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Abstract. We present Stoch-DisPeL, an extension of the distributed
constraint programming algorithm DisPeL which incorporates randomi-
sation into the algorithm. We justify the introduction of stochastic moves
and analyse its performance on random DisCSPs and on Distributed SAT
problems. We also empirically compare Stoch-DisPeL’s performance to
that of DisPel and DSA-B1N - our improved version of DSA. The results
obtained show a clear advantage of the introduction of random moves
in DisPeL. Our new algorithm, Stoch-DisPeL, also performs better than
DSA-B1N.

1 Introduction

DisPeL [3, 2] is an algorithm which solves distributed constraint problems
using a value-penalty mechanism in order to escape local optima. Since
DisPeL is deterministic, it is vulnerable to the effects of poor random
initialisations. Thus, given the exact same problem, DisPeL can find a
solution with less than 100 iterations on some initialisations and requires
about 10,000 iterations on others. In the worst case, DisPeL may not
find a solution at all.
In this paper, we present Stoch-DisPeL, a modification to DisPeL that
introduces randomness into its deadlock resolution strategy. We show
that this randomisation improves performance while reducing both its
memory requirements, and the complexity of its deadlock resolution pro-
cess.
The remainder of this paper is structured as follows. First, we review
some strategies for exploiting randomisation in combinatorial search, in-
cluding DSA-B1N, our own extension to DSA [12, 13] in Section 2. Next,
we briefly introduce DisPeL in section 3. Stoch-DisPeL is presented in
Section 4. Finally, we present results of empirical experiments where we
compare Stoch-DisPeL with DisPeL and DSA-B1N in Section 5.

2 Exploiting randomisation in combinatorial

search

Hoos and Stutzle [7], analysed the behaviour of Stochastic Local Search
(SLS) algorithms using Random Length Distribution (RLD) plots, in-
cluding the effect of random initialisations and inbuilt random decisions.
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They concluded that some initialisations led to solutions with short runs
irrespective of algorithm parameter settings and that search efficiency ac-
tually decreases over time. They showed that once optimal cut-offs (i.e.
number of iterations between restarts) were found, periodic resets dra-
matically improved the performance of the underlying algorithms, thus
increasing the probability of finding solutions.

Related work by Hutter et al [9] on dynamic local search algorithms for
solving SAT formulae introduces a scheme where, with a small proba-
bility, weights on constraints are smoothened towards the average weight.
They showed that this randomisation can reduce the complexity of weight
update procedures and still allow the underlying weighted hill-climber to
outperform the more complicated algorithms.

In a similar study on complete backtracking algorithms [4], a new heuris-
tic evaluation function for determining the next variable to label in a
tie-break situation is presented. This heuristic increased the number of
random decisions made at branching points which, combined with peri-
odic restarts, boosted the performance of the underlying algorithms with
speed-ups of several orders of magnitude.

In distributed constraint reasoning, a handful of similar randomisation
strategies have been explored. DBA [11] is a distributed iterative im-
provement algorithm where, at each cycle, the agent which proposes the
change leading to the largest improvement is allowed to modify its value.
Wittenburg [10], proposed some non-deterministic tie-breaking schemes
for this algorithm in which agents occasionally override their coordina-
tion heuristic thus enabling connected agents to change values simulta-
neously and, at the same time, making tie-breaking non-deterministic.

The Distributed Stochastic algorithm (DSA) [12, 13], is a distributed it-
erative improvement search algorithm, that relies on stochastic decisions
to avoid deadlocks. In each iteration of DSA, each agent decides individ-
ually either to select a value that minimises the number of constraints it
violates (with probability α) or to do nothing (with probability 1− α) -
where α is the probability of parallelism. In addition, deadlocked agents
can make sideway moves that do not worsen their evaluations. Later
work by Arshad and Silaghi [1] introduced DSA-B1, which incorporated
additional randomisation by allowing agents to make uphill moves with
a probability (p2). The algorithm was further improved resulting in the
Distributed Simulated Annealing (DSAN) algorithm where p2 decays
overtime [1].

