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ABSTRACT

This research investigates communications network routing
procedures, based on distributed learning automata concepts for
circuit and packet switched networks. For this application, the
learning automaton is shown to be an ideal adaptive control mechanism,
with simple feedback and updating strategies which allow extremely
practical implementations and perform very close to the desired
optimum.

In this thesis, the nature of learning automata routing schemes
are explored by analytical and computer simulation techniques,
primarily developing an elementary understanding of the automata
routing and adaption process. Using simple circuit and message
switched networks the conditions for minimum blocking probability and
average delay are established and compared with the equilibrium
behaviour of learning automata operating under alternative reinforcement
algorithms.

Later, large scale simulations of real networks are used to
demonstrate and relate the learning automata scheme to existing
routing techniques. These experiments, which are performed on
sophisticated simulation packages produced for this study, take as
examples hierarchical and general structured telephone networks and
packet switched communications networks configured with both virtual
call and datagram protocols. In addition, studies under failure
mode conditions, including link, node and focussed overloads,
conclusively demonstrate the superior performance afforded by the

learning automata routing approach.
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CHAPTER 1
REVIEW OF LEARNING AUTOMATA

1.1 Introduction

(1)

Learning as defined in' ', is described as any
permanent change in behaviour resulting from past experience,
a learning system therefore exhibits the ability to improve on
previous operations with regard to some well defined
performance criterion. The automaton approach to
learning follows logically from this theme, whereby the
learning automaton interacts with a random environment,
Ilmproving on past performance by suitably varying the
output strategy in relation to the environmental reaction.

Typically a learning automaton operates in such a
manner as to choose an optimal action from an allowable set
and to apply the selected action to a random environment.

In turn, the environment responds with a feedback signal
which initiates an up-dating of the automaton state and
consequently the future action selection process.

Consider the automaton/environment configuration as shown
in Figure 1.1. This shows an automaton capable of
performing r-actions, operating on a single random
environment which in general is a media of which little or no
apriori information is available. Further, the operation
of the combination 1s at discrete intervals of timme, the action
and subsequent response at stage n leading to the automaton

state of stage n+1l.

1.2 The Learning Automaton
The learning automaton (Figure 1.2a) as considered
in this study may be regarded as a device with specified

input and output ports, supplemented byv an internal

mechanism /



mechanism responsible for modifying and recording an

internal state.

To study the operation of the automaton in more detail,

the quintuple A(n) is defined

A(n) = {_@_, a,0,F (B,0), G(<p)}
The constituent components of A(n) are as follows:-

B : Input Set

The input to the automaton B(n) at stage n is an

B(n)e {B,, Bz .. }

The exact form of this response will be dependent on the

element of the set B8 and is normally termed the response

nature of the environment, i.e., discrete or continuous,

as described more fully in a later section.

a : Output Set

The output or action a(n) of the automaton at any

Instant n is a member of the finite set a.

a(n)€ {af1, afz . e . a'r}

O : State Set

The state of the automaton at n, denoted by ¢(n), is

also a member of a finite set ©,

©(n)€ {@1,@2 « < (‘DS} S 2T

In effect, the state represents the memory of the automaton

and records the past experience.

F (B(n),qo(n)) . Transition Function
The transition function F provides a means of
determining the next state of the automaton ¢(n+1), given

the response [B(n) and the current state ©(n).

O(n+1) = F {B(n),(,o(n)}

The /



The role of the transition function is that of an up-dating

operatlon such that the automaton state can be modified to

retflect the experience gained through the received response.

G ((p(n)) . Output Function

The output function G provides the necessary mappinsg

between the state of the automaton ¢©(n) and the performed

action a(n).

a(n) = G {@(n)}

The above description provides an extremely general
introduction to the learning automaton which can exist in

several forms. Further classification and development of

the concept will be present later along with suggested

application areas.

1. 3 The Environment

The term environment i:s used in learning automaton
studies to describe some random media on which the
automaton will operate. Normally, insufficient or no
apriori information is available to describe the dynamics of
this media, and it is under these circumstances that the
learning automaton is an attractive alternative to classical
techniques. For this study, the environment may be

def ined mathematically by the triple E(n), Figure 1. 2b.

E(n) = {3: B, 9_}

where «a represents the input set, B the output or response

set and ¢ the penalty set.

