing scheme. In circuit switched networks, the 

routing scheme operates at the outset of a call, establishing 

a connection of lines over which a direct communication can 

take place. Routing in store and forward networks however, 

represent a different problem, the objective being to ensure 

the systematic progression of each message from source to 

destination, aiming to minimise some performance criterion 

such as the mean end to end delay. 

The design of an efficient routing procedure for a network 

is typically a stochastic resource allocation problem, 

distributed in time and space. In general, the task is to 

find a routing structure R(t) which offers the best allocation 

strategy in a network with facilities N(t) and offered traffic 

T(t), such as to minimise the overall average delay. 

R (t) =G 
{N(t)1 

T (t) min (overall average delay) 

Problems are introduced however, by the time variant 

nature of N(t) and T(t), the network suffering from 

topological changes due to faults, modifications, etc. , and 

the / 
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the traffic set exhibiting statistical non-stationarity as a 
consequence of user trends, e. g. , peak and off-peak loads. 

It is therefore obvious that the optimal routing structure for a 
realistic network is not fixed, and in order that a satisfactory 

network performance can be achieved at all times, it is 

essential that an adaptive routing capable or re-organisation 
be employed. 

Properties of an Ideal Adaptive Routing Scheme 

Prior to looking at a range of existing and proposed 

routing techniques, it may be beneficial to note the nature of 

an ideal adaptive routing scheme such that comparisons can 

be drawn. The following properties are considered as 

desirable in an adaptive scheme. 

1 Optimality 

2 Stability 

3 Simplicity 

4 Robustness 

An optimal routing scheme is a necessary requirement 

from the viewpoint of achieving the best performance with the 

available network facilities given the traffic offered by the 

message sources. Minimising the mean message delay is 

an obvious candidate, but so is maximising the total 

throughput and minimising the worst case delay. Stability 

considerations are also very important in routing algorithms, 

since under any conditions, an adaptive scheme must be 

capable of converging to a steady state and reliable routing 

structure. It is noted that this has been a serious problem 

with some algorithms, the unstable behaviour resulting, 

in certain circumstances, to a complete disruption of the 

network service. 

From an implementation standpoint, the simplicity of 

a/ 
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a rout ing scheme is a crucial issue. This is particularly 
so when the processing power at the nodes is at a premium, 
and consequently it is undesirable to produce schemes involving 
lengthy computations and large storage requirements. Also, 

since adaptive routing requires some form of feedback from 

the network, a good implementation should attempt to utilise 

existing control traffic or, at least, introduce as little as 

possible additional traffic for this operation. A robust 

routing doctrine suggests a scheme which can satisfactorily 

contend with instantaneous changes in the network topology, 

coping with nodes dropping out and coming into service. 

7.3 Review of Existing Routing Techniques 

Since the origin of the first store and forward networks, 

many suggested routing methods have been presented, some 

following a practical solution to the problem, others looking 

theoretically at the mathematics of finding the true optimum. 

This section aims to classify the general types of routing 

scheme, using examples of many previously proposed and 

implemented techniques. It is also intended to show in this 

classification, the nature of the learning automata scheme in 

relation to the others, pointing out the advantages of this new 

approach. 

In a general classification of routing schemes for store 

and forward networks, Figure 7.5 forms a useful framework 

for discussion, primarily suggesting the option of invariant 

or adaptive routing. As implied, invariant routing schemes 

possess no ability to react according to network conditions 

and to re-organise the routing structure. This arrangement 

is not entirely staisfactory in a practical network operating 

under non-stationary conditions, but the simplicity and 

underlying concepts warrant the description of a few schemes. 

Of I 
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Of the simple, invariant schemes several consistently appear 
in the literature (39)(40) 

including fixed routing, random 
routing and flooding. 

Invariant Routing Schemes 

Fixed Routing 

In fixed routing schemes, (Figure 7.6a), tables or 
directories are furnished at each node, containing information 

on one particular line to be used for each possible destination. 

To successfully design such a scheme involves an off-line 

optimisation technique, which given the topological parameters 

and estimates of the traffic, produces the required directory 

entries. Normally, these form the shortest path routes 

i. e. , the single path which has the minimum end to end 

delay for a particular source destination pair. 

Random Routing 

As the name suggests, random routing, (Figure 7.6b), 

selects an outgoing link on a probabilistic basis. In some 

schemes any of the outgoing links can be utilised, each being 

chosen with equal probability. Other implementations of 

this technique might consider directories of routing probabilities 

at a particular node, (organised in a similar structure to 

the fixed rule) where the probabilities are not equal, the 

distribution biased in favour of the better routes. Operating 

in this manner, the random routing approach offers a flow 

splitting or traffic bifurcation scheme 
(41) 

and improves the 

transit of messages by utilising multiple paths which spreads 

the traffic throughout the network. 

Flooding 

Flooding (Figure 7.6c) is a routing technique employing 

the transmission of duplicate copies of a message on all 

available links (discounting the link on which the message 

arrived) / 
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arrived) and provided the destination is reachable, a copy 
is always delivered. Unfortunately, this is only achieved 

at the expense of heavy traffic overheads, caused by the 

generation of redundant traffic which can impose a considerable 
load on the network. 

Invariant routing schemes have been implemented in 

several networks, notably the S IT A network 
(19) 

where 

an enhanced form of fixed routing allows for network failures 

by specifying a secondary link in the routing tables. Also, 

the load splitting behaviour of the random routing scheme is 

important, since this forms the foundation for the learning 

automata schemes to be described later. 

Adaptive Routing Schemes 

In contrast to the invariant routing techniques, adaptive 

routing schemes have the ability to suitably modify the routing 

structure, to satisfy the network and traffic conditions, 

normally attempting to minimise the overall average delay. 

In the type of network under investigation, the adaptive routing 

strategies can be broadly classified (Figure 7.5) into four 

main doctrines, which are as follows: 

1 Isolated 

2 Centralised 

3 Distributed 

4 Hybrid 

Isolated Adaptive Routing 

From a design and implementation point of view, the 

simplest class of adaptive routing involves an isolated doctrine 

where routing decisions are taken only on the basis of 

information available locally at each node. Clearly, a 

technique of this nature cannot be globally optimal since the 

limited feedback policy pays no regard to the global status of 

the 
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the network. Any feedback however is readily accessible 
and constitutes the most recent state network. To illustrate 
the principles of isolated routing, two simple schemes are 
described; Hot Potato Routing 40) 

and Shortest Queue + Bias 
(42) 

Hot Potato Routing 

The term Hot Potato admirably describes the operation of 

an isolated routing technique where each node attempts to 

dispose of a packet at the earliest opportunity, by first 

checking for an empty queue and initiating a transmission on 

the associated link. Such a scheme, although desirably 

simple, suffers from "leap frog" problems near to the 

proposed destination, where packets tend to be shunted 

backwards and forwards without reaching the desired destination 

node (Figure 7.7a) . 
4 

Shortest Queue + Bias 

An improved variation of hot potato routing is the SQ+B 

scheme, where in addition to the queue length, a bias 

parameter also influences the choice of link for sending a 

packet. This is illustrated on Figure 7.7b by a specimen 

node with three possible outgoing links, these designated the 

primary, secondary, etc.. and allocated as appropriate 

bias coefficient. Used in conjunction with the available 

output queue space, the coefficients determine the proportion 

of traffic to be routed on each link, e. g. , 5+4: 5+3: 3+1. 

In the situation of a queue being full, the next best alternative 

is selected, and if all are saturated, the message is deleted, 

to be retransmitted by the error recovery mechanism of the 

previous node. 

Obviously, the hot potato and SQ+B routing techniques 

are severly limited by the myopic feedback policy, which 

reacts to a down stream disturbance, only after a chain of 

full 
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full queues have formed between the disruption and a node 
where an alternative routing decision can be made. One 

suggestion to improve on this lack of global feedback, is the 
SQ+B+PIJ (Shortest Queue + Bias + Periodic Update), where 
in addition to the fixed bias, a central routing facility provides 

a variable parameter to modify the nodal routing decisions, 

reflecting the overall condition of the network. 

Centralised Adaptive Routing 

Centralised routing methods (Figure 7.8a) rely on individual 

nodes reporting the local network conditions in their own 

immediate area to some central processing facility, commonly 

referred to as the Network Routing Centre (NRC). On 

assembly of the global state, optimal routing tables are 

formulated from the solution of multi-commodity flow 

algorithms and transmitted for use by the individual nodes, 

these remaining the sole routing policy until the next update is 

received. 

With the opportunity to utilise formal optimisation 

techniques, the centralised doctrine should in principle offer 

an efficient routing strategy. However, the inherent delay 

between nodes reporting the local status, the NRC computing 

the optimal routing strategy and the subsequent distribution 

of the routing tables curtails the advantages of such a scheme, 

this delay even introducing the possibility of unstable 

behaviour. A further drawback with the centralised 

routing discipline, is the reliance on a single computing 

facility, which from a reliability viewpoint is highly 

undesirable. Also, the need for additional control traffic 

to transport status reports and fresh routing information is 

inconvenient, the updating cycles causing periodical bursts 

of heavy traffic, particularly in the immediate area of the NRC. 

Despite the problems of centralisation, one suggested 

scheme 
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scheme deserves mention since it adopts a simple and practical 
approach to the problem. 

Proportional Routing 

Proportional routing has been suggested as a centralised 

routing technique, which although never implemented, has 

been throughly investigated 
(4 5) 

. With proportional routing, 

all links to directly neighbouring nodes receive a given 

percentage of the traffic, (as in random routing), based in 

proportion to the delays experienced on the various routes. 

This is shown with the assistance of the simple network on 

Figure 7.9a, and even consisting of only two paths, 

demonstrates the underlying principles. 

In this example, the random routing mechanism at node S 

periodically receives the probabilities p, and p2, these 

determining the proportion of traffic to paths 1 and 2 

respectively. The NRC (shown conceptually on the diagram) 

periodically collects and evaluates the average path delays 

T and T2 and subsequently produces modified routing 

probabilities with the following algorithm 

Tr= T2/ T 0<es, el <1 

if 

Tr >2 Pj - Pl+ý' p2 - P2 -eý 
1<Tr <2 9= P1+es3 PZ - P2 -es 

Tr 1 P1 P1 , P2 P2 

2 <' <1 pý = Pl - es, P2 = P2 +es 

In the more involved environment of a practical network 

(Figure 7.9b), each node is responsible for dispatching status 

reports concerning the link delays in the local area. From 

this information the NRC collates the path delays for all 

source destination pairs and calculates the routing probabilities 

with 
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with the following simple algorithm. 

I1 P Ti r )71/Tk 
k. 1 

Despite the simple approach of proportional routing, it still 
however incurs the overheads of centralised routing, which 
in comparison with the distributed routing techniques to be 

described, are unacceptable in most cases. 

Hybrid Adaptive Routing 

Hybrid routing schemes attempt to combine the virtues 

of the Isolated, Centralised and Distributed routing doctrines, 

whilst avoiding their faults. As of yet, only one significant 

scheme of this doctrine has been proposed, delta routing, 

although the fundemental principles of hybrid routing deserve 

further study. 

Delta Routing 

Delta routing 
(46) 

is a hybrid scheme, integrating the 

functions of isolated and centralised routing, to provide an 

algorithm which offers global optimisation while still 

maintaining the ability to react to minor local disturbances. 

Centralised adaptive routing, with a network wide overview 

of the network state, can prepare a global strategy with 

conventional optimisation techniques. Unfortunately this incurs 

a delay penalty which reduces the responsiveness of the scheme. 

On the otherhand, the isolated form of routing allows a node 

to react rapidly to changes in the local environment, but is 

lacking in global awareness of the network, a vital necessity 

for true optimum routing. On this basis, delta routing 

implements global and local decisions in such a manner as to 

achieve a consonant global strategy, but also giving individual 

nodes freedom to respond to instantaneous changes in their 

local environment. 

In 
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In delta routing, the centralised component of the overall 
scheme keeps track of the global situation, while on a local 
level, the isolated portion allows nodes to carry out updating 
from the immediate delays experienced by packets. 

Furthermore, the scheme provides a facility to delegate 

varying degrees of authority to either the centralised or isolated 

components, through a single parameter S. With this 

arrangement, a completely centralised scheme results from a 

low value of S., a high S allowing the isolated doctrine to 

dominate and for the most effective routing, an intermediate 

value, to produce hybrid routing which can out-perform either 

of the two extremes. 

Although Delta routing has experimentally been shown to 

provide a worthwhile routing service, it does however rely on 

a centralised routing, which as discussed before is not 

entirely satisfactory. Despite this, the general approach 

of hybrid routing is promising, and if exploited using perhaps 

distributed and isolated routing, could produce an agreeable 

scheme. 

Distributed Adaptive Routing 

The nature of a distributed routing scheme is more 

suitable for service in a dynamic environment such as a 

computer network and consequently several algorithms have 

been installed in networks, including the extensively reported 

ARPANET. In general, distributed schemes, Figure 8b 

form estimates of the complete path delays, through nodes 

exchanging partially complete delay information, constructing 

estimates for the network global delays and with locally 

implemented algorithms, produce optimal routing tables. 

Unlike the centralised technique, no node has a master role 

in the system and therefore any node can discontinue operations 

without causing a catastrophic effect on the rest of the network. 

In 
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In this review of distributed routing schemes, a 
distinction (Figure 7.5) is drawn between algorithms which 
provide an optimal single path and load splitting schemes which 
operate to proportion the traffic optimally over several paths. 
For the first category, the operation of Backward Learning 

and the ARPANET schemes are detailed as examples, the 

second group containing a method by Gallager which is a 
distributed implementation similar to the Flow Deviation 

method 
(48) 

and modifies the flow assignments to find the 

optimum. The learning automata routing also may be 

included as a load splitting scheme, although unlike Gallagers 

technique, updating occurs asynchronously, on a packet by 

packet basis. 

Backward Learning 

An early distributed routing technique is Backward 

Learning 
(43), 

, where a node attempts to gather global network 

information from messages arriving from the remaining nodes. 

One simple method of implementing this, is to include the 

identity of the source node in each packet, together with a 

counter that is incremented on each hop of the message. 

If, for example, a node j finds a packet arriving on link k, 

from a source node i with hop count n, node j can record 

that node i cannot be more than n hops, via link k. Also, 

if n is less than the previously measured minimum distance, 

link k may be marked as the choice for traffic at j, destined 

to i. After a while, every node in the network discovers 

the shortest path to every other node. 

One major problem exists with this scheme, caused by 

the nature of the scheme to react only to "good news", 

i. e.,, information suggesting a quicker route to some point in 

the network, unfortunately leaving problems such as link and 

node failures unrecorded. This can partially be overcome, 

by / 
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by nodes periodically neglecting the converged state, to 
re-initiate the learning operation, again introducing a 
transient which results in a spell of sub-optimal routing. 

ARPANET Routing Schemes 

An excellent paper 
(41) 

has described the first ARPANTET 

routing algorithm design philosophy and implementation, from 

original conception to subsequent modifications. The 

algorithm, which operates under a synchronous updating policy, 

requires nodes to transmit, every 
3 

of a second, minimum 
delay tables to their immediate neighbours, relaying information 

on the experienced delay to all destinations. As these 

tables percolate through the network, individual nodes add 

their local contribution and form routing tables which direct 

packets along paths for which the total estimated transit time 

is smallest. 