We created DSA-B1N, a modified version of DSA-B1 which prevents
agents from making uphill movements whenever their variables have con-
sistent assignments. We found that DSA-B1N had improved performance
when compared to DSA-B1 because the stabilisation of consistent vari-
ables allowed for increased search intensification activity. DSA-B1N also
performed better than DSAN. Therefore, in the experiments reported in
this paper we used DSA-B1N to represent the class of DSA algorithms.
Furthermore, from our evaluations, we found that it solved the high-
est percentage of problems with p2 = 0.05 (with random DisCSPs) and



p2 = 0.2 (with distributed SAT problems1). We use these settings for
the experiments with DSA-B1N reported in section 5.

3 DisPeL: a penalty-driven algorithm for

solving DisCPSs

DisPeL [3, 2] is a successful distributed constraint satisfaction algorithm
where each agent controls just one variable2 and the objective is to find
the first solution that satisfies all constraints. It is an iterative improve-
ment algorithm, in which agents take turns to improve a random initial-
isation in a fixed order.
DisPeL (see Algorithms 1, 3, 2 and 4) uses penalties to modify underlying
cost landscapes in order to deal with local deadlocks. These penalties
are attached to individual domain values, and are used in a two phased
strategy as follows:

1. In the first phase, the solution is perturbed with a temporary penalty
in an attempt to force agents to try other combinations of values,
and allow exploration of other areas of the search space(Algorithm
2 lines 5-8).

2. If the perturbation fails to resolve a deadlock, resolution moves to the
second phase, where agents try to learn about and avoid the value
combinations that caused the deadlock by increasing the incremental
penalties attached to the culprit values (Algorithm 2 lines 9-11).

3. Whenever an agent detects a deadlock and has to use a penalty, it
imposes the penalty on its current assignment and asks its neigh-
bours to impose the same penalty on their current assignments as
well (Algorithm 2 lines 8 and 11).

4. A no-good store is used to keep track of deadlocks encountered,
and hence, used to help agents decide what phase of the resolution
process is initiated a deadlock is encountered.

DisPeL is a synchronised iterative improvement algorithm in the sense
that in each iteration, agents take turns to use the min-conflicts heuristic
(or local repair) to select values that minimise the number of constraints
violated. The order in which their turns are taken is decided using the
Distributed Agent Ordering scheme [5]. Therefore, at initialisation, each
agent locates its position in the ordering by locally partitioning its neigh-
bours into parents (γ+) and children (γ−) using their lexicographic tags
(or IDs). The cost function for each agent includes two types of penalties,
as follows:

h(di) = v(di)+p(di)+

{

t if a temporary penalty is imposed

0 otherwise
(1)

where:
di is the ith value in the variables domain

1 Where the uphill move is simply a flip of the truth assignment.
2 In this paper, we often use the term agent to also refer to the variable an agent

represents.



Algorithm 1 DisPeL: Agent main loop

1: initialise
2: repeat
3: messages← accept()
4: while active do
5: penaltyRequest← null

6: processMessages()
7: if cost function (h) is distorted then
8: reset all incremental penalties
9: end if

10: if penaltyRequest 6= null then
11: respond to message()
12: penaltyRequest← null

13: else
14: if current value is consistent then
15: reset all incremental penalties
16: penaltyRequest← null

17: else
18: check for deadlocks()
19: end if
20: end if
21: send message(id, value, penaltyRequest) to neighbours
22: end while
23: until termination condition met

Algorithm 2 procedure check for deadlocks(); initiating deadlock

resolution.
1: if agentView(t) 6= agentView(t-1) then
2: select value minimising cost function
3: return
4: end if
5: if agentView(t) is not in no-good store then
6: impose temporary penalty on current value
7: add agentView(t) to no-good store
8: penaltyRequest← ImposeTemporaryPenalty

9: else
10: increase incremental penalty on current value
11: penaltyRequest← IncreaseIncPenalty

12: end if
13: select value minimising cost function



Algorithm 3 procedure respond to message() Responding to a

penalty message received from a higher priority agent.

