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Detection, Analysis, and Photocatalytic Destruction  of  

the Freshwater Taint Compound Geosmin 
 

By Edmund Bellu for the degree of Doctor of Philoso phy 

 

Abstract 
 

A significant issue affecting the aquaculture and water industries is the 

presence of off-flavour compounds in water, which cause problems by imparting 

an undesirable earthy/musty flavour and smell to water and fish. Two 

predominant off-flavour compounds are geosmin (GSM) and 2-methylisoborneol 

(MIB). These compounds are produced by several varieties of cyanobacteria 

and actinomycetes as metabolic products and can be detected by humans at 

concentrations as low as 0.015 µg L-1.   

 

Removal of GSM and MIB from potable waters has proven to be inefficient using 

standard water treatment such as filtration, coagulation, flocculation, 

sedimentation and chlorination.  Activated carbon and membrane processes 

can physically remove GSM and MIB, but do not destroy them, and ozone 

treatment can be expensive. Titanium dioxide (TiO2) photocatalysis has recently 

been demonstrated to rapidly degrade GSM and MIB.  When the semiconductor 

catalyst is illuminated with ultraviolet light simultaneous oxidation and reduction 

reactions occur.  Pollutants are broken down into mineral acids, carbon dioxide 

and water. 

 

This study was conducted to determine if TiO2 photocatalysis, using a pelleted 

form of TiO2 called Hombikat K01/C, was a suitable method for the treatment of 

potable water. Additionally an analytical method was developed to rapidily 

analyse the large number of samples generated. 

 

Two reactors, a bench scale batch reactor and pilot scale flow reactor, were 

developed and used to evaluate the efficacy of Hombikat K01/C TiO2 

photocatalysis in degrading GSM.  The batch reactor, containing Hombikat 

K01/C, was used to investigate the effect of numerous experimental variables 
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on the photocatalysis of GSM, including initial substrate concentration, pH, light 

intensity, aeration rate, the presence of additional reactants, and catalysis 

conducted in deuterated water. 

 

GSM was rapidly degraded using the TiO2 batch reactor, with the rate of GSM 

degradation most affected by light intensity and additional reactants, though pH 

also had a notable effect.  A kinetic isotope effect of 1.61 was observed for the 

destruction of GSM using Hombikat K01/C TiO2.  The flow reactor was also 

found to efficiently degrade GSM in raw waters.  The rate of GSM destruction 

was found to be significantly lowered by UV shielding of the catalyst, caused by 

constituents of raw the water used, and the presence of additional reactants. 

 

The pilot scale flow reactor was also successfully evaluated in Denmark using 

gesomin contaminated water from an eel farm. 

 

Keywords: Geosmin; 2-methylisoborneol; Solid Phas Extraction (SPE); TiO2; 

                  Hombikat K01/C; photocatalysis 
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CHAPTER 1 – INTRODUCTION 
 

1.1 OVERVIEW 
 

Potable water is an essential daily requirement for humans, for which there is 

no substitute.  Unlike other important issues facing humanity, which may have 

multiple solutions, we cannot easily produce more freshwater to meet our 

various needs.  Freshwater accounts for a small proportion (2.5 %) of all water 

on the planet and only 0.5 % of this is accessible groundwater or surface water 

(Bernstein, 2002). Enough freshwater exists on the planet for the world’s 

population, however there are a number of ever increasing pressures that are 

placing rising demands on this finite resource.  The three major drivers affecting 

the increase in the use of freshwater are: (1) population growth; (2) changing 

standards of living; and (3) expansion of irrigated agriculture (Gleick, 2000).  

Between 1900 and 2000 the world population has grown from 1,600 million to 

over 6,000 million people. Land irrigation has increased from 50 million hectares 

to 267 million hectares. The effect of increased land irrigation is clearly 

demonstrated by the dramatic decrease of Lake Chad and the Aral Sea, which 

have had water diverted from them for agricultural use. Since the 1960s Lake 

Chad has reduced to one twentieth of it’s former of size and the Aral sea, which 

was once the forth largest inland water body in the world, has shrunk by over 

sixty percent (Crighton et al., 2003).  These pressures and a combination of 

other factors (security of supply, increased usage by industry, and demographic 

changes) have led to a six-fold increase in freshwater withdrawals (Figure 1-1) 

(Gleick, 2000).  This strain on a finite resource is likely to have a significant 

effect worldwide with a predicted increase in the number of countries suffering 

from water stress by 2025 (Figure 1-2) (Gardner-Outlaw et al., 1997). Finally the 

potential long term effect of climate change on world wide precipitation and 

subsequent water availability could be severe.  Some models predict that 

rainfall will be significantly more torrential, which may result in less water     

being absorbed by soil, in turn altering ground and water supplies                   

(Bryden et al., 2006).  While some areas, i.e. high latitudes of the northern 

hemisphere, are likely to have increased precipitation, decreases are predicted 

for southern Europe, the Middle East, central Asia and Africa.  Arid and       
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semi-arid areas will be particularly vulnerable to the reduced availability of 

water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. World population ( ), water withdrawal ( ) and irrigated area ( )  
increases from 1900 to 2000.  Reproduced from (Glei ck, 2000) with permission. 
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1.2 HISTORY OF WATER TREATMENT 
 

The value of safe water has been recognised for millennia.  Early Egyptian 

paintings from the 13th and 15th centuries B.C. depict sedimentation apparatus 

and wick siphons.  Hippocrates invented the “Hippocrates Sleeve”, a cloth bag 

used to filter rain water, in the 5th century B.C. (Baker, 1948).  Roman engineers 

went to great lengths to provide water suitable in both quality and quantity for 

major cities, yet it was not until 1721 that the first London company began 

pumping water (Kranzberg et al., 1967).  Throughout the 19th century increased 

volumes of water were pumped from the Thames and Lea rivers, and as 

London grew, these sources became increasingly polluted.  Around the same 

time in the United States of America (USA), a cholera epidemic in Philadelphia 

during 1793 instigated the construction of the first major water system.  At the 

beginning of the 1800’s, systems using charcoal and sand filtration came into 

use in Europe and Stein installed one of the first slow sand filters in America at 

Richmond, Virginia, in 1832 (Kranzberg et al., 1967). The major aim to remove 

sediment and discoloration.  But sand filters did not remove all of the 

pathogenic bacteria, whose existence were not known at the time, and by the 

mid 1800’s Britain was affected by major epidemics of cholera and typhoid. 

John Snow and William Bud proved the role water played in the transmission of 

these two diseases (AWWA, 1996).  Their discoveries resulted in improved 

water treatment, and in 1859 it became a legal requirement for river-derived 

water in London to be filtered. This practice then proliferated across Europe. 

The effectiveness of this treatment in reducing deaths from typhoid in London 

can be exemplified by comparing annual mortality rates between London and 

Minneapolis.  In USA the mortality rate from typhoid of twenty or more people 

per hundred thousand of population was considered normal, the rate in 

Minneapolis was 58.7; in London the rate was only 3.3 per hundred thousand 

(AWWA, 1996).  However despite advances in water treatment many people 

have no access to adequately treated drinking water.  The World Health 

Organisation (WHO) estimate over 1 billion people globally lack access to safe 

drinking-water supplies, while 2.6 billion lack adequate sanitation. Diseases 

related to unsafe water, sanitation and hygiene result in an estimated              

1.7 million deaths every year (WHO, 2002). 
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In developed countries water treatment and sanitation has removed the problem 

of diseases such as typhoid and cholera.  These diseases however, among 

other water related issues, remain a serious problem in developing countries. 

Modern water treatment processes control the spread of water related disease, 

remove numerous contaminants, such as organic chemicals and heavy metals, 

producing safe water.  However the presence of pharmaceutical residues, 

disinfection by-products, and the possibility of pathogens, such as 

cryptosporidium, which are resistant to common water treatment processes, 

necessitates the investigation of new treatment technologies. 

 

The single largest consumer issue affecting drinking water quality in developed 

countries is that of off-flavour.  Off-flavour is caused by compounds in water that 

are known for their undesirable taste and odour characteristics.  A survey 

conducted of more than 800 water utilities in the USA and Canada found that   

16 % of utilities experience serious taste and odour problems, spending 

approximately 4.5 % of there total budget on taste and odour control 

(Westerhoff et al., 2003). 

 

 

1.3 CYANOBACTERIA AND ACTINOMYCETES 
 

Two groups of microbes have been implicated as significant contributors to the 

problem of off-flavour episodes in freshwater.  Cyanobacteria have been 

reported to cause off-flavour in freshwater (Slater et al., 1983; Naes et al., 1988;              

Hayes et al., 1989; van Breemen et al., 1992; Persson, 1996; Izaguirre et al., 

1999) and aquaculture (Persson, 1978; Lovell, 1983; van der Ploeg et al., 1992; 

Schrader et al., 2003; Zimba et al., 2003).  Actinomycetes are associated with    

off-flavour in freshwater (Romano et al., 1963; Persson, 1980; Lovell, 1983; 

Wnorowski, 1992; Zaitlin et al., 2006). 
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1.3.1  Cyanobacteria 
 

Cyanobacteria comprise a large and morphologically heterogeneous group of 

phototrophic bacteria.  Existing over a wide range of environments they were 

first observed and recognised over 250 years ago by the botanist Linné (WHO, 

1999).  Cyanobacteria represent one of the major phyla within the bacteria 

domain and cyanobacteria fossils found within Archaean rocks of western 

Australia date back to 3.5 billion years ago (Madigan et al., 2003). The evolution 

of oxygenic photosynthesis in cyanobacteria is believed to have contributed to 

the conversion of the Earth’s primitive atmosphere, increasing the concentration 

of free oxygen from 1 % to the current 21 % (Svrcek et al., 2004). It is also 

believed that symbiosis between early cyanobacteria and other microbes led to 

the evolution of the photosynthetic organelles in plants called chloroplasts. 

Cyanobacteria have only one form of chlorophyll, chlorophyll a, and metabolise 

energy by oxygenic photosynthesis associated with photosystems I and II 

(Madigan et al., 2003).  All cyanobacteria also have characteristic biliprotein 

pigments, phycobilins, which function as accessory pigments in photosynthesis. 

One class of phycobilins, phycocyanins, are blue, and together with the green 

chlorophyll a are responsible for the blue-green colour of the bacteria.  This 

explains the common usage of blue-green algae to describe cyanobacteria.  

However some cyanobacteria produce a red phycobilin, phycoerythrin, resulting 

in a red or brown colour.  Due to similar features that cyanobacteria share with 

green algae and bacteria, confusion has arisen concerning their taxonomy 

(WHO, 1999).  Algae are photosynthetic and may share similar morphologies to 

cyanobacteria, but cyanobacteria do not posses nuclei and their cell walls are 

composed of peptidoglycan and lipopolysaccaride layers as opposed to 

cellulose (Madigan et al., 2003). 

 

Cyanobacteria are present in a diverse range of environments worldwide, from 

Antarctic coastal waters to volcanic hot springs.  Cyanobacteria are also found 

in waters with a great range of salinity and temperature, though they are most 

abundant in water with a neutral or slightly alkaline pH (Svrcek et al., 2004). 

Cyanobacteria are present in limited numbers in most surface waters at all 

times, but their presence can cause problems when they form blooms, a dense 
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accumulation of cyanobacterial cells at the water surface body                           

(Svrcek et al., 2004).  Favourable conditions for cyanobacterial growth that lead 

to blooms are a combination of a number of factors: slow flowing water and little 

or no wind, resulting in stratified water bodies; warm water temperature (15 to 

30 °C); neutral to alkaline pH (pH 6 to 9); and eutr ophic water conditions, i.e.                   

the increased concentration of the nutrients nitrogen and phosphorus                 

(Carmichael, 1994). Certain factors have caused the increase in the occurrence 

of blooms.  These include increased eutrophication of water bodies caused by 

industrial and agricultural run-off, and increasing temperature caused by climate 

change (Chorus, 1992; Oskam et al., 1996; Weyhenmeyer, 2001).  Several 

species of cyanobacteria are known to produce off-flavour compounds, two 

significant off-flavours are geosmin (GSM) and 2-methylisoborneol (MIB).  

Where these species form blooms they cause considerable problems for water 

supply utilities and aquaculturists. 

 

 

1.3.2  Actinomycetes 
 

In natural environments actinomycetes are typically found as soil bacteria or 

plant pathogenic bacteria, but recent studies indicate that actinomycetes can be 

abundant microorganisms in freshwater, constituting greater than 60 % of the 

bacterial community in some cases (Glöckner et al., 2000).  Actinomycetes 

constitute a major group of rod-shaped and filamentous bacteria, including 

Streptomyces and Actinomyces.  Although these bacteria are predominantly 

known for producing antibiotics and cytotoxic substances they also produce the 

off-flavour compounds GSM and MIB (Wood et al., 1985; 2001).  Though 

ubiquitous in aquatic environments their impact on the release of GSM and MIB 

is unknown and proven cases of off-flavour attributable to actinomycetes are 

rare (Wnorowski, 1992; Zaitlin et al., 2006).  The location of actinomycetes 

within water systems is of particular interest as they have the ability to colonise 

areas that greatly magnify off-flavour episodes in water (Zaitlin et al., 2006).  

Examples of these areas are inlet pipes for raw water collection and indoor 

aquatic environments such as a closed re-circulatory fish farm. Streptomyces 

that produce GSM have been reported to grow in reservoir bank debris with 
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relatively high organic matter (Wood et al., 1985).  The GSM produced by these 

bacteria may be washed into the reservoir.  Romano et al. (1963) reported large 

numbers of actinomycetes able to produce GSM isolated from mud sampled 

from the bottom of a number of lakes and rivers.  Wood and co-workers (2001) 

also reported actinomycetes present in reservoir sediments and muds, but at 

much lower concentrations.  In general actinomycetes isolated from reservoir 

bottom mud have not been linked to off-flavour occurrence, but they may 

produce GSM or MIB in culture (Yagi et al., 1983).  However, benthic 

actinomycetes, if present in significant numbers and capable of producing GSM 

and/or MIB in there usual environment, would add considerably to any potential 

off-flavour episodes in reservoirs. 

 

 

1.4 OFF-FLAVOUR COMPOUNDS 
 

Adverse off-flavour has been reported in scientific and technical literature since 

the mid-nineteenth century, with the first report probably that of Horsford and 

Jackson in 1855.  This report was on the strange cucumber odour of the water 

that supplied the City of Boston in the autumn of 1854 (Persson, 1995).  The 

first reference to cyanobacteria as a source of off-flavours in drinking water 

supplies was a report by Nicols et al. in 1876 (Persson, 1996).  The primary 

source of natural off-flavour in water is caused by certain types of 

cyanobacteria, and to a lesser extent actinomycetes. Cyanobacteria and 

actinomycetes, both prokaryotic microorganisms, are believed to produce off-

flavour compounds as metabolic by-products, subsequently released into the 

water in which they are growing.  Two major off-flavour compounds are 

geosmin (GSM) and 2-methylisoborneol (MIB).  Cyanobacteria (Persson, 1996; 

Izaguirre et al., 2004) and actinomycetes (Klausen et al., 2005; Gonçalves et 

al., 2006) are known to produce both of these compounds. Synthetic off-flavour 

is also a growing problem, caused by release of chemicals from a number of 

modern materials, such as plastic pipes, organic coatings, adhesives, and 

membranes (Rigal et al., 1999; Tomboulian et al., 2004; Wiesenthal et al., 

2004). 
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1.4.1  Geosmin 
 

Geosmin (GSM) (Figure 1-3) is an alicyclic alcohol. It is a semi-volatile 

compound with a molecular weight of 182 and a boiling point of 270 °C 

(Budavari, 2001). The Henry’s Law constant, the ease with which the compound 

can be transferred from the aqueous phase to the gaseous phase, is               

6.66 x 10-5 atm m3 mol-1. At room temperature it exists as a oil and is 

hydrophobic (aqueous solubility of 150.2 mg L-1) (Pirbazari et al., 1992). GSM 

has been described as having a earthy/musty/mouldy odour (Suffet et al., 1999) 

and is produced by a number of cyanobacteria and actinomycetes.  GSM is 

produced by certain species of Oscillatoriai (Persson, 1982; Matsumoto et al., 

1988), Anabaena (Yagi et al., 1983) and actinomycetes (Klausen et al., 2005). 

 

Reported human threshold for detection of GSM in water ranges over 3 or 4 

orders of magnitude.  This variation is due to a number of interlinked factors 

including experimental procedure and criterion used to define threshold 

(Howgate, 2004).  Howgate (2004) suggest that a reasonable estimate of odour 

detection threshold for GSM in water, based on the values gathered from 

published sources, would be 0.015 µg L-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. Structure of geosmin (GSM). 
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1.4.2  2-methylisoborneol 
 

2-methylisoborneol (MIB) (Figure 1-4) is a semi-volatile terpene, with a 

molecular weight of 168. It is less volatile than GSM, its Henry’s law constant is                 

5.76 x 10-5 atm m3 mol-1 and a boiling point of 196.7 °C (Pirbazari  et al., 1992). 

MIB exists as a white crystalline solid at room temperature and is also 

hydrophobic, aqueous solubility of 194.5 mg L-1 (Pirbazari et al., 1992).  MIB 

resides in the same odour group of off-flavour compounds as GSM and as such 

is described with similar terminology as GSM.  MIB is also produced by the 

cyanobacterial species of Oscillatoriai (Persson, 1982; Matsumoto et al., 1988) 

and by Phormidium (Negoro et al., 1988). Actinomycetes have also been shown 

to produce MIB (Klausen et al., 2005).  However while certain species of 

cyanobacteria and actinomycetes produce both GSM and MIB, they tend to 

produce either GSM or MIB (Persson, 1996). 

 

Howgate (2004) reports that a reasonable estimate of odour detection threshold 

for MIB in water would be 0.035 µg L-1, approximately double that of GSM. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4. Structure of 2-methylisoborneol (MIB). 
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1.4.3  Toxicology of geosmin and 2-methylisoborneol 
 

Studies of the toxicological properties of GSM and MIB are limited.  One study 

demonstrated that neither GSM nor MIB induced a mutagenic response in the 

Salmonella typhimurium assay up to concentrations reaching cytotoxic levels, 

approximately six orders of magnitude above odour threshold concentration 

(Dionigi et al., 1993).  Another study using sea urchin embryos estimated IC50    

(50 % inhibitory concentration) for GSM and MIB as 17 and 69 mg L-1 

respectively (Nakajima et al., 1996).  These concentrations are in the same 

upper range as those tested by (Dionigi et al., 1993).  In both these studies the 

concentrations of GSM used were far greater than those found naturally in 

aquatic environments (typically low ng L-1).  GSM and MIB in water are 

degraded by microbial action (Izaguirre, 1992). This degradation is slow with 

GSM being biodegraded in approximately 3 days (Izaguirre et al., 1988), with 

MIB appearing more resistant with a degradation time ranging from 5 to 14 days 

(Izaguirre et al., 1988). 

 

GSM has also been considered as an indicator for other compounds produced 

by cyanobacteria that may be toxic, such as microcystin (Yagi et al., 1988;            

Blaha et al., 2004).  However, no correlation has been found between the 

production of GSM and cyanobacterial toxins (Blaha et al., 2004). Current 

research would suggest that GSM and MIB are non-toxic, however consumers 

of drinking water believe there is a possible correlation between off-flavour and 

unsafe water (McGuire, 1995; Jardine et al., 1999).  Off-flavour therefore is an 

important issue for water supply utilities, as it can lead to decreased consumer 

confidence.  Off-flavour in water, along with water colouration, is likely to be the 

first thing consumers would notice about the water they were drinking.            

Off-flavour in water is therefore used by the consumer as a judge of water 

quality, with the presence of an odour suggesting that the water is unsafe to 

drink, even though it meets guidelines for regulated constituents. 
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1.5 OCCURRENCE OF CYANOBACTERIA IN AQUATIC 
ENVIRONMENTS 

 

Cyanobacteria occur in both saline and freshwater worldwide. Ideal conditions 

for growth such as warm water temperatures and an abundant supply of           

required nutrients will cause cyanobacteria to multiply and form blooms                     

(Svrcek et al., 2004).  In temperate regions these conditions are most likely to 

occur in the summer months, but in warmer climates ideal growth conditions are 

extended, increasing the possibility of blooms occurring (Hoffmann, 1996).  An 

increase in eutrophication of water bodies (Oskam et al., 1996) and warming of 

parts of the planet due to climate change are creating conditions that are more 

ideal for cyanobacterial growth. Weyhenmeyer (2001) reported that warmer 

winters during the 1990s caused the early break up of ice covering lakes in 

Sweden, allowing cyanobacteria to begin growing earlier in the year, instead of 

only in the summer months.  Lake Biwa, a source of water for 14 million people, 

in Japan is an example of increased cyanobacterial growth due to the effects of 

eutrophication (Figure 1-5).  Lake Biwa is the largest lake (674 km2) in Japan, 

consisting of a northern and southern basin.  The southern basin has an 

average depth of 4 m and a volume of 200 million m3, compared to the average 

depth of  43 m and a volume of 27.3 m3 billion for the northern basin             

(Kajino et al., 1995). Due to its smaller volume and reduced depth the southern 

basin is very susceptible to eutrophication and there have been many reports of 

severe episodes of off-flavour caused by GSM and MIB (Yagi et al., 1983; 

Negoro et al., 1988).  Cyanobacteria prefer to grow in water bodies such as 

slow running rivers or almost static waters, such as reservoirs and lakes (Hayes 

et al., 1989; Izaguirre, 1992; Seligman et al., 1992; Perschbacher et al., 1995).  

Cyanobacteria that grow on submerged rocks and sediments have also been 

reported to produce GSM and MIB.  Cyanobacteria growing in these locations 

were closely associated with off-flavour episodes that occurred in Lake 

Kasumigaura, Japan (Sugiura et al., 1998). Utkilen et al., (1992) also reported 

that the benthic cyanobacteria, Oscillatoria brevis, produced GSM and 

suggested that GSM production may increase with depth of the cyanobacteria 

in the water column. 
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Figure 1-5. Cyanobacterial blooms in the southern b asin of Lake Biwa.   
Photos courtesy of Kanko Ishikawa (Lake Biwa Enviro nmental  

Research Institute, Japan). 
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As raw water required for drinking water is sourced from locations where 

cyanobacterial blooms occur it is necessary to control the occurrence of 

cyanobacterial blooms or in the cases where they have already formed action is 

required to treat the off-flavour compounds that have been released into the 

water. 