A further classification of environmental types leads

to the definition of three response models:

1 P-model
2 Q -model
3 S-model

In /



In the P-model the response to an action is of a binary
nature, i.e., 1 or 0, penalty or reward.. It, however,
the response is continuous in the region (0, 1) then the
environment is referred to as an S-model. Similarly,

the @-model is suited to the intermediate case when the

response can be one of a finite set of discrete values in the

range (0, 1).

a : Input Set

The input to the environment «a(n) corresponds to the

performed action of the automaton which is a member of the

a(n)e€ {01, Aoy e afr}

B : Output Set

set «¢.

In the conventional automaton/environment configuration,
the output of the environment B(n) is the received response
of the automaton. As described previously the exact
nature of this is dependent on the environment but in general

B(n) is an element of the set g.

B(n)e {Bp Bz . }
c : Penalty Set

In the operation of the described learning system, the
environment reacts to the performed action with a response
which is characterised by the penalty set of the media.

The penalty set therefore indicates the desirability of an
action, the media responding with a penalty signal or
penalty weight depending on the environmental model.

For the P-model, the penalty set dictates the
probability that a given action will receive a penalty response

B(n) = 1. The penalty set c¢ therefore consists of r-

penalty /



penalty probabilities.

9_ {C,‘,Cz, ¢ . Cr}

c. = prob [B(n) = 1|a(n) = ai]

which is the probability that given action @ was performed,
the response will be a penalty.

The penalty set for the S and Q-models are best
described by a family of distribution functions, one for each
action. The response to an action will therefore be a
random variable limited to the range (O, 1). For the S

and Q-models the penalty sets are denoted by

c = {81,82, DL Sr}
¢ = {39z - %)
where s; is a continuous distribution function of the penalty

|
welight 5 and q; 1s a discrete function for the penalty weight

Qi'

In this study of communication network routing, all
three response models play a significant role, the P-model
In circuit switched networks and both @ and S-models in
the store and forward type of network. A complete

discussion of these aspects is presented in later chapters.

1.4 Classification of LLearning Automata

LLearning automata are classified according to the
nature of the functions F and G which can best be
considered as matrix operators, transforming o(n)- ¢(n+1)
and ¢(n)- a(n). This will be demonstrated and used to
illustrate the main types of automata in the following
examples.

If the elements of both matrices are purely

deterministic, |/



deterministic, 1i.e., the operation of the automaton can be

uniquely described by a logical operator then the device is

defined as fixed structure deterministic. Figure 1. 3a

gives an example of such an element including the desired
form of the F and G operators. Alternatively the
‘transition probabilities (valued at 0 or 1 in the
deterministic automaton) can be allowed to take on any
value (subject to row and column sum constraints), thus
describing an automaton which is random in nature and

consequently classified as a fixed structure stochastic

automaton. A general example of this type is shown on
Flilgure 1.3b, the matrix element Pij representing the

probability of a transition from state i to state j.

Fixed structure learning automata were first considered in

(2) (3) (4)

an original paper and developed further as reported in
using the technique of Markov chains.

In comparison variable structure stochastic automata

have the potential of greater flexibility and application, the
(5)

concept being initially proposed in This type of
automaton is noted by the ability to modify the elements of
the transition matrix by means of an up-dating or
reinforcement algorithm. Such an algorithm normally

exists in one of two forms

(a) state transitional form
or

(b) total state form,

the latter being used in conjunction with the state probability
vector p(n), governing the choice of state at stage n.

In most cases the state set relates directly to the action set
(r = s) which allows the state probability vector to be equated
with the action probability vector. V'ariable structured

automata have been extensively investigated with the benefit

of |/



of mathematical tools such as Markov process theory and in
addition the results from extensive computer simulation

(6)

experiments

Stochastic Automata with Variable Structure

Stochastic Automata with Variable Structure (SAVS) as
detailed in the previous section are best described in terms
of the state probability vector p(n) which can also be the
action probability vector. This vector relates to the

probability that at instant n a certain action will be performed.

r

p(n) = {p1(n), pz(n) . . . P (n)}

where

p (n) prob [a(n) = af;]

|
The reinforcement scheme is utilised to continually revise
this vector as part of the learning process. By convention,
the reinforcement scheme is represented by the function T

such that

p(n+l) = T(p, 2, B).

