
DynABT: Dynamic Asynchronous Backtracking for
Dynamic DisCSPs

Bayo Omomowo, Inés Arana and Hatem Ahriz

School of Computing,
The Robert Gordon University, Aberdeen
{bo,ia,ha}@comp.rgu.ac.uk

Abstract. Constraint Satisfaction has been widely used to model static com-
binatorial problems. However, many AI problems are dynamicand take place
in a distributed environment, i.e. the problems are distributed over a number of
agents and change over time. Dynamic Distributed Constraint Satisfaction Prob-
lems (DDisCSP) [1] are an emerging field for the resolution problems that are
dynamic and distributed in nature. In this paper, we proposeDynABT, a new
Asynchronous algorithm for DDisCSPs which combines solution and reasoning
reuse i.e. it handles problem changes by modifying the existing solution while
re-using knowledge gained from solving the original(unchanged) problem. The
benefits obtained from this approach are two-fold: (i) new solutions are obtained
at a lesser cost and; (ii) resulting solutions are stable i.e. close to previous solu-
tions. DynABT has been empirically evaluated on problems ofvarying difficulty
and several degrees of changes has been found to be competitive for the problem
classes tested.

Key words: constraint satisfaction, distributed AI, dynamic problems

1 Introduction

A Constraint Satisfaction Problem (CSP) can be defined as a triple Z = (X, D, C)
containing a set of variablesX = {x1....xn}, for each variablexi, a finite setDi ∈ D

of possible values (its domain), and a set of constraintsC restricting the values that
the variables can take simultaneously. A solution to a CSP isan assignment to all the
variables such that all the constraints are satisfied.

Dynamic Constraint Satisfaction problems (DCSPs) were introduced in [2] to handle
problems that change over time. Loosely defined, a DCSP is a sequence of CSPs, where
each one differs from the previous one due to a change in the problem definition. These
changes could be due to addition/deletion of variables, values or constraints.Since all
these changes can be represented as a series of constraint modifications [3], in the re-
mainder of this paper we will only consider constraint addition and retraction. Several
algorithms have been proposed for solving DCSPs e.g DynamicBacktracking for Dy-
namic Constraint Satisfaction Problems [4] and Solution Reuse in Dynamic Constraint
Satisfaction Problems [5].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access Institutional Repository at Robert Gordon University

https://core.ac.uk/display/222839048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Distributed Constraint Satisfaction Problem (DisCSP) isa CSP in which variables,
domains and constraints are distributed among autonomous agents [6]. Formally, a
DisCSP can be described as a four tuple Z = (X, D, C, A) where

– X, D and C remain as described in CSPs and
– A is a set of agents with the mapping assigning variables to agents

Agents are only aware of their local constraints and the inter-agent constraints they are
involved in and do not have a global view of the problem due to privacy, security issues
and communication costs [7]. Solving a DisCSP consist of finding an assignment of
values to variables by the collective and coordinated action of these autonomous agents
which communicate through message passing. A solution to a DisCSP is a compound
assignment of values to all variables such that all constraints are satisfied.

Various algorithms have been proposed for solving DisCSPs e.g Asynchronous Back-
tracking algorithm (ABT) [8], Asynchronous weak-Commitment search Algorithm
(AWCS) [9] and Distributed Breakout algorithm (DBA) [10]. In DisCSPs, the follow-
ing assumptions are usually made: (i) There is one variable per agent (ii) Agents are
aware of their neighbours and constraints they share with them, (iii) Message delays
are finite though random and messages arrive in the order theyare sent between two
related agents [8] and we shall also be making these assumptions in this paper.

Many hard practical problems can be seen as DisCSPs. Most DisCSP approaches
however assume that problems are static. This has a limitation for dynamic problems
that evolve over time e.g timetabling shifts in a large hospital where availability of
staff changes over time. In order to handle this type of problems, traditional DisCSP
algorithms naively solve from scratch every time the problem changes which may be
very expensive or inadequate, i.e. there may be a requirement for the solution to the
new (changed) problem to remain close as possible to the original solution.

Distributed and Dynamic Constraint Satisfaction Problems(DDisCSPs) can be de-
scribed as a five tuple (X,D,C,A,δ) where

– X, D, C and A remain as described in DisCSPs and
– δ is the change function which introduces changes at different time intervals

This definition is different from that of DisCSPs only in the introduction of the change
functionδ, which is a representation of changes in the problem over time [1]. DDisCSPs
can be used to model problems which are distributed in natureand change over time.