 

 

1.5.1  Control and treatment of cyanobacterial blooms 
 

A number of environmental factors are known to effect the growth of 

cyanobacteria including temperature, nutrient availability, and pH. As GSM and 

MIB are metabolic by-products their incidence increases as cyanobacterial 

growth increases.  Limiting conditions that promote the growth of cyanobacteria 

prevents bloom formation in the natural environment.  The primary cause of 

blooms in the natural environment is eutrophication (Persson, 1982, 1985; 

Oskam et al., 1996; Bianchi et al., 2000).  Watershed protection, by limiting the 

input of nitrogen and phosphorus into water from industrial, domestic and 

farming sources, would be the ideal solution to limiting the occurrence of 

cyanobacterial blooms. Such a strategy would be dependent on the                

co-operation of all those who influence discharge in the catchment area. Even 

with this co-operation significant elimination of excess nitrogen and phosphorus 

is difficult to achieve and some water bodies are naturally high in nitrogen and 

phosphorus.  However, the cost of eutrophication prevention must be weighed 

against the restorative expense of large water bodies and the increased 

expense of treating raw water tainted with off-flavour.  Numerous restoration 

techniques for eutrophied water bodies exist, including dredging of sediments 

containing phosphorus and nitrogen (Annadotter et al., 1999), and                  

bio-manipulation using microorganisms.  These techniques are very expensive 

when applied on a large scale and combined with long treatment periods 

restoration is an unattractive option for controlling cyanobacterial blooms. 

 

A unique method that could be applied to controlling cyanobacterial blooms that 

have already occurred, that has been used to control algal blooms, is the use of 

vertical curtains in affected waters (Asaeda et al., 1996, 2001). In these studies 
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two plastic vertical curtains were installed 1335 and 1670 m upstream from the 

Terauchi dam reservoir, where raw water is extracted for rice field irrigation.  

The curtains, spanning the width of the reservoir and held in place by floating 

buoys, were installed close to the riverine zone where the majority of the inflow 

enters the reservoir.  The curtains, which extended to a depth of 5 m, diverted 

the flow of nutrient rich water from the cyanobacterial growth zone (up to a 

depth of 4 m) by forcing the water to flow beneath the curtain.  This method of 

controlling the flow of nutrient rich water combined with the ability to withdraw 

water from the reservoir at various depths ensured that raw water had 

significantly lowered algal content. 

 

Two simple methods in controlling the occurrence of cyanobacterial blooms is 

the covering of water bodies (Montiel, 1983) and the addition of barley straw to 

affected waters (Barrett et al., 1993; Ball et al., 2001).  Covering water bodies, 

stopping light reaching the cyanobacteria, prevents the cyanobacteria 

photosynthesizing and reduces the production of off-flavour metabolites. This 

technique is likely to be considerably less practical for larger water bodies.   

Decomposed barley straw was found to inhibit the cyanobacteria Microcystis sp. 

(Ball et al., 2001).  The antialgal activity of rotting barley straw has yet to be 

elucidated, but it has suggested that that the antialgal inhibitor is, or is derived 

from, oxidized lignin (Pillinger et al., 1994). 

  

The most common method of preventing or controlling the growth of 

cyanobacterial blooms in the USA is the application of algicides (this practice is 

banned in the United Kingdom). These may be used preventatively, or after a 

bloom has occurred, to disrupt the growth of cyanobacteria in reservoirs 

(Izaguirre, 1992; Sklenar et al., 1999) and fish ponds used for aquaculture 

(Perschbacher et al., 1995; Schrader et al., 2005a).  Algicides currently being 

used are 3-[3,4-dichlorophenyl]-1,1-dimethylurea (diuron) and copper-based 

products such as copper sulphate and chelated copper compounds              

(Dionigi, 1995; Sklenar et al., 1999; Schrader et al., 2005a).  However there are 

significant drawbacks to the use of copper-based algicides.  Wu et al. (1988) 

reported that up to 99 % of GSM produced by Oscillatoria tenuis is retained in 

the cells and Negoro et al. (1988) found 71-90 % of GSM produced by 
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Anabaena macrospore was retained within the cyanobacterium. As use of 

copper-based algicides causes lyses of cyanobacterial cells intracellular GSM is 

released into the water in which the cyanobacteria is residing, exacerbating off-

flavour (Bowmer et al., 1992; Dionigi et al., 1995; Sklenar et al., 1999).  A 

further problem is that copper algicides are known to cause the selection of 

copper tolerant cyanobacteria (Izaguirre, 1992; Koch et al., 1992) and in some 

cases increase the production of GSM by cyanobacteria (Dionigi, 1995).  Finally 

as copper-based algicides have broad-spectrum toxicity they can upset the 

ecological balance in water bodies by killing beneficial phytoplankton                               

(Schrader et al., 2005a).  Evidence would suggest that long term usage of 

copper based algicides is ill-advised and counter-productive.  It is likely that 

these algicides will cause the selection of more copper tolerant cyanobacteria 

while causing wider environmental damage in the environment in which they are 

used.  For this reason their use in the United Kingdom (UK) is banned and in 

the USA concerns about potential toxicity, particular accumulation of elemental 

copper in sediments, has led to its use being restricted and in some cases 

prohibited. 
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1.6 OFF-FLAVOUR 
 

It is likely that most people have experienced off-flavor caused by the 

cyanobacterial compounds GSM and MIB.  Predominantly the experience of      

off-flavour will have come from drinking water tainted with off-flavours or from 

consuming fish that has absorbed off-flavour. 

 

 

1.6.1  Experience of off-flavour through drinking water 
 

Off-flavour is most likely experienced through drinking tainted water.  

Complaints of off-flavour in drinking water is a significant issue for water           

supply companies worldwide (Izaguirre et al., 1995; Jüttner, 1995;                             

Muramoto et al., 1995; Young et al., 1996; Izaguirre et al., 1999). 

 

Due to our low odour detection threshold for both GSM (0.015 µg L-1) and MIB 

(0.035 µg L-1), monitoring these very low levels that we can detect can be 

difficult. 

 

An additional problem is caused by the seasonal occurrence of cyanobacterial 

blooms and their subsequent release of GSM and MIB. This causes sporadic 

incidences of off-flavour episodes. Conventional water treatment does not 

always prove effective in removing GSM and MIB, resulting in consumers 

experiencing off-flavour caused by these compounds (Sklenar et al., 1999). 

 

 

1.6.2  Off-flavour in tainted fish 
 

Off-flavour is imparted to fish by absorption of odorous compounds from the 

water in which they reside.  Therefore many fish, both freshwater and marine, 

have a natural tendency to have flesh that tastes of the environment in which 

they reside.  An example of this is wild Atlantic salmon (Salmo salar) with 

muddy or earthy tasting flesh (Farmer et al., 1995).  However, strong off-flavour 

is undesirable and is a foremost concern for the aquaculture industry.             

Off-flavour has long been recognised as a having an impact on farmed 
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freshwater fish (Persson, 1978; Lovell, 1983; van der Ploeg et al., 1992; 

Robertson et al., 2003).  Much of the literature focuses on the issue of            

off-flavour on the production of channel catfish (Ictalurus punctatus) in the USA.  

Farmed rainbow trout (Onchorhynchus mykiss) in the UK (Robertson et al., 

2003) and France (Robin et al., 2006) are also affected by off-flavour.  The 

problem of off-flavour is not limited to vertebrate fish however, with reports of 

shrimp (Lovell et al., 1985) and clams (Hsieh et al., 1988) being affected. The 

majority of off-flavour in aquaculture is associated with compounds produced by 

microbes, with GSM and MIB the most common (Schrader et al., 2003).  As 

GSM and MIB are lipophilic in nature, fish present in water with these 

compounds can accumulate these off-flavours in their flesh. Practical 

experience and laboratory trials have demonstrated that uptake of GSM and 

MIB is rapid, within hours of exposure, but depuration is slow requiring several 

days to fully purge the off-flavour from the fish (Howgate, 2004). The 

accumulation of GSM and MIB in fish flesh imparts a musty/earthy taste to the 

fish flesh, resulting in a reduction of product quality. Fish processors will reject 

fish with significant off-flavour.  Rejected fish are held, returned to the ponds in 

which they have grown, until the off-flavour is diminished.  This results in 

harvesting being delayed (Schrader et al., 2003).  Typically, the shorter the 

holding period, the lower the fish mortality due to disease, poor water quality, 

and bird predation.  Preventative measures, such as the application of algicides, 

are commonly employed to control the growth of cyanobacteria that produce   

off-flavours to limit the likelihood of marketable fish being rejected by the 

processor. 

 

Additional production costs, such as harvest delays and algicides, attributed to   

off-flavour in the USA farm-raised catfish industry ranged from $15 to               

$23 million annually over the 1997-1999 period (Hanson, 2003).  A recent UK 

survey revealed that 20 % of farms rearing rainbow trout reported incidences of 

earthy taints on a seasonal basis (Robertson et al., 2003). 
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1.7 DETECTION AND ANALYSIS OF GSM AND MIB 
 

The importance of off-flavour contamination in drinking water and tainting of fish 

has led to considerable improvement in the detection and analysis of GSM and 

MIB.  The inherent problem with analysing GSM and MIB is that humans have a 

very low threshold with regards to these off-flavour compounds, 0.015 µg L-1 

and 0.035 µg L-1 respectively.  Further more, no precise boundaries exist for 

when a person will and will not detect the odour of a chemical.  Instead there is 

a range of concentrations over which a person on repeated exposures will 

either detect the odour or not. A plot of the proportion of times a person detects 

the odour at a fixed concentration against the logarithm of the concentration will 

give the probability of detection (Howgate, 2004). This plot forms a sigmoid-

shaped curve and it is conventional in sensory studies to define the threshold as 

the concentration at which a person will detect the odour in 50 % of the 

presentations. The variability in odour detection of a chemical combined with 

the sporadic occurrence of off-flavour episodes is a significant problem when 

developing a reliable method for detecting GSM and MIB at threshold 

concentrations. Therefore any method used to detect GSM and MIB must be 

able to do so at the low concentrations (ng L-1) found in raw water used for 

drinking water and aquaculture. 

 

There are two main methods used for the detection of GSM and MIB, sensory 

evaluation and analysis by instrumentation.  The use of sensory evaluation          

to detect GSM and MIB is common for both the aquaculture industry                   

(Lovell et al., 1986; van der Ploeg, 1991; Bett, 1997) and water supply 

companies (Rigal, 1995; Schweitzer et al., 2004; Wiesenthal et al., 2004).  

However problems exist with sensory evaluation. Trained personnel are 

expensive to maintain, it is unable to discriminate specific odours in the 

presence of stronger ones, reproducibility can be an issue and the human 

aspect of evaluation can affect accuracy (Bett et al., 1997). 
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Instrumental methods previously used for identification and quantification of 

GSM and MIB have also had their limitations.  Isolation of GSM and MIB by 

closed-loop stripping (CLS) followed by analysis by gas chromatography-mass 

spectrometry (GC-MS) suffers from being time consuming, resulting in low 

sample throughput (Palmentier et al., 1998).  Liquid-liquid extraction requires 

large sample volumes and intensive sample concentration (Johnsen et al., 

1987; Rashash et al., 1997). Purge and trap and steam distillation though 

effective are also time consuming and labour intensive (Lloyd et al., 1998). 

 

Another technique, chromatographic sniffing and gas chromatography-mass 

spectrometry (SNIFF-GC-MS), combines instrumental and sensory analysis 

(Khiari et al., 1992).  The effluent from the GC capillary column is divided into 

two, the first portion going to a GC detector with the second portion going to an 

olfactory port where it is smelt by a trained operator.  Upon detecting an odour 

the operator triggers an electronic signal which is superimposed on the 

chromatographic signal.  This allows the GC peaks from the chromatographic 

signal to be related to odours detected by the operator (Hochereau et al., 2004).  

A disadvantage of this method is the requirement of an operator that has had 

specific training for odour recognition. 

 

A new analytical technique devised to extract volatile organic carbons from 

water called solid phase microextraction (SPME) was developed in 1989                   

(Belardi et al., 1989). SPME coupled with gas chromatography-mass 

spectrometry was used by Lloyd and co workers to successful detect and 

quantify GSM and MIB (Lloyd et al., 1998). 

 

Analysis of GSM and MIB by SPME involves the use of a silica fibre coated with 

a suitable absorbent phase (polydimethylsiloxane - PDMS), which is bound to 

the tip of a syringe plunger (Supelco, 2002). The plunger is retracted, keeping 

the delicate fibre protected within the syringe needle.  The needle is used to 

pierce the septum of a sealed vial containing the sample, the plunger is then 

extended exposing the fibre (Fig. 1-6).  The fibre can either be immersed into a 

liquid sample or more commonly, especially for GSM and MIB analysis, placed 

in the headspace above the sample. Analyte molecules are absorbed onto the 
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coating and after equilibration the fibre is retracted into the needle. Sodium 

chloride may be added to the sample, stirred, and then heated to increase 

volatilisation of analytes onto the fibre. Finally the needle is extended into the 

heated injection port of a gas chromatograph where the analytes are thermally 

desorbed onto a capillary column for separation and subsequent detection 

(Lloyd et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6. SPME assembly pierced through vial sept um, plunger extended, 
resulting in extension of the SPME fibre into the h eadspace above the sample. 

 

 

1.8 REMOVAL OF GSM AND MIB FROM DRINKING WATER 
 

When off-flavours enter a drinking water supply their removal during the water 

treatment process requires the application of costly and sometimes ineffective 

methods by water supply companies. Drinking water treatment is dependant on 
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the initial quality of the raw water and the distance between the source and the 

user.  For example a rural family dwelling extracting water from a borehole 

would require little or no treatment. Water sourced from lowland rivers or 

reservoirs would commonly undergo treatment as depicted in Figure 1-7, 

internationally known as standard water treatment (Kiely, 1998).  In general the 

processes in this treatment include pre-treatment, primary and secondary 

treatment, disinfection and possibly fluoridation. 

 

Pre-treatment may include; screening to remove debris; storage to equalises 

flow; aeration to release unwanted volatile gases and increase oxygen content; 

chemical pre-treatment such as pre-chlorination; and addition of activated 

carbon to remove undesirable water properties. Sedimentation is the separation 

of a solid-liquid, using gravity settling to remove suspended solids.  

Sedimentation may be combined with a coagulation and flocculation in a single 

step.  Coagulation involves the addition of a chemical, typically aluminium 

sulphate or ferrous sulphate, which changes the electric charge of particles in 

the raw water making them more amenable to aggregation.  Flocculation is the 

process of getting the ‘coagulated mix’ to form larger flocs.  Filtration is the next 

step and involves the process of passing the water through a filtration system, 

slow sand filters and rapid gravity filters being examples, containing a porous 

medium to further improve the water quality. Generally the final step is 

disinfection by chlorination (Kiely, 1998). 

 

Known techniques deal with off-flavour either by decomposition of the             

off-flavour compound or by actual removal of the compound from the water. 

However, standard treatment does not efficiently remove off-flavour, especially 

earthy/musty off-flavour, from water (Wnorowski, 1992; Sklenar et al., 1999). 

For this reason, and to deal with other water associated problems, standard 

water treatment can be supplemented with the use of advanced treatment       

(Fig. 1-7). 
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Figure 1-7. Flow chart outline of standard water tr eatment for water sourced from 
lowland rivers and reservoirs.  Advanced treatments  are only selectively used 

(Kiely, 1998). 
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1.8.1  Removal of GSM and MIB by physical treatment 
 

Standard water treatment (Fig. 1-7) using coagulation/sedimentation/filtration is 

primarily conducted to remove solids from treated water and does not efficiently 

remove off-flavour from water (McGuire et al., 1988; Ando et al., 1992; 

Wnorowski, 1992). 

 

Aeration can be used as a pre-treatment of raw water and it is accepted that 

aeration removes volatile compounds that may be present in raw or treated 

waters.  Air stripping is effective for compounds that have a Henry’s Law 

constant greater than 10-3 m3 atm mol-1.  GSM and MIB have Henry’s Law 

constants in the range of 10-5 m3 atm mol-1, therefore these compounds are not 

readily stripped without exceptional measures (Lalezary et al., 1984). 

 

The use of slow sand filtration to remove GSM and MIB has however been 

successfully demonstrated (Yagi et al., 1983).  A slow sand filter is typically a 

rectangular open box structure containing: a supernatant layer of raw water, a 

bed of fine sand supported on a thin layer of gravel, a system of under drains 

and inlet and outlet structures.  The raw water flows onto a schmutzdecke layer, 

a layer on top of the sand that is composed of living and dead microorganisms. 

The water is drawn through the schmutzdecke layer and the sand and gravel 

bed below, by gravity.  Removal of impurities is by both physical and biological 

mechanisms.  Microorganisms present in the schmutzdecke layer can degrade 

many organic compounds and bacteria, and the sand bed acts as a filter. The 

bacterial decomposition of MIB using a pilot gravel sand filter has been reported 

by Sumitomo and co-workers (1992).  However, new gravel in the filter required 

a period of up to 20 days to build a schmutzdecke layer that could attain 50 % 

MIB removal.  During this lag, the schmutzdecke layer was supplemented with 

powdered activated carbon to improve MIB removal.  While slow sand filtration 

is effective in removing off-flavour from raw water it has almost exclusively been 

superseded by rapid gravity filtration (RGF). 
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RGF has significantly enhanced filtration rates, approximately 50 times greater, 

when compared to slow sand filtration (Kiely, 1998).  This enhanced filtration 

rate allows for far greater volumes of raw water to be treated.  RGF is used to 

filter chemically coagulated water, with suspended particles removed by a 

combination of settlement, straining, adhesion, and attraction.  RGF operates in 

a mode where water filters vertically down through the filter, with the filter 

consisting of single, dual, or multimedia.  The media types tend to be sand, 

gravel, and anthracite. In comparison to slow sand filtration biological activity is 

limited in RGF. This difference in biological activity may account for the slow 

sand filtration being more effective in removing off-flavour from raw water.  

Microorganisms present in the Schmutzdecke layer of the slow sand filter are 

the likely cause of GSM and MIB degradation.  However, slow sand filtration is 

only practical on a relatively small scale and there have been numerous reports 

of off-flavours persisting in water after treatment by RGF (Yagi et al., 1983; 

Hattori, 1988). 

 

Activated carbon in either powdered (PAC) or granular (GAC) form is an 

effective method for the physical removal of GSM and MIB and is widely used 

by water supply companies.  PAC is generally added to raw source water as a 

slurry and allowed to react before the addition of either oxidants or coagulants. 

It has been demonstrated that PAC has removed GSM and MIB from raw water 

to acceptable levels for human consumption (Gillogly et al., 1999; Cook et al., 

2001; Ng et al., 2002; Jung et al., 2004).  GAC is also used for treating water 

containing GSM and MIB (Vik et al., 1988; Chen et al., 1997a; Orr et al., 2004).  

Filtration by GAC usually occurs after coagulation/sedimentation treatment 

processes (McGuire et al., 1988), or may be added as an additional layer to a 

rapid gravity filter. 

 

Yagi et al. (1983) reported on the effectiveness of four water treatment plants in 

removing off-flavour sourced water from Lake Biwa.  PAC doses of 10 to         

25 mg L-1 significantly reduced GSM and MIB in raw water, but a PAC dose of 

100 mg L-1 was required to remove 100 ng L-1 of GSM.  In comparison GAC 

filter depths of 40 cm and 110 cm were required to remove GSM and MIB 

respectively.  Hattori (1988) also demonstrated the effectiveness of GAC 
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treatment in removing off-flavour from raw water.  Removal of GSM and MIB 

were dependant on the depth of the GAC bed and the flow rate of raw water 

through the GAC bed, with a clear correlation between increased flow rate and 

decreased GSM and MIB removal.  GSM and MIB concentrations decreased as 

the depth of the GAC bed increased (both off-flavours were undetectable at      

1.4 m). There are numerous examples of successfully installed GAC filters in 

full-scale plants (Terashima, 1988; Vik et al., 1988). 

 

GAC and PAC remain the two most common methods of dealing with off-flavour 

episodes in raw water, but they are not without their disadvantages. Both GAC 

and PAC suffer from decreased efficiency in raw waters with a high organic 

loading because of their non-selectiveness. This is caused by low molecular 

weight organic compounds directly competing with MIB and GSM for adsorption 

sites. (Newcombe et al., 2002; Hepplewhite et al., 2004; Ho et al., 2005).  

Another important factor is that the effectiveness of GAC and PAC is strongly 

associated with the type of activated carbon used (Cook et al., 2001; Tennant et 

al., 2007). PAC is expensive, up to £1000 per ton, and not recoverable after 

addition to raw water.  Due to its expense, the addition of PAC to raw water 

containing off-flavour compounds will be kept to a minimum.  This necessitates 

the use of modelling to accurately describe the competitive adsorption between 

background matter and the compound of interest, in this case GSM and MIB, to 

ensure that an effective PAC dose is added to the raw water (Gillogly et al., 

1999; Cook et al., 2001).  Finally the efficacy of PAC and GAC reduces as 

active adsorption sites decrease, this results in significantly reduced 

performance with regards to removing off-flavours (Hattori, 1988). Once 

exhausted of their adsorption capacity, spent carbons must be landfilled, 

incinerated or in the case of GAC thermally regenerated (this requires an inert 

atmosphere and temperatures of 800 °C). All these opti ons can result in 

significant cost (San Miguel et al., 2001; Chestnutt et al., 2007). 

 

There has been research into the use of membrane processes, particularly             

nano filtration membranes, as a means to remove GSM and MIB                         

(Robert Reiss et al., 1999).  Membrane processes can be divided into two 

distinct groups, sophisticated filtration techniques and reverse osmosis.  
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Reverse osmosis is a solubilization diffusion technique that makes use of a 

semi-permeable membrane which acts as a barrier to dissolved salts and 

inorganic molecules. Filtration techniques exclude particulates and compounds 

above a certain molecular weight (dependant on the membrane used). 

Traditionally membrane processes have been used for desalination, but interest 

in them for drinking water treatment is being revived due to increased impurities 

in water.  Smith et al. (2003) demonstrated that NF 90 polyamide nanofilteration 

membranes removed 95 % of GSM and 91 % MIB from post-filter water 

sourced from a water treatment plant. NTR 7450 sulfonated polyether sulfone 

nanofiltration membranes performed poorly with 78 % or more GSM and MIB 

remaining after filtration.  There was a clear correlation between the molecular 

weight cut-off (MWCO) of the membrane material and GSM and MIB removal.  

GSM and MIB have molecular weights of 182 and 169 Daltons respectively, 

which are substantially smaller than the 200-400 Dalton MWCO of the NTR 

7450 filter.  The NF90 filter had a MWCO of 100 Daltons, much closer to the 

molecular weights of GSM and MIB. Robert Reiss et al. (1999) also reported a 

similar trend with CALP and LCF1 nanofilters, MWCO of 300 and 200 

respectively.  CALP removed 40 – 65 % of GSM and MIB after pre-treatment, 

but detectable concentrations remained.  LFC1 performed better, by virtue of its 

lower MWCO, by reducing GSM and MIB to less than 1 ng L-1.  The GSM and 

MIB concentrations in this study were much lower, 9 and 18 ng L-1 respectively, 

than the Smith et al. (2003) study, approximately 200 ng L-1 for both MIB and 

GSM.  Algal blooms can severely affect filtration membranes, fowling the 

membrane, resulting in a drastic increase in transmembrane pressure.  This 

causes a loss of performance and will eventually require the membrane to be 

cleaned (Kwon et al., 2005). 