As shown, the up-dated vector is a function of the current
action probability set, the performed action and received
response.

For further consideration of the SAVS the

re-introduction of A(n) as

A (n) = (_9'., B,p, T(p, «, B)}

is a more suitable and indeed more clear form (Figure 1. 2c).
Again o and P represent the action and response sets with

i

p and T describing the action probability vector and

reinforcement algorithm respectively.

Clearly, the reinforcement algorithm plays a crucial

role in the operation and behaviour of a variable structure

automaton /



automaton and as such must be given a great deal of careful

and detailed consideration. Classification of such
algorithms are normally carried out on the basis of their
performance (to be discussed later) or on the nature of the
function used in the scheme. 1f, for example, p(n+l) is

a linear function of p(n), then the scheme is obviously termed

linear . In contrast, schemes involving higher orders of
P_(n) are described as non—linear(7) with a further class

(8)

of algorithm, the hybrid scheme combining linear and

non-linear components. In the majority of applications,
the linear schemes are of the greatest interest, the non-
linear and hybrid algorithms only giving slightly better
convergence rates under special circumstances.

Several variations of the linear algorithm have been

considered including

LR T linear reward inaction LR . linear Reward reward

(different degrees of reward)

LR—P linear reward penalty Lp-P linear penalty Penalty

(different degrees of penalty)

LI I linear inaction penalty

In this thesis, emphasis is placed on the LR r and LR-P
schemes as they have in the past been shown to be superior

to the alternatives. Two specific reinforcement

(8)

R_P and

algorithms are now considered, the P-model L

_ (9)
the S-model LR-I :

P -model LR-P for r-Actions

g Jd
"Ej_"ﬁ
~
TR
1 1




Penalty on a(n) = o; B(n) =1 .. 1.1

p (n*1) = (1-b)p (n)

P, (1) = p (n)+ {;—?—1—} p. (n)

To implement the L algorithm, the punishment

R-I
coefficient b is set to zero, effectively rendering

the penalty sections of the algorithm in-operative.

S-model L Algorithm for r-Actions

R-T
a(n) = o B(n) = S; 0= 5ix1
p (n+1) = p (n)+a(1-S)) | 1-p;(n)] .12
P, #L (n+1) = P, (n)—a(l-S;_)p‘i (n) 0<a<l
. 6 Performance Criteria

In order that the behaviour of various learning schemes
can be compared and assessed, it is necessary to set
quantative norms of behaviour. One convenient and

frequently used measure is the average received penalty

M(n) which is defined as

M(n) = E[B(n)|p(n)]
= ZPL(H)CL

For most learning situations the initial action probabilities

will be un-biased, i.e., equal and therefore the initial

expected penalty M, is given by

i=1
In studies of learning automata, the asymptotic behaviour of

M(n) relates to the convergence properties of the different

reinforcement algorithms which can be classified according

to the following behavioural norms.

Expedient [/



Expedient

A learning automaton is described as expedient if

convergence 1s such that
lim n-oo E | M@n)< M,

This corresponds to the automaton evolving such that it does
better than a purely random structure, attempting each
actlon with equal probability. One example of this
behaviour is the L algorithm which theory and

R-P
simulation has shown to be expedient when operating on a

statistically stationary environment.

Optimal

If the behaviour of the automaton is such that

lilm n-»o0 1D [M(n)] = Cm where crn® Miln [Ci ]
then the device is described as optimal. This is the case

when the automaton converges to consistently select the
action which corresponds to the minimum penalty probability.
In practice however, an optimal automaton is not truly
realisable, the L scheme {or instance being best

R-I
described as € optimal.

lim n-»oo E [ M) | < cpe where € is small
positive value

1.7 Summary and Applications

The aim of this chapter has been to provide a general
review of the form and behaviour of learning automata,
considering both fixed and variable structure types.
Particular emphasis has been placed on the variable
structure stochastic automaton with details provided on two
of the most important reinforcement schemes, the P-model
L and the S-model L Additional sections have

R-P R-T
discussed /
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discussed the nature of the random environment and
consldered behavioural norms for the various schemes.