Problem changes which have been widely modelled as a series of constraint additions
and removals can be episodic(where changes occur after eachproblem has been solved)
or occur while a problem is being solved. In this paper, we shall assume that changes
shall be episodic.

Amongst the DDisCSP algorithms is the Dynamic Distributed Breakout Algorithm
(DynDBA) [1] which is the dynamic version of DBA - a distributed local search algo-
rithm inspired by the breakout algorithm of [11]. In DBA, agents assign values to their
variables and communicate these values to neighbouring agents by means of messages.
Messages passed between agents are in the form ofOK andImprove messages. When
agents discover inconsistencies they compute the best possible improvement to their
violations and exchange it with neighbouring agents. Only the agent with the best pos-
sible improvement among neighbours is allowed to implementit. When an inconsistent
state cannot be improved, i.e. a quasi local minimum is reached, the weights on violated
constraints are increased [10], thus prioritising the satisfaction of these constraints.

In DynDBA, agents solve problems just like in the DBA algorithm but have the ability
to react to changes continuously in each cycle with the aid ofpending lists for holding
new neighbours and messages.

In this paper we introduce our Dynamic Asynchronous Backtracking Algorithm (Dyn-
ABT) which is based on the Asynchronous Backtracking Algorithm (ABT) [6] to han-
dle DDisCSPs.

The remainder of this paper is structured as follows: section 2 describes ABT; next,
section 3 introduces DynABT; this algorithm is evaluated insection 4 and; finally con-
clusions are presented in section 5.

2 Asynchronous Backtracking Algorithm (ABT)

Asynchronous Backtracking (ABT) is an asynchronous algorithm for DisCSPs in
which agents act autonomously based on their view of the problem. ABT places a static
ordering amongst agents and each agent maintains a list of higher priority agents and
their values in a data structure known as theagentview. Constraints are directed between
two agents: thevalue-sending agent(usually higher priority agent) and theconstraint-
evaluating agent(lower priority agent). The value-sending agents make their assign-
ments and send them to their lower priority (constraint-evaluating) neighbours who try
to make consistent value assignments. If a constraint-evaluating agent is unable to make
a consistent assignment, it initiates backtracking by sending a nogood message to a
higher priority agent, thus indicating that it should change its current value assignment.
Agents keep anogood list of backtrack messages and use this to guide the search. A
solution is found if there is quiescence in the network whileunsolvability is determined
when an empty nogood is discovered. The correctness and completeness of ABT has
been proven in [8].

ABT sends a lot of obsolete messages and uses a lot of space forstoring nogoods.
Therefore, various improvements to ABT have been proposed [12–15] which either
reduce the number of obsolete messages or the space requiredfor storing nogoods. In
addition there is a version of ABT which uses just one nogood per domain value [15]
which is of interest to us. This version uses the nogood recording scheme of Dynamic

Backtracking [16] when recording and resolving nogoods butmaintains the static agent
ordering of ABT. Thus, a nogood for an agentxk with valuea is represented in the form
xi = b∩xj = c ⇒ xk 6= a, wherexi andxj are neighbouring agents with values b and
c. In the remainder of this paper, we will use ABT to refer to the version which keeps
just one nogood per eliminated value.

3 DynABT

DynABT is an asynchronous, systematic algorithm for dynamic DisCSPs. Based on
ABT, it repairs the existing solution when the problem changes. DynABT combines
solution reuse, reasoning reuse and justifications where a justification for the removal
of a value states the actual constraint causing the removal in the explanation set recorded
for the removed value.

Like in ABT, DynABT agents maintain a list of higher priorityagents and their values
in their agentview and a list of values inconsistent with theiragentview in the nogood
store. Higher priority agents send their value assignmentsto lower priority agents in
the form of info messages. When aninfo message is received, the agent updates its
agentview and checks for consistency. When its value is inconsistent,the agent com-
poses a nogood but, unlike ABT nogoods, these are coupled with a set of justifications
(actual constraints causing the violations). A nogood in DynABT is now of the form
xi = b ∩ xj = c{C1, ..Cn} ⇒ xk 6= a, wherexk currently has value a. Thus, the
justification included in the nogoods acts as a pointer to which nogoods should become
obsolete when constraints are retracted. We shall call the ABT with this new form of
nogood recordingABT+.