Take for example Figure 7.10, where node N 

periodically receives delay tables from nodes A, B and C 

with estimates of the global delay to all destinations. From 

local measurements, node N also has knowledge of the link 

delays between N and the neighbouring nodes and consequently 

the global delay between N and all destinations can be 

computed for each outgoing link. Using this data, N forms 

two data sets, the minimum delays to all other nodes (for 

transmission to A, B and C) and a routing table containing 

the best next nodes for each destination. 

Since the initial implementation of this scheme, several 

modifications have been proposed for performance improvements. 

Early stability problems, associated with the algorithm 

converging on erroneous paths, have been overcome through 

the use oi'hold down". In this strategy, the algorithm is 

tuned to react quickly to "good news", but more cautiously 

to "bad news" such as nodes reporting link failures. This 

modification / 
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modification appears to have corrected any unstable behaviour 

but unfortunately degrades the speed of reaction to network 
disturbances. Although never implemented, a promising 
approach of asynchronously updating the nodes has been 

suggested 
(50) 

, where information is only exchanged when 

significant changes in network conditions are experienced. 
Within the last three years, an entirely new routing 

algorithm has replaced the original and is regarded as an 
improvement since it uses less network resources and is not 

prone to unstable behaviour. In this new scheme 
(51) 

each node maintains a data base describing the network 

j 

topology and link delays, typically in a sparse matrix form. 

From this information, the desired routing tables are 

independently computed at each node using a shortest path 

algorithm. Updating operations also follow a different 

approach to the original algorithm. Whereas in the previous 

scheme, each node reported, the estimated delay between 

itself and all destinations, only to immediate neighbours, 

the new scheme requires nodes to transmit updates which 

contain local link delays to all nodes. 

Figure 7.11 attempts to briefly demonstrate the technique, 

the shortest path algorithm at node N, evaluating the data in 

[N] to form a routing table. The diagram also indicates 

how [N] is periodically revised, with all other nodes 

transmitting link delays and in addition illustrates node 1 

contributing to the other nodes with the delays on Lnq, Lnb 

and Lnc . 

Gallagers Algorithm 

Both ARPANET algorithms have been implemented, 

and operated in a major computer network for a number of 

years. Neither however, produce a truly optimal 

performance, / 
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performance, since only a single path is formed for each 

source destination pair. An optimal routing service can 

only be achieved with a load splitting algorithm which 

proportions the traffic over several paths. 
A distributed load splitting algorithm has been suggested 

in(52), which although only described and studied theoretically, 

proposes a highly desirable form of adaptive routing. The 

scheme breaks into two parts; a protocol between nodes to 

calculate and exchange marginal delays and an algorithm for 

modifying the routing probabilities. The marginal delays 

are the first derivatives of the path delays with respect to the 

offered packet flow and can be physically regarded as a 

"resistance" to further flow. The algorithm for updating 

is as follows. 

where 

Pik (j) - Pik (] ) -7 Aik (j) 

'Pik (]) = Pik (])+ "'ik (J) Z 

-*k, 

k; zf ký 

k=k V"M 

+SDt %8 rk 4 likW = Dik +SDt/ S rk (J) -min Dik. 

where D+ and ýD / 6r are the marginal delays due to the 

traffic on link i, k and the external traffic at node k, Pik (j) 

is the probability that k is selected as a next node from i 

and k is the next node on the path with the minimum 

marginal delay. The scale factor alters the rate of 

convergence, small 7 guaranteeing convergence, but 

rather slowly. Increased 2 improves the speed of 

convergence, however introducing the danger of no 

convergence. 

Learning Automata Routing 

The learning automata approach to adaptive routing may 

also be described as a distributed load splitting technique, 

but unlike the previous algorithm a simpler and more practical 

updating 
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updating process is involved. Moreover, updating occurs 

asynchronously, as individual packets are routed and hence 

dispenses with a need for periodical exchanges of information 

between all nodes. To further detail the advantages of 
learning automata routing, the following points are noted: - 

1 

2 

3 

Updating is implemented on the basis 

of measured delay, as opposed to the 

marginal delay d' of the previous 

scheme. 

The multi-modal search capability 

of the automata will find the global 

optimum, even when several local 

optima exist. 

The range of reinforcement algorithms 

offers alternative convergence 

strategies, usually by simple 

modification of the learning 

parameters "a" and "b". 

4 No assumptions need be made 

concerning the statistics of the traffic. 

7.4 Simulation of Store and Forward Networks 

This section describes the general simulation technique 

and program structure of a detailed store and forward 

simulator which has been produced to carry out a range of 

experiments involving alternative routing techniques. In 

all, the package permits the simulation of the three important 

network types, including message switching, datagram packet 

switching and a virtual call variant with full end to end control. 

Prior to describing the software implementation, the 

basic network and nodal models are presented, leading to a 

description of the overall simulation package, constituent 

programs, 
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programs and the data structures around which the simulation 

is formed. As with the earlier circuit switched simulators, 

extensive use has been made of ring data structure concepts, 

which are particularly suitable to support the operations 

required by network simulators. Also, the package has 

been prepared to run on a mainframe computer using an 

interactive graphics terminal for efficient input and output of 

data. 

Network Model 

In a store and forward network, digital data (messages) 

are transmitted from node to node, with messages queueing 

for service by the links which interconnect the various regions of 

the network. Conceptually a network of this type may be 

regarded as a collection of interactive queues, structured 

according to the topology of the network and fed by traffic 

sources which generate randomly arriving messages of 

varying length. The nodes typically consist of a memory 

allocation to act as message queues and a processing element 

for control, details of which are provided below. The 

network links (Figure 7.12a) are full duplex in operation, 

consisting of two lines each capable of supporting transmissions 

from both ends of the link. For the purposes of traffic 

generation, host computers assumed to act as message 

sources, randomly producing arrivals at each node, destined 

to all remaining nodes. 

Nodal Model 

For this study, a simple node is proposed (Figure 12b), 

consisting essentially of a common input queue, output 

queues for each outgoing link and a rudimentary data 

processing element responsible for link protocol and routing. 

All queues operate on a FIFO (First In/First Out) basis and 
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it is assumed that no queue jumping or message pre-emption 

can take place. The operation of this node is as follows. 

Messages arriving at the node are buffered in the input queue 

until service can be provided by the processor. Typically, 

this consists of a message check, effectively checking if the 

desired destination has been reached and the execution of the 

routing algorithm to select an appropriate outgoing link. 

If required, any updating of the adaptive routing scheme can 

be implemented, the operation being initiated on reception of 

the delay feedback. Routed messages are queued for 

transmission in the output buffer of the selected link, to be 

dispatched when the link is free. 

Simulation Package Overview 

For the task of simulating general store and forward 

networks, the standard three program package has been 

developed to implement the proposed model. This includes 

a network specification program, a simulation program 

(three versions) and an analysis program to calculate and 

display results from the basic data assembled during the 

experiment. 

The network specification program for the store and 

forward simulation package is effectively a modified copy of 

the original circuit switched program which used the storage 

interactive graphics terminal as an input/output device. 

There are however major differences to be found in the 

topological data structure produced, but full facilities are 

again provided to handle a variety of network sizes of any 

topology. 

Topological Data Structure 

The data structure produced by the specification program 

represents the network under investigation and provides a 

framework for the simulation using the topological information 

and 
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and storage allocations compiled during the construction phase. 
For this application, the data is stored in blocks or beads, 

logically connected through a pointer arrangement to form 

continuous rings and paths, representative of the network 

structure. 

Figure 7.13 shows a schematic diagram of the entire 

data structure, illustrating the various data beads and 

connecting pointers. Essentially, three main rings connect 

the network components, IMP ring, Link ring, and the 

Host ring. In a hierarchical fashion each IMP bead forms 

a head for the routing and output queue rings, these connecting 

the routing data and output queue elements of the node. 

Further direct pointers provide a means for the simulation 

software to move messages through the data structure, 

mimicking the motion of messages in a real network. 

Simulation Program 

All three versions of the simulation program operate on 

an event to event principle, which basically functions by 

establishing the order in which events will occur, processing 

the nearest event and advancing time asynchronously. In 

the actual implementation, the majority of software is common, 

the different operating protocols required by the message 

and packet switching, detailing individual changes to the 

program sections which emulate the operation of the network 

nodes. 

The overall structure of a simulation program operates 

on a simple cycle. After program initialisation (open 

files, set up variables etc. ,)a stock of first arrival times 

is generated for all message sources (hosts). This 

primes the network and allows the normal processing to 

commence, searching for the closest event, handling of the 

event, carrying out any outstanding operations at a node and 

finally 
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finally checking if the required termination conditions have 

been met. 

Event Handling 

In a discrete event simulation, an event is an incident or 

occurrence of some critical aspect of the system operation. 

In our network simulation, three events are defined. 

1 Message Birth 

2 Message transmission from a host 

to an IMP 

3 Message transmission from an IMP 

to an IMP 

On the birth of a new message, the program is required to 

generate a random message length and to initiate the 

transmission of the data from the host to the local IMP. 

Also at this stage, it is necessary to produce a random number, 

representative of the next message arrival from that source. 

The host to IMP event occurs when a message enters the 

network from a host. If, however, the transmission has 

not resulted in a successful transfer, perhaps the data being 

corrupted or blocked by a full input queue, a re-transmission 

can be performed by the host. Likewise the third event 
ti 

caters for message transmission between IMPs with a similar 

recovery mechanism for the re-transmission of messages. 

Nodal Algorithm 

{ The nodal algorithm describes the behaviour of the 

network IMP and generally consists of an input queue process 

and an output queue process. In the sequential environment 

of a general purpose computer this operates on a round robin 

basis, executing the input process followed by the output 

queue process, effectively removing newly arrived messages 

from the input queue, selecting a suitable outgoing link (iff 

required) and handling the transmission of any messages which 

find 
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find a free link. Details of the input queue process vary 

according to the operating protocols implemented, although 
the message switched version is used as an example. The 

alternatives are described in(53). 

The input queue process for the message switched 

protocol (Figure 7.14a) primarily checks if anything has 

arrived at the node since the last operation and continues to 

check if the message has reached the desired destination. 

If not, the routing procedure selects an outgoing link and 

locates the appropriate output queue where the message is 

inserted in the first free location. If the destination has 

been reached, the delay experienced by the message is noted 

and fedback to update the appropriate routing controllers. 

The output queue process (Figure 7.14b) is common to all 

three simulation programs and simply tests if a link is free 

for transmission and if so, removes a queued message and 

places it on the link. 

Log Data Structure 

The log data structure is produced as a simulation 

progresses and maintains details of individual messages as 

they traverse the network, providing a permanent record of 

all messages. For the message switched protocol, 

(Figure 7.15a), this consists of a single pointer ring connecting 

message beads, each containing details of a single message. 

Messages entering the network join the ring in sequence and 

on completion, the ring structure can be used to determine 

the simulation order. As shown by Figure 7.15b, the 

packet switching simulators also consists of a ring of message 

beads, but in addition each message further consists of a 

packet ring, logically connecting the constituent packets of 

the message. 

7.5 Summary 
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7.5 Summary 

The store and forward network now plays a prominent 
role in data communication systems and is very much an active 

area for research. In particular, the design and analysis 

of adaptive routing schemes has proved to be a challenging and 
important subject, and has in the past decade generated 

considerable interest. 

This chapter has served to provide a general introduction 

to store and forward networks, discussing in basic terms the 

switching operation, network components and operating 

protocols. An additional section has reviewed existing work 

on routing schemes, classifying algorithms into suitable 
r 

categories and demonstrating their general operation. 

Distributed adaptive routing schemes have been suggested as 

being particularly suited to the computer network, where the 

topology can change several times in the course of a working 

period, with significant shifts in the traffic patterns. In 

discussing distributed routing a distinction has been drawn 

between schemes which route packets over single paths and 

others which split traffic over several, adaptively 

proportioning the flows to achieve a global optimum. 

A comprehensive simulation package for carrying out 

experimental studies on store and forward networks has been 

implemented. This package includes specific programs to 

follow the operation of message switched, datagram and virtual 

call packet switched networks. Since initial design, these 

have been exercised and tested on a wide range of-networks 

and have been shown to be clearly adequate for the task. 

192 



/ 

ý 
ý 

ý 

Cl) 

LL- 

1 
.1 

L 
O 

. 4- a 
Z 
L 
al 

M 
Cl. 

E 
0 

L-) 

-. -0 d 

\\ / I/f 
i \\ L// 

I 

ýý 



C 
0 

yý 

d 
C 

cn c 
_i_- 
Li 

. I- 

3 
V) 

ý 

d 
3 
L- 
0 

v- 

C 
d 

Cl) L- 
0 

. i.. _ 
V) 

N 

ý 

a1 
L 

Q1 

LL.. 

& 
al 

Eý 



ö 
a 
0 

Iic 

l/c 

tic 

link 3 

message 

MQSSCgQ size I bits 

b 

Ö 

E 

0 

Figure 7-3(a) Message switching 

packei-1 
packet 2 

packet 3 

link2 

message 

packet 1 

packet2 packet1 

packet 3 p acket2 

packet 3 
OvQrall 

mQSSagQ size l bits 

Figure 7.3 (b) Packet switching 

link1 

message 





a ^bý 
'S. ý 

=be 

ý ý 
4 ýa 

Oý 
.C 
ý 

öWtm 
-a+ L3 ýý 

-a+ -= Yn.. ý 

(A 
1.1J 
Z: 
W 
ý 

N. Q C n0 ý 

dýN ýQQ 
H 

ý-_- 

_C) ý 

ý 

i Q1 

4- 

Q 
V) 

C 

Jo ý 

ii 0) 

O 
O 

Oý 

a up 

V>>' `° ö 

Ul) a ý 

c aý 
`U^ 

vý $ 



messages 
in 

1 
2 

0 

0 

0 

0 

routing directory at N 

C 
O 

ý 

messages N2 
in 

(b) Random routing 

messages 
in 

d 
-ri 

link 
123 
P1 Pz P3 

"" 

"" 

routing directory at N 

link 

r21 3 
a 

Figure 7.6 Simple routing doctrines 



packets 
arrive 

(a) Hot potato routing 

i 

ý 1.0 
ý. rýf cIv 

Cl n 
ti -- 

L 
4 

secondary route 
(bias 3) 

tertiary route 
(biasl ) 

(b) Shortest queue + bias 

Figure 7.7 Isolated routing schemes 



Figure 7"8a Centralised routing 

Figure 7.8b Disf rib u ted routing 



ý 

/ If 
/ 

.4 
i 

� 10 
i 

� 
/ 

/A... ._ 

ý0 i11 
/\ý/ 

t% 
\ 

ý r;; 1 � 
.0 

II. 

\ý 

ý 

ýoýýý iii-ý' 

%ý U 

\ 

\ 
ý 

simple network 

p1I 

ý NRCý 

oolo 

genoral network 

Figure 7.9 Proportional routing 

\ 

(a) delay T, 
(b) delay Tz 

\ 
ý 



i 
I 
i 
I 
ý 
i 
I 
ý 

ýý 
1. 

F,, ý, I_ I 
-ý ý 

ý_I 

9 
v 

_Min 

T 

c �ii E 
lýücA 

41 II 

ý, 
f -Ill i 

c rý" I 

vE i 
i 

Ö 

ö 
jc 

Eý 

ý 

2 

E-- 
Ami 

n 

nosh N receives 
minimum delay vectors 
from neighbours 

Amin Bmin Cmin 

1 2 4 

3 1 5 

5 6 2 

'Sr) ý 
Öd 
ýý 

ýý 

C 
b` 

ý ýU 
OO 

O 4- 
?ö 

1 

1 

2 

global dQl ays 
are formQd at N 

via nodQ 

A B C 

2 3 6 

4 2 7 

6 7 4 

. 