Several application areas are seen as suitable for the
stochastic learning automaton, generally involving control
and allocation stirategies. One of the most important and
pest suited is the adaptive routing problem for circuit and
packet switched communication networks, both of which may
be regarded as distributed stochastic allocation problems.
Typically, independent automata at intermediate nodes
(F'igure 1. 4a) select an outgoing link for transmission
(action set) and dependent on the outcome of the operation
(response) the automata are up-dated. A further allocation

problem concerns the optimal scheduling(lo)

of jobs in a
multi-processor computer system (Figure 1.4b), the
goal of the automaton being to maximise the job throughout
by placing appropriate jobs on a suitable processor.

In adaptive control, the use of automata as optimising
components for multi-modal performance indices has been
studied. Experiments using multi-modal functions(ll)
and plant(lz) have shown the technique to be c¢learly suitable
for locating global stationary points, even when severe
noise masks the function which could possibly consist of
several maximum and minima (Figure 1. 5a). The use of
hardware learning automata also shows great promise
particularly in adaptive control techniques such as model
reference schemes (Figure 1l.5b) where a need exists for a
rapid global searching component, In this area the use of

(13)

stochastic processing elements has proved an extremely

efficient design tehcnique and using suitably developed

: {14)
components, multi-state automata have been constructed .

11
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CHAPTER 2
NON-AUTONOMOUS ENVIRONMENTS

2.1 Introduction

In Chapter 1, the concept of a random environment
was Introduced merely in sufficient depth to explain the form
and operation of a learning automaton. As presented,
the environment was defined to represent some random media
on which the automaton operates, typically reacting to the
periormed actions with a random response. The
environment was therefore characterised by the triple E(n)

which includes o« the action set, f the response set and

c the penalty set.

E(m) = {a,B. ¢}

In this chapter, a more detailed study of the
environment 1s pursued, concerning the nature of the penalty
set ¢ and leading to the definition of environments which
help in the understanding of practical automata applications.

The penalty set described the statistical properties of
the random response issued by the environment for each
member of the action set. As shown previously, the
exact nature of the response is dependent on the type of
environment and consequently the penalty set is similarly
connected. For the P-model, a set of penalty probabilities
was sufficient, whereas the Q@ and S-models required
distribution functions to fully describe the response behaviour.

As of yet, the statistics of the penalty set have been
thought of as stationary, the response characteristics of the
media remaining constant for the duration of the operation.
These environments are suitably termed stationary

environments. However, in most learning automata

applications, the environmental characteristics will vary

with /



with time and hence the term non-stationary environment

e e ——.,

1s adopted.

Non-Stationary Environments

Non-stationary environments are characterised by a
penalty set ¢ which varies with time.

Hence

c = c(n)

One simple example of this is the switched non-stationary

(19)

environment where the penalty probabilities of a two

actlon automaton are switched as shown in Figure 2. la.
Under these conditions the point of interest is the mean
adjustment time, 1.e., the average time required by the
. automaton to reconverge, given the new conditions.

A more elaborate non-stationary environment can be
represented by a sequence of switches (Figure 2.1b) in
which a range of penalty sets are interswitched according to
some proftile. This might typically be the case in a
telephone network with the traffic load varying according to

the time of day, e.g., peak and off-peak periods.

Non-Autonomous Environments

A further and very important class of non-stationary

environment, is the non-autonomous environment where

the penalty set is influenced by the actions of the automaton.
c = c(a)

The nature of a non-autonomous environment can best
be described with reference to the following simple example.
Consider a 2-action automaton selecting between two people
to carry out an undisclosed job. The automaton allocates
a person, who carries out the fask, Incurring a penalty

response in relation to how well the job was performed.

This /[
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This response will obviously depend on the skill of the

individual, and since the two workers are different, the
automaton should converge to a suitable allocation strategy.
However, in a dynamic problem such as this, the ability of
a person to carry out some function is also dependent on the
rate at which the individual is required to work. As a
person 1is selected to do the task more and more, fatigue
sets 1In which decreases his ability to satisfactorily carry out
the work, with a resulting increase in penalty responses.

In contrast, the alternative worker who is chosen less, is
better rested when required to do the job and consequenﬂy
receives more favourable feedback.