In DynABT (see Algorithms 1 to 5), each agent initialises itsvariables, starts the
search and solves the problem like in ABT. However agents monitor the system to see
if there are any changes and if so, react appropriately. Problem changes are handled
in a two phase manner namely thePropagation phase (see Algorithm 2) and theSolv-
ing phase (ABT+). In the propagation phase, agents are informed of constraint addi-
tion/retraction and they promptly react to the situation byupdating their constraint lists,
neighbour lists, agentview and nogoods where necessary. After all changes have been
propagated, the new problem is at a consistent starting point, thecanProceed flag is set
to true and the agents can move on to theSolving phase and solve the new problem in
a way similar to the ABT algorithm.

Three new message types (addConstraint, removeConstraint andadjustNogood) are
used in order to handle agent behaviour during the propagation phase. When an agent
receives anaddConstraint message, the agent updates its constraint and neighbour lists
where necessary (see Algorithm 3). When aremoveConstraint message is received the
agent modifies its neighbour list by excluding neighbours that only share the excluded
constraint from its neighbour list and removing them from its agentview. The constraint
is then removed and the nogood store is updated by removing nogoods whose justifica-
tion contains the retracted constraint (see algorithm 4).

When a constraint is removed, anadjustNogood message is broadcasted to agents that
are not directly involved in this constraint. The agents receiving this message update
their nogoods store by removing the nogoods containing the retracted constraint as part
of its justification and returning the values to their domains (see Algorithm 5). This step
ensures that values that have been invalidated by retractedconstraints are returned and
made available since the source of inconsistency is no longer present in the network.
Performing these processes during the propagation stage ensures that the new problem
starts at a consistent point before the search begins.

Algorithm 1 DynABT
changes← 0; changeBox← empty; canProceed← true

ABT+ (ABT with nogoods containing justifications)
repeat

changes← monitorChanges

if (changes)then
canProceed← false

PropagateChange(changeBox)
current value← value from the last solution
ABT+()

end if
until termination condition met

Algorithm 2 PropagateChanges
PropagateChange(changebox)
while changeBox 6= empty ∩ canProceed← false do

con← getChange; changeBox← changeBox− con

Switch (con.msgType)
con.removeConstraint : removeConstraint(con);
con.addConstraint : includeConstraint(con);
con.adjustNogood : incoherentConstraint(con);

end while

Algorithm 3 IncludeConstraint
IncludeConstraint(con)
newCons← con.getConstraint()
add new neighbours in newCons to neighbour list
constraintList← constraintList ∪ newCons

Algorithm 4 ExcludeConstraint
ExcludeConstraint(con)
incoherentConstraint(con)
constraint← con.getConstraint()
Remove unique neighbours in constraint from neighbour list
Delete unique neighbours from agentView
Remove constraint from constraintlist

Algorithm 5 AdjustNogoods
IncoherentConstraint(con)
constraint← con.getConstraint()
for each nogood in nogoodstoredo

if contains(nogood, constraint) then
return eliminated value in nogood to domain
remove nogood from nogoodStore

end if
end for

3.1 Sample Execution

Figure 1a represents a DisCSP involving four agents(a, b, c, d) each with its own
variable and domain values enclosed in brackets and having 3Not Equal constraints
(C1, C2, C3) between them. Let us assume that the initial DisCSP was solved with the
solution (a = 1, b =0, c = 0, d = 0) and the following nogoods were generated:

– Agent a : (() {C1} ⇒ a 6= 0)
– Agent c : ((a = 1) {C2} ⇒ c 6= 1)
– Agent d : ((a = 1) {C3} ⇒ d 6= 1)

In Figure 1b, we assume that the solved problem has now changed and the constraint
between a and d(C3) has been retracted and a new constraint between c and d (C4)has
been added. At this stage, DynABT goes into thepropageChanges mode in which
agents c and d are informed of a new constraint between them and also agent a and
d are made aware of the loss of the constraint between them. Inaddition to this set of
messages, agents b and c are also sent adjustNogood messages, informing them of the
loss of constraintC3 and the need for them to adjust their nogoods if it is part of their
justification sets. When these messages have been fully propagated (agent d will adjust
its nogood and regain the value 0 back in its domain), the nogood store of the agents
will now be in the form below:

– Agent a : (() {C1} ⇒ a 6= 0)
– Agent c : ((a = 1) {C2} ⇒ c 6= 1)

The agents can now switch back to the solving mode because theproblem is at a con-
sistent starting point and the algorithm can now begin solving again. A new solution to
the problem will be (a = 1, b =0, c = 0, d = 1) with d having to change its value to 1 in
order for the new problem to be consistent.