1: if penaltyRequest = ImposeTemporaryPenalty then
2: increase incremental penalty on current value
3: else
4: impose temporary penalty on current value
5: end if
6: select value minimising cost function

Algorithm 4 procedure processMessages()

1: for i = 0 to num(messages) do
2: update AgentV iew with message.variable,message.value

3: if message.penaltyRequest 6= null then
4: if message.penaltyRequest = IncreaseIncPenalty then
5: penaltyRequest← IncreaseIncPenalty

6: else
7: if penaltyRequest 6= IncreaseIncPenalty then
8: penaltyRequest← ImposeTemporaryPenalty

9: end if
10: end if
11: end if
12: end for

v(di) is the number of constraints violated if di is selected
p(di) is the incremental penalty attached to di

t is the temporary penalty (t = 3) 3.

4 Stochastic DisPeL

As we pointed our earlier, DisPeL’s efficiency largely depends on the
random initialisation used. Although DisPeL can benefit from a periodic
restart strategy with new random instantiations, it is difficult to auto-
matically determine appropriate cut-offs a priori. As an alternative, we
try to exploit randomisation in DisPeL by focusing on the critical choice
point in its deadlock resolution strategy, by making the choice of what
phase to implement a random one.

4.1 The Stoch-DisPeL algorithm

In Stoch-DisPeL , we have changed all agents’ behaviour so that when-
ever an agent is at a quasi-local-minimum, it decides randomly either to
perturb the solution by imposing a temporary penalty (with probability

3 This value for t is used in all our experiments irrespective of the problem size.



p) or to increase the incremental penaltiy (with probability 1−p); rather
than following the deterministic route of perturbing first and learning
with incremental penalties later. This eliminates the need for the no-
good store, since agents no longer have to determine if a deadlock was
previously encountered, and thus reduce the algorithm’s memory require-
ments and the number of operations agents have to implement when
deadlocks are encountered.
We call this new algorithm Distributed Stochastic Penalty Driven Search
(Stoch-DisPeL), and implement its new stochastic behaviours by replac-
ing the check for deadlock() procedure listed in Algorithm 2 with the
one outlined in Algorithm 5. All other processes executed by agents in
DisPeL remain the same. Therefore, when an agent chooses the penalty
to implement, it will still send a request to the affected neighbours to
implement the same. Similarly, agents at the receiving end will still act
in the same deterministic manner of prioritising the incremental penalty
requests over temporary penalties.

Algorithm 5 Stoch-DisPeL: procedure check for deadlocks()

1: if agentView(t) 6= agentView(t-1) then
2: select value minimising objective function
3: penaltyRequest← null

4: return
5: end if
6: r ← random value in [0..1]
7: if r < p then
8: impose temporary penalty on current value
9: penaltyRequest← ImposeTemporaryPenalty

10: else
11: increase incremental penalty on current value
12: penaltyRequest← IncreaseIncPenalty

13: end if
14: select value minimising objective function

4.2 Determining an optimal p value

The new parameter (p) in Stoch-DisPeL influences the behaviour and
overall performance, by determining how often either of the penalties
are used to resolve deadlocks.
A series of experiments, using RLD analysis, were run to evaluate the
influence of the probability p on performance with distributed graph
colouring problems and random DisCSPs. We specifically used RLD plots
so that we could abstract out all influences of problem structure and ran-
dom initialisations from performance; and therefore focus on the effects
of different values for p between 0.1 and 0.9 (in steps of 0.1). In addition, a
second experiment was also carried out where the most promising values
from the first experiments were further evaluated on a larger dataset.