. 
., 
. 

. 

. 

2 

4 

. 

01 d 
:' ei 
ý 

r 

A 

B 

C 

0 

0 

0 

i 

.1 .7 i i 
/ /ýýý 

G ýýn 

Figure 7.10 Original ARPANET routing algorithm 



each node transmits 
local link delays to 
all othor nodes 
eg, node G broadcasts 

GA 

GB 

GF 

3 

2 

at each node an 
identical link delay 
matrix is 
constructed [N] 

A 
A 

- 

B 
2 

C 

- 

D 

- 

E 
1 

F 

- 

G 
3 

B 1 - - - - - 2 

C - - - 5 3 - 
0 2 - 3 - - - - 
E 6 - 2 - - - - 
F - - 1 - - ý 

G 4 1 - - - 2 - 

a.. 

Figure 7.11 New ARPANET routing algorii thm 

routing vector 
formed 
e. g. nodQ N 

B 

A 

C 
N 

S 
S 

i 



ý 

i 

y-io l 
rCCQ 

ý 

ý 

i 

\\\1 r7 

ýýý 

Výz 
i t-j 

ý 

ý 

Figure 7.12a Network link (full duplex) 

J 

incoming 
Messagos 

00- P 

ob 

I 

1-1 

outgoing 
links 

Figure 7.12 b Network node 



Head Bead 

Host Bead 
I--_-I 

-__ý 

*00 

Host - Imp pointer 

Host Ring 

7-ýý 

ý 

Linkbead 

L-71 

Imp Bead 
I 

Routing 
Bead 

I 

Fýý 

a0 
Link Ring 

L ink -fImp pan tors 

00* 

Routing Ring 

Routing Bead--Q/P 0 Poirter 

0/P Gi Bo ad 
I 

. _. _ 
000 

ý 

ý 

Imp Ring 

J 
0/P Queue Ring 

O/P Q-+Link pointer 

Figure 7.13 Topological data structure 



P, ETURN RETURN 

Figure 7-14a Input queue process 

BEGIN 

CRETUR 

fetch message 
from 0/P Q 

ploeQ message 
on l ink 

GErur? 

Figure 7-14b Output queue process 



head bead 

/0*0 

m 

ring poir Qr 

hood pointor 

mQSSQgQ ring 

Figure 7.15a Log data structure for message switched 
simu1a or 

head bead 

r 

packbead 

ý 

message 
bead 

ring points r 

ý hQad pan rer 

mosýcgp ring 

.. 0 

packet ring 

Figure 7.15 b Log data structure for packet switched simulator 



CHAPTER 8 

LEARNING AUTOMATA ROUTING IN MESSAGE SWITCHED 

NETWORKS 

8.1 Introduction 

Asa continuation of the policy to carry out initial, 
detailed studies on small networks, followed by realistic 

network topologies a simple network/ automaton combination 
is proposed with a view to establishing a basic understanding 

of the learning scheme routing behaviour in a message switched 

environment. In particular, the influence of the LR_I 

and LR_P reinforcement algorithms on the network 

performance are investigated and the steady state behaviour 

of both automata related to the true optimal condition. 

As in the circuit switching study, a four node topology 

is configured and used with alternative network models where 

imbalance is produced through differential link capacities and 

down link interfering traffic. In both these situations a 

condition for minimum average delay is obtained and compared 

with the corresponding equilibrium conditions for the specified 

learning algorithms. 

Experimental confirmation of the analysis is provided 

by simulation studies using the pre-described message 

switched simulator, and includes experiments with the 

P-model LR_I and LR-P autona ta, along with a S-model 

LR-I variant. In these experiments, results are recorded 

for the automata action probabilities, the average delays as 

associated with each automata action and an overall average 

delay for the entire network. Further simulations evaluate 

the performance of the fixed, random and proportional 

routing schemes and permit a comparison with the learning 

schemes. 

8.2 Automaton Routing Controller for Message Switched 'Networks/ 
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8.2 Automaton Routing Controller for Message Switched 'Networks 
As suggested throughout this study, the learning 

automaton forms an ideal adaptive control mechanism for 
implementing distributed routing schemes in communication 

networks. In the case of circuit switched networks, the 

automaton operated to select a suitable trunk group, from 

which a line could be seized and carried out updating from 

the response generated by the call outcome, i. e.., call 
blocked/call established. With this binary response set, 
the P -model reinforcement algorithm was therefore a natural 

choice. For the message switched network, the automaton 

is required to choose a link on which the message should be 

transmitted, the feedback in this case being the delay 

experienced on the selected path. 

The basic routing element for the message switched 

network is shown on Figure 8. la which illustrates the 

differences between this application and that for circuit 

switching. Clearly, a need exists to pre-process the raw 

delay feedback into a form suitable for the response set of the 

implemented reinforcement algorithm. The requirements 

of the three response models and reinforcement algorithms 

are now discussed. 

S-model: The response to the S-model algorithm must 

be a value in the range (0,1), which can be 

obtained by transforming the message delay 

with a normalisation procedure, mapping 

the delay Ti to a value ti. 

P-model: The P-model algorithm can also be utilised, 

a stochastic comparator arrangement, as 

shown on Figure 8.1b, producing a 

penalty response sequence in relation to 

the feedback delay. This has the 

advantage 
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i advantage of allowing the implementation 

of the LR_I and LR_P algorithms, both 

of which produce unique convergence 

characteristics. 

Q-model: In the Q-model, the response can be one 

of a finite number of discrete values, 

e. g. , 0.1,0.2 etc. , and can be 

suitably produced by normalising and 

rounding the message delay. 

Alternatively, the Q-model response set 

can be made to represent the buffer states 

for a link, e. g. ,a queue length of two 

messages causing a response 0.2 etc. 

8.3 Optimal Routing in a Simple Message Switched Network 

In this section a simple 4 node network is analysed to 

find the true optimum routing strategy under asymetrical 

conditions produced through differential link capacities and 

also interfering traffic. In addition, the steady state 

behaviour for the LR_I and LR_P learning schemes are 

obtained and an interpretation made of the physical behaviour 

of both automata, concerning the routing strategy and the 

relationship with the true optimum. 

Case 1 Differential Link Capacities 

For this case, the network displayed on Figure 8.2 is 

employed, the traffic consisting of messages originating at 

node 1, destined for node 3. To simplify the analysis 

the messages are assumed to exhibit Poisson/Exponential 

statistics with an average arrival rate X and mean 

message length 1/µ. Routing the messages along either 

of the two possible routes is an automaton with action set 

a(n) =( path 1, path 2) 

the 
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the actions performed with probabilities p and p2. 
Feedback to the automaton is the transit delay experienced by 
the message between nodes 1 and 3, this being suitably 
transformed to suit the reinforcement algorithm. 

Primarily we wish to show the condition required for 

p, to minimise the overall average delay in the network. 
The average delay in message switched networks has been 

extensively analysed 
(27) 

and an independence assumption 

proposed, which permits the analysis of tandem networks. 
This assumption, although clearly not corresponding to 

reality, allows messages arriving at an intermediate node 

to assume a new length and hence relieves the problems of 

dependency between the interarrival times and the lengths of 

adjacent messages, as they travel within the net. 

An equation describing the mean delay in a network 

with k links is 

d; . . 8.1 

where d; is the average delay on 'Link, XI the arrival rate 

at link i and is the total arrival rate from all message 

sources. 

Specifically for the four node network (Figure 8.2) the 

average delay is given by 

pp2 
T=ý+++.. . 8.2 

µCý -p1 ý11 3 µC3 -p1ý3 µC2-p2ý3 ý`C4 -p-ý13 

To find the optimality conditions, with respect to the routing 

variables set 

which reveals 

µCi 

ßµC -ý -V 

Steady 

dT 
dPl 

p p2=1-p1 

µC3 µG1 
+ (µC -Pi (PC -PZýý2 
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Steady State Conditions for the L 
-I 

Algorithms 
For the S-model LR-I reinforcement scheme, the 

operation of an automaton was shown to result in an 
equalisation of the penalty weights 

E S1 (n) p1 =E 
[S2(n) pn oo 

Since the penalty weights are the values of normalised delay, 

the S-model algorithm has the effect of equalising the delays 

produced on the alternative routing actions, in this case the 

path delays between nodes 1 and 3. 

E[TA]= E[T2] .. . 8.4 

Likewise, for the P-model, the steady state conditions 

reveal an equalisation of the penalty probabilities 

E [ci (n) ý=E [C2(fl) P] riýoo 

In this case the penalty probability c is the probability that 

the stochastic comparator (Figure 8. lb) will produce a 1, on 

being fed a delay value tj (normalised) . 

ci = prob 
[ti 

> u] 

E [c1] 

Consequently, in the steady state the P-model algorithm 

behaves as the S-model variant, by also equalising the path 

delays. 

For the simple network, the conditions established by 

the LR-I automata is therefore 

1 1 
ý 

uq -9 ý3 µ C3 P ý3 
1+ 

c2 -P213 µC4 X3 

. 8.5 

Steady State Conditions for the LR-P Algorithm 

In a general non-autonomous environment, the P -model 

L 
-P 

algorithm will balance the expected penalty rates 
R 

E 
[ý 

ý1 ýý_. 
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E [p, 
cl P11 =E[g1cZ 

P, J n-ýoo 

Again with the penalty responses provided by the stochastic 
comparator we might expect 

Pi E 
[ý1] 

= P1 E [T2 ] 
which can be simply interpreted 

N1 ET, N2 ET2 

N N, N N2 

ý ýT2 

N Oo where \i is total 
number of action ai 
and 7=N +N2 

. 8.6 

This suggests that the LR_P algorithm operates to equalise 

the accumulated or total delay of all traffic associated with 

paths 1 and 2. This may also be regarded as an attempt 

to balance the link utilisation on the various paths, the 

accumulated delay specifying, the total time a link was 

carrying traffic. 

For the simple network under consideration, the 

following condition would result. 

9+ p' 

_ 
P2 

+ 
1ý2 

PC1 pl ý3 ýýp1 ý13 µý-p2ý13 ýC4 p2ý3 . . 8.7 

Equations 8.5,8.7 and 8.3 state the equilibrium conditions 

for the LR_I and LR_A automata and also the necessary 

condition for optimality, in the four node network. These 

indicate neither of the learning schemes to be truly optimal, 

but as will be shown in a later diagram, the conditions are 

sufficiently close for acceptable performance. 

In general, no elegant solution exists for the optimum 

action probabilities etc. , 
but assuming Cý = C3 and C2 = Cy, 

the following are easily obtained. 

P, =/ 
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Popt 
µýFC2 -µC2 "1 +ý3J"ý 

YýCl +F2) 

" C2)+ý3 
PLri 2a 

ý 
PL 

rp 

. . 8.8 

cl 

Cý +CZ 

Case 2 Interfering Traffic 

In the previous case, an imbalance in the delays 

resulted due to the different link capacities on the alternative 

paths. This case shows how by introducing additional 

message sources (Figure 8.3), downstream of the main traffic, 

a similar asymmetry is formed and illustrates the conditions 

adopted by the learning schemes. 

The average delay in this case is given by 

T_P 
>13 

+ 
p2 X13 

+ 
p1 >13+ý23 

+ 
p2 X13 X43 

Awc-p C 
,C 

>3 1 
WC p1 3 41 

where 

1i = ý3+ýZ3+ 
In this particular network configuration the following condition 

must be achieved to satisfy optimum routing 

1111 

(11C 

. . 8.9 

For the automata equilibrium conditions, the LR-I 

establishes 

11 

"I lllý 
11 

+p+ iµC 
1 

ý3 ý13 -xJ 

, 8.10 

and for the LR 
-P 
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P1 
.+ p1 

_ 
p2 

1 pý ) (µC-pý + ýC- 
13 1 13 '23) (UC-RLV Cu C-P2ý3 -ý: "3) 

.. . 8.11 

8.4 Optimal Routing in a General Network 

In the previous section, conditions were derived for the 

minimum average delay in a simple network and compared with 
the steady state behaviour of the alternative learning schemes. 
In contrast to this system optimisation approach, we now 

study the user optimisation problem in a general network, 

in which the goal is to find the optimum routing strategy at 

some node in order to minimise the average delay between the 

node and a particular destination. 

Consider ar action automaton at an arbitrary node k 

(Figure 8. la), routing all messages with destination j. 

Let Tj be the average delay experienced by a message 

routed by action i of the automaton, with the average delay 

T of all messages routed at k given by 
r 

T= P, 

Again we wish to find the necessary conditions to satisfy the 

minimum average delay 

d T= 0 given p (p1 
, Pr) 

dp 
r 

and p=1 
ti. l 

By the method of Lagrange multipliers 

F (p, E) _ 2: PT (2) +'c (ý+ý P' 1) 
ti =1rd 'ýF1 

Fp-= Pn Up (p)+E = Cý 
'n =1 

i 

r 

F g-1 =0 

The required conditions for minimum message delay are 

therefore given by 

TQ+ 
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rd Tn 
r dTn 

Ta+ E Pn dPa- = Tb+ E Ph dp a, b=1, r 
n- 1natb 

In physical terms, this condition suggests that for true 

optimality, the routing strategy must attempt to equalise the 

combination of average delay and average marginal delay 

associated with each routing alternative. If the delay 

corresponding to a certain action is not influenced by the 

other routing actions and consequently dT /dp. 
J=0i 76 j, 

the optimum condition may be specified as 
dTa dTb 

Ta+ pa d iý- = Tb+Pb 
d a, b=1, .r 

Turning to the operating conditions of the r action reinforcement 

algorithms, it follows from the non-autonomous environment 

and simple network studies, that the LR-I scheme attempts 

to equalise the average delay on all routing alternatives 

Ta- Tb a, b-1, .. r 

Likewise for the r action LR_P the equilibrium conditions 

are described by 

paTa=pbTb a, b=1, .. r 

Although neither of the learning schemes are truly optimal, 

under light traffic conditions the marginal delay dTi /dpi 

becomes small and hence the operation of the LR_I scheme 

approaches the desired routing strategy. Also, because 

no assumptions have been made regarding the nature of the 

traffic statistics, the above conditions hold for a range of 

networks. 

8.5 Simulation Studies 

In order to verify the theoretical predictions of section 

8.3, a range of simulations have been performed using the 

message switched simulator described previously. These 

experiments 
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experiments include system identification studies carried out 
to check the simulator and confirm initial assumptions 

regarding message length independence. Further results 
are recorded showing the performance of the learning 

schemes (LR 
_ I, 

LR 
-P 

and SLR_I algorithms), noting the 

convergence of the routing probabilities and the overall average 
delay. For comparative studies, experiments have been 

performed with a fixed rule, random and proportional 

routing schemes. 

Network Topology 

The network used in the following experiments is the 

4 node topology as shown on Figure 8.2, with link 

capacities C, , C3 = 400 Kbits/sec and CZ , C4 = 600 Kbits/sec. 

The nodal input and output buffers have been assigned sufficient 

queueing elements to exclude the possibility of message 

blocking. Finally, the network traffic, source node 1, 

is assumed to have an average message length of 350 bits 

and is operated at arrival rates from 1 000 to 1 800 messages/ 

sec. 

Identification Studies 

In the following series of experiments, a random 

routing mechanism at node 1 routes messages along either 

of the two paths, with probabilities p, and R1 . For each 

experiment a given proportion of traffic is assigned to the 

paths, by setting the appropriate probabilities e. g. , 

p=0.1, p2 = 0.9. A complete set of results were then 

obtained for the average delay on both paths for p1 ranging 

from 0 to 1. 