Fig. 1.

In our implementation, we have used a system agent for detecting quiescence just as
been done in [15], in addition to this, we have also used it to communicate changes
in the problem to the agents and also set thecanProceed flag of agents to true when
it determines that all propagation has been done. Completion of the propagation stage
is determined in the following way: every time an agent receives any of the three mes-
sages (addConstraint, removeConstraint andadjustNogood) and performs the appropri-
ate computation, the agent sends a dummy message back to the system agent indicating
that it has received and treated a propagation message. The system agent can determine
the total number of such messages to receive when all agents have received messages
and acted on them in thepropagateChanges and can therefore set thecanProceed flag
of all agents to true. This total number of messages can be calculated in the follow-
ing way: Let x represents the number of constraints of a certain arity r added to the
new problem and let N be the total number of agents in the network and y be the total
number of constraint removed from the problem. The total messages to receive can be
computed astot = (

∑
(xi ∗ ri)) + N ∗ y. In our implementation, we have reported

these messages as part of the cost incured by DynABT.

3.2 Theoretical Properties

DynABT is sound, since whenever a solution is claimed, thereis quiescence in the
network. If there is quiescence in the network, it means thatall agents have satisfied
their constraints. If not all constraints have been satisfied, then there will be at least an
agent unsatisfied with its current state and at least one violated constraint in the network.
In this case, the agent involved would have sent at least a message to the culprit agent
closest to it. This message is not obsolete and the culprit agent involved on receiving
the message, will act on it and send out messages thus breaking our quiescence claim. It
therefore follows that whenever there is quiescence in the network, agents are satisfied
with their current state and whatever solution inferred is sound.

In the DynABT, agents update their nogood list when they receive info messages and
evaluate constraints, during domain wipe out and also when changes are introduced.
Nogoods are always generated in two ways: (1) when a constraint is violated because
of an info message (this knowledge is explicitly enclosed in the constraint) and (2)
When a domain wipe-out occurs and all nogoods are resolved into one. In essence,
all the nogoods that can be generated are logical extension of the constraint network,
therefore the empty nogood cannot be inferred if the networkis satisfiable.

Also because every nogood discovered by an agent will alwaysinvolve higher priority
agents, which are eventually linked to the agent through theaddLink Message, it follows
that agents will not keep obsolete nogoods forever, since they will be informed of value
changes by higher priority agents and thus update their nogood store, ensuring that
the algorithm will terminate. We now need to show that when changes occur, these
properties are still preserved.

When constraints are added to the problem, previous nogoodsinvalidating domain
values remain consistent and since the nogood stores remainunchanged during con-
straint addition, these nogoods are preserved. Therefore when constraints are added to
the problem, the soundness property of the algorithm is preserved.

When a constraint is retracted, nogoods are updated to exclude the retracted constraint
and the associated values are returned to the agent’s domain. If these values are still
useless, this inconsistency will be rediscovered during search since they will violate
constraints with some other agents and, therefore, solutions are not missed.
TheadjustNogoods method ensures that all agents (whether participating in a retracted
constraint or not) update their nogoods store and all nogoods containing retracted con-
straints as part of their justification are removed and the associated values returned to
their domain.

Because retraction triggers the updating of the nogood store in a cautious manner in
which nogoods are quickly forgotten but can be rediscoveredif necessary during search,
DynABT is complete and does terminate

4 Experimental Evaluation

In order to evaluate DynABT, ABT, DynABT and DynDBA have beenimplemented
in a simulated environment. The implementations of DynABT and ABT use the Max
Degree heuristic.

Two sets of experiments were conducted using both randomly generated problems and
graph colouring problems: (i) Comparing DynABT with ABT; (ii) Comparing DynABT
and DynDBA. In all our comparisons with DynDBA, we have modified the DynDBA
algorithm to make it react to changes episodically and also improved it by increasing the
weight of a newly added constraint within a neighbourhood tothe maximum constraint
weight within that neighbourhood.This encourages DynDBA to satisfy the newly added
constraints quicker.