 

 

1.82  Biological treatment of GSM and MIB 
 

GSM and MIB are susceptible to biological degradation (biodegradation) with 

several studies having implicated a number of microorganisms responsible for 

their removal from water (Ho et al., 2007).  Examples of microorganisms 

capable of degrading MIB are Pseudomonas spp. (Izaguirre et al., 1988), 
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Bacillus spp. (Lauderdale et al., 2004) and for GSM Bacillus subtilis (Yagi et al., 

1988) and Arthrobacter atrocyaneus (Saadoun et al., 1998). MIB and GSM 

susceptibility to biodegradation can be attributed to their structures which are 

similar to biodegradable alicyclic alcohols and ketones.  As yet no definite 

pathways have been elucidated for the biodegradation of MIB and GSM.  

However, Tanaka et al. (1996) were able to identify two possible MIB 

dehydration products, 2-methylcamphene and 2-methyleneborane and Saito et 

al. (1999) identified four possible biodegradation products of GSM. Two of 

these, enone and 1,4 a-dimethyl-2,3,4,4a,5,6,7,8-octahydronaphthalene, have 

also been used in the chemical synthesis of (-)-geosmin (Saito et al., 1996). 

 

The majority of studies conducted on the biological treatment of MIB and    

GSM have used sand or GAC media (Lundgren et al., 1988; Yagi et al., 1988; 

Elhadi et al., 2004b). The use of porous media such as GAC in evaluating the 

biodegradation of GSM and MIB is problematic.  GAC can act as a solid support 

for biofilm formation, but will also remove off-flavour by adsorption. Therefore it 

is difficult to determine the mechanism of removal for GSM or MIB in such 

systems. 

 

Westerhoff et al. (2005) determined MIB and GSM biodegradation as a pseudo-

zero order reaction in batch studies of lake water, with biodegradation rates in 

the range of 0.96±0.15 ng L-1 day.  Based on these biodegradation rates, MIB 

concentrations in a reservoir would decrease by approximately 30 ng L-1 over a 

period of 1 month.  Ho et al. (2007) concluded that MIB and GSM were readily 

removed through bench-scale sand filters, with removal caused predominantly 

through biodegradation processes.  The biodegradation of GSM and MIB was 

determined to be pseudo-first order reaction, with rates influenced by the initial 

concentration of microbes in the biofilm, but not the initial concentration of the 

off-flavour compounds.  Elhadi et al. (2003) studied the effects of temperature 

and media effects on the biofilteration of GSM and MIB from water using GAC 

and anthracite as media.  Both media removed GSM and MIB, but GAC was the 

most effective.  GAC and anthracite were also evaluated at 8 °C and 20 °C, 

both media had increased rates of removal at evaluated temperature.  The 

increase in temperature is likely causing a increase in microbiological activity. 
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However this is a negligible advantage as the majority of water treatment 

processes do not operate at this temperature and considerable energy would be 

required to raise the temperature to ~20 °C. 

 

 

1.8.3  Removal of GSM and MIB by oxidation 
 

Previous work has demonstrated that the oxidants commonly used in water 

treatment, chlorine, chloramines, chlorine dioxide, and potassium 

permanganate are not effective in removing GSM or MIB (Lalezary et al., 1986).  

Table 1-1 gives the oxidation potentials of oxidants commonly used in the water 

industry.  Chlorine and chloramines are not powerful enough to oxidise GSM 

and MIB even at high doses (McGuire, 1999).  Lalezary et al. (1986) reported 

that chlorine doses as high as 20 mg L-1 (a usual dose is 1 mg L-1) removed 

less than 60 % of GSM and 35 % of MIB.  Chlorine has the added 

disadvantages that over-chlorination can lead to complaints of water that is 

unpalatable (Wnorowski, 1992) and that pre-chlorination of raw water containing 

algal cells can result in their lyses, releasing their intracellular GSM and MIB 

into the water, exacerbating off-flavour episodes (Ashitani et al., 1988; Levi et 

al., 1988; Wu et al., 1988; Peterson et al., 1995). Furthermore chlorine 

derivatives can produce trihalomethanes which are a potential health hazard 

(Gracia et al., 2000). There are conflicting reports that chlorine dioxide can 

oxidise GSM and MIB.  Lalezary et al. (1986) reports that chlorine dioxide is 

capable of reducing GSM and MIB to levels between 40 and 60 %, whereas 

McGuire (1999) reports that chlorine dioxide is not a powerful enough oxidant to 

degrade GSM and MIB. 

 

Potassium permanganate has also been used to attempt the removal of         

off-flavour problems.  Its selection is due to the fact it is a cheaper alternative 

when compared with chlorine dioxide and advanced oxidation processes 

(AOPs) such as ozone.  Unfortunately it is not a very powerful oxidant, only 

slightly more oxidising than chlorine and chlorine dioxide, and will not oxidise 

GSM and MIB (Lalezary et al., 1986; McGuire, 1999; Tung et al., 2004). Dietrich 

et al. (1995) reported on the oxidation of six algal metabolites by potassium 



 30 

permanganate.  After treatment with potassium permanganate four of the algal 

metabolites retained a detectable odour.  Interestingly two of the metabolites 

that initially had no odour acquired odour after oxidation by potassium 

permanganate. 

 

Reagent Standard Reduction Potential 
(Volts vs. NHE) 

Hydroxyl Radical 2.80 
Ozone 2.07 

Hydrogen Peroxide 1.78 
Perhydroxyl Radical 1.70 

Permanganate 1.68 
Hypochlorous Acid 1.49 

Chlorine 1.36 
Chlorine Dioxide 1.28 

 

Table 1-1. Reduction potentials of chemical oxidant s commonly  
used by the water industry (Lawton  et al., 1999). 

 

 

1.8.4  Glenfarg water treatment works 
 

Glenfarg reservoir and water treatment works is a facility located in the east of 

Scotland, approximately 5 miles from Kinross.  It is operated by Scottish Water 

and supplies an average of 50 Megalitres a day (Ml\d) to the Fife and Kinross 

area.  Glenfarg is an excellent example of how algal blooms and off-flavour can 

seriously affect a water treatment works.  High levels of algal activity in Glenfarg 

reservoir at certain times of the year have historically caused significant 

problems at the Glenfarg water treatment works (Figure 1-9). 

 

Algal growth in Glenfarg reservoir is exacerbated by two main factors, 

supplementation of water from the River Earn and the hydrology of the 

reservoir. When required the reservoir is supplemented with water pumped from 

the nearby River Earn, usually in the summer months.  An evaluation conducted 

by East of Scotland Water, the operator at the time, concluded that water from 

the River Earn had significant levels of nutrients that would likely exacerbate the 

problem of algal blooms.   
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Figure 1-8. The water draw-off tower at Glenfarg re servoir, with the dam in the 
foreground (top).  One of three DAF tanks at Glenfa rg water treatment works with 

surface sludge clearly visible (bottom). 
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Glenfarg reservoir is 1,360 m in length and relatively shallow (15.24 m 

maximum depth), a large surface area to depth ratio. The increase in nutrients, 

combined with good growth conditions in the summer months, causes 

significant algal blooms.  Intensifying the problem is the location of the water 

draw-off tower in the reservoir, which supplies the water works. From Figure 1-8 

the tower can clearly be seen close to the dam.  The prevailing wind blows 

towards the dam, causing any surface growing algal blooms to be blown 

towards the draw-off tower. 

 

The algal blooms caused serious physical difficulties during water treatment by 

clogging rapid gravity filters, resulting in high headlosses and sludge treatment 

difficulties. Additionally, the types of algal blooms experienced, typically    

Anabaena spp., caused serious GSM and MIB off-flavour problems.  This lead 

to Glenfarg water treatment works adopting numerous techniques in an attempt 

to solve the issues. 

 

A dissolved air flotation (DAF) pre-treatment plant was installed in 1997 at the 

cost of £3.7 million.  The DAF plant was installed primarily to remove algae 

before it could reach the rapid gravity filters and is typically in operation during 

the cyanobacteria growth season (May to November). DAF is a physical 

separation process, conducted in rectangular tanks, which uses air saturated 

water to remove colour and particulate material from flocculated raw water 

(Hargesheimer et al., 1996).  Air saturated water is injected into a tank by a 

bank of nozzles, allowing the controlled release of pressure to form fine bubbles 

that attach to the floc in the raw water.  The floc floats to the surface of the raw 

flocculated water where it forms a sludge and is removed by a hydraulic 

scrapper (Figure 1-8). The sludge is subsequently de-watered and land-filled. At 

Glenfarg DAF has solved the problem of algae disrupting the rapid gravity 

filters, the next step in the water treatment process. A polyelectrolyte, an 

alumina coagulant, and PAC are added prior to the DAF process at Glenfarg. 

 

PAC is added to aid adsorption of compounds present in the raw water, but also 

serves to remove GSM and MIB when present.  The usual dose of PAC is 1 ton 

a day, at the cost of approximately £1000 a ton.  This rises to 3 tons a day 
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during serious off-flavour episodes, a considerable extra expense.  PAC usage 

in response to off-flavour can be seen in Figure 1-9.  Due to the severity of off-

flavour episodes at Glenfarg treatment works an ozonation facility is available 

when required to increase GSM and MIB removal, with the dosage point after 

the DAF process.  In addition to the extra treatment facilities an operating 

strategy for the management of seasonal algal and off-flavour concerns has 

been developed, dictating when the additional water treatments are used:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-9. (a) the effect of Glenfarg water treatm ent on GSM concentration  
(29th May 2006 to 20 th September 2006); (b) GSM concentration after treat ment.  
GSM concentrations (ng L -1) in Glenfarg raw water ( ) and Glenfarg treated  

water( ).  PAC dosage (mg L -1) ( ). Data supplied by Scottish Water. 
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Once routine and non-routine laboratory analysis results, on-line monitoring and 

physical investigations satisfy any of the following criteria then the DAF unit 

should be started and the additional chemical dosing and sampling 

requirements associated with summer algal concerns should begin. Typically 

these criteria will be satisfied ~May of each year:  

 

• Visible sign of algae in the reservoir, over a period of 2 weeks.  

• Raw water pH, colour and turbidity averaging greater than 8.0, 35
o 

Hazen 

and 2 NTU (nephlometric turbidity units) respectively, over a period of 2 

weeks.  Hazen units are a measure of the colour of the raw water compared 

to standard solutions of coloured water and NTUs give a defined value for 

the suspended solids present in a water sample. 

• Raw water chlorophyll a concentration averaging greater than 10 µg L-1 over 

a 2 week period.  

• Filter run times significantly reduced/chemical dose rates significantly 

increased to maintain filtered water quality.  

• Earthy / musty taste or odour in the treated water or smell in the DAF or filter 

gallery halls.  

 

It is clear that the measures adopted at Glenfarg treatment works to limit the 

problems of algal blooms and off-flavours are considerable, with high capital 

costs and significant operational costs. Despite the additional treatments used 

at Glenfarg, off-flavour in produced drinking water is still a significant problem 

when the reservoir water contains very high levels of GSM (Figure 1.9).  

Therefore, more effective and ideally cheaper technologies are desirable. 

Advanced oxidation processes may offer a solution to the problem of water 

tainted with GSM and MIB. 

 

 

1.8.5  Advanced oxidation processes for the removal of GSM and MIB 
 

Advanced oxidation processes (AOPs) are defined as those which involve the 

generation of hydroxyl radicals (�OH) in sufficient quantity to effect water 

purification via the oxidation of organic solutes (Cooper et al., 1999).  AOPs are 
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a relatively new advancement in water treatment and can be used to control         

off-flavours.  AOPs consist of a combination of oxidants to optimise the 

production of hydroxyl radicals.  These radicals, though short lived, are much 

more powerful oxidants than chlorine or ozone alone, especially towards 

aliphatic molecules such as GSM and MIB (Wnorowski, 1992). 

 

Ozone is one of the most implemented off-flavour control technologies when 

other oxidants will not solve the off-flavour problem (McGuire, 1999). A typical 

ozone treatment plant consists of three basic subsystems: feed-gas 

preparation; ozone generation; and ozone/water contacting. The high reactivity 

and instability of ozone requires immediate usage, necessitating on-site 

generation. The percentage ozone generated is dependent on the feed-gas 

employed, either air, oxygen, or oxygen-enhanced air. The maximum 

concentration of ozone economically produced from air is approximately two 

percent, while that generated from pure oxygen is six percent (Cheremisinoff, 

2002). Selection of the feed-gas depends on economics, the quantity of ozone 

required, and whether the feed-gas is recycled.  Ozone, for water treatment 

purposes, is produced by the electric discharge or corona method.  In principle, 

an ozone generator consists of a pair of electrodes separated by a gas space 

and a layer of glass insulator.  The feed-gas is passed through the gap and a 

high voltage applied (between 5 and 25 kV).  A corona discharge takes place 

across the gas space and ozone is generated when a portion of the oxygen is 

ionized and then becomes associated with non-ionized oxygen molecules. After 

the ozone has been generated it is mixed with the water stream being treated in 

a device called a contactor. Substantial energy is required to split stable oxygen 

bonds to form ozone, only ~10 percent of the input energy is effectively used to 

produce the ozone, resulting in high energy consumption for the production of 

ozone.  For the typical dosage rate of 1 to 5 g m3, 10 to 20 kWh of energy per 

kg of ozone is required.  The costs of ozonation are two to three times higher 

than the costs of chlorination (Kiely, 1998). 

 

Ozone is unstable in water and the decay of ozone in natural waters is 

characterized by a fast initial decrease of ozone, followed by a second phase in 

which ozone decreases with first order-kinetics.  Depending on water quality, 
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the half-life of ozone is in the range of seconds to hours. The major secondary 

oxidant formed from ozone decomposition is the �OH radical (von Gunten, 

2003).  The stability of ozone depends largely on the water matrix, especially its 

pH.  The pH of water is important because hydroxide ions initiate ozone 

decomposition which involves the following reactions: 

 

O3
  + OH-    HO2

- + O2    (Equation 1-1) 

 

O3
 + HO2

-    �OH + O2
�- + O2  (Equation 1-2) 

 

O3
  + O2

�-    O3
�- + O2   (Equation 1-3) 

 

O3
�- + H+     HO3

�  (pH < 8)  (Equation 1-4a) 

 

HO3
�     �OH + O2   (Equation 1-4b) 

 

O3
�-     O�- + O2  (pH > 8)  (Equation 1-5) 

 

O�- + H+    �OH    (Equation 1-5) 

 

Terashima (1988) reported the reduction of GSM and MIB using a 60 m3/day 

water treatment pilot-plant with an ozone dose rate of 2 to 5 mg L-1. This 

dosage reduced GSM (33 - 89 ng L-1) and MIB (55 - 250 ng L-1) by 75 – 100 %. 

Initial GSM and MIB concentration had negligible effect on the rate of 

destruction.  Numerous other examples exist of ozone being used to remove 

GSM and MIB from water (Hattori, 1988; Koch et al., 1992). 

 

According to reactions (Equation 1-1) and (Equation 1-2) the initiation of ozone 

decomposition can be artificially accelerated by the addition of hydrogen 

peroxide. This is known as the peroxone process, an AOP using a combination 

of ozone and hydrogen peroxide (Equation 1-6). 

 
�OH + O3 

   HO�
2 + O2   (Equation 1-6) 
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The peroxone process has been studied extensively and is capable of oxidising 

GSM and MIB.  Koch et al. (1992) reported on the evaluation of a pilot-scale 

water treatment plant (22.8 L min-1 flow rate; GSM and MIB concentration       

100 ng L-1) using ozone for the removal of GSM and MIB.  MIB and GSM 

removal increased with higher applied ozone dosage with 80 – 90 percent 

removal achieved in two different raw waters with an ozone dose of 

approximately 4.0 mg L-1.  Degradation of both GSM and MIB was increased 

with the addition of H2O2 (H2O2/O3 ratio of 0.2).  Treatment with O3/H2O2 

allowed the lowering of the ozone dosage to approximately 2.0 mg L-1 for the 

same level of GSM and MIB removal.  The use of Peroxone could result in 

significant cost savings due to the reduction in ozone required.  Interestingly, 

MIB was significantly more resistant to degradation than GSM when treated 

with ozone alone, with approximately 10 % less degradation across all ozone 

dosages. 

 

Other AOPs include the combinations of UV/H2O2 and O3/UV (Camel et al., 

1998; Ikematsu et al., 2004; Goslan et al., 2006).  In a UV/hydrogen peroxide 

system the production of hydroxyl radicals (�OH) is due to the direct photolysis 

of hydrogen peroxide: 

 

H2O2      2�OH   (Equation 1-7) 
 

HO2
-     �OH + O�-    (Equation 1-8) 

 

HO2
- + O�-     O2

� + OH-   (Equation 1-9) 

 

In a O3/UV system the photolysis of ozone by UV radiation in the UV-C range 

(254 nm) initiates the production of �OH radicals (Equation 1-10). 

 

O3
 + H2O     �OH + O2

�- + O2  (Equation 1-10) 

 

   hν 

   hν 

   hν 
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Lawton et al., (2003) demonstrated that a titanium dioxide photocatalyst in the 

presence of UV light effectively removed GSM and MIB at concentrations higher 

than those found in the environment after 30 and 60 minutes respectively.  This 

initial study demonstrated that this method has excellent potential for the 

treatment of water and warrants further investigation. 
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1.9 SEMICONDUCTOR PHOTOCATALYSIS 
 

When a semiconductor is illuminated with photons of a higher energy than the 

band gap of the semiconductor the photons can be absorbed (Figure 1-10).  

This in turn leads to a promotion of electron to the conductance band, leaving a 

hole in the valence band.  This excited electron can either be used directly to 

create electricity in a photovoltaic cell or drive a chemical reaction, which is 

called photocatalysis (Carp et al., 2004). 

 

 

Figure 1-10. Promotion of an electron from the vale nce band (VB) to  
The conductance band (CB) on illumination of a semi conductor.  

 

 

1.9.1  Mechanism of photocatalytic oxidation 
 

Semiconductors can act as sensitisers for light-induced redox processes due to 

their electronic structure, which is characterised by their band structure.  The 

overlapping of two atomic orbitals gives rise to the formation of bonding and 

antibonding molecular orbitals separated by an energy gap.  The formation of 

additional atomic orbitals causes the number of bonding and antibonding 

molecular orbitals to increase.  The interaction of a very large chain of atomic 

orbitals results in a band forming, with many bonding and antibonding orbitals of 

differing energy. Semiconductor bands therefore constitute closely spaced 

e- 

h+ 

Eg hν > Eg 

Electron energy 

CB 

VB 
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molecular orbitals formed by the overlap of atomic orbitals.  The numerous 

molecular orbitals, and their close spacing, effectively form continuous bands.  

Orbitals which are occupied form what is known as the valence band, with the 

vacant orbitals referred to as the conductance band.  Both the valence and 

conductance bands have definite band edges, separated by a forbidden region 

or band gap. 

 

When a photon with an energy that matches or exceeds the band gap energy 

(Eg) of the semiconductor, an electron, e-, is promoted from the valence band 

(VB) into the conductance band (CB) leaving a hole behind (Fig 1.10)               

(Hoffmann et al., 1995).  There are three major process that can occur following 

electronic excitation: 

 

e- + h+       heat  (Equation 1-11) 

 

D + h+
surface      D�+  (Equation 1-12) 

 

A + e-
surface      A�-  (Equation 1-13) 

 

Electron hole recombination can occur at the surface or in the bulk of the 

semiconductor (Equation 1-11). Alternatively, at the surface of the 

semiconductor photogenerated electrons can reduce an electron acceptor 

(Equation 1-12) and photogenerated holes can oxidize an electron donor 

(Equation 1-13). These processes are illustrated in Figure 1-11. The 

combination of reactions given in Equation 1-12 and Equation 1-13 represent 

the semiconductor sensitization of the general redox reaction (Equation 1.14). 

 

 

A + D                                                                      A- + D+        (Equation 1-14) 

 

 

 

 

semiconductor 
  light      Ebg 
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Fig 1-11: Illustration of the major process occurri ng on a semiconductor particle 
following electron excitation. Electron hole recomb ination can occur at the 

surface (a) or in the bulk (b) of the semiconductor .  At the surface, 
photogenerated electrons can reduce an electron acc eptor A (c) and 

photogenerated holes can oxidize an electron donor ( d) (Mills  et al., 1997). 
 

 

The valence band holes are powerful oxidants, while the conductance band 

electrons are good reductants. Different semiconductors have varying oxidation 

and reduction potentials for their conductance and valence bands (Table 1-2).  

The redox potentials for these semiconductors range between 4.1 and -2.3 volts 

versus Normal Hydrogen Electrode (NHE).  For a semiconductor photocatalyst 

to be efficient the different interfacial electron processes involving e- and h+, 

reactions c and d (Fig. 1-11), must compete effectively with the major 

deactivation processes involving e--h+ recombination, reactions a and b        

(Fig. 1-11). 
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Semiconductor Valence Band 
Reduction Potential 

(V vs. NHE) 

Conductance Band 
Reduction Potential 

(V vs. NHE) 
TiO2 +3.2  -0.1 
SnO2 +4.1 +0.3 
ZNO +3.0  -0.2 
ZnS +1.4  -2.3 
WO3 +3.0 +0.2 
CdS +2.1  -0.4 

CdSe +1.6  -0.1 
GaAs +1.0  -0.4 
GaP +1.3  -1.0 

 

Table 1-2. Oxidising and reducing potentials of the  valence and  
conductance bands of a selection of common semicond uctor  

materials in aqueous solution at pH 1 (Robertson, 1 996). 
 

 

The ideal semiconductor for photocatalysis would have the following properties: 

 

1. photoactive; 

2. able to utilise visible and/or near-UV light; 

3. biologically and chemically inert; 

4. photostable (i.e. not liable to photocorrosion); 

5. inexpensive. 

 

The semiconductor titanium dioxide (TiO2) is close to being the ideal 

photocatalyst, satisfying these criteria, with the exception that it does not absorb 

visible light. The properties of TiO2 have lead to its wide use in mediating 

photocatalytic reactions. The band gap of titanium dioxide is 3.2 V (Table 1-2), 

allowing photooxidation to occur with adsorption of light in the near ultra violet 

region (~ 380 nm). 

 

Mills et al. (1997) and co-workers summarised published articles in the field of 

semiconductor photocatalysis, demonstrating the very large number of uses for 

semiconductor photocatalysis. Uses include photoelectrochemical cells for 
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water splitting and for electricity production, semiconductor particles and films 

for the photocatalytic destruction of gaseous pollutants and semiconductor 

particles for the photodestruction of cancer cells, bacteria and viruses.  