Typical experimental results for X13 =1 100 messages/ 

sec are plotted on Figure 8.4, along with theoretical plots 

of the average delays. These indicate a fair degree of 

correlation 
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correlation between theory and practice, justifying the 

message independence assumption introduced to simplify the 

analysis. From Figure 8.4, the expected convergence 

characteristics of the LR_I and LR_P reinforcement 

schemes can be studied, the interception of the average 
delay curves Ti specifying the steady state condition for the 

LR_I algorithm and the crossover of 
IpT 

of the LR-P. 
showing the nature 

In addition, it is possible by inspection to 

note the true optimal condition, which reveals the optimum 

routing probability and minimum expected delay. 

Routing Experiments 

The experiments are now concerned with comparative 

studies of several routing schemes, including fixed, random, 

proportional and learning automata routing using the LR-I 

(P and S-models) and LR-P algorithms. Again the 

network was maintained in the topology used previously and 

measurements of the message delay and steady state routing 

probabilities taken for a range of traffic rates. Furthermore, 

the results displayed were measured over the last 2 000 

messages of a3 000 message sample, ensuring that the 

queues and routing schemes were in steady state. 

F ixed Rule Routing 

In the simple network, the optimum fixed rule is the 

path 1,4,3, since this route offers a greater link capacity. 

With this arrangement, the results shown in Table 1 and 

Figure 8.5 were obtained, the higher traffic intensities 

however, causing heavy congestion with results in queue 

blocking. 

Random Routing 

pl 

The implemented random routing scheme was set for 

2, and produced the results as shown in Table 2 and 
=p 

Figure 8.5, 
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Figure 8.5, the traffic rate ranging from 1 000 to 1 800 

messages sec. 

Proportional Routing 

A simple proportional routing scheme, similar to that 
described in Chapter 7, is implemented at node 1, with 
g5= 0.02 and 9, =0.05. The results for these experiments 

are shown on Table 3. 

LR-P Learning Automata Routing 

For a first attempt with a learning algorithm, the 

P-model LR-P scheme was established, using the learning 

coefficients a=b=0.02. The measured results are 

shown on Table 4 and Figure 8.5. 

LR 
_T 

Learning Automata Routing 

The LR-I reinforcement algorithm has been studied 

in two forms, the P and S-model, each using an "a" 

parameter of 0.02. The results for the P-model are 

shown on Table 5 and Figure 8.5, with the S -model 

results on Table 6. 

The results clearly indicate the superior performance 

of the adaptive schemes in comparison to the fixed and 

random routing schemes, in the conditions offered by the 

four node network. The family of theoretical delay 

curves (Figure 8.6) which shows the overall delay 

characteristics for varying X provide a further insight as 

to why this should be so, the figure also indicating the 

routing policy of the fixed, random and Learning schemes. 

A close study of the results from the adaptive schemes 

reveals the different optimisation operations of the LR-I 

and LR-P reinforcement schemes, confirming earlier 

theoretical predictions. For both the P and S- model 

L, R-I algorithms, the operation leads to an equalisat-on of 

the 
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the path average delays, the automaton converging to a 
routing strategy which results in a balancing of the average 
penalty weight for each action. The LR-P on the 

otherhand provides a means to equalise the accumulated delay 
for each path, effectively balancing the utilisation of the path 
links. This behaviour illustrates an interesting dual with 
the learning automata adaptive routing for circuit switched 

networks, where the LR-I algorithm was shown to equalise 
the path blocking probabilities with the LR-P providing a 

similar equalisation of the blocking rates (or the accumulated 

number of blocked calls). 

The results for the proportional routing also tend to 

suggest a routing strategy which attempts to equalise the 

average path delays, which might be expected from the 

simple implementation, since it resembles the operation of 

a learning automaton. In the more involved environment 

of a practical network, the proportional routing scheme 

would, however, be far more involved to implement, in 

relation to the simplicity of the learning schemes. 

Figure 8.7 displays the effects of the varying traffic 

on the optimum routing probabilities and the asymptotic 

convergence conditions of the LR 
-I 

and LR 
-P 

automata 

It is interesting to note the variation of the true optimum under 

different traffic conditions and the ability of the LR-I 

algorithm to track this movement. Equally interesting is 

the behaviour of the LR 
-P 

scheme which, both theoretically 

and experimentally, indicates an independence of traffic, 

although in general this need not be the case. 

8.6 Conclusions 

An elementary study into the application of learning 

algorithms for adaptive routing in message switched networks 

has 
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has been presented. Through a simple network, a model 
of the routing process has been formulated and used to 
investigate the properties of the LR_I and LR-P 

reinforcement algorithms. In turn, this has been validated 
by detailed computer simulations of the network, with 

additional experiments demonstrating the performance of the 
fixed, random and proportional routing schemes under 

a 

identical conditions. 
From this initial study, it is possible to draw conclusions 

concerning the learning approach to message switched 

adaptive routing. 

The learning schemes, with the ability 

to adapt to the experienced network 

conditions, out-performs the invariant 

routing schemes such as fixed and random 

routing. Despite the rigid routing policy 

of the random scheme a comparable 

performance is achieved when the network 

loading is light. Under heavier traffic 

conditions however, the learning routing 

schemes permit a better utilisation of the 

available facilities and thus attain a 

superior delay performance. 

2 The LR_I algorithm operates to equalise 

the average delay for messages routed 

by the allowable actions of the automaton. 

Under a slightly different policy, the LR-P 

produces a balance in the accumulated delay 

for each action. Both these effects are 

desirable, as they offer a load balancing 

service in the event of any network asymmetry. 

3 I 
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3 As suggested, the option exists to exploit 
the range of automata, P. Q and S -models, 
the P-model allowing the implementation 

of both the LR-I and LR-P schemes, 

while the S-models provide a simpler, 

and more suitable approach for operation 

with the delay feedback from the network. 

The Q-model could also be utilised in an 

arrangement where any response to an 

action is based on the buffer occupancy 

of the down stream nodes. 

The learning automaton forms a useful adaptive control 

component for the implementation of practical distributed 

routing schemes in store and forward networks. In the 

following chapter schemes are proposed which employ 

learning automata in de-centralised routing techniques for 

virtual call and datagram packet switched networks. 
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CHAPTER 9 

LEARNING AUTOMATA ROUTING SCHEMES FOR PACKET 
SWITCHED NETWORKS 

9.1 Introduction 

Progressing from the detailed investigation of small 
networks, a study is now made of learning automata schemes 
for generalised datagram and virtual call packet switched 

networks. Initially, this chapter describes both 

implementations, outlining the routing and feedback operations, 

and suggests how the required global feedback can be 

transported efficiently, without increasing the levels of 

control traffic. Later, through extensive simulation 

studies, the proposed schemes are demonstrated and 

evaluated using realistic network examples, with further 

experiments comparing their performance with optimal fixed 

rule and cyclic random routing schemes. 

The learning routing scheme for a virtual call network 

is a natural extension from the technique suggested for circuit 

switched networks, with the automata operating to establish 

a conceptual circuit between the source and destination nodes. 

The feedback in this case however, is a measure of the 

delay experienced on the path, this ideally carried to update 

the automata by means of the existing end to end control 

packets. Likewise in the datagram network, the 

measured delay forms the basis for updating the individual 

automata, although in contrast to the previous example, the 

routing operation is required to progress individual data packets 

For the simulation studies 
(55), 

a series of experiments 

have been performed on realistic ten node datagram and 

virtual call networks, using the previously described 

simulation packages. The experiments, which subject 

the networks to a range of traffic intensities, compares the 

learning 

233 



learning schemes performance with optimal fixed and randor-: 
schemes, presenting measurements of criteria such as the 
message and packet delay, average hop count and link 

utilisation. In additional experiments, the datagram 

scheme is displayed under non-stationary traffic conditions, 
illustrating by example, the important ability to reconfigure. 
The datagram scheme is also demonstrated in a self-organising 

role, where no apriori knowledge is assumed of the network 
topology. 

The results to be presented in this chapter conclusively 

confirm the capability of learning automata routing schemes 

in realistic packet switched networks, the adaptive load 

splitting behaviour providing a near to minimum achievable 

delay. Moreover, the desirably practical approach to the 

feedback and updating operations has significant advantages 

over existing schemes of a similar nature. 

9.2 Automata Routing Implementations for Virtual Cali 

and Datagram Networks 

This section aims to describe how the learning automaton 

may be used in the formation of routing schemes suitable for 

generalised virtual call and datagram networks. Emphasis 

is placed on producing designs which are compatible with 

existing protocols and efficient in terms of control overheads, 

while attempting to provide a comprehensive global feedback 

policy. The organisation and placement of the automata 

in these packet switched networks is along similar lines to 

the telephone networks, with the automaton Ak carrying out 

routing at node k, for any packet of destination j. 

Virtual Call Scheme 

In many ways, the virtual call application is similar 

to / 
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to the circuit switched network and typically requires the 
automata to establish a virtual connection from the source 
to destination, which can be used to transport a sequence of 
data packets. 

Generally, the basic protocol of a virtual call network 
may be described with reference to Figure 9.1. A new 

message at node S, requesting transmission to D, initiates 

a path set-up procedure by sending a trace packet into the 

network. As this packet traverses the network, the 

routing scheme directs it to the destination and at the same 

time takes note of the path under formation. Confirmation 

of a successful operation is provided by a path acknowledge 

packet which returns to the source node along the newly 

established virtual path. At this point, the contents of 

the message can be sent as a group of packets, to the 

destination, where the message is reformed (the original 

order is maintained) and passed to the necessary end user. 

Finally, a third control packet, the message acknowledge 

packet, backtracks the connection, confirming the safe 

arrival of the message and releases the virtual path. 

In a learning automata routing scheme, the virtual path 

is formed by a chain of routing decisions, individual nocai 

automata selecting an outgoing link for the trace packet. 

During the entire set-up operation, the delay experienced by 

the packet on the various sections of the network is recorded. 

This information is in turn "piggy-backed" by an acknowledge 

packet, which transports the relevant delay feedback to the 

automata involved in the initial routing operation. With 

suitable pre-processing, the delay is transformed into a 

response for each automaton, and individual updating 

operations initiated. 

Both the call set-up and feedback operations are 

illustrated 
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illustrated on Figure 9.2. From the source node the 
trace packet is progressed by the routing controllers Aý 

, mn 
Aý and Aý to the destination node j. In turn, the 

acknowledge packet is dispatched with values for the delay 

experienced between each autorra ton and the destination, 

e. g. , AT receives dmj, the delay noted between nodes m 

and j. Using this arrangement, a sensible and practical 

adaptive routing technique can be installed in a virtual call 

network, meeting the constraints concerning the 

implementation and control overheads. 

Datagram Network 

In the datagram network, each data packet is routed 

as a separate entity, with individual packets of a common 

message travelling on completely disjoint paths to the 

destination. This unfortunately presents a formidable 

problem to provide an efficient global feedback policy, 

required to support the updating operations at all nodes. 

However, a particularly suitable method is proposed which 

overcomes this problem, giving all automata a global network 

awareness, without increased levels of control traffic. 

Prior to describing the routing scheme operation, it 

is beneficial to basically outline the essential operations in 

a datagram network. When a message requesting 

transmission is presented to the communication system, a 

packet assembler/dis-assembler (PAD) procedure 

decomposes the message into fixed length data segments or 

packets, as shown on Figure 9.3a. Individual packets 

are then numbered and inserted into the network, to traverse 

independently to the destination (Figure 9.3b), utilising 

several paths. On reaching the proposed end node, 

the packets are buffered, to be finally reconstituted into the 

original message (Figure 9.3c) . 
In this type of network, 

the 
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the ability of the learning automata to adaptively proportion 
traffic on the various paths has therefore distinct advantages. 

Similar to other LA schemes, routing decisions in 
the datagram network are carried out by independent automata 
at each node. In order to support complete global feedback, 

each node is also required to maintain delay estimate vectors 
Ak [d] 

, which contain averaged values representative of the 
delay between the present node k and all destinations j. 

Since a different route to j might exist for each routing 

option at k, a separate vector is made available for each 

outgoing link, giving 
dý a 

as the delay between nodes k and 
j, assuming option a at k. During the updating operation, 

the elements of the delay vectors are revised in conjunction 

with the learning automata. 

As shown by Figure 9.4, data packets routed by a 

node are acknowledged to be correctly received by means of 

a short control packet. In the learning automata routing 

scheme , further use is made of these packets to transport 

the delay feedback to the previous node, this being used to 

update the action probabilities of the automaton and the 

necessary delay vector. This information consists of two 

components, a local delay measured between the two nodes 

and a path delay value obtained from the vector at the node 

nearest the destination. With this arrangement, the 

global delay percolates through the network as packets are 

transmitted between nodes, the delay vectors gathering 

estimates of the average delay to the destinations, with the 

learning automata action probabilities converging to a suitable 

routing strategy. 

In a typical routing example, the automaton at node m 

selects a next node for the packet destined to j. As 

illustrated on Figure 9.4, node n is chosen, this being 

reached 
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reached after a local delay dmn (queueing plus link 
transmission delay). At na further routing decision .s 
performed, in this case selecting link a and allowing the 
collection of a path delay estimate. The global delay used 
for updating at node m, dmj, is then found as follows and 
transferred to node m by the acknowledge packet. 

dmj_ dm+ dja 

The actual response ßmto the automaton, as in the virtual 

call scheme, is the normalised delay dmj, 

ßm=d 
J m1 

In addition to modifying the action probabilities of A the 

fedback delay is also required for updating the delay estimates 

at node m, dma This is implemented by means of the 

widely used exponential smoothing technique. 

dm a= Ed' (1-E)dmj 0<E<1 

Delay Pre-Processing 

In both schemes, pre-processing of the delay feedback 

is necessary to produce a response which suits the automata 

reinforcement algorithms. Typically, for the algorithms 

available, any delay value must be normalised to either the 

range (0,1) or (-1,1) to accommodate the S-model or 

transformed into a binary signal for the P-model. 

One possible approach is to simply divide the delay 

by a normalising factor 

dm. 
dmj. = d 

This arrangement however, is not entirely satisfactory, 

since a prior knowledge of the network conditions is required 

to select the normalising factor d,,, 

A more useful technique for transforrning the delay is 

given 
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given by the function 

I 
dml 1_, 1 

-, nj dmi dý,,, 

With this function, delay values are mapped into the region 
(0,1) as shown by Figure 9.5, only requiring the absolute 

minimum recorded delay d,,;,,. This technique has the added 
attraction of effectively separating low values of delay which 

are closely spaced and compressing the range of longer delays. 

For the following simulation studies, a square root law has 

been applied (n = 2). 

Steady State Behaviour 

Previously, the influence of the various reinforcement 

schemes has be 
% 

en investigated, and showed for the LR-I 

algorithm 

E [dcl] 
=E 

[db] ' a., b=t... 

Under steady state each individual automaton attempts to 

equalise the average delay between the particular node and 

destination, for all allowable options. With all automata 

operating under this policy, the global effect is an equalisation 

of the delay on all paths open to a particular source/ 

destination pair. 

Likewise for the LR_P algorithm, the following 

condition was shown to hold 

PaE [da] -Pty 
[db] = a, b 1, . .. r 

This produces an equalisation of the accumulated delays for 

the various options and has the effect of balancing the link 

utilisation on the paths. 

9.3 Network Measurements 
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9.3 Network Measurements 

Several network measurements are now described, which 
provide convenient performance conditions for the network/ 
routing scheme combinations to be studied. In addition 
to the previously discussed routing scheme entropy the 
important measures in this application include, the message 
and packet delay, average hop count and link utilisation. 