In the routing problem, the network represents a
non-autonomous environment when an automaton routing
controller is used to select an outgoing link. By choosing
a certain link with a high probability, that channel obviously
becomes less attractive due to increased delay (or call
blocking), caused by the higher traiffic rate. On the
otherhand, the alternative channel which is not used for an
interval of time, 1is handling less traific and therefore
produces a better response.

For the remainder of this chapter, the nature of the
non-autonomous environment and the interaction with the
LR T and LR-P automata are studied. This is further
supplemented by the consideration of two simple non-
autonomous environments which have been abstracted to
gain an understanding of the process. Of the two proposed
models, Model A is an elementary environment in which
the penalty probabilities c,(n) and c,(n) are incremented
and decremented according to which action is performed.

In Model B, the penalty probabilities are assumed to be

monotonically increasing functions of the automaton action

probabilities, /



probabilities, which gives the desired behaviour of a high
action probability resulting in a correspondingly high penalty
probability and vice-versa. Finally, a series of
simulation experiments verify the results shown for the 2-

state P-model automaton for the various configurations of

environmental model and learning algorithm.

. 2 Behaviour of a Variable Structure Automaton in a
Non-Autonomous Environment

The behaviour of the variable structure automaton
operating in a non-autonomous environment is considered with
reference to the steady state behaviour of the LR-I and LR-P
reinforcement algorithms. For convenience, a 2-state
automaton interacting with a P-model environment is

investigated, although the results are generally applicable to

the r-state case and for the alternative response models.

2-Action L Algorithm

R-1I
For 2 actions, the LR-I reinforcement algorithm
may be expressed as
3 (n+1) = P (n)+ap2 (n) a(n) = a, Reward
pz(n+1) = pz(n)-apz(n) R
p1 (n+1) = P, (n) a(n) = @ Penalty
pz(n+1) = pz(n) 0<a<l
For a non-autonomous environment(m), considef the
expected equilibrium condition of the LR-I automaton.

Consider the sequence

and defining

o (n) & E [ p, (n+1)-p, ()|, (o) |

Using /[
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Using Equation 2.1 we write the expected p (n+1)
E“[p1 (n+1) | = p, (m)+ap, (n)p, (n)E [ d,(@) ] -ap, (n)p, (ME [ d,m) |

Ap (n) = ap (), (E | d,(n)-dyfn) |, (n) |

dl = 1-C|

= ap1 (n)pz(n)E [cz(n)-c1 (n)\f)" (n) } R

If the process P, (n) converges in such a way that
lim n-oo Ap1 (n)—>0, then Equation 2.2 yields some very
interesting convergence properties, Considering the

zeros of the equation we find

(1) P, (n) pz(n) 1
(i) p,(n)—0 p, (n) =1
(iii) E [cz(n)-c1(n) ‘51 (n)]—a- 0
The first two conditions arise due to the conventional

absorbing states of the L algorithm which as stated

previously is € optimal 1?1 i statlonary environment. The
third possibility exhibits a completely different behaviour
since convergence is related to the evolution of the penalty
probabilities. In the limit, condition 3 is such that an

equalisation of the expected penalty probabilities is obtained.

E [01(n)lp1} =E[c2(n)‘p1:] .. 2.3

2-Action LR-P Algorithm
Turning to %he LR—P algorithm a similar result is

given(17). With the 2-state LR-P reinforcement scheme.

Py (n+1) = P (n)+ap2(n) a(n) = o Reward

p,(n+1) = p,(n)-ap,(n) L. 204

2 (nt+1) = P, (n) -bp‘I (n) a(n) = @, Penalty

p,(n+1) = p,(n)+bp, (n) 0<a,b<l

Therefore |
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Therefore

_ 2 Z
E +1 = + Etd | - -
[p1 (n )] p1 (n) 3P2p1 [ 1] a.p1 sz [dZ] +bp2 E [cz} bp1 1D [cd
for a=>b

= by ()42 | py(m)c,fn) -py (m)e, () | By (m) ]
ﬁ\p1 (n)= aE[pz(n)cz(n)-p1 (n)c, (n) \51 (n)] C .. 2D
A gain considering the limit as n - oo, Ap1 (n)—~ 0 we find that

n = o
P (n) \P E [pz(n)cz(n) \p1 (n):l . . .2.6
Whereas the LR-I automaton converged such as to equalise

the penalty probabilities, the LR—P algorithm is seen to

balance the penalty rates, P, C..

r-Action LR R Algorithm

The result for the 2-state LR-I automaton may be

generalised for the r-action case, From the r-action

L algorithm Equation 1.1, we can write for r-actions

R-P
zpp Miats ijdi
it
C.-C. D. .. 2.7
[Zp 7]

z .. 2.8
P;

JEL
This indicates that for the r-action case each penalty

probability is equalised.

