
A Hybrid Approach to Distributed Constraint
Satisfaction

David Lee, Inés Arana, Hatem Ahriz and Kit-Ying Hui

School of Computing,
The Robert Gordon University,

Aberdeen, United Kingdom
{dl, ia, ha, khui} @ comp.rgu.ac.uk

Abstract. We present a hybrid approach to Distributed Constraint Satisfaction
which combines incomplete, fast, penalty-based local search with complete,
slower systematic search. Thus, we propose the hybrid algorithm PenDHyb where
the distributed local search algorithm DisPeL is run for a very small amount of
time in order to learn about the difficult areas of the problemfrom the penalty
counts imposed during its problem-solving. This knowledgeis then used to guide
the systematic search algorithm SynCBJ. Extensive empirical results in several
problem classes indicate that PenDHyb is effective for large problems.

Key words: Constraint Satisfaction, Distributed AI, Hybrid Systems.

1 Introduction

Constraint satisfaction is an increasingly important paradigm for the resolution of com-
binatorial problems. A Constraint Satisfaction Problem (CSP) [1] is a triple(X, D, C)
whereX = {x1, ..., xn} is a set of variables,D = {D1, ..., Dn} is a set of domains
and C is a set of constraints which restrict the values that variables can take simulta-
neously. A solution to a CSP is an assignment of values to variables which satisfies all
constraints.

A Distributed Constraint Satisfaction Problem (DisCSP) [2], is a CSP where the
problem (variables, domains and constraints) is distributed amongst a number of agents
each of which has only a partial view of the problem due to privacy issues, communica-
tion costs or security concerns. Thus, in order to solve the problem, agents must com-
municate and cooperate whilst disclosing as little information as possible. Assumptions
commonly shared by researchers in the field [2] are: (i) message delays are finite and
for any pair of agents, messages are received in the order that they are sent; (ii) each
agent is responsible for one variable.

Existing solution methods for DisCSPs can be classified as systematic search and
local search methods. In systematic algorithms, ordered agents sequentially instanti-
ate their variable, backtracking to the previous agent if noconsistent value is found.
Zivan and Meisels [3] devised SynCBJ, a distributed versionof conflict-directed back-
jumping [4] combined with dynamic backtracking [5]. Systematic search algorithms
are complete1.

1 They either find a solution to a problem or detect that the problem is unsolvable.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access Institutional Repository at Robert Gordon University

https://core.ac.uk/display/222839049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Consequently, distributed local search algorithms have been devised which, for
large problems, converge quicker to a solution but are generally incomplete. Distributed
local search approaches iteratively improve an initial setof values until a set of values
which is a solution is found. However, it may find one set of non-optimal values (local
optima) always appears more promising than moving to other combinations of values
(the neighbourhood) and get stuck. Therefore, local searchapproaches rely heavily on
strategies for escaping local optima, e.g. weights on constraints [2] or penalties on val-
ues [6]. For large problems, they are faster than the systematic approaches.

There are only two distributed hybrid approaches which combine both types of
search to produce hybrid algorithms which are ‘fast’ and complete. DisBOBT [7] uses
Distributed Breakout [2] as its main problem-solver and, ifDistributed Breakout fails
to solve the problem, its weight information orders the agents for an SBT [3] search.
LSDPOP [8] is an optimisation algorithm running the systematic algorithm DPOP [9],
until the maximum inference limit is exceeded when local search guided by DPOP is
run to find the best solution to the problem.

We introduce a hybrid approach, PenDHyb, combining penalty-based local search,
DisPeL [6], with systematic search, SynCBJ, for distributed constraint satisfaction.

The remainder of this paper is structured as follows. Our hybrid approach, PenD-
Hyb, is explained in Section 2; Section 3 presents empiricalresults on both solvable
and unsolvable problems. Finally, Section 4 concludes the paper.

2 PenDHyb: Penalty-based Distributed Hybrid Algorithm

We propose a new approach, PenDHyb, for Distributed Constraint Satisfaction which
combines penalty-driven local search (DisPeL) with systematic search (SynCBJ) in or-
der to speed-up the latter. In the former type of search, whena quasi-local optimum
is reached, penalties are imposed on ‘current’ variable values causing constraint viola-
tions. Penalties therefore indicate values that, though looking promising, fail to lead to a
solution. The higher the penalties accumulated by a value, the less desirable it becomes.
The penalty and value information learnt during penalty-driven problem solving can be
used to guide systematic search as follows:

– Difficult variables: Penalties on values are used to learn which variables are diffi-
cult to assign during problem solving. A variable which has many heavily penalised
values is seen as more troublesome than a variable whose values have few or no
penalties. Variables are ordered according to their degreeand difficulty (penalties)
and this order is used to drive the systematic search algorithm.