In all our experiments, we have introduced a rate of changeδ as a percentage of the
total constraints/edges in the problem (δ ∈ {2, 6, 32}). These changes1 were made to
be uniform between restriction and retraction. For example, if 4 changes are introduced,
2 are constraint additions and 2 are constraint retractions, thus ensuring that the overall
constraint density remains unchanged.

In our experiments with randomly generated problems, we used with parameters (n, d,
p1, p2) where n = number of variables = 30, d = domain size = 10,p1 = density = 0.2,
p2 = tightness with values 0.1 - 0.9 step of 0.1. The range of tighness 0.1 - 0.4 contains
solvable problems, 0.5 contains a mixture of both solvable and unsolvable(52% - 48%)
and tightness 0.6 - 0.9 problems are unsolvable. For the unsolvable region, stability
cannot be measured, as there is no solution to the problem. Each problem was solved
and the solution obtained was kept for future reuse. Constraint changes were introduced
and the new problem was solved. In all, 100 trials were made for each tightness value
and a total of 1800 problems (900 original problems + 900 changed problems) were
solved for each rate of change.

For our evaluation with graph colouring problem, we generated graph colouring prob-
lems with nodes = 100, d = 3 and degree k (4.1 - 4.9 step 0.1). These problems ranges
from solvable through phase transition to unsolvable problems. In all, 100 trials were
made per degree and a total of 1800 problems (900 original problems + 900 changed
problems) were solved for each rate of change.

We measured the number of messages sent, Concurrent Constraint Checks (CCC) as
defined2 in [17] and the solution stability. For solution stability,we measure the total
distance between successive solutions when both exists (the number of variables which
get different values in both solutions). All the results reported are the mean and median
of the observed parameters and we have only presented results of observed parameters
when resolving. We also measured CPU time (not reported here) and it correlated to the
trends observed with messages and concurrent constraint checks.

4.1 Comparison with ABT

For random problems, results obtained in table 1 show a reduction in the cost in-
cured when a new problem is solved using previous solution, i.e. DynABT significantly
outperforms ABT on small and intermediate changes while on large problems, ABT pe-
forms better than DynABT: this is due to the fact that the new problem is substantially
different from the previous one because of the quantity of changes involved and also
because DynABT incurs more cost as changes increase during the propagation phase.

For Graph Colouring problems, the results obtained in table2 are mixed between
DynABT and ABT. With small and intermediate changes DynABT performs better
than ABT on messages and CCC in the solvable region betwee 4.1- 4.4 and the Phase

1 all constraints/edges have equal probability of being selected for retraction
2 Cost of transmitting a message is zero in our implementation

Table 1.DynABT vs ABT.

Random Problems
t Avg Messages Avg CCC Avg Stability Median Msgs Median CCC Median Stability

DynABT ABT DynABT ABT DynABT ABT DynABT ABT DynABT ABT DynABT ABT
Density 0.2, changes 2(%)

0.1 152 106 40 34 0.09 0.99 151 104 38 32 0 0
0.2 152 133 43 58 0.27 3.59 151 131 42 54 0 3
0.3 161 221 53 163 0.96 7.53 156 198 49 117 0 6
0.4 283 1262 140 1019 2.41 10.99 189 650 61 437 0 10
0.5 45868 83071 25129 45882 5.96 11.90 8566 63325 3998 35946 1 7
0.6 6879 27778 2442 10069 - - 1194 23200 360 8439 - -
0.7 1482 12204 373 3413 - - 65 10134 14 2916 - -
0.8 495 5301 103 1193 - - 65 4769 13 992 - -
0.9 92 1964 15 413 - - 65 1776 12 386 - -

Constraint Changes 6(%)
0.1 280 106 44 33 0.32 2.35 279 105 42 31 0 2
0.2 281 132 53 59 0.76 6.17 279 130 52 56 1 5
0.3 293 208 80 153 1.65 11.33 285 192 65 109 1 11
0.4 547 1084 270 946 5.28 15.69 327 732 81 453 2 16
0.5 83746 86068 44929 47981 12.39 16.58 56532 60330 30847 35965 14 19
0.6 17797 27951 6075 10168 - - 12986 24057 4462 8552 - -
0.7 3952 12487 971 3619 - - 1771 10337 356 3179 - -
0.8 1320 5052 251 1116 - - 193 4389 34 997 - -
0.9 351 1944 58 427 - - 193 1570 33 375 - -