E[cqlm E[cp ] a,b=1,2,...r

r-Action LR _p Algorithm

The operation of a multi-action L

.ﬁi%

algorithm in a

non-autonomous environment is shown in , giving
1
A = a| — . -p.C. L. 2.9
P (n) a[ r-1 Z pij plcl]
)FA

A gain this confirms the behaviour of the L algorithm

R-P
for r-actions giving

ElPgSq] =/
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2.

3

E [P =E[pgey ] a,b=1,2, .. . 1

S LR-I Algorithm

For the 2-action SLR-I algorithm, a similar condition

to the P-model case is noted

Ap () = ap, (n) [ 1-p (n)] B [Sz(n)-S1 (n)l‘fs (n):} .2.10

taking lim n-w, Ap, (n)—>0 we obtain

1
B [81(n) |‘f31 (q)] = B [Sz(n)|51 (n)] 211

Physically this corresponds to the equalisation of the expected

penalty weights.

In(17) a mathematically rigorous treatment of the I

R-P
automaton operating in a non-autonomous environment is

presented. The significant contribution of this work is to

show that the process P; (n) converges to a normal distribution
%

with mean p . Furthermore, it shows how the variance is

influenced by the learning coefficients a and b, high values
giving large variance, The matter of learning coefficients
however, is an extremely complex one, the values representing
a trade off between steady state accuracy (variance) and

convergence rate.

Environment Model-A

(16) to abstract

This model represents an initial attempt
a non-autonomous environment suitable for modelling the
behaviour of a telephone network under dynamic routing

schemes.,

For 2-states the environment is as follows:-

Given «(n) = «
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Given a(n)

1l
Q

Cy (n+1) C, (n) -0, 0 <c, (n+1) < 1

cz(n+1) = 1::2(n)+s92

The above expressions show the selection of an action to

cause an increase in the related penalty probability and a

subsequent decrease in the alternative. In general, ei

and ¢, may be functions of P; and c¢;, but for simplicity,

they are assumed to be constants.

(16)

It is shown that for the described environment, the

following condition exists.
I

N -
E [ oym)-cy(n) [py(m)] = cyf0)-c (0)+ip,+0))n=(8;+8;%0;+0)) ) py

then
N-|
N B 79,70, 70,
6,+p
2
= [pl (n):] i 61+62+<p1+¢2 .2.13

The sample average of P (n) is therefore seen to converge to

a value dictated purely by the characteristics of the abstract
environment. Additionally, expressions for the

conditional expectancy of the penalty probabilities are given

3
S
L,

E)
o
B
—
1
AL
C
D
+
I\)CD
g
8
N

2. 14

E [ cpfm) [Fy (0 |

The above equations show the penalty probabilities to
assymptotically converge towards a probability of 1 or 0,
dependent on the relative values ot 61 62 and 0,0,. For

example, with E?1 82< NGl both probabilities decrease

towards [/
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2.4

towards O and in the other extreme, 0, 92 >©,0, convergence

1S towards 1.

Environment Model B

In an alternative approach to abstract a non-autonomous
environment, a model is proposed in which the penalty
probabilities are assumed to be functions of the action

probability set.

Again considering the 2-state case, the penalty probabilities

are chosen to be only a function of the corresponding action

probability.
Cy (n) = k1pl{n (n)
= | m
cz(n) XD (n) .. . 2.10
As shown prev'iously, convergence of the LR-I automaton is
such that
B [ eym|5m)] = B[ cym|5,m]
glving
m = m = 1.
KyPy T KR Py = 1-1y

K “‘\/EZ

—e . . .2.106

! ;&'“ﬁz

Similarly for the L algorithm we expect convergence

R-P
such that
B [oelf] *F [pe|F)
giving
m+1 me|
Kypy = KoPp
. me/ K
e Z 21T

P
]
(Tl k1+ w/_k-z

Equations /[
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Equations 2.16 and 2.17 give the expected steady state
action probabilities for the L L