– Best variable values:the best solution found (the one with the least constraint vio-
lations) in the penalty-based algorithm, is used for value ordering in the systematic
search.

DisPeL [6] is an iterative improvement algorithm where agents take turns to im-
prove a random initialisation in a fixed order. In order to resolve deadlocks (quasi-
local-optima where an agent’sview remains unchanged for 2 iterations), DisPeL applies
penalties to variable values which are used in a 2-phased strategy as follows: (i) First
the values are penalised with atemporary penalty in order to encourage agents to assign



other values and; (ii) If the temporary penalties fail to resolve a deadlockincremental
penalties are imposed on the culprit values. In the more efficient Stoch-DisPeL [6],
agents decide randomly to either impose a temporary penaltyor to increase the incre-
mental penalty. In the remainder of this paper we refer to Stoch-DisPeL as DisPeL.

SynCBJ is a synchronous systematic search algorithm where each agent keeps track
of the reasons why values have been eliminated from their variable’s domain. When a
bactrack step is required, the agent is able to determine thevariable responsible for the
conflict and backjumps to the agent holding that variable. This increases the perfor-
mance of the algorithm very substantially when compared to SBT.

In order to learn penalty information we modified DisPeL by adding:

– A penalty counter pci for each variablevi. pci is incremented whenever a penalty
is imposed on any ofvi’s values. Unlike penalties on values, penalty counters are
never reset and, therefore, highlight repeated penalisation of variables, i.e.trouble-
some variables.

– A best value bvi store for each variablevi which keeps the value participating in
the best solution found by DisPeL so far2.

Our hybrid algorithm, PenDHyb, combines DisPeL and SynCBJ.After agent initial-
isation, a standard DisPeL search runs (as described for Stoch-DisPeL in [6]) but only
for a very small number of cycles e.g. 21 cycles for randomly generated problems with
40 variables. We ran a series of experiments and determined that a very small number
which steadily increases as the number of variables increase was optimal. If the prob-
lem is solved, the solution is returned. Otherwise, variables are arranged, in descending
order, according to their degree and penalty count before SynCBJ is run. In addition to
the variable ordering information, SynCBJ makes use of value ordering information as
follows: for each variablevi, the first value to be tried is the best valuebvi found by
DisPeL, i.e. the one participating in the best instantiation found.

PenDHyb is complete since either DisPeL reports a solution within the small num-
ber of cycles (typically DisPeL solves 5% of problems) or SynCBJ runs. Since SynCBJ
is complete, completeness of PenDHyb is guaranteed. PenDHyb is sound since both
DisPeL and SynCBJ are sound [6, 3].

3 Empirical Evaluation

Our SynCBJ implementation was verified with the distributedrandomly generated
problems described in [3] with the results at least as good asthose reported by
SynCBJ’s authors. We use SynCBJ with max-degree variable ordering which obtains
substantially better results than lexicographic ordering.

We evaluated PenDHyb on solvable and unsolvable distributed randomly generated
problems measuring the two established costs for DisCSPs: (i) the number of messages
sent; (ii) the number of constraint checks performed. Although CPU time is not an
established measure for DisCSPs [10], we also measured it and the results obtained
were consistent with the other measures used.

2 Note that determining the best solution does not incur any additional messages.



Table 1.Performance of SynCBJ and PenDHyb on randomly generated problems.

N. messages solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60

SynCBJ 2301 22590 262178 1897645 5307 55692 557359 3069301
PenDHyb 2115 18566 100417 486301 5546 51916 451218 2686295

N. cnstr. checks solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60

SynCBJ 11489 11920913449411042151024790 285591 2924331 17153383
PenDHyb 12041 116573 714961 2975784 27913 284847 2424052 15077229

Table 2.SynCBJ and PenDHyb on graph colouring problems fordegree = 5.