Constraint Changes 32(%)
0.1 986 105 77 34 1.5 5.73 984 104 74 33 1 6
0.2 991 134 120 62 3.92 12.95 988 131 119 57 4 13
0.3 1023 201 198 119 7.15 18.72 1005 193 170 105 7 19
0.4 1670 987 718 1020 13.87 21.89 1214 644 331 403 14 22
0.5 138979 120871 84532 80589 23.13 24.03 91770 87106 58606 55678 24 25
0.6 39080 38525 15397 17323 - - 31594 32527 11341 14132 - -
0.7 10788 13216 2903 4286 - - 8312 10413 2124 3598 - -
0.8 3733 5255 741 1329 - - 3298 4508 582 1103 - -
0.9 1929 1781 329 406 - - 1436 1479 207 372 - -

transition region of 4.5, while in the unsolvable region from 4.6 - 4.9, ABT performs
better. This behaviour is due to the fact that more cost is incured during the propagation
stage of DynABT, when agents are modifying their nogoods before the new search
starts. With large changes, ABT performs better than DynABT. However, with both
problems, DynABT outperforms ABT on solution stability forall degrees of changes,
which suggests that reusing solution, improves stability.

4.2 Comparison with DynDBA

In order to compare DynABT with DynDBA the latter algorithm was allowed a cut-off
of at least 50% more cycles than DynABT when solving a problembecause DynDBA is
a two-phased algorithm(it takes an agent two cycles to make avalue change compared
to DynABT in which values can be changed in one cycle).
For our comparison with DynDBA, we have only presented results for solvable prob-
lems for both algorithms because DynDBA being an incompletealgorithm, cannot de-
termine a problem is unsovable. For our Comparison with DynDBA on random prob-
lems, results from table 3 shows that DynABT outperforms DynDBA in terms of mes-
sages sent and concurrent constraint checks.

Table 2.DynABT vs ABT.

Graph Colouring problems
deg Avg Messages Avg CCC Avg Stability Median Msgs Median CCC Median Stability

DynABT ABT DynABT ABT DynABT ABT DynABT ABT DynABT ABT DynABT ABT
Density 0.2, changes 2(%)

4.1 1107 1556 141 691 8.31 26.41 937 1358 72 564 3 25
4.2 3908 4987 668 1544 20.37 33.5 1133 3737 87 1310 4 39
4.3 6598 9089 1422 2411 20.67 31.13 1278 5199 91 1777 5 34
4.4 15173 22450 2682 5246 36.29 52.42 7921 18607 742 4187 54 62
4.5 73051 84269 14949 17969 16.33 39.94 1377 25921 95 6199 2 44
4.6 177267 170370 39241 35248 - - 205565 188612 42964 35633 - -
4.7 96149 129664 20166 26006 - - 108513 123541 20957 24526 - -
4.8 112436 129634 24159 26271 - - 123294 125345 24648 24999 - -
4.9 85917 99803 17027 19782 - - 98236 92975 18319 19395 - -

Constraint Changes 6(%)
4.1 2234 1657 225 648 17.1 36.58 1953 1452 100 398 14 37
4.2 6779 6775 1230 1919 31.07 46.3 3685 4380 381 1343 36 51
4.3 9601 10861 1868 2706 33.07 46.53 5753 7574 947 1841 39 48
4.4 26788 29292 4915 6708 52.37 61.86 16683 20158 3205 4904 61 66
4.5 75872 77264 14510 16812 34.54 49.08 9213 22545 1433 5540 36 58
4.6 159183 139501 32148 28569 - - 107662 94313 20425 18939 - -
4.7 171735 163474 34317 32337 - - 152500 150572 30855 30847 - -
4.8 163775 140212 32315 28694 - - 154104 127484 28749 25688 - -
4.9 131197 117767 23826 22452 - - 118803 106355 21776 20325 - -