However, the majority of articles on semiconductor photocatalysis are in the 

area of photocatalysis for the oxidation of organic pollutants by oxygen   

(Hoffmann et al., 1995; Honglay Chen et al., 1998; McMurray et al., 2004).  It 

has also been demonstrated that the use of TiO2 as a photocatalyst for the 

destruction of pollutants in water is an effective process (Hoffmann et al., 1995; 

Li et al., 1996; Mills et al., 1997; Byrne et al., 1998; Ray, 1998).   

 

The detailed mechanism of the photocatalytic process involving the destruction 

or transformation of pollutants on the TiO2 surface is still not completely clear.   

It is generally assumed that both photocatalytic oxidative and reductive 

reactions occur simultaneously, otherwise a charge would build up on the TiO2 

particle.  In most cases, the electron transfer to oxygen, the primary electron 

acceptor, is rate-determining in photocatalysis.  Hydroxyl radicals are formed on 

the surface of TiO2 by the reaction of holes in the valence band (h+
VB) with 

adsorbed H2O, hydroxide or surface titanol groups (>TiOH)            (Figure 1-12) 

(Hoffmann et al., 1995).  Photogenerated electrons (e-
CB) are capable of 

producing superoxide (O2
-), an effective oxidising agent that can attack neutral 

substrates, surface-adsorbed radicals and/or radical ions     (Figure 1-12).  The 

redox potential of the electron-hole pair theoretically permits H2O2 formation by 

either water oxidation or by reduction of adsorbed oxygen by two conduction 

band electrons, the latter representing the main pathway of H2O2 formation 

(Carraway et al., 1994).  H2O2 can act as an electron acceptor or as a source of 
�OH radicals due to homolytic scission.  In summary the holes, �OH radicals, 

O2
-, H2O2, O2, play important roles in the photocatalytic reaction mechanism 

depending on the reaction conditions.  These processes are summarised in 

Figure 1-12. 
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Figure 1-12. Secondary reactions with activated oxy gen species  
in the photoelectrochemical mechanism (Hoffmann  et al., 1995). 

 

 

Mills and co-workers (1993) proposed that in order for a semiconductor to be 

photochemically active for the destruction of organic compounds in water 

(Equation 1.15) the redox potential of the photogenerated valence band hole 

must be sufficiently positive to generate absorbed �OH radicals.  These radicals 

can subsequently oxidise the organic pollutant. The redox potential of the 

photogenerated conductance band must be sufficiently negative to reduce 

absorbed O2 to superoxide.  These processes are represented in Figure 1-13. 
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Figure 1-13. Mechanism of pollutant mineralization i n water  
using semiconductor photocatalysis (Mills  et al., 1993) 

 

 

Regardless of the mechanism, the oxidation potential for the conductor valence 

band (3.1 V) or the hydroxyl radical (2.8 V)  is greater than that of oxidizing 

agents commonly used in conventional water treatment, for example chlorine 

(1.36 V), hydrogen peroxide (1.78 V), and ozone (2.07 V). 

 

 

1.9.2  The kinetics of titanium dioxide photocatalytic degradation 
 

Many studies of the photocatalysis of organic pollutants by TiO2 have reported   

that the initial rate (ri) of photodegradation of the pollutant (P) fits a                   

Langmuir-Hinshelwood model (Equation 1-6) (Turchi et al., 1989;                     

Honglay Chen et al., 1998):  
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Equation (1-6) 

 

 

Where, [P]i = initial concentration of the pollutant P; K(P) the adsorption 

coefficient of the reactant P on the TiO2 surface; and k(P) is the proportionality 

constant which provides a measure of the intrinsic reactivity of the 

photoactivated surface with P.  It is found that k(P) is proportional to Ia
θ, where 

Ia is the rate of light absorption and θ is a power term which is equal to 1/2 , or 1, 

at high, or low, light intensities, respectively (Mills et al., 1993).  The constants k 

and K may be determined from a plot of 1/ri vs. 1/Pi. If a catalytic system obeys 

the Langmuir-Hinshelwood model the plot should be linear.  The intercept of the 

line provides 1/k with the slope equal to 1/kK. 

 

 

1.9.3  Titanium dioxide photocatalysis for water treatment 
 

There is some dispute as to who first demonstrated the degradation of an 

organic compound using TiO2.  An early example was published by Mashio et 

al. in 1956 entitled “Autooxidation of TiO2 as a photocatalyst”. The research 

involved dispersion of TiO2 powder into various organic solvents, such as 

alcohols and hydrocarbons, while being irradiated by a mercury lamp 

(Hashimoto et al., 2005).  This research along with other work started the 

interest in the use of TiO2 as a means to degrade pollutants from both waste 

and potable water. There are many examples of pollutants successfully treated 

using TiO2 photocatalysis: disinfection of municipal wastewater (Li et al., 1996); 

destruction of cyanobacterial toxins (Robertson et al., 1997); and the removal of 

trace organics from drinking water (Honglay Chen et al., 1998). 

 

Ollis (1988) conducted a preliminary comparison of the economics associated 

with the removal of PCBs from waste water using activated carbon, UV-ozone 

and a near UV semiconductor photocatalysis system. The calculated costs 

given in Table 1-3 were updated from 1987 to 1993 by Mills et al. (1993).  As 

can be seen, the calculations indicate that semiconductor photocatalysis could 

ri  = 
- d[P]i 

dt 
   = 

k(P)K(P) [P]i 

1 + K(P) [P]i 
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be economically comparable with activated carbon for water purification 

systems on an intermediate to large scale. Additionally, semiconductor 

photocatalysis is significantly cheaper than UV/O3 even at a small scale. 

 

 

Cost, US $ Capacity 
MGD Activated Carbon UV/O 3 Photocatalysis 
 0.03 7.79   13.00 9.85 
 0.12 4.25  6.32 4.36 
 0.23 3.19  4.92 3.21 
 0.92 2.21  3.83 2.23 
2.44 1.95  3.10 2.00 

 

Table 1-3. Estimated costs for different water puri fication systems (1993). 
MGD = million of gallons per day (Mills  et al., 1993) 

 

 

TiO2 photocatalysis has also been combined with oxidation technologies, 

TiO2/H2O2 and TiO2/O3 (Dominguez et al., 2005).  The main draw backs of 

these techniques is the required use of expensive additional reagents like H2O2 

or the use of a reagent that must be generated on site and strictly monitored in 

the case of O3. 

 

Photocatalysis is also effective in the treatment of pollutants in potable water.   

Mills et al. (1996) demonstrated the destruction of bromate ions to bromide and 

oxygen with a platinised titanium dioxide illuminated with ultraviolet light.      

Eggins et al. (1997) demonstrated the removal of humic acid from potable water 

using titanium dioxide semiconductor photocatalysis. It took approximately 12 

min to reduce the humic acid concentration by half; however 50% complete 

mineralization took 60 min.  The ability of TiO2 to remove humic substances has 

been confirmed by other workers (Bekbolet et al., 2002; Wiszniowski et al., 

2002).  Another study by (Gracia et al., 2000) used TiO2 supported on alumina, 

in conjunction with O3, to successfully remove a number of organic compounds 

from raw river water. 

 

Kim et al. (2005) demonstrated the use of TiO2-coated glass beads for the 

inactivation of the cyanobacteria Anabaena spp. and Microcystis spp.  The 
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glass beads were deployed into eutrophied water containing the respective 

cyanobacteria, irradiated with UV-A light, and the effect of their photocatalytic 

action observed.  The two cyanobacterial species lost their photosynthetic 

ability and became separated into individual cells.  These cyanobacterial 

species are implicated in the production of GSM and MIB and this method could 

be applied to limit their growth. 

 

Lawton and co workers (Lawton et al., 2003b) in an initial study reported that 

Geosmin (GSM) and 2-methylisoborneol (MIB) were completely destroyed 

within   60 min using TiO2.  Further work is required to elucidate and optimize 

the mechanism of photocatalysis. However, the initial results are extremely 

encouraging demonstrating a novel approach to the destruction of GSM and 

MIB. 

 

 

1.9.4  Photocatalytic reactor types  
 

Photocatalytic reactors are essentially designed around how the semiconductor 

catalyst is deployed within the reactor, either in colloidal form or as an 

immobilised film.  In reactors that deploy the catalyst as a slurry the rate of 

pollutant destruction is predominantly determined by light intensity, the quantum 

efficiency of the catalyst and the adsorbent properties of the reacting and      

non-reacting components in solution.  The major disadvantage of reactors that 

utilise the catalyst as a slurry or suspension is that post treatment the ultra-fine 

catalyst must be separated from solution, which can be a time consuming and 

expensive process (Ray et al., 1998).  An additional problem is that light 

penetration of UV light is limited due to UV shielding and absorption by catalyst 

particles and natural organic matter.  These two problems have lead to the 

majority of research investigating the use of immobilised semiconductor 

catalysts for pollutant degradation as it avoids these issues. Immobilisation of 

the catalyst creates a different problem however, with pollutant destruction 

occurring at the liquid-solid interface and mass transfer from the bulk of the 

liquid to the catalyst surface can now be the limiting factor in pollutant 

degradation. 
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A scaled up reactor therefore must deliver efficient illumination of the 

semiconductor catalyst as well as conventional chemical reactor scale-up 

complications such as mixing and mass transfer, reactant catalyst contacting, 

flow patterns, and reaction kinetics (Ray, 1999a).  Ray (1998) reports that light 

illumination is of the utmost importance for scaled up photocatalytic reactors as 

it activates the catalyst, therefore determining the water treatment capacity of 

the reactor.  He also classifies photocatalytic reactors by arrangement of the 

light source and reactor vessel; immersion type, with lamp(s) immersed within 

the reactor; external type with lamps outside the reactor (like the reactors in 

used in Chapter 4 and 5); or distributive type (Figure 1-14) with the light 

distributed from the source to the reactor by optical means such as reflectors or 

optical fibres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-14. Plan view of a distributive type photo catalytic reactor 
(Ray et al., 1998). 

 

 

 

The distributive reactor (Figure 1-14) is a rectangular vessel in which light 

conductors, such as glass slabs or rods, coated with the photocatalyst, are 
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embedded vertically.  The lamps, with reflectors, are placed on two sides of the 

reactor with the liquid entering and exiting the other two sides.  Light entering 

the conductors are repeatedly internally reflected down the length of the 

conductor and at each reflection come in contact with the catalyst present on 

the surface of the conductors (Ray et al., 1998).  Mukherjee et al., (1999) 

reported the degradation of special brilliant blue (SBB) dye using a distributive 

reactor (Figure 1-15).  The reactor consists of a cylindrical vessel, within which 

quartz glass tubes coated with catalyst are placed.  The light from the light 

source is focussed down the tubes via a lense and reflector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-15. Bench-scale multiple tube photocatalyt ic reactor 
(Mukherjee  et al., 1999). 

 

 

Another factor that can dictate the design of photocatalytic reactors is the cost 

of artificial generation of photons required to activate the catalyst and destroy 

the pollutant.  This has lead to a number of reactors utilising solar energy to 

activate the catalyst (Bahnemann, 2004; Robertson et al., 2005).  Current 

reactors frequently used include, thin-filmed-fixed-bed reactors (TFFBR) 

(Goslich et al., 1997), compound parabolic collecting reactor (CPCR) 

(Rodriguez et al., 2005; Perez et al., 2006) and double skin sheet reactor 

(DSSR) (van Well et al., 1997). 
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TFFBR reactors were one of the first solar reactors not applying a                     

light-concentrating system, thus being able to utilize diffuse as well as the direct 

portion of solar UV-A irradiation for the photocatalytic process. A TFFBR pilot 

plant has been installed at the site of a textile factory in Tunisia (Figure 1-16) 

(Bahnemann, 2004).  The reactor treated waste water from a textile plant and 

could be operated with a suspended or fixed catalyst.  The waste water was 

pumped up to the top of the thin film and flowed across the surface of the thin 

film.  The water was then collected in a tank at bottom and returned to original 

tank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-16. Thin-Film-Fixed-Bed Reactor (TFFBR) (B ahnemann, 2004). 
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Another non-concentrating reactor is the DSSR.  The reactor consists of a flat 

and transparent structured box made of PLEXIGLAS (van Well et al., 1997).  

The inner structure can be seen in Figure 1-17, the suspension containing the 

photocatalyst and waste water is pumped through the channels.  This reactor 

can also utilise both direct and diffuse portions of solar radiation.  Dillert et al. 

(1999) used a DSSR to treat biologically pre-treated industrial waste waters 

from Volkswagen AG factories in Wolfsburg (Germany) and Tatbaté (Brazil). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-17. Plan view of a Double Skin Sheet React or (DSSR) showing the  
inner structure of the transparent structured box m ade of PLEXIGLAS. 
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1.10 PROJECT AIMS 
 

The aim of this thesis is to determine the effectiveness of the TiO2 

photocatalytic process for the oxidation of GSM and MIB.  The processes 

investigated here will utilise a pelleted TiO2 semiconductor photocatalyst called 

Hombikat K01/C, produced by Sachtleben, Germany. It is proposed that this 

catalyst will not suffer from the problems encountered when using powdered P-

25 to photocatalyse GSM and MIB.  These aims will be achieved through the 

following objectives: 

 

• Development of a rapid analytical technique, using SPE and GC-MS, to 

allow trace analysis of large numbers of samples 

 

• Evaluation of GC-MS instrument for the analysis of GSM and MIB 

 

• Design of a bench scale reactor to evaluate Hombikat K01/C in 

degrading GSM and MIB 

 

• Optimisation of bench scale reactor to minimise the large system losses 

encountered when investigating the photocatalysis of GSM 

 

• Investigation of the factors effecting the photocatalytic destruction of 

GSM, including initial substrate concentration, pH, light intensity, and 

aeration rate. 

 

• Investigation of any potential kinetic istope effect by conducting 

photocatalysis of GSM in deuterated water. 

 

• Development of a pilot photocatalytic flow reactor to evaluate Hombikat 

K01/C in degrading GSM in raw waters 
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CHAPTER 2 - ANALYSIS OF 2-METHYLISOBORNEOL AND 
GEOSMIN 

 

2.1 INTRODUCTION 
 

2.1.1  Analysis of geosmin and 2-methylisoborneol 
 

In 2005 all drinking water supplied in the UK had to be wholesome and comply 

with the standards set in the Water Supply (Water Quality) Regulations 2000.  

These regulations incorporate the European Community Drinking Water 

Directive (98/83/EC) into British Law.  Taste and odour was one parameter that 

was regulated in this legislation with a maximum dilution number of 3 for both 

taste and odour at 25°C, the higher the dilution num ber the more pronounced 

the taste and odour in the water.  These standards were set for aesthetic 

reasons.  Therefore water companies in the UK supplying drinking water have a 

regulatory requirement for taste and odour levels in water.  At this time there is 

no specific regulatory requirement for levels of geosmin (GSM) and                 

2-methylisoborneol (MIB) in drinking water, however many water companies do 

monitor for GSM and MIB (Table 2-1).  Of the 28 water companies contacted, 

22 replied, with 8 (36 %) monitoring for GSM and MIB, usually at specific times 

of the year or in response to off-flavour complaints.  Whether companies 

monitored for GSM or MIB was strongly dependant on where they sourced their 

raw water for drinking water from.  A typical management strategy would involve 

a risk assessment of a source, where historical data of past off-flavour would be 

taken into account.  Routine sampling would begin at high risk times, i.e. during 

ideal cyanobacterial growth conditions. It is clear from the correspondence 

received, that despite it not being a regulatory requirement to monitor for GSM 

and MIB, certain water companies regard off-flavour as a major issue. 
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Water Company GSM/MIB  
Analysis 

Method 

Anglian Water Services Ltd d  - - 
Bournemouth & West Hampshire Water plc - - 
Bristol Water plc b GSM+MIB GC-MS 
Cambridge Water plc - - 
Cholderton & District Water Company a - - 
Dee Valley Water plc b GSM GC-MS 
Dwr Cymru / Welsh Water b GSM+MIB GC-MS 
Essex & Suffolk Water c  - - 
Folkestone & Dover Water Services Ltd - - 
Jersey Water a - - 
Mid Kent Water plc - - 
Northern Ireland Water Service GSM+MIB HPLC 
Northumbrian Water Ltd - - 
Portsmouth Water plc - - 
Scottish Water GSM+MIB GC-MS 
Severn Trent plc b GSM+MIB SPE-GC-MS 
South East Water Ltd - - 
South Staffordshire Water plc a - - 
South West Water Ltd GSM+MIB SPE-GC-MS 
Southern Water - - 
States of Guernsey Water Board a - - 
Sutton & East Surrey Water plc - - 
Tendring Hundred Water Services Ltd a - - 
Thames Water Utilities Ltd - - 
Three Valleys Water plc - - 
United Utilities Water plc a - - 
Wessex Water Services Ltd GSM+MIB SPE-GC-MS 
Yorkshire Water Services Ltd - - 

 

Table 2-1. Analysis of GSM/MIB by water companies i n the UK 
a no response   b analysis conducted at Severn Trent laboratories  

c part of Northumbrian Water Ltd  d part of Anglican Water Group plc  
Non-entry (-) indicatses that no specific analysis exists for GSM/MIB.  

 

Current methods for detection of GSM and MIB fall into two distinct categories, 

sensory analysis and instrumental analysis.  Both analyses must be able to 

detect GSM and MIB at the nano gram per litre level since humans have a        

very low threshold for these odours, in the order of 35 ng L-1 or less             

(Howgate, 2004). 

 

Sensory analysis, such as flavour profile analysis (FPA), are capable of 

detecting volatile organic compounds (VOCs), a group which includes GSM and 

MIB (Morran et al., 2004). However it is difficult to identify and quantify these 
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compounds quantitatively using sensory analysis (Bett et al., 1997).  Limits of 

detection for GSM and MIB in water can vary depending on the sensory 

panellist conducting the flavour profile analysis.  Rashash et al. (1997) reports 

limits of detection of 6 – 10 ng L-1 for GSM and MIB using FPA. 

 

Two other methods of GSM and MIB analysis which may have promise for the 

development of a simple colorimetric test are an Enzyme-linked immunosorbent 

assay (ELISA) method developed by (Chung et al.) (1990, 1991) and another 

method developed by Perschbacher et al. (1995). 

 

Chung et al. (1990, 1991) reported an ELISA method, in which antibodies to 

GSM and MIB are linked to colorimetric development, to detect GSM and MIB in 

water samples.  Although rapid the reported sensitivity (1000 µg L-1) is too low 

to be useful for detecting of GSM and MIB.  Samples would have to be pre-

concentrated before analysis with these ELISA assays. Perschbacher et al. 

(1995) also reports a colorimetric method to quantify GSM and MIB.  One litre of 

filtered water is pumped through a SPE (solid phase extraction) device and then 

eluted with toluene. The toluene is then combined with a 1 % vanillin and 

concentrated sulphuric acid solution.  This solution is then agitated and the 

colour change observed.  The severe limitation of this technique is that the 

colour change for GSM requires approximately 20 hours. The sensitivity            

(1000 ng L-1) is an improvement on the Chung and co-workers method but is 

still not sensitive enough for the detection of off-flavour that can be detected by 

humans.  While neither of these methods have the necessary sensitivity 

required to detect GSM and MIB at low environmental concentrations, the 

development of a simple, rapid colorimetric method would be off great value to 

unskilled persons requiring information on off-flavour in water.  This would apply 

particularly to aquaculturists who cannot afford expensive instrumentation or do 

not have the technical ability for complex analytical methods. 

 

Instrumental analysis also has its advantages and disadvantages.  Traditional 

methods of detection and quantification in the nano gram per litre range require 

large sample volumes (100 – 1000 mL) and substantial sample concentration 
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procedures such as liquid-liquid extraction (Rashash et al., 1996;                   

Ridal et al., 1999) or relatively complex equipment, e.g., closed loop stripping 

analysis (Palmentier et al., 1998). 

 

A relatively new analytical technique devised to isolate volatile organic carbons 

from sample matrices called solid phase microextraction (SPME) was 

developed in 1989 by Belardi et al.  This method of extracting volatile samples 

was combined with GC-MS for analysis and there has been growing interest in 

this combined technique.  SPME eliminates most of the drawbacks in the 

preparation of aqueous samples, integrating sampling, extraction, concentration 

and sample introduction in a simple process. The technique has been used to 

measure the concentration of a number of important odour-causing VOCs in 

surface waters, with detection limits in the nano gram per litre levels              

(Sung et al., 2005). GSM and MIB have also been detected in algal cultures at 

micro gram per litre levels (Lloyd et al., 1998; Watson et al., 1999) and at nano 

gram per litre levels under optimal conditions. SPME is predominantly coupled 

with gas chromatography-mass spectrometry for separation and analysis 

(Watson et al., 2000; Lin et al., 2002; Robertson et al., 2003). 

 

A new analytical method developed by Zhang et al. (2006) reported detection 

limits of 50 pg L-1 and 0.34 ng L-1 levels respectively for GSM and MIB.  These 

very low detection limits were achieved by a lengthy two-stage sample 

preparation step, with analysis conducted using a specialised GC-MS. 

 

Although the previous methods have their advantages and disadvantages for 

the identification of GSM and MIB a method was required for this research that 

could rapidly separate and identify GSM and MIB. SPME represents an 

improvement on older techniques but still has limitations, including slow 

sampling speeds and limited lifetime of the SPME fibres. Furtula et al. (2004) 

reported throughputs of 20 samples a day with an automated SPME-GC-MS 

system and that over 100 injections were performed with one SPME fibre. The 

main analytical criteria for this work was the ability to analyse a large number of 

samples on a regular basis.  Although SPME-GC-MS automation is possible, 

specialised auto samplers are required and these tend to have limited capacity, 



 58 

making them unsuitable for processing large numbers of samples.  Additionally 

parallel processing of samples is impossible using SPME and one GC-MS. 

 

Solid-phase extraction (SPE) is a process of sample preparation that 

concentrates and purifies analytes from solution by sorption onto a disposable 

solid-phase cartridge, followed by elution of the analyte with a solvent 

appropriate for instrumental analysis.  Mechanisms of retention include normal 

phase, reverse phase, and ion exchange.  Liquid-liquid extraction was 

traditionally used for sample preparation, but this technique has many 

disadvantages including the use of large volumes of organic solvents, cost and 

the tendency to create emulsions.  These difficulties were overcome with SPE 

(Figure 2-1) which was invented in the mid-1970s as an alternative to liquid-

liquid extraction.  The SPE column is first conditioned by passing a solvent 

through the sorbent (Figure 2-1a).  This wets the packing material, solvates the 

functional groups of the sorbent and replaces the void spaces of air in the 

sorbent with solvent.  The sample containing the analyte is applied to the 

column resulting in the concentration of the analyte onto the sorbent              

(Figure 2-1b). Other components from the sample matrix may also be retained, 

while others may pass through.  Those interferences that are retained on the 

sorbent may be removed with the appropriate solvent (Figure 2-1c).  The final 

step is to elute the analyte from the column with a specifically chosen solvent 

that will disrupt the analyte-sorbent interaction (Figure 2-1d).  The eluted 

analyte can then be analysed for quantification of GSM and MIB, e.g. by       

GC-MS. 