In the RLD plots in Figure 1, we ran Stoch-DisPeL on a single problem
instance to compare the effect of the different values of p. In all cases
we started the runs from the same random initialisation, so that the
only influence on behaviour is the random choice made when deadlocks
are encountered (i.e. p). In Figure 1, the plots4 show the distribution
of search costs on a single distributed graph colouring instance (n =
100, k = 3, d = 4.6) for the different values of p. For each value, 500
attempts were made with a maximum limit of 10,000 iterations before
an attempt was deemed unsuccessful. The average and median costs from
these runs are shown in Table 1.

p average cost median cost

0.1 292.0 197.0

0.2 282.3 206.5

0.3 259.1 203.0

0.4 288.1 209.5

0.5 302.4 228.5

0.6 322.2 245.0

0.7 367.3 290.5

0.8 395.0 309.0

0.9 545.5 451.0

Table 1. Average and median search costs in Stoch-DisPeL from RLD analysis in
Figure 1, for different values of p.

While the average costs in Table 1 vary, performance of the algorithm
is almost identical for values of p from 0.1 to 0.5. and the median costs
are also comparable. Pairwise Student t-tests for the values show that
the distributions are mostly identical. And from p = 0.6 onwards search
costs increase steadily.

The same experiment was repeated using a random DisCSP instance
(< n = 60, d = 15, p1 = 0.1, p2 = 0.6 >). The results, not shown here,
follow a similar pattern with the earlier ones, i.e. any value from the
range 0.1 to 0.4 appeared appropriate as they all produce similar (low)
costs.

In order to confirm our hyphothesis for a low value for p, a second exper-
iment was carried out where we tested the algorithm on a larger dataset
with problems of different sizes, using small values for p. The results,
showed no clear winner, but p = 0.3 appeared to be marginally better.
Given that our results suggest that a value of p between 0.1 and 0.4 is
appropriate, and a value of 0.3 gave marginally better results, we will
use this value in our evaluation of Stoch-DisPeL.

4 Several plots are used for the sake of clarity, as most curves overlap each other.



Fig. 1. Run Length Distribution of Stoch-DisPeL on a distributed graph colouring
instance with different values for p.



4.3 Stoch-DisPeL vs. DisPeL

We believed that randomisation can allow the search get out of bad
trajectories by simply changing the way penalties are selected. We con-
firmed this by running DisPeL several times on different problems to find
bad instantiations. Then, ran Stoch-DisPeL on the same problems start-
ing it off these instantiations. In Figure 2 an example of one such runs
is shown, where we plot the Run Length Distribution (the “bad start”
curve) of Stoch-DisPeL on a random DisCSP (< n = 80, d = 15, p1 =
0.1, p2 = 0.5 >) which DisPeL was unable to solve given the particular
initialisation. In this case, Stoch-DisPeL was successful in each attempt
within the allotted time of 8,000 iterations and did not in anyway suf-
fer from the effects of the initialisation. The “good start” curve in the
figure is a repeat of the same experiment, this time using an initialisa-
tion with which DisPeL found a solution after 41 iterations. Both curves
are nearly identical and Stoch-DisPeL was unable to capitalise on the
“good” initialisation. It is worth noting that while Stoch-DisPeL found
more solutions, it sometimes needed more cycles to reach a solution.

Fig. 2. Run Length Distribution of Stoch-DisPeL on a problem instance repeatedly
starting with “good” and “bad” random initialisations.



5 Empirical Evaluation

In order to evaluate Stoch-DisPeL , we compared its performance with
DisPeL’s and DSA-B1N’s on random DisCSPs and SAT formulae from
the SATLib dataset [8]5. In each case, we analysed the percentage of
problems solved within the time limits and the costs (in terms of itera-
tions) incurred in solving these problems.

5.1 Solving Random DisCSPs

Random binary DisCSPs of different sizes (30 ≤ n ≤ 100)were used in
the evaluation of the algorithms to study how search costs scale up with
the problem size. For each n, 100 instances were created where the ratio
of constraints to variables was constant at 3:1 and the tightness (p2)
of each constraint fixed at 0.5. There were 10 values in each variables’
domain and all algorithms were limited to a maximum of 100n iterations
on each attempt. The results of these experiments are plotted in Figures
3, 4, and 5, showing the success rates, median and average search costs
respectively.