Constraint Changes 32(%)
4.1 12408 6993 1305 2050 42.18 56.23 8295 2689 339 1007 43 57
4.2 19706 13531 2826 3613 50.90 60.03 12011 5855 895 2175 52 61
4.3 53886 45458 9984 10446 51.11 60.43 15515 10114 1890 3139 52 62
4.4 77395 68769 14230 16216 57.16 65.76 23579 20745 3707 4843 59 67
4.5 183139 158873 35975 34616 55.48 62.03 53710 66718 11238 15459 56 62
4.6 267015 215258 51557 44995 - - 139890 109348 25002 23862 - -
4.7 345887 302694 62451 61463 - - 272262 211478 51923 43559 - -
4.8 375866 344063 71460 68691 - - 215529 177088 40890 35357 - -
4.9 285956 236785 49152 45935 - - 242464 193879 40676 37038 - -

DynDBA outperforms DynABT in terms of solution stability. Our take on this is
the fact that DynDBA with its min-conflict heuristic helps the algorithm find a stable
solution. However it was shown that both algorithms depreciate in terms of solution
stability as changes increase. This could be due to the fact that as more changes are
introduced, the difference between the inital problem and the new problem is more
pronounced, therefore new solutions are needed.
Table 4 presents results of our experiment on Graph Colouring problems. DynABT
also outperforms DynDBA on messages and CCCs while DynDBA performs better on
solution stability.

5 Summary and Conclusions

We have presented DynABT, an asynchronous, systematic search algorithm for DDisC-
SPs. An empirical comparison between DynABT and ABT on dynamic random prob-
lems shows a significant reduction in computational effort and a substantial gain in
solution stability. Comparison with ABT however produces mixed results with Dyn-
ABT outperforming ABT on messages and concurrent constraint checks on problems
with small changes. With Intermediate changes, ABT performs better than DynABT

Table 3.DynABT vs DynDBA

Random Problems, density 0.2
t Avg Msgs Avg CCC Avg Stability Median Msgs Median CCC Median Stability

DynABT DynDBA DynABT DynDBA DynABT DynDBA DynABT DynDBA DynABT DynDBA DynABT DynDBA
Density 0.2, changes 2(%)

0.1 152 403 40 121 0.09 0.1 151 401 38 120 0 0
0.2 152 402 43 125 0.27 0.21 151 402 42 120 0 0
0.3 161 485 53 151 0.96 0.45 156 404 49 120 0 0
0.4 283 2291 140 735 2.41 1.99 189 408 61 130 0 0
0.5 17941 42675 10442 12515 5.96 1.79 225 408 72 120 1 0

Constraint Changes 6(%)
0.1 280 415 44 121 0.32 0.28 279 410 42 120 0 0
0.2 281 430 53 131 0.76 0.63 279 411 52 120 1 1
0.3 293 582 80 187 1.65 0.97 285 416 65 125 1 1
0.4 547 4497 270 1511 5.28 4.31 327 520 81 180 2 2
0.5 51970 209324 28851 64411 12.39 3.7 15807 20235 8783 6380 14 2

Constraint Changes 32(%)
0.1 986 523 77 139 1.5 1.25 984 457 74 120 1 1
0.2 991 673 120 193 3.92 2.51 988 476 119 150 4 2
0.3 1023 1387 198 426 7.15 4.32 1005 811 170 270 7 4
0.4 1670 8097 718 2691 13.87 10.34 1214 4624 331 1540 14 10
0.5 122384 608790 75763 193657 23.13 18.33 63667 586656 38303 172440 24 15

in the unsolvable region while DynABT outperforms ABT in terms of stability for all
categories of problem changes. Experimental results also show that DynABT requires
less messages and constraint checks than DynDBA. However, the latter produces more
stable solutions.

We have also shown that both DynABT and DynDBA cope well with problems where
the rate of change is small but, as the number of changes increases, performance de-
creases. This is unsurprising since, with a high rate of change, the new problem is
substantially different from the previous one. Future workwill investigate other ways
of improving the performance of DynABT in terms of solution stability.