 

SPE of MIB, GSM, and other odour compounds has been reported in the 

literature.  Conte et al. (1996) reported extraction efficiencies for MIB in channel 

catfish pond water averaging 89 % at 101 ng L-1 and 84% at 202 µg L-1 using a 

C18 solid-phase. The detection limit of the method was calculated to be            

11.5 ng L-1.  Cole et al. (2003) reported successful extraction of GSM and MIB 

from water using C-18 solid phase disks.  Extracted samples were analysed by 

GC-MS and the detection limits were in the same range as found by Conte et al. 

(1996), 2.37 and 2.34 ng L-1 for GSM and MIB respectively. These methods 
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described by Conte et al. and Cole et al. offer rapid, simple and sensitive 

techniques with high recoveries for both GSM and MIB water samples. 

 

 

 

 

Figure 2-1. The process of solid-phase extraction, (a) solid-phase is conditioned 
with appropriate solvent, (b) sample containing ana lyte and interferences applied 

to the cartridge, (c) cartridge is rinsed with solv ent to remove interferences,  
(d) analyte is eluted from the cartridge with appro priate solvent. 

 

 

2.1.2  SPE-GC-MS analysis of geosmin and 2-methylisoborneol 
 

Gas chromatography mass spectrometry (GC-MS) has been used by many 

researchers for the analysis of the off-flavour compounds GSM and MIB, but it 

was not until the mid-nineties that GC-MS was coupled with SPE for the 

extraction and analysis of GSM and MIB (Perschbacher et al., 1995; Conte et 

al., 1996). Cole et al. (2003) also reported the use of SPE-GC-MS for analysis 

a 

Eluted Interferences   Analyte  

b c d 
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of GSM and MIB.  Both these methods used SPE cartridges with a C-18 phase, 

which is a reversed phase sorbent that is very hydrophobic.  Reverse phase 

sorbents are typically used when aqueous samples are used, and in the case of 

C-18, when it is required to isolate hydrophobic species from solution.  

Therefore, it is a phase that can be used to removed GSM and MIB from 

aqueous samples. As the primary mechanism of interaction for reversed phase 

sorbents is by van der Waal’s forces, the elution of analytes from the sorbent is 

a simple process of selecting a nonpolar solvent to disrupt these forces. One 

solvent compatible with reversed phase sorbents is methanol. Therefore, SPE 

allows samples to be removed from the water phase and subsequently eluted in 

a solvent that is better suited to analysis by GC-MS.  This ability to change 

solvent is critical if GC-MS is to be used for analysis of GSM and MIB samples 

taken from water. 

 

In summary the selection of SPE for the separation of GSM and MIB from water 

samples, coupled with GC-MS for analysis, has a number of key benefits.  SPE 

is rapid in comparison to SPME and other separation methods and most 

importantly it allows parallel processing of samples, with up to 10 samples 

capable of being accommodated in a VacmasterTM Vacuum Manifold system 

(Figure 2-2).  After the samples are processed by SPE they can be analysed by 

GC-MS, which if equipped with an autosampler and using the method 

developed here, will allow over 60 samples to be analysed in a 24 hour period.  

Additionally, the use of SPE will allow small sample volumes (1 mL) to be used, 

an important factor when a bench-scale reactor with a small volume is to be 

evaluated.  This chapter presents the methods that were developed to isolate 

and analyse GSM and MIB.  It also presents studies which were conducted to 

compare different types of SPE cartridge and determine whether they were 

suitable for trace analysis of GSM and MIB. 
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2.2 METHODS 
 

2.2.1  GC-MS analysis of GSM and MIB 
 

The method described by Watson et al. (2000) with the following modifications 

was used to conduct analysis. Two GC-MS instruments were used throughout 

the study, a Perkin-Elmer Clarus 500 GC-MS and an Agilent 6890 GC coupled 

with a 5975 MS.  Both instruments were used in conjunction with auto samplers. 

A Zebron ZB-5 (30 m x 0.25 µm x 0.25 mm, Phenomenex, UK) and DB-5 MSD      

(30 m x 0.25 µm x 0.25 mm, J&W Scientific, UK) columns were used with the 

Clarus 500 GC-MS and Agilent GC-MS respectively.  The injection volume was    

1 µL.  A GC temperature gradient was programmed from 60 °C (held for 2 min) 

followed by an increase to 130 °C (20 °C min -1), then an increase to 152 °C      

(7.5 °C min -1) and finally an increase to 300 °C (45 °C min -1), held for 0.5 min. A   

4 minute solvent delay was also in place.  For the Clarus GC-MS the mass data 

was obtained in positive ion mode and Selective Ion Monitoring (SIM) mode by 

scanning for m/z 112 with a dwell time of 0.2 s The Agilent GC-MS was 

operated in simultaneous full scan/SIM mode, with the mass range for full scan 

set between 50 and 300 and the same ion selected for SIM (m/z 112). 

TurboMass software workstation was used for the GC-MS control, data 

acquisition and data processing for the Clarus GC-MS and for the Agilent          

GC-MS Chemstation software was used. 

 

A set of samples were prepared from a GSM-methanol stock solution.  This    

GSM-methanol stock solution was prepared by exhaustively re-suspending 

approximately 10 mg of (±)-Geosmin (Ultrafine, UK) in analytical grade 

methanol (10 mL). This solution, with an approximate concentration of                

1 mg mL-1, was prepared in a glass airtight container and stored in a freezer. 

The same process was repeated for 2-methylisoborneol (Ultrafine, UK) of the 

same approximate weight.  These GSM-methanol and MIB-methanol stock 

solutions were used to prepare the test solutions required for experimentation 

through the course of this research. Extensive evaluation by Korth et al. (1992) 

proved that GSM and MIB could be stored in methanol for long periods, with no 

decomposition detected after 250 days at both -15 °C an d 22 °C. 
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The GSM-methanol stock was diluted to give a range of GSM in methanol 

samples with approximate concentrations of 1, 10, 50, 100, 500, and 1000 ng 

mL-1. The concentration of these samples would be compared to GSM 

standards (1, 10, 50, 100, 500, and 1000 ng mL-1) prepared from a 100 µg mL-1 

(±)-GSM in methanol standard (Sigma-aldrich, UK).  Using the above method to 

analyse the two sets of samples would achieve two objectives. Firstly it would 

allow calibration of the two GC-MS systems and establish a method detection 

limit (MDL) for GSM.  Secondly the concentration of the GSM-methanol stock 

solution could be calculated by comparing the data generated from the analysis 

of GSM-methanol stock dilutions with the data for the GSM standards.  This 

second point is crucial as it will ensure that all solutions prepared for this work 

are within a known concentration range. A range (1, 10, 25, 50, 100, 500, and 

1000 ng mL-1) of GSM in methanol standards, prepared from a (±)-GSM 

standard (Sigma-aldrich, UK), were analysed each day that the GC-MS was 

used for GSM analysis. 

 

As the Clarus 500 GC-MS had poorer sensitivity when compared with the 

Agilent GC-MS, only the Agilent was used to analyse MIB. Method 2.2.1 was 

adapted to analyse MIB.  All variables were maintained apart from the GC 

temperature program and the ion selected for SIM mode.  The temperature 

programme was changed to the following, 60 °C (held f or 2 min) followed by an 

increase to 100 °C (20 °C min -1), then an increase to  175 °C (7.5 °C min -1) and 

finally an increase to 300 °C (held for 0.5 min). The Agilent GC-MS was again 

operated in simultaneous full scan/SIM mode, with the mass range for full scan 

set between 50 and 300 and the same ion selected for SIM (m/z 95). 

 

Each day that the GC-MS was used for MIB analysis a range of MIB in 

methanol samples, with an approximate range of 1, 10, 25, 50, 100 ng mL-1, 

were analysed. The samples were prepared from the MIB-methanol stock 

solution. 

 

 

 



 63 

2.2.2  SPE of GSM and MIB 
 

The efficacies of three different SPE sorbent phases were evaluated for the 

recovery of GSM.  Reverse phase SPE was carried out using C2, C8, and C18 

SPE cartridges; 1 mL reservoir capacity and 25 mg of sorbent (Biotage, UK).  

For MIB only the C8 and C18 cartridges were evaluated.  Triplicates of each 

sorbet phase were prepared by conditioning with 4 mL of methanol followed by   

4 mL of Milli-Q water (Millipore, Waterford, UK).  A 1 µg mL-1 solution of GSM in 

Milli-Q water was prepared and 1 mL of the solution was applied to each SPE 

cartridge.  The SPE procedure was carried out using a VacMasterTM Vacuum 

Manifold System (Figure 2-2).  Initially the negative pressure on the manifold 

was set at -0.05 bar.  Upon the sample passing through the cartridge the 

pressure was then increased to -3.4 bar for 20 s to remove any remaining 

water.  The GSM or MIB was then eluted directly into a GC-MS vial with 1 mL of 

methanol. A further two elutions of 1 mL of methanol were collected in new 

vials, three 1 mL elutions for each cartridge. Only one 1 mL elution was 

collected for MIB.  The recovery of GSM and MIB by the different SPE sorbents 

was then determined by GC-MS. 

 

 

Figure 2-2. Schematic of the Vacmaster TM Vacuum Manifold system. 

Collection vial 

SPE cartridges 

Manifold tap 

Vacuum line 

Pressure gauge  
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2.2.3  Evaporation of methanol from GSM and MIB stock solutions 
 

It was noted that the GSM and MIB stock solutions were prepared in methanol, 

which would subsequently be added along with either GSM or MIB when 

preparing solutions to evaluate photocatalysis. In this scenario methanol would 

undergo competitive oxidation, consequently reducing the rate of GSM 

destruction.  As it was necessary to remove methanol, and its effect as a 

competing oxidant from GSM and MIB solutions that where to undergo 

photocatalysis, a method was developed to remove methanol from the GSM 

and MIB stock solutions.  This method would allow the removal of methanol 

from small volumes of the GSM or MIB stock solutions as required. 

 

A Techne sample concentrator (Techne, N.J., USA), with a nitrogen supply, was 

used to evaporate methanol from the GSM and MIB stock solutions using the 

following method.  GSM-methanol or MIB-methanol stock solution was pipetted 

into a 4 mL glass vial, the pipetted volume dependant on the desired 

concentration of the final solution. In this instance the volumes pipetted were   

50 µl GSM-methanol stock and 10 µl MIB-methanol stock.  The needle from the 

sample concentrator was lowered into the glass vial so as the needle was 

positioned approximately 2-3 mm above the GSM-methanol or MIB-methanol 

solution.  The flow of nitrogen through the sample concentrator was turned on 

and maintained at 80 mL min-1. The vial, containing either the GSM-methanol or 

MIB-methanol solution, was left positioned under the needle for 1 minute, after 

which the nitrogen was turned off.  This resulted in the methanol being 

evaporated from the vial. The GSM or MIB was then exhaustively                    

re-suspended by addition of 1 mL of Milli-Q into the vial which was vortexed for     

20 s.  This solution was transferred from the vial to a volumetric flask using a 

new glass Pasteur pipette.  Milli-Q was then taken up into the pipette and 

emptied into the volumetric flask after each transfer. This process was repeated 

twenty times.  The re-suspended GSM and MIB solutions were processed as in 

method 2.2.2 together with comparable solutions of GSM and MIB prepared by 

direct dilution of the GSM-methanol and MIB-methanol stocks. The recovery of 

GSM was determined by GC-MS and the re-suspended GSM and MIB solutions 

compared with the direct dilution solutions for GSM and MIB. 
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2.2.4  Trace analysis of GSM Using SPE 

 

2.2.4.1  Evaluation of C8 SPE cartridges for trace analysis 
 

Environmental levels of GSM that can cause off-flavour episodes in water can 

have concentrations in the low ng L-1 range.  Concentrations in this range are 

too low to analyse using method 2.2.3.  However, SPE can be used for the 

trace enrichment of GSM in a water sample.  For example a 100 mL sample of 

water containing a trace concentration of GSM could be applied to a SPE 

cartridge and the cartridge eluted with 1 mL of methanol. Theoretically this 

would give a enrichment factor of 100, increasing the concentration of GSM in 

the eluent to a level that can be analysed by GC-MS. 

 

The C8 SPE cartridges used in method 2.2.3 were evaluated to determine if 

they could be used to concentrate GSM from larger sample volumes.  The 

addition of a 100 mL sample to a SPE cartridge and subsequent elution with      

1 mL of methanol would create a concentration step required to investigate 

samples with a concentration in the environmental range.  

 

Six C8 cartridges were prepared as in method 2.2.3.  A 1 mL sample of 1 µg 

mL-1 GSM in Milli-Q was applied to a C8 cartridge, this was repeated to give 

three cartridges with a 1 mL sample applied.  The remaining three C8 cartridges 

each had a 100 mL sample of 10 ng mL-1 GSM in Milli-Q applied to it.  The 100 

mL samples were contained in individual sample bottles. The samples were 

transferred from the bottles to the cartridges by Teflon feed lines, the feed lines 

were attached to the cartridges with adapters that created an air tight seal. All 

C8 cartridges were eluted with 1 mL of methanol. The SPE procedure was 

carried out using a VacMasterTM Vacuum Manifold System and the recovery of 

GSM determined by GC-MS. 

 

 

2.2.4.2  SPE of waters spiked with GSM 
 

Water samples collected from Aberdeen (tap water) and the River Cowie, 

Stonehaven (raw water) were spiked with GSM to evaluate SPE for the trace 
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enrichment of GSM from these waters.  These waters will be appreciably 

different from the Milli-Q water used in previous experiments, with significantly 

more complex matrices, this is especially noticeable for the River Cowie raw 

water which has a dark humic colour.  Both waters could contain substances 

which may interfere with the extraction and elution of GSM.  Additionally the 

presence of compounds that may be eluted with GSM could interfere with 

analysis. 

 

The two collected waters were filtered using GF/C filter disks (110 mm, 

Whatman International Ltd., Maidstone, UK) to remove particulates.  Two 

solutions were prepared from each water by spiking them with GSM to obtain 

solutions with concentrations of 10 ng mL-1 and 1 µg mL-1. These solutions were 

applied to C8 cartridges as described in method 2.2.5.1.  The SPE procedure 

was carried out using a VacMasterTM Vacuum Manifold System and the 

recovery of GSM determined by GC-MS. 

 

 

2.2.4.3  Use of aqueous methanol wash to remove matrix interferences  
 

Using SPE to concentrate GSM from larger volumes of water could cause the 

problem of compounds being eluted in addition to GSM that could interfere with 

the quantification of GSM.  Therefore the use of an aqueous methanol wash to 

remove matrix interferences was proposed.  This aqueous methanol wash 

would be applied to the C8 cartridge after the initial sample had been applied 

and eluted.  The effect of aqueous methanol washes, with 90, 80, 70, 60, 50, 

40, 30, and 20 % methanol, were investigated to determine whether they would 

elute GSM from C8,  This would establish if GSM would be lost by using an 

aqueous methanol wash step. 

 

SPE cartridges were prepared as in method 2.2.3 and 1 mL of 1 µg mL-1 GSM 

in Milli-Q solution applied to a C8 SPE cartridge and eluted.  The aqueous 

methanol wash being investigated was then applied (1 mL) to the same 

cartridge and eluted into a collection tube.  This sample cannot be quantified by 

GC-MS as it is an aqueous mixture.  To solve this problem 9 mL of Milli-Q was 
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first added to the collection tube containing the eluted aqueous methanol wash 

(1 mL). This 10 mL solution was then applied to a new C8 cartridge and eluted, 

1 mL of 100% methanol was then applied to the same C8 cartridge and eluted 

into a vial for analysis by GC-MS.  All aqueous methanol washes investigated 

were performed in triplicate. The SPE procedure was carried out using a 

VacMasterTM Vacuum Manifold System and recovery of GSM determined by 

GC-MS. 

 

 

2.2.4.4  SPE of GSM spiked water with aqueous methanol wash 
 

Having determined that a 40% aqueous methanol wash could be applied to C8 

cartridges without any significant loss of GSM, the effect of the wash on 

removing matrix interferences was investigated. The effect of the wash step on 

the recovery of GSM in the spiked water samples was also investigated 

 

SPE cartridges were prepared as in method 2.2.2. Triplicate samples (1 mL of       

1 µg mL-1) of GSM in Milli-Q, Aberdeen tap water and river water from the 

Cowie in Stonehaven were applied to C8 SPE cartridges.  A 40 % aqueous 

methanol solution (1 mL) was applied to the cartridge and eluted, followed by 

the addition of 1 mL of 100 % methanol which was eluted into a collection vial 

for analysis.  The SPE procedure was carried out using a VacMasterTM Vacuum 

Manifold System, with recovery of GSM determined by GC-MS. 

 

 

 

2.3 RESULTS AND DISCUSSION 
 

2.3.1  GC-MS analysis of GSM and MIB 
 

GC-MS analysis of a 1000 ng mL-1 (±)-GSM in methanol standard, prepared 

from a GSM standard (Sigma-aldrich, UK), indicates that GSM was successfully 

detected in both full scan (Figure 2-3) and SIM mode (Figure 2-4). A            

1000 ng mL-1 MIB in methanol solution, prepared from a MIB-methanol stock, 

was also successfully analysed by GC-MS, resulting in detection of MIB in full 
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scan (Figure 2.3) and SIM mode (Figure 2-4). The identities of GSM and MIB 

were verified using a National Institute of Standards and Technology (NIST) 

mass spectral library.  The full scan chromatograms in Figure 2-3 contain peaks 

other than GSM and MIB.  These peaks can be attributed to the methanol used 

to prepare the GSM and MIB standards and silanol compounds from the column 

which had been recently replaced.  These additional peaks were present when 

only methanol was injected and analysed, and did not interfere with the analysis 

of GSM and MIB. 

 

GSM in methanol solutions, with the approximate concentrations of 1, 10, 50, 

100, 500, and 1000 ng mL-1, were prepared from a GSM-methanol stock 

solution (section 2.3.1) were detected by both the Clarus and Agilent GC-MS’s.  

A good linear relationship was observed between GSM concentration and peak 

area for both instruments in SIM, with correlation coefficients for the Clarus and 

Agilent GC-MS’s 0.9934 and 0.9999  respectively (Figure 2-5). 

 

The GSM in methanol standards prepared from the (±)-GSM standard (Sigma-

aldrich, UK) were detected by both GC-MS’s in SIM mode. The Agilent detected 

all concentrations (Figure 2-6), with the calibration having a correlation 

coefficient of 0.994. However, the Clarus was unable to detect any of the 

standards with a concentration lower than 500 ng mL-1. 

 

MIB in methanol solutions, with the approximate concentrations of 1, 10, 50, 

100, 500, and 1000 ng mL-1, were prepared from a MIB-methanol stock solution  

(section 2.3.1) were detected the Agilent GC-MS.  Again a good linear 

relationship was observed between MIB concentration and peak area in SIM, 

with a correlation coefficients of 0.991 (Figure 2-7).  MIB concentrations below 

10 ng mL-1 were not detected. 
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Figure 2-3. Full scan chromatograms of Agilent GC-M S analysis of 
(a) 1000 ng mL -1 (±)-GSM standard (dilution of Sigma-aldrich GSM st andard) 

 and (b) 1000 ng mL -1 MIB standard (dilution of MIB stock dilution). 
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Figure 2-4. SIM (m/z 112 and 95 for GSM and MIB resp ectively) chromatograms of 
Agilent GC-MS analysis for (a) 1000 ng mL -1 (±)-GSM standard (dilution of 

Supelco GSM standard) and (b) 1000 ng mL -1 MIB standard (dilution of MIB stock 
dilution). 
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Figure 2-5. Analysis of GSM in methanol solutions u sing (a) Clarus (b) Agilent     
GC-MS’s.  Solutions, concentrations 0.01, 0.1, 0.5,  1, 5, and 10 µµµµg mL -1, prepared 

from the GSM-methanol stock solution. Data collecte d in SIM mode. 
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Figure 2-6. Calibration of Agilent GC-MS using GSM in methanol standards  
(1, 10, 50, 100, 500, and 1000 ng mL -1) prepared from a (±)-GSM standard  

(Sigma-aldrich, UK). Data collected in SIM mode. 
 

 

 

Figure 2-7. Analysis of MIB in methanol solutions b y Agilent GC-MS. Solutions, 
approximate concentrations (1, 10, 50, 100, 500, an d 1000 ng mL -1), prepared 

from the MIB-methanol stock solution. Data collecte d in SIM mode. 
 

y = 66.058x - 675.19

R2 = 0.994

0

10000

20000

30000

40000

50000

60000

70000

80000

0 100 200 300 400 500 600 700 800 900 1000
 
     GSM concentration (ng mL -1) 

P
ea

k 
A

re
a 

y = 162.94x + 762.95

R2 = 0.9991

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000
 
     MIB concentration (ng mL -1) 

P
ea

k 
A

re
a 



 73 

The two data sets (Figures 2-5 and 2-6) show that samples prepared by dilution 

of the GSM-methanol stock have peak areas approximately ten times higher, 

across all concentrations, when compared with the standards prepared from the 

(±)-GSM standard (Sigma-aldrich, UK).  This difference in concentration was 

taken into account when preparing future GSM test solutions. The method 

detection limit (MDL) for analysis of (±)-GSM in methanol standards using the 

Clarus was 500 ng mL-1, the Agilent GC-MS performed significantly better with 

a MDL of 1 ng mL-1. As the Agilent GC-MS had significantly better sensitivity, it 

alone was used to analyse dilutions of the MIB-methanol stock solution, with a 

MDL of 10 ng mL-1 observed. The Clarus GC-MS was used for the initial 

development of the GSM and MIB GC-MS analytical method and in the 

development of the bench-scale photocatalytic reactors in Chapter 3.  Neither of 

these research elements required high sensitivity so the Clarus GC-MS’s 

limitations were not an issue.  However, for the majority of the work conducted 

good sensitivity was required and for this reason the Agilent was used for 

analysis. 