D RoT and R.P automata
operating on the specified environment. Further, this

behaviour is illustrated on Figures 2.2a and 2.2b which
show convergence diagrams for both schemes in an
environment with m = 1,

Clearly, the behaviour of both schemes can no longer

be classified according to the conventional norms of behaviour

listed in the previous chapter. In the non-autonomous

environment the optimal automaton is one which converges

to give the minimum average penalty. Returning to the
linear environment we write the average penalty M(n).
2
M(n) = Z p.i c.’.
=1
_ M +] M+ ]
k1p1 +k2p2 .. .2.18

dM(n) _ |,
d]_:)1
this yielding '“\/E
o S 2.19
P1 .. . 4.
SRS

This equation gives the action probability for action 1 which
results in the minimum average penalty and thus corresponds
to the optimum output strategy of an automaton operating in
the specified environment. Comparison with Equation
2.16 indicates the L automaton to be truly optimal,

R-1

the LR D tending to be minimally sub-optimal.

Experiment Results

(18) of a 2-state automaton,

Using a computer model
the various combinations of reinforcement algorithms and

non-autonomous |/



non-autonomous environments were explored. These

included L., ./Model A, LR-I/ Model B and
LR-—P/ Model B, the results providing plots of the action and

penalty probabilities against number of iterations.

Experiment 1(a) LR_I/Model A

In this experiment, the LR_I/Model A configuration

was investigated, the run producing results as shown on

Figure 2, 3.

Sample

A s predicted by the theory, the action probability sample
average tends to a value dictated by the environmental
parameters 6 and o;. In this case, a sample average
of 0.246 1is obtained, this giving good correlation with the
theoretical value of 0. 25. From Equation 2. 14 it was
shown that both e¢;s should tend to 0 or 1, depending on
the relative values of 0; and ¢;. Again this is supported
by the results, with both penalty probabilities tending to 1

in 700 iterations.

Experiment 1(b) L, ./Model A

As in the previous run, the LR-I/ Model A configuration
is considered, this experiment using an alternative set ot

environmental parameters.

Sample

The results from this run are shown in Figure 2.4 and

present the alternative action to Experiment 1(a). This

particular [



particular experiment shows extreme variance on the penalty
probability graph which can be explained as follows. As
the penalty probabilities converge towards zero, the learning
automaton receives a considerable number of rewards and
because the up-dating scheme is Reward Inaction, there is
continual modification of the action probabilities. In the
previous example, since convergence is to 1, the high
number of penalty signals are ignored by the L

R-I
reinforcement algorithm.

Experiment 2 L, I/Model B

Experiments 2 and 3 are used to show the

characteristics of environmental Model B with m = 1.

In this example, the LR r automaton is used, the run

producing results as shown in Figure 2.5.

e
P4

. 875 } 0,814

In accordance with the theory, the penalty probabilities are

seen to converge to equal values (given variance) with the
action probability P, converging to a value dictated by the

environment coeificlents k.] and k,z

Experiment 3 L [ Model B

This experiment presents the L [Model B

R-P
combination, the results being displayed on Figure 2.6.

In /



In the previous experiment, the equalisation of the penalty
probabilities was demonstrated by the LR I/ Model B pair.
This experiment confirms that in the same environment,

the LR-P algorithm operates to equalise the penalty rates.

P1€y7 PyCy

Conclusions

In an attempt to describe a practical automaton/
environment combination, the concept of an non-autonomous
environment has been introduced. The fundamental
property of such an environment being the relationship
between the penalty and action sets, the action selection
process of the automaton bearing direct influence on the

environmental response, as is the case in many practical

applications.
This chapter has investigated the behaviour of the LR-I
and L reinforcement algorithms, showing the convergence

R-P
conditions in a general non-autonomous environment,

Further studies have resulted in the abstraction of two simple
non-autonomous environments to demonstrate the operation of
the learning schemes and also as an initial attempt at
modelling the routing operation of the automaton. A first
elementary non-autonomous environment was implemented in
the form of Model A. Although this particular model
proved unrealistic convergence of the penalty probabilities
being to either 1 or 0, the expected convergence of the
LR-I automaton was clearly demonstrated. Model B on
the otherhand, repr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>