Delay ý 

The end to end delay is justifiably an important parameter 
in a network which involves packet queueing and transmission. 

In this study, the average packet and message delays are 

specified, the packet delay defined as the time for a packet 
to cross from source to destination, the message delay being 

the delivery time for a complete message (group of packets). 
Further, since the delay is a random variable, 

conventional statistical parameters such as the variance and 

higher order moments provide additional information on the 

delay characteristics of the network. These are suitabiy, 

displayed by means of delay distribution plots which show the 

relative frequency of a packet delay occurring -, vithin a certain 

time band. 

Link Utilisation 

The object of the link utilisation measurement is to 

record the levels of traffic handled by each link in the network, 

highlighting the relative utilisation and showing sections which 

are under over utilised. Graphically, this is best displayed 

in a histogram form. 

Average Hop Count 

The average hop count n, quantifies the mean number 

of hops required by packets on the path between source and 

destination. This measurement helps in the understanding 

of / 
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of how the network resources are used, a minimum hop coup 
showing efficient operation. This may be calculated by 

Number of Packet Transmissions n= 
Number of Packets Entering the 'Network 

9.4 Simulation Studies 

The following experiments are carried out to 
demonstrate the learning automata routing schemes and to 

compare them with some existing techniques. Testbed 

networks for this study, covering the virtual call and 
datagram protocols, are detailed in Appendix 2, the 

initial designs originating from external sources(46)(56) 

Like the Bell circuit switched network, these networks 

provide a realistic environment for the new routing scheme, 

and also allow experiments with optimal shortest path and 

random routing schemes. 

In this simulation study, a wide range of experiments 

have been performed, initially concerning single traffic 

sources and the complete network. These permit the stud.,, - 

of individual automata, displaying typical results for the 

steady state action probabilities and the average response to 

each action. Subsequent simulation experiments have been 

carried out using complete traffic sets (90 sources), 

studying the performance of both network models, for a 

range of traffic intensities. 

Learning routing schemes are a particular benefit under 

non-stationary conditions and accordingly simulations are 

presented which involve dynamic traffic switches, aiming to 

introduce interfering traffic on arbitrary links. In a final 

example, the operation of a self-organising scheme -s 

demonstrated, illustrating the capability of the learning 

routing 
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routing technique in networks which are globally unknown. 

Single Source Traffic 

Datagram Network 

In this case, a single source of messages was established 
at node 1, generating traffic for node 9, this being 

maintained at a rate of 10 messages sec for all experiments. 
The shortest path fixed rule for messages between 

nodes 1 and 9, dictates the route 1,3,4,7,9, a 
length of 4 links. After running an experiment for a 
1 000 message sample an average message delay of 212 mSec 

was obtained. Alternatively, the random routing scheme 

for X19 traffic is shown on Figure 9.6, this also displaying 

the measured packet delay- between each node and the 

destination, on the allowable routing options. In this 

particular example, the overall message delay was found to 

be 193 mSec. This lower delay might be expected, since 

in comparison to the single route policy of the shortest path 

technique, the random routing scheme possesses the ability 

to spread traffic over several paths, tapping a greater 

effective transmission capacity. 

The learning automata scheme may be regarded as an 

adaptive variant of the random routing scheme, with the 

same options open to the automata placed at the various nodes 

in the network. Figure 9.6 also indicates the results 

obtained from an experiment with this scheme, showing the 

steady state average delays and action probabilities. For 

this experiment, a significantly improved performance is 

achieved, the average message delay recorded at 141 mSec. 

A close study of the combined automata conditions 

reveals the interesting convergence strategy, with automata 

proportioning traffic over certain routes and on others, 

dropping allowable options which do not contribute to a 

satisfactory 
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satisfactory performance (nodes 2,7 and 8). For the 
remaining options, the automata, which have LR 

_I reinforcement algorithms, attempt to equalise the average 
delay associated with each action. 

Virtual Call Network 

Along similar lines to the single source datagram (Figure 9.7) 

experiments, a further series have been completed using the 

virtual call network and routing schemes. In this example, 
the source of traffic is placed at node 10, generating traffic 

for node 1 at a rate of 7.5 messages sec. 

For the optimal fixed rule (10,8,6,4,1) the 

average message delay of a1 000 message sample was 

measured at 401 mSec. Likewise for the random routing 

scheme Figure 9.7 shows the allowable options and the 

measured trace packet delays between the nodes and the 

destination. This experiment' yielded an average message 

delay of 359 mSec. 

The best message delay results are obtained from the 

learning automata experiment, with a value of 340 mSec. 

Additionally, Figure 9.7 illustrates the steady state 

conditions for the entire scheme, which reveal a similar 

convergence strategy to the datagram example, with the 

mixed policy of dropped options and traffic splitting. 

Complete Traffic Set 

Now, both networks are fed from the complete traffic 

sets of 90 sources, each node generating traffic for every 

other. The experiments yield the network performance 

over a range of traffic rates, the overall arrival rate varying 

from 10 to 100 messages sec. 

Datagram Network 
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Datagram Network 

Average Delay 

The graphs for the average message delay (Figure 9 8a) 

and packet delay (Figure 9.8b) plots the delay arrival rate 
characteristics for the shortest path, random and learning 

automata routing schemes. 

Comparing first the fixed and random routing. At 

low message rates, the shortest path scheme outperforms 

the random scheme since the delay is predominently due to the 

link transmission times and consequently the best policy ;s to 

follow the minimum hop routes. However, as the levels 

of traffic increase, significant queueing develops in the 

network, which causes the single path strategy of the fixed 

rule to result in higher delays. Alternatively, the random 

routing scheme tends to spread the traffic throughout several 

paths in the network, which ultimately helps control the 

increase in delay. 

An interesting result is achieved by the learning scheme, 

which at low traffic intensities produces identical delay 

characteristics to the shortest path rule. With increasing 

traffic the learning automata provide a significantly better, 

routing service, with a clearly lower message and packet 

delay. This behaviour can be explained along similar lines 

to the previous argument, although in this case the ability to 

control the traffic proportions on the various routes results -n 

a superior performance. 

Delay Distribution 

To provide further information on the delay characteristics, 

the data from selected experiments is displayed in a discrete 

distribution form, showing the relative frequency of delay 

values within certain time bands. From these plots 

additional 
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additional parameters can be noted, including the variance 
and maximum delay. 

Distribution plots are provided for each routing scheme, 
at low (10 mess sec) and high (90 mess sec) traffic 
intensities. At the low end, the fixed rule (Figure 9.9a), 

random (Figure 9.9b) and the learning routing schemes 
(Figure 9.9c) give virtually identical results, the only 
notable difference being the slightly higher average delay of 
the random routing. By inspection, it may be observed 
that the maximum packet delay never exceeds 350 mSec, 
for any of the routing schemes. 

With an overall arrival rate of 90 messages sec, 

substantial changes may be noted in the distribution plots. 

In comparison to the fixed rule (Figure 9.10a) and the 

random routing (Figure 9.10b), the learning scheme 

(Figure 9.10c) produces a delay distribution which displays 

significant reductions in the average and maximum delays. 

A lower variance is also shown, this reflected in the shorter 

"tail" of the plot, with less components in the higher delay 

regions of the graph. 

Average Hop Count 

The average hop count (Figure 9.11a) is an ideal 

measure for studying the performance of the routing scheme 

in relation to the network parameters. Predictably, the 

optimal fixed rule establishes a lower bound for this, since 

the original design criterion for this scheme was to route 

packets on the shortest path to the destination. The 

random routing scheme on the otherhand produces a 

noticeably increased hop count, although like the fixed rule, 

this remains constant for the entire range of traffic rates. 

The hop count for the learning scheme reveals an 

interesting result, the graph showing a shallow rise with 

increased / 
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increased traffic rate. It is suggested that this is a 
consequence of the convergence behaviour of the scheme, w, -. ich 
at low arrival rates tends to converge to similar conditions as 
the shortest path rule, hence only using the minimum hop 

routes. At the other extreme, the automata find the best 

strategy is to spread the traffic over several routes, which 
need not be the shortest. 

Routing Scheme Entropy 

The transient behaviour of the adaptive routing scheme 
is suitably shown by the graph of entropy against messages 
handled (Figure 9.11b), this producing the entropy drop as 

the learning automata converge. In a typical experiment 

(ý = 50 mess sec) the initial entropy is noted at 66.34 bits 

and reduces to approximately 30 bits as the routing structure 

evolves. 

Link Utilisation 

A further useful technique to assess the performance 

of the various routing schemes is to study the utilisation or 

total packets carried by individual links in the network, 

drawn in a histogram form. 

As a direct consequence of the invariant routing policy 

of the fixed and random routing schemes, the corresponding 

histograms show no alteration for different traffic conditions. 

A distinctive feature of the fixed rule utilisation plot 

(Figure 9.12a) is the apparent spread in the individual link 

traffic, some links being under utilised, while others operate 

with significantly higher traffic. A contrasting result is 

given by the random routing (Figure 9.12b), which shows a 

"smoother" histogram, although on average each link carries 

a greater load. 

Figure 9.13 illustrates the results for the link utilisation 

offered 
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offered by the learning scheme, graph a for an initial 
arrival rate of 50 mess sec and graph b for 90 mess sec. 
These show a clearly reduced average utilisation, tending to 
that of the shortest path scheme, without the same spread in 
the individual link loads. This effect is even more 
discernible at the higher arrival rate, where as suggested 
by the delay characteristics and supported by the average hop 

count results, the learning scheme adopts a more pronounced 
load splitting strategy, spreading the traffic over any available 

network capacity. 

Virtual Call Network 

Using the 10 node virtual call network and associated 

traffic set, a series of experiments were run for a range 

of arrival rates. These provide an opportunity to study 

the learning automata scheme as part of a virtual call operation 

and to compare it with an optimal fixed rule and random routing 

scheme. 

The average message (Figure 9.14a) and packet delay 

(Figure 9.14b) characteristics indicate the operation of the 

learning scheme to be similar, but less effective in the 

virtual call network than in the previous example. Again 

the learning routing approach is shown to be a clear advantage 

at the high traffic intensities, although in the lower regions 

a slightly sub-optimal service is detected. It is suggested 

that this results from the reduced ability to spread traffic, 

a virtual call routing operation only influencing sequential 

groups of packets. 

Results are also presented for the average hop count 

(Figure 9.15a) and routing scheme entropy (Figure 9.15b) 

for the experiment at X= 50 mess sec. The hop count 

plot is similar in nature to the datagram experiments, the 

fixed 
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fixed rule showing the minimum value, closely approached 
by the learning scheme, with the random scheme consistent'_v 
higher. Likewise, the entropy result also produces 
comparable behaviour, although, this tends to illustrate a 
reduced convergence rate, due to the less frequent updating 

operations . 

Non-Stationary Traffic Experiments 

In the following experiments, the ability of the learning 

scheme to reconfigure in the light of new traffic conditions is 

tested, using the datagram network. Again, in order to 

study the operation of individual automata, the traffic set is 

reduced, with message sources generating main-stream 

traffic (X19 = 8, )59 = 5) and interfering traffic (X57 = 8, 

4= 
3). The following delay results were obtained from an 

experiment where the interfering traffic is dynamically injected 

after 1500 messages. 
.e 

Before A fter 

Fixed Rule X19 322 377 mSec 
X59 252 411 

Random X19 187 250 
X59 120 188 

Learning 119 170 174 
X59 112 138 

The above table gives the average message delay for the 

individual (main-stream) sources, as produced by the various 

routing schemes. The measurements are recorded before 

and after the switch and show the effect of the alteration in 

traffic conditions. Noticeably the invariant routing 

schemes cannot deal adequately with the change, the-, r results 

showing significantly increased delay. The learning scheme 

on the otherhand, by virtue of the ability to adaptively 

proportion the traffic, settles down with only slightly increased 

delay. I 
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delay. 

The dynamics of the traffic switch are illustrated on 
Figure 9.16, which displays learning curves for the automata 
at nodes 1 and 5, both responsible for traffic to 9. 
Prior to the switch A9 assumes a relatively unbiased 

strategy, splitting traffic equally (p1 0.5) on the two 

allowable paths, while the automaton at node 5 tends .o 

send more packets via node 7 (p1 x 0.3D). Through the 

introduction of additional traffic on links 3,4 and 5,7, 
Ä9 

experiences a high delay on action 2 (node 3) and 

consequently p increases to approximately 0.6. Similarly, 

with interfering traffic adding to the delay of packets routed by 

action 2 (node 7) of A9, pý increases to 0.55, attempting 

to equalise the delay met on the 3 link path with the increased 

delay on the 2 link alternative. 

Self -Orgainising Routing 

Self-organising routing schemes assume no apriori 

knowledge of the global netwo rk topology, although each node 

is fully aware of any directly connected neighbours. In 

this experiment a self-organising datagram scheme is 

demonstrated, in which any link leading from a node is 

considered an allowable routing option. However, to 

prevent unnecessary local cycling of packets and long term 

undelivered packets, constraints are imposed which restrict 

packets being routed to the previous node and drop packets 

with hop counts which exceed 10. The following results 

were obtained from a simulation of the datagram network, 

with traffic at an overall rate of 50 messages sec. 

Delay Results 

A. graph of the average packet delay against messages 

handled (Figure 9.17a) suitably demonstrates the operation 

of 
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of the self-organising scheme. Initially, when the routi: _g 
probabilities are in an unbiased state, a high average delay 
is detected, due to packets taking completely unsuitable 

options at a node. After convergence, a steady state 
condition is reached which shows a significantly reduced delay 

performance. Clearly, the transient phase exhibits a 
desirably short learning period, with steady state reached 

after approximately 3 000 messages. 

Average Hop Count 

The graph for the average hop count (Figure 9.17b) 

tends to support the points noted in the delay characteristics, 

with the similarly placed transient and steady state operating 

regions. With this particular measure the routing schemes 

initial lack of structure is shown by the high average hop count, 

packets tending to follow any path to the destination. -After 

convergence is completed, the packets are routed along the 

most direct paths to a destination, hence the reduced hop 

count. 

Routing Scheme Entropy 

In contrast to the learning scheme with the constrained 

routing options, the initial entropy (Figure 9.18a) of the 

self-organising scheme is greater, reflecting the change in 

routing structure introduced by the expanded routing options. 

As the scheme converges this is shown to decrease significantly, 

approaching the conditions recorded in the earlier example. 

Dropped Packets 

Figure 9.18b provides a graph for the accumulated 

number of dropped packets as the simulation proceeds. 

This plot presents further evidence to support the self- 

organising ability of the routing scheme, showing in the early 

regions of the experiment, a high percentage of packets being 

dropped 
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dropped due to excessive hop counts. In the steady state 
region, once the routing scheme is organised, no more calls 
are dropped, suggesting a more appropriate routing structure, 
for the particular network topology. 

9.5 Conclusions 

The adaptive load splitting strategy offered by learning 

automata routing has been demonstrated in virtual call and 
datagram packet switched networks. Although marginally 

sub-optimal with respect to the true minimum achievable 
delay, this approach has been shown to have definite 

advantages in the simplicity and practicality, and could if 

required, be readily implemented in existing networks with 

minimal inconvenience and overheads. In addition, the 

flexibility afforded by the modular reinforcement algorithm, 

will in the future, allow the installation of schemes which 

provide minimum delay routing. 

On the basis of the experimental studies, the following 

conclusions are noted. 