 

 

2.3.2  SPE of GSM and MIB 
 

GC-MS analysis of the fractions obtained from the extraction of 1 mL of             

1 µg mL-1 . GSM shows that total recovery for the three elutions (Table 2-2) was 

greatest for C18 (97.5 %), followed by C8 (93.2 %), and finally C2 (79.6 %). As 

expected the first 1 mL elution for each sorbent type was shown to contain the 

highest concentration of GSM.  C8 had the highest recovery (92.8 %) of GSM in 

the first elution and also the best reproducibility when compared to the next best 

SPE sorbent C18, 2.25 % RSD compared to 8.75 %.  In the case of C2 and C8 

the second fraction contained less than 1 % of the total GSM extracted, C18 

contained over 6 %. For all sorbent types the third fraction contained residual or 

no detectable level of GSM (>0.3 %).  These results clearly demonstrate the 

effect of the polarity of the SPE sorbent in retaining GSM, with GSM retention 

decreasing from the most polar sorbent (C18) to the least polar (C2). 
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Table 2-2. Recovery of 1 µµµµg mL -1 GSM using C2, C8, and  
C18 SPE cartridges as determined by GC-MS. 

 

 

As reported by Cole et al. (2003) extraction of MIB and GSM using SPE 

followed by GC-MS analysis allows rapid and inexpensive quantification.  The 

SPE method used by Cole et al. (2003) used C18 disks to extract GSM from     

1 L of water containing 50 ng L-1 of GSM, with a reported recovery of                      

91 % (± 6.3 %).   Although the GSM concentration used in the Cole et al. study 

was significantly lower than used here, and the volume higher, the recoveries 

using C18 are very similar.   The SPE method reported by Cole et al. (2003) 

was considerably more complex than the method described in 2.2.2.  As in 

method 2.2.2, methanol and water were used to prepare a C18 disk, however 

three 5 mL elutions were made to extract the GSM.  These eluents were 

pooled, then dried and concentrated. 

 

To ensure that the method to extract GSM using SPE was as rapid as possible 

only one elution would be made from the cartridges used. Pooling three 1 mL 

eluents, without a concentration step, and analysing by GC-MS would decrease 

the detection of GSM.  Therefore, C8 cartridges were selected to extract GSM 

from water solutions in this study.  Although C18 gave better overall recovery, 

the recovery and the reproducibility in the first eluent was greatest for C8.   

 

The analysis of the MIB fractions obtained from the extraction of 1 mL of            

1 µg mL-1 MIB proves recovery and reproducibility for MIB (Table 2.3) was 

greatest for C8 cartridges, with 82 % MIB recovered in the first fraction with an 

RSD of 5.01 %, compared with 72% recovery and an RSD of 13.15 % for the 

C18 cartridges.   Cole et al. (2003) reported the recovery of MIB by C18 disks 

from 1 L of water containing 50 ng L-1 of MIB as 97.5 % (±16.2 %). This 

SPE 
Sorbent 

% Recovery 
Eluent 1 

% RSD 
(n=3) 

% Recovery 
Eluent  2 

% RSD 
(n=3) 

C2 78.9 6.51 0.6 29.65 
C8 92.8 2.25 0.4   8.66 

    C18 90.9 8.75 6.3   1.64 
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recovery of MIB with C18 is higher than found in this study, however the 

variability of MIB recovery in this study and that by Cole et al. is similar. Conte 

et al. (1996) also reported on the extraction of MIB from 1 L of water using       

C-18, with recoveries of MIB from water containing 101 and 220 ng L-1 of MIB 

85.3 (±16.2 %) and 82.2 (±6.5 %) % respectively.  The greater recoveries for 

MIB using C18 in both studies can be attributed to the use of more than one 

elution to extract the MIB. 

 

 

 

 

 
Table 2-3. Recovery of 1 µµµµg mL -1 MIB using C8, and  

C18 SPE cartridges as determined by GC-MS. 
 

 

Only one 1 mL methanol elution was made from each C8 and C18 cartridge 

loaded with the MIB solution.  Again this is to ensure that the SPE method is as 

rapid as possible and that the sensitivity of the MIB analysis by GC-MS is not 

compromised.  C8 cartridges were selected to extract GSM from water solutions 

in this study as they gave the highest recovery for MIB from water with one 

elution. 

 

 

2.3.3  Evaporation of methanol from GSM and MIB stock solutions 
 

Removal of methanol from the GSM-methanol and MIB-methanol stock 

solutions was achieved by evaporating the methanol using a sample 

concentrator with a nitrogen gas supply.  GC-MS analysis of the 5 µg mL-1        

re-suspended GSM solution shows that recovery of GSM using the method 

described in method 2.3.3 gave 89 (± 0.66) % recovery.  For the re-suspended 

1 µg mL-1 MIB solution recovery was extremely poor with only 2.3 (± 0.18) % of 

MIB recovered. This difference in recovery is possibly due to the different 

volatilities of GSM and MIB.  The boiling points of MIB and GSM are reported as 

196.7 and 165.1 °C by Pirbazari  et al. (1992).  This would suggest that MIB is 

SPE Sorbent % Recovery  % RSD (n=3) 
 C8 82.0   5.01 

 C18 72.3 13.15 
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less volatile than GSM. However, the manufacturers (Ultrafine, UK) of the GSM 

and MIB used in this work stated the boiling points of MIB and GSM as 165 and 

270 °C.  The Merck Index (Budavari, 2001) also states the  boiling point of GSM 

as 270 °C.  The experiment conducted here would suggest that MIB is more 

volatile than GSM when dissolved in methanol.  If the boiling point of GSM is 

270 °C, then MIB will have a boiling point (165.1 °C ) almost 40 % lower than 

GSM.  This would suggest that GSM is considerably less volatile than MIB 

explaining why GSM was not volatilised during the evaporation of methanol by 

nitrogen gas. 

 

Another possible explanation may be the adhesive properties of GSM. After the 

evaporation of methanol from the GSM-methanol stock, present in glass 4 mL 

vials, bands of small globules were observed, adhering to the inside lower 

portion of the vial.  The number of globules and bands were dependant on the 

volume of GSM-methanol stock used, with the number of globules and bands 

increasing as volume increased.  The interaction between the GSM and the 

glass may be a factor in limiting its volatilization during methanol removal. GSM 

is an oil at room temperature, compared to MIB which is a crystalline solid, 

increasing the likelihood of GSM adhering to the glass vial over MIB. 

Evaporation of methanol from the MIB-methanol stock by nitrogen, at the flow 

rate investigated, and subsequent re-suspension in Milli-Q is not a viable option 

for preparation of methanol free MIB solutions. 

 

 

2.3.4.1  Evaluation of C8 SPE cartridges for trace analysis 
 

The concentration of GSM in a 100 mL solution using C8 SPE was achieved. 

The recoveries of the 100 mL 10 ng mL-1 GSM solution and the 1 mL 1 µg mL-1 

GSM control are very similar, with recoveries of 91.3 (± 9.4) % and 94.4           

(± 12.9) % respectively.  This clearly demonstrates that C8 cartridges are 

capable of accepting the increased volume of water and that the recovery of 

GSM is good with little effect on performance.  This success allowed the 

progression to investigating GSM concentration in other water types.  
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2.3.4.2  SPE of waters spiked with GSM 
 

Following the success of C8 SPE cartridges in concentrating GSM from Milli-Q 

water, the enrichment of GSM from tap water and river water using C8 was 

evaluated.  Aberdeen tap water and River Cowie water spiked with GSM will 

provide a significantly more robust test of SPE for concentrating GSM.  The 

River Cowie water will provide a water type similar to that which may contain 

GSM in the natural environment.  Both waters were filtered prior to spiking with 

GSM, a significant covering of small pieces of organic matter were observed on 

the filter used for the River Cowie water. 

 

 % Recovery 

 
1 mL 

Control 
RSD % 
(n=3) 

100 mL 
solution 

RSD % 
(n=3) 

Aberdeen Tap Water 52.7 10.7 91.7 13.5 
River Cowie Water     86.0 16.3 92.6 16.2 

 

Table 2-4. Recoveries of 100 mL 10 ng mL -1 re-suspended GSM and  
1 mL 1000 ng mL -1 re-suspended GSM solutions using C8 cartridges for   

(a) Aberdeen tap water and  (b) Cowie river water 
 

 

The recovery of GSM from the 100 mL tap water sample that had been 

concentrated and eluted with 1 mL was significantly higher, 91.7 (± 13.5) %, 

than the recovery for the 1 mL tap water control  52.7 (± 10.7) % (Table 2-4). 

The 1 mL control and 100 mL samples for River Cowie water show similar 

recoveries for GSM (Table 2-4), with recoveries of 86.0 (± 16.3) % and          

92.6 (± 16.2) % respectively.  The correlation between recoveries of GSM for 

control and 100 mL samples were considerably closer for the River Cowie 

samples than for the tap water samples.  The variation in recoveries and the 

decrease in reproducibility is probably caused by the presence of compounds in 

the sample matrix that have been co-eluted with GSM.  These compounds have 

clearly interfered with the perceived amount of GSM present in the spiked tap 

and river water samples. A chromatogram of Aberdeen tap water spiked with 10 

ng mL-1 GSM (Figure 2-8a) indicates interferences in the GSM elution area 

(~9.35 min).  
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Figure 2-8. GC-MS chromatograms of GSM recovered fr om waters (100 mL) 
spiked with 10 ng mL -1 GSM (a) spiked Aberdeen tap water  

(b) spiked River Cowie water. 
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The interferences are less pronounced for the River Cowie water spiked with   

10 ng mL-1 GSM (Figure 2-8b).  Blanks for both tap and river water samples (no 

spiked GSM) showed no detectable GSM present.   

 

Interferences caused by the SPE trace-enrichment process are common 

(Thruman et al., 1998).  For environmental samples the typical interferences 

include particulate matter that can accumulate on the head of the sorbent phase 

within the SPE cartridge and natural organic substances that are removed by 

sorption to the SPE cartridge.  While these factors are the probable cause of the 

interferences for the River Cowie water analysis, specifically humic compounds, 

it is improbable that they are causing the analytical interference for the 

Aberdeen tap water.  The tap water has undergone water treatment and 

subsequently should contain very little organic matter, this is verified by TOC 

analysis conducted in Chapter 5 (pg 160).  It is possible that inorganic 

compounds present in both sample matrices are causing interferences. These 

interferences can be removed by a rinse or wash step prior to final elution of 

GSM from the SPE cartridge.  The wash involves the use of a suitable solvent 

to remove any interferences.  Therefore the use of a wash step prior to elution 

with 100% methanol was investigated. 

 

 

2.3.4.3  Use of aqueous methanol to remove matrix interferences 
 

The effect of interferences on the quantification of GSM using SPE-GC-MS may 

be resolved by the use of a wash step to remove these interferences.  The 

method used by Conte et al. (1996) used a deionised water wash step before 

elution with ethyl acetate. Cole et al. (2003) did use a wash step, eluting first 

with ethyl acetate and then with methylene chloride.  Ethyl acetate will remove 

the majority of hydrophobic substances, such as GSM, sorbed to a C-8 or C-18 

SPE phase while the majority of humic substances will be retained (Thruman et 

al., 1998).  However, interferences in the tap water sample spiked with GSM are 

not caused by organic substances so the use of ethyl acetate would not remedy 

this problem. As the interferences are clearly eluted by 100 % methanol the use 
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of an aqueous methanol wash may help reduce the problem.  However, the 

elution of GSM from using an aqueous methanol wash must first be quantified. 

 

The results (Figure 2-9) clearly demonstrate the effect aqueous methanol has 

on elution of GSM from C8 cartridges, with GSM extraction decreasing as the 

proportion of methanol in the aqueous methanol solution used for elution 

decreases.  The on/off effect of SPE is also visibly demonstrated by the notable 

difference in GSM extraction for 100 and 40 percent methanol elutions         

(Figure 2-10), with no visible sign of GSM in the chromatogram for the 40 % 

aqueous methanol wash. The results clearly show that an aqueous methanol 

wash, containing 50 % methanol or less, could be used to remove interferences 

without significant loss of GSM (Figure 2-9).  The higher the percentage of 

methanol in the aqueous methanol wash the increased probability of 

interferences being removed.  However, a compromise had to be made 

between the increased probability of removing interferences and reducing loss 

of GSM.  Therefore the choice was between the aqueous methanol washes 

containing 40 and 50 % methanol. The aqueous methanol wash, containing     

50 % methanol, eluted a small proportion of GSM from C8 SPE cartridges. The 

amount of GSM eluted was equal to 4.5 (± 0.4) % of that eluted with 100 % 

methanol.  For the aqueous wash containing 40 % methanol this value was 

considerably lower, 0.4 (± 0.2) %. 

 

Therefore, the selection of an aqueous methanol wash, containing 40 % 

methanol, achieves the best balance between reduction of GSM loss and 

maximised interference removal. For future experiments involving raw waters 

spiked with GSM an extra wash step was introduced to the SPE process.  After 

the raw water sample is loaded the cartridge will be washed with 1 mL of a      

40 % aqueous methanol. 
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Figure 2-9. GC-MS analysis of GSM elutions from C8 cartridges with additional 
aqueous methanol step.  Bars are equivalent to one standard deviation (n=3). 

 

 

Figure 2-10. Overlayed GC-MS chromatograms of GSM q uantification, eluted  
with(       ) 100% methanol and (        ) 40% aque ous methanol.  

Note the difference in GSM eluted (circled).  
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2.3.4.4  SPE of GSM spiked raw water with additional methanol wash 
 

The improvement in the quantification of GSM in Aberdeen tap and River Cowie 

water due to the use of a 40% aqueous methanol wash can be seen in Figures 

2-11 and 2-12.  The addition of a wash step had the desired effect of removing 

unwanted retained compounds on the SPE cartridges, which were interfering 

with the quantification of GSM. 

 

The GSM recoveries for Milli-Q and tap water were lower when compared to the 

unwashed samples, 17.5 and 13.4 % respectively,  but GSM recovery for the 

washed River Cowie sample was slightly higher (3.6 %) than the unwashed 

sample (Table 2-5 and Figure 2-12).  The reproducibility for the washed 

samples was higher than the unwashed samples.  Although there is a slight loss 

in GSM recovery with the addition of an aqueous methanol wash, the wash is 

necessary for reproducible results when using water types other than Milli-Q. 

 

 

 

 
 
 
 
 

 

Table 2-5. Recoveries of 100 mL 10 ng mL -1 re-suspended GSM and  
1 mL 1000 ng mL -1 re-suspended GSM solutions using C8 cartridges for   

Milli-Q, Aberdeen tap water, and Cowie river water 
 

 

 

 

 

 

 

 

 

 

 % Recovery 

 No Wash  
RSD % 
(n=3) Wash 

RSD % 
(n=3) 

Milli-Q 90.9 24.2 73.4 5.3 
Aberdeen tap water  90.1 11.5 76.7 5.0 
River Cowie water 92.3 11.8 95.9    10.8 
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Figure 2-11. GC-MS chromatograms of Aberdeen tap wa ter spiked with GSM  
(a) without 40% aqueous methanol step (b) with 40% aqueous methanol step 
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Figure 2-12. GC-MS chromatograms of River Cowie wat er spiked with GSM              
(a) without 40% aqueous methanol step (b) with 40% aqueous methanol step 
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Figure 2-13. GC-MS analysis of Milli-Q, Aberdeen ta p water and River Cowie 
water samples (1 mL) spiked with GSM (1 µµµµg mL -1); No 40 % aqueous methanol 
wash ( ), 40 % aqueous methanol wash ( ). Bars equiva lent to one standard 

deviation (n=3). 
 

 

2.4 CONCLUSIONS 
 

This chapter established that SPE is a viable means of isolating GSM and MIB 

from water. The C8 sorbent phase represents the best compromise between 

recovery and reproducibility with recoveries of 93 (± 2.25) % and 82 (± 2.25) % 

respectively for GSM and MIB from Milli-Q.  The C8 cartridges also proved 

effective in trace analysis of GSM, essential for analysis of samples containing 

environmental concentrations of GSM. Therefore the decision to use C8 SPE 

cartridges for isolation of GSM and MIB, with subsequent analysis by GC-MS, in 

this study was made because it allowed high sample throughput with 

acceptable limits of detection (1 ng mL-1). 
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Also in this chapter a technique for the concentration of low levels of GSM in 

large water volumes was established.  Chromatograms obtained for GSM 

concentrated from spiked raw water by C8 cartridges (Figures 2-11 and 2-12) 

show interferences near the area where GSM is eluted from the GC column. 

The introduction of a 40 % aqueous methanol wash step improved 

quantification of GSM (Figures 2-11 and 2-12), with a slight reduction in GSM 

recovery. 

 

Finally the evaporation of methanol from the GSM-methanol stock was 

achieved, with good recovery of GSM 89 (± 0.66) %.  Unfortunately, the 

evaporation of methanol from the MIB-methanol stock was not achieved using 

the method developed.  This represented a significant problem as removal of 

the methanol from the MIB-methanol solution prior to re-suspension in Milli-Q 

was critical.  As discussed later methanol present in aqueous GSM solutions 

undergoing semiconductor photocatalysis causes a reduction in the rate of 

GSM destruction.  This is caused by the methanol acting as a competing 

reactant, this effect was also observed when aqueous solutions of MIB 

underwent semiconductor photocatalysis.   

 

The issue of evaporation of methanol from the MIB-methanol stock solution by 

the use of nitrogen gas was unresolved due to time constraints.  This resulted in 

the study focusing on the semiconductor photocatalysis of GSM. 
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CHAPTER 3 - BENCH SCALE PHOTOCATALYTIC REACTOR 
 

3.1 INTRODUCTION 
 

The treatment of water contaminated with toxic or undesirable compounds is a 

common problem throughout the world and as standards for water quality 

become evermore stringent the need for new treatment methods increases. A 

major issue for water treatment utilities is the problem of off-flavour.  Suffet et al. 

(1996) reported that 22 % of municipal water suppliers in the USA using surface 

water encounter off-flavour problems. Two compounds responsible for           

off-flavour are geosmin (GSM) and 2-methylisoborneol (MIB), produced by 

certain cyanobacteria and actinomycetes. 

 

For many years engineers have relied on traditional water treatment processes 

as diverse as sedimentation, filtration, coagulation, adsorption, and chemical 

oxidation.  However the majority of these technologies are non-destructive, 

relying on the physical separation of the pollutant from one phase to another, 

leaving the problem of the final and ultimate disposal of the transferred material.  

Conventional water treatment does not efficiently remove off-flavour from water               

(McGuire et al., 1988; Ando et al., 1992; Wnorowski, 1992). 

 

Photocatalysis using titanium dioxide (TiO2) has been investigated for treating 

contaminated water. The literature contains a very large number of references 

concerning research into titanium dioxide photocatalytic degradation of various 

compounds, with over 500 publications a year in this field since 1999              

(Carp et al., 2004). Much of this work has been conducted using P-25 TiO2, 

manufactured by the Degussa company. 

 

Previous work by Lawton et al. (2003) demonstrated the efficiency of P-25 

titanium dioxide in the removal of GSM and MIB.  However, processing was 

difficult due to the problems separating the catalyst from the GSM and MIB at 

the end of the reaction. Also non-specific adsorption made it difficult to 

differentiate catalytic activity and the loss of GSM and MIB to contactable 

surfaces within the reaction vessels. Non-specific adsorption of GSM and MIB 



 88 

during evaluation of technologies for their removal or destruction is not 

commonly discussed in the literature, but Elhadi et al. (2004) demonstrated 

system losses of GSM and MIB in bench-scale filtration apparatus could be 

substantial. The use of P-25 dispersed in an aqueous solution for the 

photocatalysis of GSM and MIB has an additional problem, post treatment the 

P-25 must be removed prior to analysis of the water. Numerous methods of 

isolating P-25 from solution were attempted by Lawton et al. (2003) including 

centrifugation and filtration but no ideal method was found. 

 

Using P-25 would also be unsuitable for use on a larger scale as it would have 

to be removed from solution post treatment, involving a filtration, coagulation, 

sedimentation or centrifugation step (Dijkstra et al., 2001).  A commercial 

system utilizing TiO2 to degrade pollutants in water is more likely to have the 

TiO2 immobilized, i.e. thin film reactor, and the contaminated water flowed over 

it (Mills et al., 1993). 

 

Due to the issues associated with using a powdered type of titanium dioxide it 

was decided that it would be more effective to use a pelleted form of titanium 

dioxide. This would eliminate the need to conduct removal of the catalyst prior 

to sample analysis. A commercially available titanium dioxide photocatalyst was 

selected, Hombikat K01/C (Sachtleben, Germany).  This is a new titanium 

dioxide photocatalyst and previous studies have shown the catalyst to be robust 

and have high efficiency in degrading microcystin-LR (Lawton et al., 2004). 

 

With the catalyst selected the reactor design was considered. A borosilicate 

glass tube was selected for the reaction vessel (140 mm in length and 20 mm in 

diameter; 44 cm3 volume) in which the catalyst would be deployed.  Elhadi et al. 

(2004) reported losses of GSM (200 ng L-1) to two litre glass feed bottles as          

8 (± 5.0) % after four days. If the rate of GSM adsorption to the glass reaction 

vessel is relatively slow, GSM loss in experiments conducted in this work will 

likely be limited due to their short duration.  The glass vessel with the catalyst 

deployed within it, in conjunction with a xenon UV lamp (400 W UVASpot 400 

lamp, Uvalight Technology Ltd; spectral output 330 – 450 nm), would constitute 

the main components of a number of reactor designs evaluated in this chapter. 
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The geometry of this vessel, small in volume and elongated, should allow 

efficient exposure of the catalyst by the irradiation source. Inefficient illumination 

of a catalyst is an issue which can affect larger reactors (Ray, 1999b).  The light 

absorbance of the glass reaction vessel was tested using a Perkin-Elmer 

Lambda 950 UV/Vis spectrophotometer (Perkin-Elmer, UK). This established 

that the vessel absorbed light in the 260-320 nm region (Appendix 1), although 

the glass filters out the higher energy UV-C and UV-B (200-315 nm) light, it will 

allow UV-A (315-400 nm) to reach the catalyst.  The band gap of titanium 

dioxide allows photooxidation to occur with adsorption of light in the near ultra 

violet region (~ 380 nm), therefore the light entering the vessel should be 

capable of activating the photocatalyst.  The problems associated with the 

design of larger reactors will be discussed in Chapter 5. 

 

Lawton et al., (2003) previously demonstrated photocatalysis using TiO2 

effectively removed GSM and MIB at concentrations higher (~2000 ng L-1) than 

those found in the environment, typically 20 – 100 ng L-1.  Both GSM and MIB 

were rapidly degraded with over 99 % decomposition of both compounds 

achieved within 60 minutes. The rate of GSM and MIB destruction increased 

with increasing GSM and MIB concentration. 

 

Research is necessary to optimise the conditions for the photocatalytic 

destruction of GSM and MIB and to elucidate the mechanism for destruction of 

GSM and MIB.  The following chapter presents work conducted to develop a 

bench scale reactor that will allow the evaluation of the Hombikat K01/C TiO2 

photocatalyst and minimise system losses of GSM. 