N. messages solvable problems unsolvable problems
n 125 150 175 200 125 150 175 200

SynCBJ 18781 75778 191988 722256 127054 660334 1957622 6793331
PenDHyb 18577 60005 161213 463601 113590 557434 1849564 5357801

N. cnstr. checks solvable problems unsolvable problems
n 125 150 175 200 125 150 175 200

SynCBJ 46234 178942 4777131750199309383 1587410 4518670 15694031
PenDHyb 52534 162748 416520 463601 281142 1327274 4498886 12527968

We evaluated PenDHyb against SynCBJ on a wide variety of randomly generated
problems (n ∈ {30, 40, 50, 60}, d ∈ {8, 9, 10, 11, 12}, p1 ∈ {0.1, 0.15, 0.2, 0.25, 0.3}
andp2 ∈ {0.1, 0.15, ..., 0.95}) wheren is the number of variables,d is the domain
size,p1 is the constraint density andp2 is the constraint tightness. We present the re-
sults at the phase transition point which represents hard problems for SynCBJ. Other
tightness values showed similar performance for both algorithms. The results, shown
in Table 1 for problems with (n ∈ {30, 40, 50, 60}, d = 10, p1 = 0.15 andp2 =
0.6(30), 0.5(40), 0.45(50), 0.4(60)), are median values over 100 problems. For solv-
able problems, PenDHyb is significantly more efficient than SynCBJ with performance
difference increasing with the number of variables. For unsolvable problems SynCBJ is
marginally better on problems with 30 variables but PenDHybis substantially better on
problems with 40 or more variables.

We also evaluated the performance of PenDHyb against SynCBJon distributed
graph colouring problems (nodes ∈ {125, 150, 175, 200}, domain sized = 3 and
degreek ∈ {4.6, ..., 5.3}). These problems are of similar size to the ones used for the
experiment on randomly generated problems above. Median values over 100 solvable
problems and 100 unsolvable problems are shown in Table 2 forproblems with a de-
gree of 5. The results showed that PenDHyb is significantly more efficient for both
solvable and unsolvable problems. This efficiency becomes more profound as the num-
ber of nodes increase and thereby mirrors the performance ofPenDHyb with randomly
generated problems namely that PenDHyb is substantially more efficient on medium
to large-sized problems. Experiments for other degrees (not shown here) gave similar
results, i.e. PenDHyb performed better, especially for graphs with a large number of
nodes.



4 Conclusions

We have presented, PenDHyb, a hybrid approach to Distributed Constraint Satisfaction
using penalty-based local search algorithm, DisPeL, to learn about the problem with the
knowledge gained guiding a systematic search algorithm, SynCBJ.

We also evaluated other methods of exploiting the knowledgegained from running
DisPeL to provide variable and value ordering for SynCBJ. Wefound that the best
performing method was the one used in PenDHyb, where variables are sorted using
max-degree and penalties and values are prioritised using sticking values.

We have shown that PenDHyb’s performance is significantly better than systematic
search for large, difficult problems in two problem classes,randomly-generated prob-
lems and graph colouring problems.

Our future work with PenDHyb will investigate the effectiveness of our approach
on non-binary problems and the approach’s applicability tocoarse-grained problems,
where agents are responsible for more than one variable.

References

1. Rossi, F., van Beek, P., Walsh, T.: Handbook of ConstraintProgramming. Elsevier (2006)
2. Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A Review.

Autonomous Agents and Multi-Agent Systems3(2) (2000) 185–207
3. Zivan, R., Meisels, A.: Synchronous vs asynchronous search on DisCSPs. In: Proceedings of

the First European Workshop on Multi-Agent Systems (EUMA),Oxford (December 2003)
4. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational

Intelligence9(3) (1993) 268–299
5. Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Research1 (1993)

25–46
6. Basharu, M., Arana, I., Ahriz, H.: Stoch-DisPeL: Exploiting randomisation in DisPeL. In:

Proceedings of 7th International Workshop on Distributed Constraint Reasoning, Hakodate,
Japan (May 2006)

7. Eisenberg, C.: Distributed Constraint Satisfaction forCoordinating and Integrating a Large-
Scale Heterogeneous Enterprise. PhD thesis, Ecole Polytechnique Federale De Lausanne
(2003)

8. Petcu, A., Faltings, B.: A hybrid of inference and local search for distributed combinato-
rial optimization. In: Proceedings of 2007 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IEEE Computer Society (2007) 342–348

9. Petcu, A., Faltings, B.: A scalable method for multiagentconstraint optimization. In: Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05),
Edinburgh, Scotland (August 2005)

10. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed
constraints processing algorithms. In: Proceedings of theAAMAS-2002 Workshop on Dis-
tributed Constraint Reasoning, Bologna (July 2002) 86–93