In both the datagram and virtual call 

networks, the learning automata 

scheme operates using a mixed 

strategy of shortest path and traffic 

division routing. Typically, when 

several paths of approximately the 

same length exist, the automata 

adopt a load splitting behaviour, 

adaptively proportioning traffic over 

the allowable paths. In circumstances 

where a mixture of short and long paths 

are possible the automata tend to 

converge optimally to a particular 

option, % 
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option, effectively dropping the less attractive 
alternatives. 

2 The results from the datagram experiments 

reveal a satisfactory service from the 
learning scheme, this showing a clearly 
lower average delay, particularly at high 

levels of traffic. When the traffic 

conditions are light, the automata converge 
to produce an identical performance to the 

optimal shortest path strategy. 

Significantly at the increased traffic 

conditions, the adaptive load splitting 

service permits a more effective utilisation 

of the network capacity, the spreading of 

packets helping to reduce the queueing 

delay. 

3 In comparison to other load splitting 

routing algorithms, the learning 

automata technique offers a desirably 

practical approach to the problem. 

Furthermore, the experiments suggest the 

technique to be certainly adequate in terms 

of convergence rates and stability, 

although this is an area where additional 

studies will be essential. 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

10.1 Project Review 

This project has endeavoured to advance the practical 
application of stochastic learning automata by a detailed 

study of adaptive routing schemes for communications 

networks, based on learning concepts. In the past, a 
wide body of knowledge has been gathered on the theoretical 

aspects of learning automata, principally regarding issues 

such as reinforcement algorithm synthesis and convergence 

characteristics. Only recently has significant advances 
been made in applying these principles in areas such as 

adaptive control, parameter identification, dynamic 

allocation activities and adaptive routing. Building on 

established theory, these applications show promise as 

practical solutions to many complex problems and in addition 

provides incentive for further exploration of learning 

techniques. 

A recent development in learning automata theory has 

introduced the notion of the non-autonomous environment, 

which as suggested, occurs in many practical situations. 

This has greatly contributed to the development of the learning 

routing schemes, and will in the future, provide an 

invaluable framework for further application studies. 

Particularly relevent to this study has been the interaction 

between the non-autonomous environment and the variable 

structure automaton, operating with the LR 
-I 

and LR 
-P 

reinforcement algorithms. In conjunction with this, 

attempts have been made to abstract simple non-autonomous 

environments with a view to extending the understanding of 

the basic routing operation. 

Operating on the principle that it is better to understar c 

in I 
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in reasonable detail what happens in small networks, than 
vaguely the routing operation in larger examples, simple 
automata/ network combinations have been utilised for initial 

study. From these elementary circuit and message 
switched configurations, the routing behaviour of the learning 

automaton has been investigated and the influence of the 

alternative reinforcement schemes noted. Also, using 
derived conditions for optimum routing, the LR-I and 
LR-P algorithms have been shown to be marginally sub- 

optimal in both network types, although as later illustrated 

by simulation studies of the small networks, the steady 

state results are very close to the minimum achievable 

delay and blocking probability. 

An important aspect of this present study has been the 

application and demonstration of the learning routing technique 

in realistic network environments, using as an experimental 

vehicle, the detailed simulation packages developed for the 

project. In the circuit switched application, testbed 

telephone networks, including hierarchical and mesh 

structures, have been modelled. These experiments 

have been instrumental in demonstrating the learning scheme 

as a series alternative to the conventional fixed rules, and 

have illustrated the significant advantages to be gained, 

particularly under adverse conditions caused by failures 

and traffic overheads. Moreover, the simulation 

exercise has been extended to include a network specified 

by Bell Laboratories, which has provided a complete 

circuit switched environment to test the learning automata 

in a self-organising role. 

Equally important has been the extension of the simple 

message switched routing implementations to full scale 

packet switched networks, with routing schemes designed 

to ý 
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to cover both the virtual and datagram operating protocols. 
In the proposed routing schemes the basic learning concepts 
have been applied in a manner which is practical and 
efficient in terms of control overheads. Again extensive 
simulation experiments have confirmed the performance of 
the new approach in relation to commonly implemented 

routing techniques, using realistic network and traffic 

models. 

In conclusion, this study has attempted to analyse and 
implement learning automata routing applications on a practical 
basis, particularly by the use of detailed simulation models 

of large networks. Significantly, the operation of learning 

automata routing is now better understood, from the 

convergence conditions of the individual routing automata to 

the behaviour of full scale implementations in circuit and 

packet switched networks. 

10.2 Conclusions 

The power and potential of learning automata routing 

has been clearly demonstrated by the analysis and simulation 

studies presented in this thesis. In order that the 

important points may be summarised, this section gathers 

conclusions from the complete study, and classifies these 

under the main headings of operation, implementation and 

performance. 

Operation 

The operation of the learning automata routing schemes, 

in both circuit and packet switched networks, has revealed 

interesting theoretical behaviour which has significant practical 

implications. Furthermore, the operation of these schemes 

present a fresh approach to dynamic routing, which as 

shown 
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shown, has distinct advantages over existing techniques. 

Circuit Switched Networks 

In comparison to the commonly implemented alternate 
path technique, the learning routing approach justifiably 

represents a marked improvement in routing service and 
network reliability. Under normal operating conditions, 
the optimal alternate path and learning automata schemes 
have been shown to produce a comparable performance, 
both tending to the minimum achievable blocking probability. 
However, operations outside the engineered conditions have 

highlighted the need for an adaptive routing policy, the 

isolated strategy of the alternate path scheme proving unable 

to exploit unused network capacity. The learning scheme 

on the otherhand, by virtue of the simple feedback arrangement, 

has demonstrated the ability to alter the routing strategy 

to provide a more efficient allocation of resources and 

consequently results in a superior performance. 

A major contribution of this present study has been to 

relate the nature of various reinforcement algorithms to 

specific routing strategies. In particular, the LR 
-I 

algorithm has been shown to equalise the blocking probabilities 

associated with the allowable routing options at a node, 

while for the same situation the LR_P scheme equalised 

the blocking rates. Equally significant has been the 

ergodic nature of the LR_P algorithm, which irrespective 

of any initial conditions, consistently converged to a unique 

statistical distribution. 

Packet Switched Networks 

The learning automata routing scheme for packet 

switched networks has been classified as a distributed load 

splitting technique, with the ability to adaptively proportion 

traffic 
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traffic over several paths, in such a manner as to provide 
a close to optimal performance. Undoubtedly this technique 
has significant advantages over other load splitting schemes, 
such as Gallagers(52) 

, in that it entails a far more practical 
form of feedback and updating operation. 

Again the influence of the various reinforcement 

algorithms has been shown to result in alternative routing 

strategies, the LR_I leading to an equalisation of the 

average delays on the outgoing paths at a node. The 

operation of the LR_P on the otherhand results in a 
balancing of the accummulated delays on the various options, 

with the effect of levelling the link utilisation. Furthermore, 

although neither of the schemes produce a truly optimum 

service, conditions have been established which show that 

such a performance requires the equalisation of the marginal 

and average delays. The logical progression in this area 

is therefore the design of a suitable reinforcement scheme on 

the basis of these conditions. 

Implementation 

The implementation aspects of routing schemes cannot 

be over stressed, since for reliable and efficient service 

any installation must follow a practical approach. In 

this context, the learning automata schemes have significant 

advantages, particularly due to the sensible feedback and 

updating strategies which are founded on existing control 

mechanisms and protocols. In more detail, the 

important points involved with implementation includes: 

Simplicity: An outstanding feature of the proposed technique 

lies in the simplicity of routing and updating operations, Being 

completely viable in modern circuit and packet switched 

networks. 

Feedback Strategy: The simplicity of the learning routing 

schemes I 
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schemes are a direct consequence of the feedback strategies 
employed to respond to an automaton routing action. The 
circuit switching application shows a particularly elegant 
solution, the P-model type response (Penalty/ reward) 
simply produced by the normal control signals responsible 
for establishing circuits. An equally straightforward 

approach has been exercised in the store and forward networks, 
with the existing network control traffic used to transport the 

network delay to the relevant automata. Aft er appropriate 

pre-processing, an S-model response can be produced, 

although if required, the P and Q-models are possible 

alternatives . 

Reinforcement Algorithms: The nature of the reinforcement 

algorithms also contribute to the overall scheme practicality, 

these in general based on arithmetically simple and robust 

equations. Moreover, the ability to control the 

characteristics of the algorithms through simple learning 

coefficients, permits a trade-off between the convergence 

rate and the steady state accuracy. 

Self-tuning Self-Organising Routing: The option of self-tuning 

or self-organising routing schemes provide additional 

flexibility to suit the requirerrents of a particular network 

application. In circumstances where the overall topology 

is known, and is fairly stationary, the self-tuning policy is 

advantageous, the automata operating to proportion traffic 

on pre-specified paths which are cyclic. Alternatively, 

when the network is globally unknown, with perhaps nodes 

and links frequently going down, coming up and moving 

position, then the self-organising scheme is an ideal choice. 

Under these conditions the routing scheme has complete 

freedom to seek out any possible paths, although in some 

attempts local loops may be formed. 

Performance 
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Performance 

The performance of the learning schemes has 
received continual attention throughout this stud`-. In 
general, the important performance issues, particularly 
from the standpoint of real applications, concerns the 
optimality and convergence characteristics. 

Optimality: In the circuit and packet switched networks, the 

equilibrium conditions of the LR-I and LR_P reinforcement 

algorithms result in sub-optimal routing. Howe`-er, from 

the experiments carried out, both appear to produce a 

performance which is very close to the optimal. Despite 

the present inability to apply a truly optimal routing strategy, 

the future provision of a suitable reinforcement algorithm 

should permit routing schemes which converge to give the 

minimum achievable delay and blocking probability. 

, Convergence: The topic of convergence embodies several issues, 

including the convergence rate, steady state accuracy and 

stability. Theoretically, these points are still new 

ground, and will in the future require substantial 

investigation to establish conditions and criteria for 

satisfactory designs. From an experimental position, the 

simulations carried out in this present study indicate the 

possible convergence rates to be clearly adequate for the 

application. Furthermore, the stability and accuracy 

aspects also appear to be sufficient, although further 

experiments are required to conclusively establish that the 

proposed schemes are intrinsically stable under general 

conditions. 

10.3 Future Work 

As the current project has progressed, questions have 

been raised which are as yet unanswered and in addition, new 

study areas proposed. This future work can be placed in 

four 
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four main areas; learning automata studies, circuit switched 
automata routing, packet switched automata routing and 
network simulation. 

Learning Automata Studies 

In order to support further application studies, several 
theoretical aspects of learning automata principles are 
specified for extended investigation. 

The subject of convergence stability in multi-automata 

configurations is of paramount importance in any 

network or distributed control application. Future 

theoretical studies in this area are required to look 

into possible stability criteria, implications of 

instability and methods of enhancing stable convergence. 

2A study of additional reinforcement algorithms operating 

on non-autonomous environments, aimed at presenting 

alternative convergence conditions for the routing 

problem and other applications projects. 

Circuit Switched Automata Routing 

Additional study of the telephone network automata 

routing are proposed for further study. 

1A more detailed and generalised analysis of the 

optimal routing solution in a circuit switched network, 

directed at producing the necessary equilibrium 

behaviour for the automata. 

2 In conjunction with point 1, an attempt to formulate 

an optimal reinforcement algorithm, based on the derived 

conditions for optimality. Ideally any future routing 

scheme developments will maintain the existing 

feedback strategy and require any new algorithm to 

continue operating from a P-model response. 

3 Further simulation studies to test and verify new 

algorithms, 
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algorithms, and also to investigate fully the questions 
raised on stability and accuracy. If possible, 
additional trials may be undertaken on a pilot network, 
which if successful would warrant the application of the 
technique in a full scale network. 

Packet Switched Automata Routing 

Future developments of the packet switched automata 
routing scheme are likely to consider the following: 

1 The implementation of a complete adaptive routing 

scheme which would comprise of two components, 
(a), the existing learning automata scheme to carry out 

optimising within the constraints of the specified 

allowable actions, and, (b) a distributed algorithm 

responsible for allocating allowable actions to each 

automaton, suitably established to prevent cyclic 

paths. 

2 Design of a hybrid routing scheme, involving the 

distributed learning automata and a mechanism which 

operates with the instantaneous local delay, typically 

based on the output buffer states. This might be 

organised along similar lines to delta routing 
(46) 

with 

a single variable 6, used to alter the policy of the 

scheme, by shifting the bias between the automaton 

action probabilities and the local queue conditions. 

= p; +(1- si 
With this arrangement the routing variables pi, which 

influence the link selection, are obtained from a 

combination of the automata action probabilities pi 

and the instantaneous state of the output queues S 

3A continuing study to find, or synthesise, a 

reinforcement algorithm which produces the required 

conditions 

2-9 



conditions for optimum routing. This would follow 
directly from the conditions produced earlier, which 
indicate a need to equalise the average and marginal 
delays. 

4 Additional simulations are required to compare the 
learning approach with alternative distributed routing 
schemes, such as the ARPANET algorithm and 
Gallagers load splitting technique. Moreover, 

simulation experiments need to be continued on the 
learning schemes, in order that the proposed 

modifications may be related to the performance of the 

original implementations. 

5 The application of learning automata routing and 

optimisation techniques in mixed media and local area 

networks appears to be a promising area. It is also 

suggested that learning principles may be applied to 

congestion and flow control schemes, and be used to 

intelligently regulate traffic in the network. 

Network Simulation 

The present study has actively involved software 

simulation techniques for experiments on circuit and packet 

switched networks, which in general has proved adequate, 

albeit slow for the complexity of network model under 

investigation. It is suggested that an extremely practical 

alternative to this, would be to construct a hardware 

simulator which could in effect be a miniature version of a 

real network and allow detailed implementations of protocols 

and network services. With the advantages afforded by 

parallel processing, significant improvements in simulation 

speeds might be achieved and consequently permit larger 

experimental runs on more complex models. 

Typically, 
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Typically, a hardware model of a packet or circuit 
switched network might consist of an array of interconnectable 

microprocessors, each required to concurrently emulate the 
operation of individual nodes. Further processing elements 
could be configured to act as traffic sources, and model the 
behaviour of host computers and local communication circuits. 
Central to the system, a control computer would act as a 
user interface and allow experiments to be set-up, measured 

and recorded by means of an ergonomically efficient command 
language. 

Implementation of a hardware simulator would initially 

be a more complex and costly exercise than a conventional 

software model, due to the design and construction of 

non-standard hardware. However, from the rapidly 

developing field of distributed microprocessor architecture 
(57) 

methods of physically and logically connecting many processors 

into an integrated form are becoming common practice. 

Therefore, in the long term, the hardware simulator would 

constitute a very usable simulation tool, and result in 

substantial economies of time and effort. 
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APPENDIX 1 

Bell Circuit Switched Network Specifications 

The data presented in this appendix originates from network 
specifications furnished by Bell Laboratories, New Jersey(35). 
This network has been designed using an off-line optimisation 
technique to generate a topology and alternate path routing rule which 
gives an optimal performance for the given traffic conditions. 
Details of the network topology, traffic statistics and routing data are 
now listed. 

Network Topology 

The network topology, as displayed on Figure Al. 1, is a 
highly connected mesh structure, consisting of 10 nodes and 35 

trunk groups, providing a total capacity of 959 links. The 

capacity of individual trunks are indicated on the diagram. 

Traffic Statistics 

For the simulation model used in this study, the necessary 

traffic statistics include the point to point arrival rates and an overall 

mean call hold time. In order to permit non-stationary traffic 

studies, three matrices are specified with a fourth used to simulate 

the adverse conditions imposed by selective traffic overloads. 