 

The band gap of titanium dioxide is 3.2 eV (Table 1-2), allowing photooxidation 

to occur with adsorption of light in the near ultra violet region (~ 380 nm). 
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3.2 METHODS 
 

3.2.1  Photocatalysis of GSM – Reactor V.1 
 

An aqueous solution of geosmin (100 mL; ~1 µg mL-1) was prepared and 

transferred to a 150 mL glass beaker, which would act as a reservoir.  The 

Hombikat K01/C titanium dioxide catalyst (15 g) was deployed within a glass 

borosilcate vessel (140 mm in length and 20 mm in diameter) that tapered 

towards one end, with a small glass insert placed into the bottom of the tapered 

end to restrict the flow through the reactor (Figure 3-1).  The 15 g of catalyst, 

which filled the majority of the vessel, was selected to maximise potential 

surface area for photocatalysis, while allowing space for 25 mL of test solution.  

This volume of solution would allow a number of samples to be taken from the 

vessel through the course of an experiment. A peristaltic pump (Watson-Marlow 

101U, Fisher Scientific, UK) with Marprene tubing (Fisher Scientific, UK; 1.6 mm 

wall, 4.8 mm bore) was used to circulate the solution, pumping it from the 

reservoir to the top of the reactor at a rate of 70 mL min-1.  The Marprene tubing 

is made from thermoplastic elastomers giving wide chemical compatibility and 

resistance to oxidising agents. The solution flows through the vessel and over 

the catalyst, exiting the bottom of the vessel and into the reservoir. The reactor 

was illuminated in the presence of air using a xenon UV lamp (400 W UVASpot 

400 lamp, Uvalight Technology Ltd; spectral output   330 – 450 nm) situated 30 

cm from the reactor.  Samples (1 mL) were taken from the reservoir at timed 

intervals of 0, 20, 40, 60, 80 100, 120, 140, and 160 minutes of illumination then 

analysed by SPE-GC-MS (see section 2.2.2). 

 

The reactor was also evaluated under two different control conditions, with 

samples taken at the same time intervals as the photocatalytic reaction.  Firstly 

with the catalyst loaded and the xenon lamp off and secondly without the 

catalyst loaded and the xenon lamp off. 

 

GSM losses observed under control conditions were considerable so the 

reactor was evaluated for the effect of non-specific adsorption of GSM. The 

reactor was set up as in method 3.2.1.  A GSM solution (100 mL; ~1 µg mL-1) 
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was circulated through the reactor for 160 minutes, the reactor was then 

drained and the catalyst removed. Any residual solution within the reactor was 

removed.  To determine non-specific adsorption of GSM within the reactor, 

methanol (100 mL) was placed into the reservoir and circulated for 120 minutes, 

with samples (1 mL) taken from the reservoir at timed intervals of 0, 40, 80, 120 

minutes.  These samples were analysed by SPE-GC-MS (see section 2.2.2). 

The methanol should extract adsorbed GSM within the reactor and allow non-

specific binding to be quantified. 

 

 

 

Figure 3-1. Bench scale re-circulatory photocatalyt ic reactor V.1.  Solution 
pumped from the reservoir by the peristaltic pump, through Marprene 

 tubing (indicated above by the thick black lines),  to the top of the glass  
vessel. The solution flows through the vessel and o ver the catalyst,  

returning to the reservoir ready for recirculation.  
 

 

After the methanol had been circulated through the reactor for 120 minutes the 

two ends of the Marprene tubing, still attached to the peristaltic pump, were 

placed into a beaker containing 100 mL methanol.  The methanol in the beaker 
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was circulated through the Marprene tubing for 120 minutes. Samples (1 mL) 

were taken from the beaker at timed intervals of 0, 40, 80, 120 minutes then 

analysed by SPE-GC-MS (see section 2.2.2). 

 

 

3.2.2  Photocatalysis of GSM – Reactor V.2 
 

The reactor design was modified to eliminate non-specific adsorption of GSM.  

Where possible the majority of the Marprene tubing was removed and replaced 

with borosilicate glass tubing (Figure 3-2).  A section of tubing approximately       

20 cm in length remained as this was required to allow the continued use of the 

peristaltic pump.  Reactor conditions as described in method 3.2.1 were 

evaluated.  However, the reactor was not evaluated with the catalyst loaded and 

the xenon lamp off as the catalyst would adsorb GSM, making it more difficult to 

attribute GSM loss to non-specific adsorption within the reactor alone. 

 

Figure 3-2. Bench scale re-circulatory photocatalyt ic reactor V.2.  Solution 
pumped from the reservoir by a peristaltic pump, th rough a combination of 
Marprene tubing (indicated above by the thick black line) a nd glass tubing 

(indicated above by the clear tubing), to the top o f the glass tube. The  
solution flows through the vessel and over the cata lyst, returning to the  

reservoir ready for recirculation. 
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Post experiment the Marprene tubing from the peristaltic pump was removed, 

cut into 8 sections and placed into a 50 mL glass bottle. Methanol was added 

(50 mL) to the bottle and the bottle capped with an air-tight cap. The immersion 

of the tubing sections in methanol should desorb any GSM that was adsorbed 

to the tubing during the control experiment for the 100 mL; ~1 µg mL-1 GSM 

solution.  Samples (1 mL) were taken at 20, 120, 300 minutes, and 120 hours.  

All samples were analysed by SPE-GC-MS (see section 2.2.2). 

 

 

3.2.3  Photocatalysis of GSM – Reactor V.3 
 

The design of the reactor was once again modified, this time to exclude the use 

of Marprene tubing as it was found to be the cause of a significant proportion of 

the losses of GSM observed.  With non-specific adsorption of GSM onto the 

remaining tubing still a significant issue and with other types of tubing likely to 

suffer the same problem, the new design had to ensure that no Marprene tubing 

was present. Where tubing was required, measures were taken to minimise 

contact with the GSM solution.  Teflon tubing (Teflon FEP, Nalgene 890, Fisher, 

UK) was selected as Elhadi et al. (2004) had concluded that it minimised non-

specific adsorption of GSM.  A consequence of this was that a new method of 

pumping/mixing the test solutions was required as a peristaltic pump could no 

longer be used because of the rigidness of the Teflon tubing.  V.3 of the reactor 

(Figure 3-3) incorporated an air pump (Jun aquarium pump, Jun-Air, UK; 

Maximum air output 4.2 L) to suspend the GSM solution within the reactor, 

allowing the removal of the remaining Marprene tubing.  Unlike V.1 and V.2 of 

the reactor this version is not a re-circulatory batch reactor.  The design change 

simplified the reactor considerably, reducing the length of tubing required and 

rendering the beaker used as a reservoir redundant.  Teflon tubing was used to 

connect the pump to a rotameter which was included to regulate the air flow 

from the pump.  The rotameter was connected to the bottom of the reactor with 

Teflon tubing. The tubing was then secured to the bottom of the reactor by 

using a sleeve that attached to the reactor and passed over the outside of the 

Teflon tubing.  This ensured a tight seal and as the air from the pump 

suspended the solution within the reactor, contact between the Teflon tubing 
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and the solution within the reactor was minimal.  An added advantage of this 

design is that the test solution is aerated, supplying required oxygen necessary 

for photocatalysis (Mills et al., 1993). 

 

 

 

 

Figure 3-3. Bench scale batch photocatalytic reacto r V.3.  The arrows indicate  
the air flow, moving from the air pump, through the  Teflon tubing and into  

the bottom of the glass vessel.  The solution withi n in the vessel is  
suspended by the air entering the bottom of the rea ctor.  A  

rotameter maintains the aeration rate. 
 

 

The reactor was filled with 15 g of Hombikat K01/C. The air flow, passing 

through the rotameter, and exiting the tubing to be connected to the bottom of 

the reactor, was maintained at 32 mL min-1. The air flow was verified by a flow 

meter (CS1 6000 solid state flow meter, Cambridge Scientific Instruments Ltd., 

England). This Teflon tubing was then connected to the bottom of the reactor 

and the integrity of the seal checked.  An aqueous solution of geosmin (100 mL; 

~1 µg mL-1) was prepared, of which 20 mL was added to the reactor. After 

addition of the solution checks were conducted to ensure that there were no 

leaks. 
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The reactor was then illuminated, in the presence of air, using a xenon UV lamp 

(400 W UVASpot 400 lamp, Uvalight Technology Ltd; spectral output                 

330 – 450 nm) situated 30 cm from the reactor.  Samples (1 mL) were taken at 

timed intervals of 0, 20, 40, and 60 minutes of illumination then analysed by           

SPE-GC-MS (see section 2.2.2). The reactor was also evaluated with no 

catalyst loaded and the xenon lamp switched off for a period of 60 minutes with 

samples taken at 0, 20, 40, and 60 minutes. 

 

 

3.3 RESULTS AND DISCUSSION 
 

3.3.1  Photocatalysis of GSM – Reactor V.1 
 

Analysis of the loss of GSM due to photocatalysis indicated a substantial 

reduction in concentration (Figure 3-4), with approximately 15 % of GSM 

remaining after 40 minutes. However, the reduction of GSM under the two 

different control conditions, catalyst with the xenon lamp off and no catalyst with 

the xenon lamp off, were also significant with only 30 % GSM remaining after  

40 minutes (Figure 3-4).  From the results shown in Figure 3-4 it is not possible 

to conclude that the loss of GSM is due to TiO2 photocatalysis. GSM was being 

lost in the absence of photocatalytic conditions, possibly due to non-specific 

adsorption of GSM within the reactor and/or volatilisation of GSM to the 

atmosphere. 

 

Methanol (100 mL) was re-circulated through the reactor to desorb any GSM 

that may be present in the reactor, therefore determining the extent non-specific 

adsorption of GSM.  Prior to the methanol being pumped through the reactor a 

control experiment (the no catalyst, xenon lamp off control from Figure 3-4) 

involving the re-circulation of a 100 mL ~1 µg mL-1 GSM solution had been 

conducted.  As 90 % of the GSM had been lost under this control it ensured that 

if non-specific binding was the cause of the GSM loss then the reactor would 

contain adequate GSM to extract with methanol.  There was a 50 % reduction in 

volume of the initial 100 mL methanol after 120 minutes of re-circulation due to 

evaporation. Analysis of the re-circulated methanol resulted in the detection of 
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GSM (Table 3-1). The 120 minute sample contained 21.7 % of the GSM lost in 

the no catalyst, xenon lamp off control, a significant portion of the total GSM 

lost. 

 

 

 

Figure 3-4. Photocatalytic destruction of GSM in re -circulatory reactor V.1 using 
Hombikat K01/C.  Catalyst present, xenon lamp on ( ) ; Catalyst present, 

xenon lamp off ( ); xenon lamp off, no catalyst ( ). 
GSM loss monitored by GC-MS. 

 

 

The Marprene tubing was disconnected from the reactor, but left attached to the 

peristlatic pump.  Methanol (100 mL) that had been re-circulated through the 

Marprene tubing only was also found to contain GSM. After 120 minutes of         

re-circulating the 100 mL methanol through the Marprene tubing there was a    

10 % reduction in methanol volume. Analysis of the re-circulated methanol 

again resulted in the detection of GSM. The 120 minute sample contained     

23.4 % of the GSM lost in the no catalyst, xenon lamp off control.  This 

represented a significant portion of the GSM lost.  
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 Percentage GSM extracted 
Sample time (minutes) Reactor Tubing 

40   7.1   7.8 
80 17.1 15.2 

                120 23.4 22.2 
 

Table 3-1. GSM extracted from reactor V.1 using met hanol after the control 
experiment (no catalyst, xenon lamp off). 

 

 

The GSM extracted from both the reactor and the tubing totalled 55.6 % of the 

GSM lost in the control experiment (no catalyst, xenon lamp off).  This 

represented over half of the 90 % GSM lost under these control conditions.  

From the results in Table 3-1 it is clear that GSM extraction increases as the 

extraction time in methanol increases. If extraction times had been increased it 

is likely that more GSM would have been extracted from the reactor and tubing. 

 

The Marprene tubing used in this reactor was undoubtedly the major cause of 

non-specific binding of GSM.  From Figure 3-4 it is evident that the rate of        

non-specific adsorption of GSM to the tubing is relatively rapid.  For the TiO2 

photocatalysis of GSM, using Hombikat K01/C, to be demonstrated with this 

reactor a re-design would be required. 

 

 

3.3.2  Photocatalysis of GSM – Reactor V.2 
 

V.2 of the reactor reduced GSM with approximately 40 % remaining after            

40 minutes (Figure 3-5). The control (no catalyst, with the xenon lamp off) had     

70 % GSM remaining after 40 minutes, indicating  that a reduction in the 

amount of peristaltic tubing significantly reduced the loss of GSM in the system. 
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Figure 3-5. Photocatalytic destruction of GSM in re -circulatory reactor V.2  
using Hombikat K01/C. Catalyst present, xenon lamp on ( ); 

xenon lamp off, no catalyst ( ).  GSM loss monitored  by GC-MS. 
 

 

As the Marprene tubing used in reactor V.1 had been the cause of major GSM 

loss it was prudent to check the tubing used in reactor V.2 as a possible cause 

of non-specific adsorption of GSM.  The Marprene tubing used in the control 

(xenon lamp off, no catalyst) (Figure 3-5) was removed from the pump post 

experiment. The tubing was cut into 8 sections and immersed in methanol to 

desorb GSM that may have attached to the tubing during the previous control 

experiment.  Analysis of the methanol containing the tubing was found to 

contain GSM (Figure 3-6). The GSM extracted from the tubing was calculated 

as a percentage of the 87 % total GSM lost in the xenon lamp off, no catalyst 

control from Figure 3-5.  After 20 and 120 minutes of immersion in methanol the 

GSM detected was equal to approximately 24 and 38 % respectively of the     

87 % loss of GSM observed in the control. This value rose to 90 % after 120 

hours of immersion in methanol, indicating that the vast majority of GSM system 

losses in reactor V.2 can be attributed to non-specific binding of GSM to the 

Marprene tubing. To further reduce system losses caused by non-specific 

adsorption of GSM it was clear that the Marprene tubing would have to be 

completely removed from the reactor design. 
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Figure 3-6. GSM extraction from peristaltic tubing used in a control experiment.  
Extraction time of Marprene tubing in methanol; 20 minutes ( ); 120 minutes ( );  

300 minutes ( ); 120 hours( ). GSM extraction monitor ed by GC-MS. 
 

 

Through the course of this work it became clear that a significant inadequacy of 

the majority of studies concerning GSM, and its removal, is a disregard for 

losses of GSM by non-specific adsorption within systems like the one evaluated 

here. Work conducted by Huck et al. (1995) and Elhadi et al. (2004) are the only 

studies that were found in the literature that discuss this issue. 

 

Huck et al. (1995) reported that the two major limitations of previous studies in 

evaluating the removal of GSM and MIB are: lack of study at realistic off-flavour 

concentrations; and the disregard for the adsorption or loss of these compounds 

by mechanisms other than the one being investigated.  The study of GSM at    

ng L-1 concentrations is exacerbated by these losses, as small absolute losses 

can be substantial on a percentage basis.  Additionally analysis of GSM at 

environmental concentrations (ng L-1) can be at the limit of detection for some 

analytical methods, therefore any substantial system loss of GSM during 

experimentation can impact on this analysis.  Finally, losses in systems 

designed for the removal of GSM must be documented so that the removals 

attributed to a given treatment can be reliably assessed (Elhadi et al., 2004a).  
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This last factor has proven absolutely critical in evaluating the efficacy of TiO2 

photocatalysis for the destruction of GSM. Without proper evaluation of the 

control conditions, GSM loss could have been attributed to photocatalysis rather 

than to non-specific adsorption of GSM within the reactor. 

 

Huck et al. (1995) reported GSM system losses of 38 % for a glass bio-reactor 

containing glass beads.  The other components of the bio-reactor were an 

influent reservoir, which was connected to the glass column containing the 

beads by Teflon tubing, and a peristaltic pump (equipped with PharmedTM 

tubing) placed between the reservoir and the glass column to provide pumping. 

The losses attributed to the PharmedTM tubing alone was 30 %, with the 

remaining 8 % loss of GSM attributed to the glass beads and Teflon tubing. The 

method of calculating the system loss is not stated, but the loss associated with 

the PharmedTM tubing is similar to that found in this study for Marpene tubing 

used in reactor V.1 after 120 minutes of extraction (22 %). This is not surprising 

as both PharmedTM and Marprene tubing are both made from thermoplastic 

elastomers. Elhadi et al. (2004) reported on system losses of GSM (200 ng L-1) 

in five different versions of a bench scale apparatus for the removal of GSM and 

MIB. The apparatus consisted of a feed bottle that was connected with tubing, 

via a feed pump, to a glass filter column.  The study focussed on GSM losses in 

this system over an extended period, up to 20 days.  Elhadi et al. (2004) 

reported an average 56 % GSM loss to PharmedTM tubing over 4 days, lower 

than the GSM loss to Marprene tubing for reactor V.2 obtained in this study   

(80 %). Elhadi et al. (2004) found the ideal system to consist of a Teflon feed 

bottle, a valueless stainless steel piston metering pump, Teflon tubing and a 

glass filter column.  The materials which Elhadi et al. (2004) and Huck et al. 

(1995) found to limit non-specific adsorption of GSM, namely glass and Teflon, 

has been verified here by the performance of reactor V.3. 
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3.3.3 Photocatalysis of GSM – Reactor V.3 
 

The V.3 reactor rapidly reduced GSM, with approximately 10 % GSM remaining 

after 40 minutes. D50 (time taken for 50 % of GSM to be destroyed) was              

13 minutes.  The control (no catalyst, no xenon lamp) clearly demonstrates the 

improvement over the previous rector versions in minimising GSM loss caused 

by non-specific adsorption (Figure 3-7)   Reactor V.3 has approximately 90 % 

GSM remaining after 40 minutes, compared with 30 and 70 % for reactors V.1 

and V.2 respectively.  The improvement in minimising non-specific adsorption of 

GSM in the reactor and the fact that only the treatment of GSM in the presence 

of titanium dioxide and UV illumination efficiently eliminates the organic 

contaminant from water, thus indicating the photocatalytic nature of the process.  

This initial result demonstrates the ability of the Hombikat K01/C photocatalyst 

to rapidly degrade GSM in aqueous solution. 

 

 

Figure 3-7. Photocatalytic destruction of GSM in ba tch reactor V.3 using      
Hombikat K01/C.  Xenon lamp on ( ); no catalyst and xenon lamp off ( ).  

GSM loss monitored by GC-MS. Bars equivalent to one  standard deviation (n=2). 
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The design of reactor V.3 was very different from the two previous versions 

using an air pump, controlled by a rotameter, to suspend the solution within the 

glass vessel.  The primary reason for this re-design was that it allowed the 

removal of Marprene tubing from the reactor.  However there was added 

benefits of aerating, and thus supplying O2, the solution in this manner. Firstly it 

delivered a constant supply of oxygen during photocatalysis of GSM. Another 

benefit from using this reactor version is that the addition of air via the bottom of 

the reactor aids mass transfer within the reactor.  Dijkstra et al. (2001) reported 

a comparable enhanced mass transfer effect using a two-phase immobilized 

reactor that was of similar design. This reactor variable is important as mass 

transfer can affect the kinetics of adsorption of the reactant, therefore having a 

possible affect on photodegradation kinetics.  In the limiting case, where the 

irradiation is sufficiently high to eliminate readily all the adsorbed reactant, the 

rate of the reaction will be equal to the rate of adsorption from solution         

(Chen et al., 1995). However, a concern of this reactor version was the 

possibility of increasing GSM volatilisation from the test solution.  To minimise 

this possible problem an air flow rate was selected that provided enough 

pressure to suspend the test solution within the reactor, but did not aerate the 

solution to such a degree that it bubbled violently.  A flow rate of 30 mL min-1 

proved to be acceptable. Further work showed that volatilisation is a negligible 

factor of GSM loss within the system at this flow rate.  This is verified by 

Pirbazari et al. (1992) who reported that the Henry’s Law constant (H) for GSM 

was 6.66 x 10-5 atm m3 mol-1.  The higher the magnitude of H the higher the 

potential is for a compound to volatilize into the atmosphere from solution.  The 

value of H for GSM is two orders of magnitude lower than that of chloroform              

(3.28 x 10-3 atm m3 mol-1).  This indicates that air stripping which is considered 

a viable method for the removal of volatile compounds from water, such as 

chloroform, is not likely to be feasible in the case of GSM (Lalezary et al., 1984). 
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3.4 CONCLUSIONS 
 

The results confirmed that a reactor (V.3) had been successfully developed that 

minimised the considerable problem of non-specific adsorption of GSM. This 

reactor allowed the rapid destruction of GSM using Hombikat K01/C TiO2 

photocatalysis to be observed successfully.  

 

The reactor design evolved considerably through three distinct versions.  The 

first (Figure 3-1) had the limitation of very high GSM loss within the reactor 

under control conditions, 70 % after 40 minutes.  This was mitigated in the 

second variant (Figure 3-2) by replacing the majority of the Marprene tubing 

with borosilicate glass tubing. This aided in distinguishing the difference 

between control and photocatalytic data.  However, despite improvement there 

was still considerable system losses with 30 % GSM lost after 40 minutes.  

Analysis of the Marprene tubing (washed with methanol) used in the course of 

the experiment found that GSM was adhering to this remaining tubing.  This 

necessitated a redesign to remove the tubing, and consequently the peristaltic 

pump, from the reactor design.  This culminated in version three of the reactor 

(Figure 3-5). The improvements made to V.3 of the reactor resulted in a GSM 

system loss of approximately 10 % after 40 minutes.  The loss of GSM under 

control conditions for the three reactor versions is summarised in Figure 3-8. 

 

The conclusions of the Elhadi et al. (2004) and Huck et al. (1995) studies are 

similar to those found through the course of the work conducted in this chapter. 

Both studies advocate the use of components constructed of Teflon, glass, or 

stainless steel for all wetted surfaces to minimise loss of GSM within a test 

system. 

 

This chapter has revealed that GSM is a very challenging compound to work 

with.  However, the rapid destruction of GSM using the Hombikat K01/C 

photocatalysis has been demonstrated and a reactor has been developed that 

has minimised non-specific adsorption.  This reactor will allow the evaluation of 

various factors affecting titanium dioxide photocatalysis, which are reported in 

subsequent chapters. 
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Figure 3-8. Comparison of reactor controls, GSM ads orption with no catalyst and 
the xenon lamp off; ( ) reactor v1.0, Re-circulation  with peristaltic pump and 

Marprene tubing; ( ) reactor v2.0,  Re-circulation with peri staltic pump, 
reduced Marprene tubing; ( ) reactor v3.0, Batch, no Marprene tubing. GSM 

loss monitored by GC-MS. Bars equivalent to one sta ndard deviation (n=2). 
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CHAPTER 4 - PHOTOCATALYSIS OF GSM 
 

4.1 INTRODUCTION 
 

The focus of this chapter is the optimisation of the TiO2 photocatalysis of GSM.  