Fig. 3. Success rates on attempts on random DisCSPs of different sizes for Stoch-
DisPeL, DisPeL and DSA-B1N

Figure 3 shows that Stoch-DisPeL is dominant over the other algorithms.
It consistently solved more problems than both algorithms, except in the

5 These problem instances are available online at http://www.satlib.org (accessed 23
January 2006).



Fig. 4. Median search costs from runs in Figure 3.

Fig. 5. Average search costs from runs in Figure 3.



n = 50 dataset where it was matched by DisPeL. Against DSA-B1N, both
versions of DisPeL faired well. They consistently solved more problems
than DSA-B1N and required fewer iterations especially on the larger
problems (Figures 4 and 5).

5.2 Solving Distributed SAT problems

As we mentioned earlier, the algorithms were also evaluated with pub-
licly available SAT instances. These were modelled as DisCSPs where
each agent represents a literal (variable) and has to find a truth assign-
ment that simultaneously satisfied all relevant clauses given the current
assignments of other agents appearing in those clauses. SAT was chosen
because, amongst other things, it is a domain where stochastic algorithms
have traditionally done well, especially in centralised local search.
Datasets with 75, 125, 150, 175 literals per problem where used in the
experiments, each with 100 solvable instances. And we also used the first
500 instances from the dataset with 100 literal problems. In all cases,
the algorithms were limited to a maximum of 100n iterations (where
n is the number of literals in a formula) before attempts were deemed
unsuccessful. The results of these experiments are summarised in Figures
6, 7 and 8.

Fig. 6. Percentage of problems solved by Stoch-DisPeL, DisPeL, and DSA-B1N from
attempts on benchmark SAT instances.

The plots in the figures show that, in terms of success rates, Stoch-
DisPeL and DisPeL are evenly matched. But Stoch-DisPeL has a slight
cost advantage over DisPeL and, on this criterion, the results are fairly



Fig. 7. Median costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-B1N used-up to
solve the problems in Figure 6.

Fig. 8. Average costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-B1N used-up to
solve the problems in Figure 6.



consistent with those from the experiments on random DisCSPs. Both
algorithms however do well compared to DSA-B1N especially as the prob-
lems get larger. In the experiments with the original DSA algorithm on
the same datasets, Hirayama and Yokoo [6] reported results showing a
dismal performance in the domain. At best the algorithm was only able to
solve 11% of the problems in one dataset. The stronger results reported
here confirm the necessity and the profound impact of the occasional
non-improving moves that are used to help the algorithm deal with local
optima.

6 Conclusions

We have described Stoch-DisPeL, a stochastic variation of DisPeL which
introduces a random choice in DisPeL’s deadlock resolution strategy.
Rather than follow the fixed rule of perturbing and then increment-
ing penalties, in Stoch-DisPeL agents randomly decide on which type
of penalty to use. Therefore, agents decide to use the temporary penalty
with a probability p and the incremental penalty with 1− p. As a result
of this modification, the no-good store is no longer used thereby reducing
the memory requirements and the number of operations performed by
agents when deadlocks are discovered.
We showed, from empirical tests, that the performance of the new algo-
rithm was optimal at small values of its critical parameter (0.1 ≤ p ≤
0.4). The algorithm was evaluated on random DisCSPs and benchmark
instances of the boolean satisfiability problem. Performance was viewed
against results from DisPeL and an improved version of the Distributed
Stochastic Algorithm, DSA-B1N. The results showed that randomisation
boosted the performance of the penalty based strategy. Stoch-DisPeL
consistently solved more problems than DisPeL and DSA-B1N, and it
typically required fewer iterations in the process.
Stoch-DisPeL solved more problems than DisPeL, but in some cases it
incurred higher costs. Against this background, a hybrid of both algo-
rithms, exploiting the best features of each, is an attractive proposition.
Probably done in a way that allows agents use the deterministic approach
early in the search and increasingly choose the stochastic approach as
the process draws on.
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