Mean Call Hold Time l/µ =5 Minutes/call 

Total Traffic Rate X Matrix 1 12 8 calls min 

Matrix 2 114 calls min 

Matrix 3 95 calls/ min 

Matrix 4 128 calls min 

Routing Data 

Precise details of the optimal alternate path routing schemes 

are now presented. The operation is self-explanatory, each table 

providing routing information for a particular node, covering the 

sequence for attempting to route a call to all possible destinations. 

The 
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The same data constitutes the action sets for the automata in the 
learning routing scheme. 

Routing Table at Node 1 Routing Table at 'Node 2 

2: 2,4,3,6,5,9,7 1: 1,4,3,6,5,9,8,10 

3: 3,2,4,5,7,6,9 3: 3,1,4,6,5,9,8,10 

4: 4,2,3,6,5,7,9 4: 4,1,3,6,8,5,9,10 

5: 5,3,6,2,4,7,9 5: 1,6,3,4,5,9,8,10 

6: 6,2,4,5,3,7,9 6: 6,4,1,3,5,8,10,9 

7: 7,3,5,4,2,6,9 7: 1,3,4,6,5,8,9,10 

8: 9,2,4,5,6,3,7 8: 8,9,4,10,1,6,3,5 

9: 9,2,5,4,3,7,6 9: 9,8,1,20,4,6,3,5 

10: 2,9,5,4,6,3,7 10: 10,8,9,1,4,6,3,5 

Routing Table at Node 3 Routing Table at 

1: 1,2,4, 

2: 2,1,4, 

4: 4,1,2, 

5: 5,1,7, 

6: 5,4,2, 

7: 7,5,1, 

8: 5,2,4, 

9: 5,1,2, 

10: 5,2, 

5,7,6 

5,7,6 

5,7,6 

4,2,6 

1,7,6 

4,2,6 

7,1,6 

7,4,6 

1,7, 4,6 

Routing Table at Node 5 

Node 4 

1: 1,2,3,6,7,8 

2: 2,1,3,6,8,7 

3: 3,1, 2,6,7,8 

5: 6,3,1,2,7,8 

6: 6,2,1,3,7,8 

7: 7,3,1,6,2,8 

8: 8,2, 

9: 8,1, 

10: 8,2, 

1, 6,3, 
F 

2,6,3, 

1s 6,3, 7 
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Routing Table at Node 5 

1: 1,3,6,7,2,9,8,10 

2: 1,6,3,2,7,9,8,10 

3: 3,1,6,7,2,9,8,10 

4: 6,3,1,7,2,8,9,10 

6: 6,7,8,9,10,3,1,2 

7: 7,6,8,9,10,3,1,2 

8: 8,9,10,6,7,3,1,2 

9: 9,8,10,6,7,1,3,2 

10: 10,9,8,6,7,3,1,2 

Routing Table at Node 7 

1: 1,3,5,4,6,9,8,10 

2: 1,3,4,6,5,8,9,10 

3: 3,5,1,4,6,8,9,10 

4: 4,3,1,6,5,8,9,10 

5: 5,6,8,9,10,3,1,4 

6: 6,5,8,9,10,4,3,1 

8: 8,9,5,10,6,4,3,1 

9: 9,8,5,10,6,1,3,4 

10: 10,8,9,5,6,3,1,4 

Routing Table at Node 9 

1: 1,2,8,5,10,7 

2: 2,8,1,10,5,7 

3: 5,1,2,8,7,10 

4: 8,1,2,10,5,7 

5: 5,8,10,7,1,2 

6: 5,8,10,7,2,1 

7: 7,8,5,10,1,2 

8: 8,10,5,7,2,1 

10: 10,8,5,7,2,1 

Routing Table at Node 6 

1: 1,2,4,5,7,3,8,10 

2: 2,4,1,5,7,8,10,3 

3: 5,4,2,1,7,3,8,10 

4: 4,2,1,5,7,8,3,10 

5: 5,7,8,10,1,4,2,3 

7: 7,5,8,10,4,1,2,3 

8: 8,5,10,7,2,4,1,3 

9: 5,8,10" 7,2,1,4,3 

10: 10,8,5,7,2,4,1,3 

Routing Table at Node 8 

1: 9,2,4,5,10,6,7 

2: 2,9,4,10,6,5,7 

3: 5,2,4,9,7,10,6 

4: 4,2,9,6,10,5,7 

5: 5,9,10,6,7,2,4 

6: 6,5,10,9,7,2,4 

7: 7,9,5,10,6,4,2 

9: 9,10,5,7,6,2,4 

10: 10,9,5,6,7 , 2,4 

Routing Table at Node 10 

1: 2,9,8,5,6,7 

2: 2,8,9,6,5,7 

3: 5,2,9,8,7,6 

4: 8,2,9,6,5,7 

5: 5,9,8,6,7,2 

6: 6,8,5,9,7,2 

7: 7,8,9,5,6,2 

8: 8,9,5,6,7,2 

9: 9,8,5,7,6,2 
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Matrix 1 

12 

1 . 706 

2 

3 

4 

5 

6 

7 
8 

9 

10 

Matrix 2 

3 

. 001 

. 165 

4 

. 001 

. 001 

. 
001 

1234 
1- . 001 2.074 . 001 

2-3.526 . 001 

3- . 687 

4 

5 

6 

7 

8 

9 

10 

5 

1.0 66 

. 84 8 

. 588 

. 425 

6 

. 42 

186 

. 489 

. 84 

16.93 

7 

1.319 

. 696 

1.057 

. 763 

12.407 

. 346 

567 

1.019 . 53 1.092 

1.399 . 
353 . 074 

. 48 1.007 . 001 

. 472 1.09 1.242 

- 9.372 11.313 

- . 362 

X calls/min 

8 

. 64 2 

. 958 

. 406 

. 588 

2.366 

1.173 

1.577 

9 10 

1.966 . 53-1 

1.241 . 473 

. 001 . 001 

. 225 . 219 

2.289 . 634 

. 001 . 567 

. 471 . 609 

3.762 1.274 

3.399 

89 10 

. 001 1.179 . 61 

. 00 2.77 . 669 

. 227 . 308 . 158 

. 743 . 168 . 222 

1.061 2.447 . 691 

1.287 . 001 . 57 

. 78 . 378 . 338 

- 1.684 1.186 

- 2.754 
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Matrix 3 

12 
1- . 825 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Matrix 4 

12 
1-3.399 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3 
3.715 

1.406 

3 
1.274 

3.762 

. 846 

X calls/ min 

a 

4 

. 001 

. 001 

. 001 

5 
1.919 

. 48 

. 568 

. 001 

6 
. 001 

. 001 

1.271 

1.761 

6.425 

7 
1.323 

. 001 

. 001 

1.26 

6.79 

. 363 

8 
631 

. 407 

. 669 

1.091 

. 484 

1.235 

2.483 

9 
1.922 

1.02 

. 15 

. 011 

. 477 

. 001 

. 001 

1.71 

45 

. 609 . 567 

. 471 . 001 

1.577 1.173 

67 

. 634 . 219 

2.289 . 225 

2.366 . 588 

12.407 . 763 

16.93 . 84 

- . 425 

10 
1.166 

. 455 

. 001 

. 
416 

. 468 

. 921 

1.171 

. 555 

1.943 

89 10 

. 001 . 473 . 534 

. 001 1.211 1.966 

. 406 . 958 . 642 

1.057 
. 699 1.319 

. 489 . 186 . 42 

. 588 . 848 1.066 

. 001 . 001 . 001 

- . 165 . 001 

- . 706 
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APPENDIX 2 

NPL and Rudin Packet Switched Networks 
This appendix provides details of the two 10 node packet 

switched networks used in the simulation experiments, including the 
network topologies, traffic statistics and routing data. The NPL 

network constitutes a hypothetical virtual call computer network for 
the UK and was first proposed at the National Physical Laboratory, 
Teddington, for simulation studies of store and forward networks. 
The alternative network operates under a datagram protocol and was 
first introduced by Rudin at IBM Research Laboratories, Zurich 

as a testbed for adaptive routing studies. 

Network Topology 

The NPL network (Figure A2.1) consists of 10 nodes 

and 15 full duplex links, each with a capacity of 9.6 K bits sec, 

giving a total network capacity of 288 Kbitssec. Figure A2.2 

displays the 10 node datagram network which contains 16 links 

rated at 9.6 K bits sec . Both networks differ slightly from the 

original designs, each having two additional links to increase the 

number of paths within the network, thus permitting a more 

interesting routing problem. 

Traffic Statistics 

For both networks the data traffic is characterised by a 

normalised point to point message arrival rate matrix and an overall 

mean message length. 

Mean Message Length : 550 bits/message 

Data Packet Size 

Control Packet 

256 bits packet 

64 bits packet 
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Routing Data 

This section presents data for fixed rule and load splitting 
routing schemes in both networks. The load splitting tables form 
the basis for the random and learning automata schemes, listing the 
allowable options at each node, for all possible destinations. The 
fixed rule data specifies the minimum hop routes between all 
source/ destination pairs. 

Fixed Rule 

NPL Network 

Rudin Network 

1: -, 2,3,4,3,4,3,3,3,3 

2: 1,4,4,4,4,4,4,4,4 

3: 1,1, - 4,5,4,5,5,5,5 

4: 1,2,3, -, 5,6,5,6,5,6 

5: 3,4,3,4, -, 8,7,8 7,8 

6: 4,4,4,4,8, -, 8,8,8,8 

7: 5,5,5,5,5,8, -, 8,9,9 

8: 6,6,5,6,5,6,7, -, 10,10 

9: 7,7,7,7,7,10,7,10, -, 10 

10: 8,8,8,8,8,8,9,8,9, - 

1: -, 2,3,3, 

2: 1, -, 3,3, 

3: 1,2, -, 4, 

4: 3,5,3, -, 

5: 2,2,4,4, 

6: 2,2,2,5, 

7: 4,5,4,4, 

8: 6,6,6,7, 

9: 7,8,7,7, 

10: 7,7,7,7, 

2 2,3,2, 

5,6,5,6, 

4,2,4,2, 

5,5,7,7, 

6,7,6, 

5, -, 8,8, 

5,8, 

6,6, 

8, 

-ý 7 

7,8,7,8, 

7,9.7,9, 

3,3 

5,5 

4,4 

78 7 

Load Splitting 
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Load Splitting 

NPL Network 

Node 1 Node 2 Node 3 
221111 

3331,4 
2 1,4 

4 4,3,2 4444 

5 3,4 5 1,4 55 
6 2,4,3 6464,5 

7 3,4 7 1,4 7 4,5 
8 3,4,2 8484,5 

9 3,4 949 4a 5 
10 3,4,2 10 4 10 4,5 

Node 4 Node 5 

1 1,2,3 1 3,4 

2223,4 

14 

24 

Node 6 

i 333334 

5 3,5 4 3,4 

6664,8 

7 5,6 77 

8 5,6 8 7,8 

9 5,6 9 7,8 

10 5,6 10 7,8 

Node 7 Node 8 

1515,6 

2 5,8 2 5,6 

3535,6,7 

4 5,8 4 5,6 

5 5,8 5 5,6 

6866 

8877 

9997,10 

10 8,9 10 10 

Rudin Network / 

44 

54 

78 

88 

98 

10 8 

Node 9 Node 10 

1718,9 

2 7,10 28 

3738,9 

4 7,10 48 

5758,9 

6 7,10 68 

7778,9 

8 7,10 88 

10 10 99 

298 



Rudin Network 

Node 1 Node 2 Node 3 
2211 

3331,3 

4 2,3 4 3,5 

5 2,9 355 

9 

2,4 

2,4 

7 2,3 7 3,5,6 74 
8 2,3 

9 2,3 

10 2,3 

8 5,6 

9 3,5,6 

10 3,5,6 

Node 4 Node 5 

1 3,5 1 2,6 

2322,6 

3332,4 

5544 

6 5,7 66 

7 5,7 77 

8 5,7 8 6,7 

9 5,7 9 6,7 

6 2, 3 

1 i, 8 

6 5,6 6 

Node 6 

10 5,7 

Node 

1 4,5 

2 4,5 

3 4,5 

4 4,5 

5 4,5 

6 5,8 

8 8,9 

9 9,10 

10 10 

10 7 

Node 8 Node 9 

1 6,7 

2 6,7 

3 6,7 

4 6, 7 

5 6,7 

66 

7 7,9 

9 7,9 

10 7,9 

2 7,8 

3 7,8 

4 7,8 

5 7, 

11 

2 1, 

ýý 

8 29 4 

94 

10 4 

12 

22 

3 2,5 

4 2, 5 

5 2,5 

7 5,8 

88 

98 

10 5,8 

Node 10 

1 7,9 

2 7,9 

3 

6 7,8 

7 7,8,10 

88 

10 10 

n (1 
1ý J 

A i, 9 

5 ?, 9 

6 ý, 9 

77 

8 7,9 

99 
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ADAPTIVE ROUTING IN COMPUTER COMMUNICATION 
NETWORKS USING LEARNING AUTOMATA 

M. S Chrystali and P Mars 

School of Electronic and Electrical Engineering RGIT, Aberdeen AB9 1FR, Scotland, 'U K 

A de-centralised adaptive routing 
technique based on learning automata 
concepts is proposed for message-switched 
computer communication networks. 
Messages are routed by the automata 
selecting suitable outgoing links , with 
the delay experienced by a message used 
as a feedback response for updating 
future selection strategy. This simple 
feedback policy which is a realistic 
representation of the actual feedback 
received in communication networks is 
shown to give a routing performance close 
to the minimum achievable delay. 

1 Introduction 

The transmission of digital 
information has shown tremendous 
growth over the last decade and will 
undoubtedly continue to expand in the 
future. Primarily, this can be 
attributed to the growing awareness 
and rapidly developing use of 
computer networks, which serve to 
provide distributed computing 
facilities to geographically dispers- 
ed users. Also relevant is the 
growth of digital electronic switch 
ing techniques and through these the 
implementation of more complex 
network protocols and routing scheme's. 

In this paper some initial work is 
presented on automata routing in small 
networks including a set of simulation 
experiments carried out using a 
recently developed software package. 
From an analysis of the end to end 
delay, conditions for optimality are 
stated and compared with the equilib- 
rium behaviour of various learning 
algorithms.. The experimental studies 
confirm the theoretical predictions 
and demonstrate the learning schemes 
performance in comparison with 
alternative routing techniques. 

The use of learning automata 
concepts in communication network 
routing has already been successfully 
studied in circuit- switched networks , including the telephone network (1) (2) 
(3). Through formally designed 

alaorithms(with origins in mat:. eraty- 
cal psychology) the learning automata 
update their routing behaviour on 
the basis of call connection or 
rejection and consequently produce an 
adaptive scheme whereby the routing 
structure can alter to suit the given 
conditions. The possible application 
of learning automata routing to 
message-switched networks appears to 
be a very promising approach. 

In such schemes messages are 
routed by the automata selecting 
suitable outgoing links with the 
delay experienced by a message used as 
a feedback response for updating 
future selection strategy. This 
simple feedback policy can be very 
conveniently applied to real communi- 
cation networks and is shown Lo give 
a routing performance close to the 
minimum achievable delay. 

2 Routing in Message-Switched Networks 

The operation of a communication 
network is critically dependent on 
the behaviour and performance of the 
routing algorithm. In a store and 
forward network, this algorithm 
operates to ensure the systematic 
progression of each message from 
source to destination, normally 
attempting to minimise the average 
message delay. The design of an 
optimal scheme to implement and main- 
tain this behaviour is however 
difficult, with the network suffering 
from topological changes and the 
traffic exhibiting statistical non- 
stationarily due to user trends, e. g., 
peak and off-peak loads. The 
optimal routing scheme must therefore 
be. capable of adapting to any 
conditions experienced. 