References

1. Mailler, R.: Comparing two approaches to dynamic, distributed constraint satisfaction. In:
AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous agents
and multiagent systems, New York, NY, USA, ACM Press (2005) 1049–1056

2. Dechter, A., Dechter, R.: Belief maintenance in dynamic constraint networks. In: Seventh
National Conference on Artificial Intelligence (AAAI), St.Paul, MN, USA (1988) 37–42

3. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environments: A
survey. Constraints10(3) (2005) 253–281

4. Verfaillie, G., Schiex, T.: Dynamic backtracking for dynamic constraint satisfaction prob-
lems. In: Proceedings of the ECAI’94 Workshop on ConstraintSatisfaction Issues Raised by
Practical Applications, Amsterdam, The Netherlands. (1994) 1–8

5. Verfaillie, G., Schiex, T.: Solution reuse in dynamic constraint satisfaction problems. In:
National Conference on Artificial Intelligence. (1994) 307–312

6. : Distributed constraint satisfaction: foundations of cooperation in multi-agent systems.
Springer-Verlag (2001)

Table 4.DynABT vs DynDBA

Graph Colouring Problems
t Avg Msgs Avg CCC Avg Stability Median Msgs Median CCC Median Stability

DynABT DynDBA DynABT DynDBA DynABT DynDBA DynABT DynDBA DynABT DynDBA DynABT DynDBA
Density 0.2, changes 2(%)

4.1 1107 42481 141 1553 8.31 14.82 937 3650 72 120 3 3
4.2 3908 116632 668 3989 20.37 14.41 1133 1449 87 60 4 2
4.3 6598 171520 1422 5923 20.67 16.17 1278 2439 91 90 5 3
4.4 15201 208067 2697 6967 36.29293 21.82 7907 10592 717 360 54 5
4.5 14217 449156 2742 14685 16.32558 10.03 1355 4414 81 135 2 2

Constraint Changes 6(%)
4.1 2234 70844 225 2539 17.1 24.43 1953 30074 100 1080 14 17
4.2 6779 213290 1230 7511 31.07 31.37 3685 75800 381 2700 36 26
4.3 9497 305758 1856 10498 33.07 33.21 5640 109373 914 3810 39 30
4.4 23708 462501 4305 15322 52.37 35.71 15843 235621 3114 8025 61 35
4.5 19548 528244 3661 17237 34.54 24.46 7334 429983 983 14340 36 19

Constraint Changes 32(%)
4.1 9617 196977 804 6761 42.18 46.9 8255 98926 331 3552 43 50
4.2 15210 434704 1725 15188 50.9 48.96 11885 234240 850 8145 52 51
4.3 22483 445826 3677 14872 51.11 54.05 14419 273725 1601 9540 52 54
4.4 33362 581442 5372 18767 57.16 54.81 21107 474626 3121 14634 59 56
4.5 54785 1090806 10535 35821 55.48 56.43 30829 980126 6647 32670 56 58

7. Meisels, A.: Distributed constraints satisfaction algorithms, performance, communication.
In: Tenth International Conference on Principles and Practice of Constraint Programming,
Canada (2004) 161–166

8. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction
for formalizing distributed problem solving. In Proc. of the 12th.DCS (1992) 614–621

9. Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint sat-
isfaction problems. In Montanari, U., Rossi, F., eds.: Proceedings of the First International
Conference on Principles and Practice of Constraint Programming (CP-95). Volume 976 of
Lecture Notes in Computer Science., Springer (1995) 88–102

10. Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed constraint
satisfaction problems. In: Second International Conference on Multiagent Systems. (1996)
401408

11. Morris, P.: The breakout method for escaping from local minima. In: AAAI. (1993) 40–45
12. Zivan, R., Meisels, A.: Dynamic ordering for asynchronous backtracking on discsps. Con-

straints11(2-3) (2006) 179–197
13. M.C.Silaghi, D.Sam-Haroud, B.: Generalized dynamic ordering for asynchronous back-

tracking on discsps. In: Second Asia-Pacific Conference on Intelligent Agent Technology
(IAT),, ,Maebashi, Japan (2001)

14. M.C.Silaghi, D.Sam-Haroud, B.: Hybridizing abt and awcinto a polynomial space, com-
plete protocol with reordering. TR4 EPFL-TR-01/36, Swiss Federal Institute of Technology,
Lussane, Switzerland (May 2001)

15. Bessière, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking without adding
links: a new member in the abt family. Artif. Intell.161(1-2) (2005) 7–24

16. Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Research1 (1993)
25–46

17. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed
constraints processing algorithms. In: Proceedings of theAAMAS-2002 Workshop on Dis-
tributed Constraint Reasoning, Bologna (July 2002) 86–93