Adaptive routing schemes prov: -e 

a mechanism which can carry out 
routing decisions on the basis of 
feedback from the network, react_nc to 

congestion and facility =aiures wit- 
intelligently modified routing act_cns. 
Past studies have classified adapti-: e 
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schemes in four distinct doctrines; 
centralised, Isolated, Hybrid and 
Distributed. For an excellent review 
of routing schemes, the reader is 
referred to (4) . 

Centralised adaptive routing 
schemes rely on a central. routing 
facility to assemble the global 
network state in order to formulate a 
routing strategy and broadcast the 
necessary routing data to the 
individual nodes . Schemes of this 
nature have therefore-the potential 
for optimal routing, but unfortunate- 
ly this is only achieved at the 
expense of increased control over- 
heads and an undesirable reliance on 
a common control element. In isolat- 
ed routing schemes , decisions are 
made on a purely local basis , from 
information readily available at the 
node. This policy is however myopic, 
since no attempt is made to gain a 
global network awareness , which 
consequently results in a non-optimal 
performance . The hybrid form of 
routing (5) may be regarded as a 
mixed strategy , attempting to combine 
the best features of the other 
doctrines . 

Distributed schemes offer the most 
practical form of adaptive routing. 
In general, this approach allows 
nodes to implement local routing 
decisions, but unlike the isolated 
technique, these are supported by 
global feedback, gathered in 
co-operation with other nodes. A 
distinction must be drawn between 
distributed routing schemes which 
specify a single path between end 
users and others which operate to 
spread the traffic over several paths. 
In the first category the ARPANET (6) 
routing algorithm is included, this 
scheme attempting to find the shortest 
(minimum delay) paths in the network, 
from data acquired through all nodes 
exchanging details of the link delays 
in their own vicinity. 

Only the load splitting schemes 
have the capability to provide 
optimum routing, by adaptively 
proportioning traffic over the allow- 
able paths. To provide a scheme of 
this nature, Gallager (7) has propos- 
ed a technique which attempts to 
equalise the differential delays, 
using feedback which is measured and 
periodically exchanged between nodes. 
In the learning automata schemes an 
asynchronous updating policy exists , the automaton revising the routing 
strategy when a response to a 
previously routed message is received. 

lso, 
automatatheprovidealgorit a. 

m, ss a t. lised by the A 
imple and ex treme- ly practical solution to the rout:. nc problem, which alt'-. ouch do riot produce the required conditions for true 

optimum routing, result in a very 
close to optimum performance. 

3 Learning Automata 

Typically, a learning automaton 
operates in such a manner as to choose 
an optimal action from an allowable 
set and to apply the selected action 
to a random environment. in turn, 
the environment responds with a 
feedback signal, which initiates an 
updating of the internal state vector 
responsible for the future action 
selection process. Consider the 
learning automaton/environment 
configuration as shown in Figure 1. 
This illustrates an automaton capable 
of performing r-actions operating on 
a single random environment, which in 
general is a media of which little or 
no apriori information is available. 

A wide body of knowledge has now 
been established on the theory and 
application of learning automata and 
as a result, different forms of 
automata have been proposed, including 
deterministic, stochastic, fixed and 
variable structured, all of which are 
surveyed in (8). For this study, we 
concentrate on variable structure 
stochastic automata, and in particular, 
those where the environmental response 
is of a binary nature, i. e. 
Penalty/Reward. 

Variable Structure Stochastic Automata 

To further consider the form and 
operation of the learning automaton, 
consider A (n) 

A(n) =(o. ,3,2, T ((x ,3,2) 
1 

where 
a: The Action Set 

The action set of the automaton is 
the range of allowable outputs. The 

performed action at stage n is x(n) where 

a (n) :- {a 
i,..., 

a r} 
B: The Response Set 

The input to the automaton 3(n) is e 

response of the environment at stage n, 

where 
ß(n) -- 

Reward 
1- Penal*-, 

2: The Action Probability Set 

The internal state a va-iaý=e 



structure atomaton is specified by 
the action probability at E 

fi(n) {p1.... pr} 

where pi = prob [a (n) = ai} 

T (at ß, E) : The Reinforcement Algorithm 

The reinforcement algorithm 
provides the necessary means to 
modify the action probability vector 
in relation to the performed action 
and received response. 

2(n+1) =T (a ,a, 2(n)) 

A range of algorithms may be 
synthesised, although the most 
popular is the Linear Reward Penalty 
LRP and from this the Linear Reward 

Inaction LR , where only a reward 
response produces a modification of 
the action probabilities. 

LRP Algorithm for r-action 

Reward on ai pjýi (n+1) _ (1-a)pj (n) 

Pi (n+1) = 1-E p. (n+1) 
jýi ý 

0<a, b<1 
lk 

Penalty on ai p7#i (n+1) =pj (n)+{r_1 }pi (n) 

pi (n+1) _ (1-b)pi (n) 

The Environment 

The environment is described by 
the triple E (n) 

E(n) = {a ,ß, c} 

where a represents the input set of 
the environment (output of the auto- 
maton), ß, the response set and c the 
penalty set . 
C: The Penalty Set 

The penalty set dictates the 
probability that a given action will 
receive a penalty response ß (n) =1. 
This set therefore consists of r 
probabilities 

c= {cl,... cr} 
where 

ci = prob [ß (n) =1 a (n) =a 

Non-Autonomous Environments 

The penalty set of an environment 
can take several forms. If the 
individual elements c. are constants 
for all time, the environment is 
classified as stationary. However in 
most learning automata applications, 
the environmental characteristics will 
vary with time and the term non-stationary 
is adopted. A further type of 
non-stationary environment is the non- 

autonomous environs- ent, (9) where the 
response behaviour is : n_`'-, -, enced as 
a result of the actions performed -by the automata. 

In the dynamic routing problem, 
the network represents a :. cn-autono- 
mous environment, when an autcmata 
routing controller is used to select 
suitable outgoing links. By selecting 
a certain link with a high probability, 
the path obviously becomes less 
attractive due to increased delay 
caused by the higher traffic rate. On 
the other hand the alternative links 
are required to handle less traffic 
and consequently a more favourable 
response is obtained when a message 
is routed on any of these. 

In this study of learning routing 
schemes the convergence of the 
automata, operating with the different 
reinforcement algorithms, is an 
important aspect. Consider the 
condition 

`dpi (n) `dpi (n+1) -pi (n) 

for the r action LRI automaton, in a 
non-autonomous environment 

Gpi =a pi7ý1Pýc. 'c1Jpý] 

if ip . (n) -O as n-' then the above condition 
reveals that c1. -O or " 

which corresponds to an equalisation 
of the penalty probabilities ci. 

Similarly for the r action LRP 
algorithm, the condition 

=1p. c. - .a=b j. a [r-1 . Ai_ JP 
cyl 

shows that the equilibrium condition 
in a non-autonomous environment results 
in an equalisaticn of the penalty 
rates pici 

pici = r-1 JriPJ 

4 Learning Automata Routing 

The notion of a stochastic learn- 
ing automaton forms an ideal building 
block for the implementation of dis- 

tributed adaptive routing schemes in 

message-switched net"«crks. in a 
typical application (Figure 2), the 

allowable set of outgoing links ccrres- 

pond to the automaton action set, --'-e 

routing operation selecting a link on 

the basis of the action prcbacilit_-s. 
The response to the performed action 

is obtained by passing the delay 

experienced by a message to the si-clý 



stochastic comparator arrangement, 
which consequently produces the 
necessary feedback to the reinforce- 
ment scheme. 

A simple network/learning auto- 
maton combination is now proposed 
with a view to establishing an under- 
standing of the basic routin-g 
behaviour in a message-switched 
network. Consider the 4 node 

__ arrangement shown on Figure 3, with 
a single source of traffic (rate A, 
length 1/4) at node 1, generating 
messages destined for node 3. An 
automaton at node 1 is used to select 
a suitable path for a message, the 
path options being performed with 
probabilities p1 and p2. 

Assuming Poisson/Exponential 
statistics and the Independence 
assumption, the average delay of all 
messages in the network is given by 

P1 Pl 
T= (µ17p1 x), (µl3-p 

optimal Conditions 

P2 
+ 

P2 
(414-P2a) 

To find the conditions for minimum 
delay equate 

dT 
P=1-P _012 

which produces the following conditions 
for optimality 

411 µ13 412 414 
(µl1-pia) + (413-P1 W (412-P2; ) (414-p2A) I 

As shown by Gallager (7) the 
conditions for minimum delay are 
produced by a routing algorithm which 
equalises the differential delay over 
the alternative routing options. 

Automaton Steady State Conditions 

For the LRI reinforcement algorithm , we 
expect an attempt to equalise the 
penalty probabilities 

E [c1 (n) ]=E [c2 (n) ] as rr- 

In this particular application, the 
penalty responses result from the 
operation of the stochastic compara- 
tor, hence 
E[c. (n) ] =E[T >u] where u is a uniform 

11 deviate, 

= T. T. the delay e rienced 
obi path i, and Ti is the 
average delay 

The steady state operation of the LRI 
routing controller is therefore 
noted by an equalisation of the 
average path delays. For the simple 

network 
1 

µ11 p1ý+-µ1 
1 

3-p1 
_1i + -L12-? Lýý 

Under similar circumstances, the L,,, 
automaton is expected =o equalise ý 
the penalty rates, with 

E[P1c1] = E[p2c21 n-- 
In the message-switched network, this 
leads to 

P1E[T11 = P2E[T21 
which simply corresponds to an equal- 
isation of the accumulated path delays 
N1 ET1 

- 
N2 ET 2 where N. is the number of 

NNN N2 messagei routed on : ath i, 
N=v+V -1 

ET 1= ET2 

which produces 

äS N ºý 

p1 
+ 

p1 
_ 

P2 
+ 

P2 

µ11-pta µ13-p1a- µ12-p2ý µ14-p2ý 

To further illustrate the alternative 
röuting strategies of the L and LRP 
reinforced algorithms and tRi it 
relationship with optimality, Figure 4 
displays the convergence diagram for 
the simple 4-node network (1 1 =400 K bits/ 
sec and 12,1 = 600 K bit ? 

sec with 
traffic A= 4100 

messages/sec and 1/4 
= 350 bits/message). On this diagram, 
the steady state condition of the IT 
automaton is located at the interceýt- 
ion of the average delay :. raphs which 
are drawn as functions of the routing 
probability p. Similarly for the 
LRp scheme, tie crossover point of 
p T. produces the equilibrium condit- 
i. ýn, lwhich as shown previously results 
in an equalisation of the accumulated 
path delays. Furthermore, by inspect- 
ion the true optimum may be noted, 
which for the conditions specified, 
shows the learning schemes to ce 
marginally sub-optimal. 

The effects of the traffic condit- 
ions are displayed on Figure 5, this 
showing a family of overall delays T, 
for a range of arrival rates From 
this diagram, the expected behavicur 
of various routing schemes may be 

noted, the L and L schemes estab- 
lished from He 

prevHus conditions, 
the random routing scheme for 

p =0.5 and the true optimal condit- 
ianpirom the equalisation of the 
differential delays. 

5 Simulation Studies 
In order to veri`y `_: e _: eo. eýi. al 
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predictions of the previous section, 
a range of simulation experiments have 
been performed on the simple network 
using a computer model of a message- 
switched network. The experiments 
include studies of the learning 
schemes and alternative- routing 
techniques such as random and proport- 
ional routing. The above network 
parameters are maintained. 

x TI ITi " ZT2 IT 

Random Routing 

With this scheme, an outgoing link 
is selected on a random basis 
(p1 =p =0.5). The results presented 
(Tabli 1) were averaged over the last 
2500 messages of a 3000 message 
sample. 

Proportional Routing 

The simple proportional routing as 
suggested in (5), has been implement- 
ed and results (Table 2) obtained. 

Learning Automata Scheme 

The results for the learning 
automata are presented in Table 3 
(LRP ) and Table 4 (LRI) . 

The results confirm the expected 
convergence conditions for the learn- 
ing schemes and provide further 
information on the alternative 
techniques. The L algorithm has 
been shown to equally e the average 
delays on each path, with the L 
scheme providing a means to balHce 
the accumulated delays for the paths. 
The performance by the two linear 
schemes in this study provides an 
interesting dual with the previously 
studied behaviour of the same 
algorithms in circuit-switched net- 
works, where the L was shown to 
equalise the path 

Hocking 
probabili- 

ties, with the L providing an 
equalisation of 

He blocking rates 
(or the accumulated number of blocked 
calls) . 

The operation of the proportional 
routing scheme is also shown to 
equalise the average delays, which 
might be expected since the simple 
implementation resembles an automaton. 
As shown by the results, the random 
scheme provides a comparable service 
when the network traffic is light, 
although when heavier conditions 
exist this shows a significant 
degradation with respect to the 
adaptive schemes. 

1000 3- 061 1 79 243; 3.83 2.24 6 

1200 4.14 1.82' 3 5.25 2 24 - 49 

11.00 1"87' 1 89' 338 5 ý'9ý 235 6 . 
1600 

1aoo 

486' 2-31.3. 
-5''ö31'292 8 y? 

6 3bj 24 2; 4 371 7- 87' ? ý05 10ý93 

Table 1 

ý T, 
T2 T IT, 

, 
ETz IT ; p, 

1000 243 2.41' 2 4Z 0571 427j 4. J3; 0. '77' 

1200 2.76 260 2 63 19 u17 526 C''' 

1400 2.96 2.63 2.74 1- 91 356 5.48 10 

1600 3.65 3.59 3-61 2.50 4 . 73 7 j21 

1800 3 . 79 3-821 3.81 2.60 7-63 5.02! 034i' 

Table 2 

A T, T2 T ZTi ZT21 jT p, 
1000 204 3-02 244 2 41 2471 4-88 0 4. ý8 

1200 3.31 2-09 2-9 2 71 ? 47' 5 ;8 0-1091 

1400 3-18 2.51 2.801 272 2,261 5 60 ' 0- 

7600 3 98 2- 77 325; 3 16 334 5-5 3: 9; ' 

1800 4.24 2 871 3-,. 4 491 3 3391 688 3 411 1ý 

Tabip 3 

f, T T 2T, : ET2 
I 
IT p, i-, 

1000 2-11 218 
1 

217 0-71 
1 

3-64 4- 15 0'b7' 

1200 26 2-601 257 1 7.27 3-92 5u 324" 

1400 2-95 2.991 2.98 1.501 4..; 5 961027 

1600 3.21 J-291 3-271 1821 --721 553102831 

1800 
1 3-731 3-591 3.70 237 5 04' 7 4' .; 3581 

Table 4 
T avaragQ cercy 

ZT acc:: mulcrzc ceýcy SQC. 



6 conclusions 
The following conclusions may be 

made concerning the behaviour of 
learning automata schemes in simple 
message-switched networks. Although 
true optimal performance requires the 
equalisation of differential delays, 
for the simple networks considered 
equalising average delays produces 
results close to the minimum 
achievable delay. It should be 
stressed that the feedback and 
updating strategy used in the learn- 
ing automata schemes are very 
practical and simple. 

Future work will involve the 
application of learning automata 
schemes to both virtual circuit and 
datagram complex networks, and 
attempts will be made to synthesise 
learning automata reinforcement 
schemes which result in equalisation 
of differential delays. 
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