A number of factors affecting the photocatalysis of GSM will be investigated 

using reactor V.3 (Chapter 3). 

 

The first clear implementation of semiconductor photocatalysis for the 

destruction of an organic compound in water was reported by Carey et al. in 

1976.  Biphenyl and chlorobiphenyls in the presence of TiO2 were successfully 

degraded, though complete mineralization of the compounds was not observed.  

In 1983 Ollis et al., reported the first complete materialisation of a compound in 

water (Hsiao et al., 1983; Turchi et al., 1989).  The destruction of a number of 

halogenated hydrocarbons, including carbon tetrachloride, chloroform and 

trichloroethane, was achieved using a TiO2 photocatalyst.  TiO2 photocatalysis 

has since proven to be a viable alternative for treating contaminants in potable 

water.  Examples include bromate, typically caused by the oxidisation of 

bromide ions during water treatment (Mills et al., 1996) and naturally occurring 

humic substances (Eggins et al., 1997).  Bromate is a potential carcinogen 

while humic substances discolour water and may solubilise pesticides. Raw 

river water has also been treated (Gracia et al., 2000) with a reduction in 66 

observed organic compounds reported.  The detailed mechanism of the 

photocatalytic process on the TiO2 surface is not completely clear, but the basis 

of pollutant degradation is believed to be the generation of highly reactive and 

oxidizing hydroxyl radicals (●OH) produced upon illumination of TiO2 with UV.  

The oxidising strength of the hydroxyl radicals (2.8 eV) is greater than that of 

other reagents currently used in water treatment; Ozone (2.0 eV) and chlorine 

(1.4 eV). 

 

It has been demonstrated previously that GSM and MIB can be effectively 

removed from aqueous solution by TiO2 photocatalysis (Lawton et al., 2003). 

This initial investigation using P-25 TiO2 demonstrated that over 99% 

decomposition was achieved for GSM (2.0 ng mL-1) and MIB (2.0 ng mL-1) 
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within 60 minutes.  GSM was found to be significantly more resistant to 

degradation than MIB, with D50 for GSM ~13 minutes compared to ~3 minutes 

for MIB. Linear plots of In C0/C versus time indicated pseudo first-order kinetics, 

i.e. it is only depenadent on the concentration of one reactant, for both 

processes, with rate constants determined as 0.1979 and 0.0633 min-1 for MIB 

and GSM respectively. Investigation of the kinetics found the rate of destruction 

increased with increasing concentration for both compounds. 

 

Further research is required to determine factors that effect photocatalysis of 

GSM and MIB and to establish the possibility of TiO2 photocatalysis as a viable 

water treatment method. Factors which will have an effect on the photocatalysis 

of GSM within the developed reactor include, reactant-catalyst contact, flow 

patterns, mixing, mass transfer, pH and illumination of the catalyst            

(Mukherjee et al., 1999).  The factors influencing the photocatalysis of GSM 

investigated in this chapter include initial concentration of the reactant, the 

effect of a competing oxidant, pH, light intensity, aeration rate and catalysis in 

deuterated water. 

 

Many studies have proposed that the photomineralization for organic pollutants    

by TiO2 fit a Langmuir-Hinshelwood kinetic scheme (Chen et al., 1995;          

Robertson et al., 1999) and that the rate of pollutant destruction increases with 

pollutant concentration (Mills et al., 1993). 

 

Mills et al. (1993) reported that the pH of the aqueous solution significantly 

affected TiO2, including, the charge on the particles, the size of the aggregates 

it forms, and the positions of the conductance and valence bands.  The rate of 

photocatalysis was not usually found to be strongly dependant upon pH, 

typically varying by less than an order of magnitude from pH 2 to pH 12.  The 

initial rate of destruction microcystin, a toxic cyanobacterial metabolite, was 

found to be strongly influenced by pH (Robertson et al., 1999), with pH 4 found 

most effective for destruction for a range of microcystins (Lawton et al., 2003a).  
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Illumination of the TiO2 is a very important factor as the amount of TiO2 that can 

be activated will determine the capacity of the Hombikat K01/C to degrade 

GSM.  As the reactor developed in Chapter 3 is small the catalyst illumination 

should not be a problem as this is usually only associated with larger scale 

reactors (Mukherjee et al., 1999).  A number of studies have shown that the 

degradation of various solutes in the presence of a TiO2 suspension is directly 

proportional to light only at light intensities corresponding to one sun or less 

(Matthews, 1993). As the light intensity increases, the proportionality merges 

into square root dependence (Kormann et al., 1991; Robertson et al., 1999). 

This effect has consequences for high intensity sources since the photons are 

not being used as effectively as possible. 

 

Photomineralization will not proceed without the presence of oxygen               

(Mills et al., 1993), but an increase of oxygen concentration from air saturated 

(21 % oxygen) to oxygen saturated (100 % oxygen) only increased the rate by 

1.7.  Reactor V.3 (Chapter 3) is aerated by the introduction of air from the 

bottom of the reactor and a increase in the aeration rate should therefore 

increase the rate of oxygen delivery to the reactor.  This also will have the 

added effect of increasing mass transfer within the reactor by increasing mixing. 

As reactors utilizing immobilized TiO2 often suffer from mass transfer limitation 

(Ollis et al., 1991; Ray et al., 1997), the increase in mass transfer is likely to 

increase the rate of GSM photomineralization. 

 

Photocatalysis of GSM in heavy water (D2O) will allow the observation of the 

kinetic effect on the rate of photocatalysis, aiding the elucidation of a 

photocatalytic mechanism.  If a reduced rate of photocatalytic decomposition of 

GSM is observed it may suggest that the formation of hydroxyl radicals (●OH) is 

the rate limiting process in the photocatalytic process.  It has been proposed 

that the reduced rate in D2O is due to the lower quantum efficiency for the 

formation of ●OD radicals on the TiO2 surface (Cunningham et al., 1988).  This 

lower surface concentration of ●OD radicals on the TiO2 surface will result in 

fewer radicals for attack on target molecules. 
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4.2 METHODS 
 

4.2.1  Photocatalysis of geosmin 
 

An aqueous solution of geosmin (100 mL; ~1 µg mL-1), with methanol removed, 

was prepared using Milli-Q high purity water (see section 2.2.3). The reactor        

(Figure 3-3; Chapter 3) was filled with 15 g of Hombikat K01/C and the air flow 

from the pump, passing through a rotameter, adjusted and maintained at             

32 mL min-1. The air flow rate was verified by a flow meter (CS1 6000 solid 

state flow meter, Cambridge Scientific Instruments Ltd., England).  The Teflon 

tubing from the rotameter was then connected to the bottom of the reactor.  The 

GSM solution (20 mL) was then added to the reactor. 

 

The reactor was illuminated in the presence of air using a xenon UV lamp (400 

W UVASpot 400 lamp, Uvalight Technology Ltd; spectral output 330 – 450 nm) 

situated 30 cm from the reactor.  Samples (1 mL) were taken at timed intervals 

of 0, 5, 10, 15, 20 and 25 minutes of illumination then analysed by SPE-GC-MS 

(see section 2.2.2). 

 

GSM solutions (~1 µg mL-1) were also evaluated in the reactor with catalyst and 

aeration, and the xenon lamp switched off over the same time period.  GSM 

solutions (~1 µg mL-1) were also illuminated without catalyst over the 25 minute 

time course. 

 

 

4.2.2  Effect of concentration on the photocatalysis of GSM 
 

A range of GSM concentrations were prepared to evaluate the effect this had on 

the efficacy of photocatalysis. Method 4.2.1 was used with the following 

modifications.  A range of 4 test solutions was prepared with the following 

concentrations of GSM, 5, 1, 0.5 and 0.1 µg mL-1.  GSM solutions at each 

concentration were also aerated with catalyst present and the xenon lamp 

switched off. 
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4.2.3  Dark adsorption of GSM onto Hombikat K01/C 
 

A range of GSM concentrations 10, 5, 1, 0.5, and 0.1 µg mL-1 were prepared to 

evaluate the dark adsorption of GSM onto Hombikat K01/C over 24 hours. 

Glass vials (40 mL) were filled with 20 mL of GSM solution for each 

concentration and    15 g of catalyst added. The vials were capped, wrapped in 

aluminium foil and placed onto a 3-D rocking platform (Model STR9, Stuart 

Scientific, VWR, UK) in the absence of light for 24 hours.  The rocking platform 

ensured that mixing of the catalyst and solution was adequate.  Samples (1 mL) 

were taken for each concentration prior to addition of the catalyst and after 24 

hours.  Analysis was conducted by SPE-GC-MS (see section 2.2.2). 

 

 

4.2.4  Methanol as a competing reactant 
 

The experiment in method 4.2.2 was repeated without the removal of methanol 

from the GSM-methanol stock prior to preparation of the four test solutions.  

The same GSM concentration range was evaluated, 5, 1, 0.5 and 0.1 µg mL-1.  

As GSM was dissolved in methanol when the GSM-methanol stock solution was 

first prepared, and taking into account the difference in concentration observed 

in Chapter 2 between the dilutions of the GSM-methanol stock solution and 

actual GSM standards, the methanol/GSM ratio was 100:1. For the GSM 

concentrations of 5, 1, 0.5 and 0.1 µg mL-1, the methanol present for each 

concentration was 24.75, 9.90, 4.95, and 0.99 µg respectively. 

 

Total organic carbon (TOC) analysis was conducted for all test solutions, prior 

to photocatalysis, with a Shimadzu TOC-VCPH analyzer, equipped with ASI-V 

auto sampler (Shimadzu, UK). The TOC analyzer was operated in the 

combustion/non-dispersive infrared gas analysis mode. The standard TOC 

catalyst was used for combustion of the samples and TOC calculated by 

subtraction of inorganic carbon (IC) from total carbon (TC). TC and TOC 

standard solutions were used to calibrate the instrument. 
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4.2.5  Influence of pH on the photocatalysis of GSM 
 

The destruction of GSM was investigated as in method 4.2.1, but with different 

initial pH (1, 3, 5, 7, 9 and 11). The pH of solutions was altered by the addition     

of either sodium hydroxide or nitric acid to attain the desired pH.  A pH meter          

(Delta 320, Mettler-Toledo Ltd., England) was used to monitor the pH of 

solutions and determine when the necessary pH had been reached.  For each 

pH, GSM solutions were also aerated with catalyst and the xenon lamp 

switched off. 

 

 

4.2.6  Effect of light intensity on the photooxidation of GSM 
 

Photocatalysis of GSM was investigated with different irradiation intensities,     

199, 319, 690, and 1735 µmol s-1 m-2.  Method 4.2.1 was used with the 

following alterations. The irradiation strength of the light falling on the reactor 

was altered prior to the start of each experiment by altering the distance 

between the reactor and the xenon lamp.  The distance was altered to 60, 45, 

30 and 15 cm, with irradiation intensity increasing the closer the xenon lamp 

was to the reactor.  Standard conditions for photocatalysis of GSM used a 

distance of 30 cm (light intensity 690 µmol s-1 m-2).  A light meter (LI-250A light 

meter with LI-190SA quantum sensor, Li-COR Bioscience, USA) was used to 

measure photonic intensity and to attain the desired light intensities. 

 

 

4.2.7  Influence of aeration rate on the photooxidation of GSM 
 

The effect of aeration rate during photocatalysis was investigated.  The reactor 

was used as described in method 4.2.1 with the following alterations.  The 

aeration rate (30, 60, 120, and 150 mL min-1) into the reactor was altered prior 

to the start of each experiment and verified with a flow meter. Aeration rates 

were also investigated with catalyst present and the xenon lamp switched off. 
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4.2.8  Photocatalysis of GSM and microcystin-LR in D2O 
 

The destruction of GSM was observed for GSM prepared in D2O (99.9 %         

atom %D, Sigma-Aldrich, UK), as an alternative to Milli-Q, to investigate the 

effect of D2O on the rate of GSM destruction. This kinetic isotope study will aid 

understanding of the mechanistic aspects of the photocatalytic reaction.  

Observation of a reduced rate of photocatalytic decomposition of GSM may 

suggest that the formation of hydroxyl radicals (●OH) is the rate limiting process 

in the photocatalytic process.  Photocatalysis was performed as in section 4.2.1 

with the exception that GSM solutions were prepared in D2O. GSM solutions in 

D2O were also aerated, with catalyst present, and the xenon lamp switched off. 

 

To confirm the kinetic isotope effect of D2O in the photocatalysis of GSM 

another cyanobacterial metabolite was selected for photocatalysis in D2O, 

microcystin-LR (MC-LR).  MC-LR was selected as a model compound as its 

mechanism of photocatalytic degradation has been well elucidated and the 

kinetic isotope effect of D2O in the photocatalysis of MC-LR has been 

demonstrated for P-25 (Robertson et al., 1998). 

 

A ~100 µg mL-1 MC-LR in D2O solution was prepared by exhaustive re-

suspension of freeze-dried MC-LR.  The reactor (Figure 3-3; Chapter 3) was 

prepared as in method 4.2.1 and the MC-LR solution (20 mL) added to the 

reactor.  The reactor was illuminated in the presence of air using a xenon UV 

lamp (400 W UVASpot 400 lamp, Uvalight Technology Ltd; spectral output          

330 – 450 nm) situated 30 cm from the reactor.  Samples (200 µl) were taken at 

timed intervals of 0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90 and                     

100 minutes of illumination and placed into inserts in 4 mL vials and analysed 

by high performance liquid chromatography (600E powerline gradient module 

pump with WISP auto sample and 996 photodiode array detector; Waters Ltd., 

UK) (Lawton et al., 1994). 

 

The degradation of MC-LR in Milli-Q (~100 µg mL-1) was also investigated using 

this method.  Samples (200 µl) were taken at timed intervals of 0, 5, 10, 15, 20, 
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25, 30, 40, 50, 60, 70, 80, 90 and 100 minutes of illumination and analysed by 

high performance liquid chromatography. 

 

 

4.3 RESULTS AND DISCUSSION 
 

4.3.1  Photocatalysis of geosmin 
 

Results confirm that GSM was rapidly degraded on exposure to TiO2 and UV 

light (Figure 4-1). Approximately 30 percent reduction of GSM was observed 

under control conditions after 25 minutes; aeration, catalyst absent and the 

xenon lamp switched off.  Losses can be attributed to non-specific binding of 

GSM within the reactor and possible volatilisation of GSM from the reactor. 

 

 

Figure 4-1. Photocatalytic destruction of geosmin ( 1 µµµµg mL -1) using  
Hombikat K01/C. Xenon lamp on ( ); catalyst present and xenon 

 lamp off ( ).  Photocatalysis monitored by GC-MS.   
Bars equivalent to one standard deviation (n=2). 
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4.3.2  Effect of concentration on the photocatalysis of GSM 
 

Initial concentration of GSM was found to have only a slight influence on the 

rate of GSM destruction (Figure 4.2). The rate of destruction was similar for 5, 

1, and 0.5 µg mL-1 concentrations with approximately 50 % GSM remaining 

after 5 minutes. Only the lowest concentration 0.1 µg mL-1 displayed a faster 

degradation rate with approximately 25 % GSM remaining after 5 minutes.  

Under control conditions (aeration, catalyst absent and xenon lmap switched 

off) approximately 70 % GSM was remaining after 25 minutes for all 

concentrations. 

 

 

Figure 4-2. Destruction of geosmin by Hombikat K01/ C TiO2 photocatalysis at 
various concentrations; 5 µµµµg mL -1 ( ); 1 µµµµg mL -1 ( ); 0.5 µµµµg mL -1 ( ); 

  0.1 µµµµg mL -1 ( ).  Photocatalysis monitored by GC-MS. 
Bars equivalent to one standard deviation (n=2). 

 

 

The exact nature of the main oxidizing species formed on the surface of the 
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mechanism is the reaction between adsorbed species, leading to classical 

Langmuir-Hinshelwood rate expression (Childs et al., 1981). This rate 

expression has been successfully applied to the heterogeneous photocatalytic 

degradation of a wide variety of organic compounds (Turchi et al., 1990; 

Hoffmann et al., 1995; Honglay Chen et al., 1998), describing the relationship 

between initial degradation and initial concentration.  Plotting In (C/C0) against 

time gives a clearer indication of the effect of initial GSM degradation on 

degradation rate (Figure 4.3). The degradation profiles are similar for 5, 1, and 

0.5 µg mL-1 GSM concentrations, with only 0.1 µg mL-1 showing a significantly 

different profile, though it is more scattered. By plotting reciprocal initial rate, 

determined after 5 minutes of photocatalysis for each GSM concentration, 

against reciprocal initial concentration a linear expression can be obtained 

(Chen et al., 1998).  A reasonable fit is achieved (R2 = 0.9902) with values of 

1.56 µM min-1 and 0.099 µM-1, for k and K respectively (Figure 4-4).  This would 

suggest that degradation of GSM obeys the Langmuir-Hinshelwood model and 

that GSM degradation occurs on the TiO2 surface.  However, as the effect of 

initial concentration on GSM degradation is not pronounced it would suggest 

that degradation may also be taking place in solution. 

 

Figure 4-3. Effect of initial GSM concentration on degradation rate; 
0.1 µµµµg mL -1 ( ); 0.5 µµµµg mL -1 ( ); 1 µµµµg mL -1 ( ); 5 µµµµg mL -1 ( ). 

-10

-8

-6

-4

-2

0

0 5 10 15 20 25

    Time (minutes)  

In
 (

C
/C

0)
 



 115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4. Reciprocal initial rate (1/r 0) of GSM destruction vs. reciprocal initial 

concentration (1/C 0) of GSM.  

 

Despite the concentrations of GSM used in this study being considerably higher 

than those found in the environment, a typical environmental concentration 

being 10,000 times smaller than the lowest concentration investigated here, 

GSM was rendered undetectable by SPE-GC-MS after 25 minutes.   

 

Table 4-1 presents the values determined for k and K for the destruction of 

GSM using the Langmuir-Hinshelwood model and also contains the values for 

GSM destruction using P-25 titanium dioxide (Lawton et al., 2003b).  The rate of 

GSM degradation is considerably faster than previously found with P-25     

(Table 4-1) with D50 ~5 minutes, compared with ~12 minutes for P-25. Table 4.2 

shows data reported for other compounds using the Langmuir-Hinshelwood 

model, however it is difficult to make direct comparisons between k and K 

values for photocatalytic systems as they are greatly affected by experimental 

conditions including light intensity and initial substrate concentration (Xu et al., 

2000).  The values obtained for GSM using Hombikat K01/C are significantly 
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different from those reported in other studies (Table 4-2), with the exception of 

K value reported by Robertson et al. (1997). 

 

 

TiO2 Catalyst k (µµµµM min -1) K (µµµµM-1) 
Hombikat K01/C 1.56     0.099 
P-25, Degussa 4.80 x 10-3 24.55 

 

Table 4-1. Comparison of rate and adsorption consta nts for the photocatalytic 
destruction of GSM by two different TiO 2 catalysts. Constants k and K 

determined using simple Langmuir-Hinshelwood model for photocatalytic 
destruction. P-25 data from Lawton and co-workers ( Lawton  et al., 2003b). 

 

 

Compound k (µµµµM min -1) K (µµµµM-1) Reference 
Microcystin-LR  19.23 0.029 (Robertson et al., 1997) 
Phenol 2.19 x 10-2  12.9 (Matthews et al., 1992) 
Benzene 1.80 x 10-2  39 (Turchi et al., 1990) 
Perchloroethylene 8.60 x 10-3  34 (Turchi et al., 1990) 
4-chlorophenol 4.88 x 10-3  79.3 (Matthews, 1988) 

 

Table 4-2. Comparison of rate and adsorption consta nts of other organic 
compounds.  Simple Langmuir-Hinshelwood model used to determine 

 constants for photocatalytic destruction. 
 

 

Previous work has demonstrated that organic compounds appear to be more 

strongly adsorbed to TiO2 dispersions than film forms of TiO2.  The Hombikat 

K01/C catalyst has greater photocatalytically available surface area than a thin 

film, but less than powdered TiO2, this is reflected in the K values in Table 4.1, 

with adsorption of GSM onto dispersed P-25 250 times greater than adsorption 

onto Hombikat K01/C.  This data would initially suggest that surface adsorption 

of GSM onto Hombikat K01/C TiO2 is not essential for the degradation of GSM. 

 

 

4.3.3  Dark adsorption of GSM onto Hombikat K01/C 
 

Dark adsorption of GSM onto Hombikat K01/C appeared to be dependent on 

GSM concentration with GSM adsorption greatest at the lowest concentration 

(0.1 µg mL-1) with approximately 60 % of GSM adsorbed after 24 hours            
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(Figure 4-5).  Adsorption of GSM was lower for the higher concentrations with 

approximately 20 % of GSM adsorbed after 24 hours.  Chen et al. (1995) 

reported approximately 20 % adsorption of 1,2-Dichioroethane (DCE) onto P-25 

TiO2. Initial concentration of DCE was not found to greatly affect adsorption 

suggesting that the kinetics are controlled by other factors such as transport 

processes. 

 

Figure 4-5. Dark adsorption of geosmin onto Hombika t K01/C, after 24 hours, at 
different concentrations (10, 5, 1, 0.5, and 0.1 µµµµg mL -1). GSM adsorption 
monitored by GC-MS. Bars equivalent to one standard  deviation (n=2). 

 

 

The amount GSM actually adsorbed was calculated by subtracting final GSM 

solution concentration from the initial GSM concentration of the aqueous 

solution. The amount of GSM adsorbed at equilibrium (24 h) was calculated 

since maximum adsorption occurs at equilibrium. The amount of GSM adsorbed 

at equilibrium Qe (mg g-1) was obtained using Equation 4-1: 

 

Qe =   (Co-Ce) V    (Equation 4-1) 
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Where Co and Ce are the initial and equilibrium liquid-phase concentration of 

GSM (mg L-1) respectively. V is the volume of solution (L) and W is the amount 

of adsorbent (TiO2) used (g).  The results for adsorption of GSM onto the 

catalyst, with respect to different initial GSM concentrations, can be seen in 

Figure 4-6. 

 

 

 

Figure 4-6. Dark adsorption of geosmin onto Hombika t K01/C, after 24 hours,           
at different concentrations (10, 5, 1, 0.5, and 0.1  µµµµg mL -1). GSM adsorption  

monitored by GC-MS. Bars equivalent to one standard  deviation (n=2). 
 

 

The results show an initial linear relationship between adsorption of GSM onto 

the catalyst and GSM concentration.  This changes to a curved relationship at 

the higher GSM concentrations of 5 and 10 µg mL-1 suggesting that maximum 

adsorption has been achieved for this catalyst loading (15 g) at a GSM 

concentration of 10 µg mL-1. This is a typical Langmuir type adsorption 

isotherm. 
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4.3.4  Methanol as a competing reactant 
 

GSM solutions of similar concentrations as found in method 4.3.2 were 

prepared, but without the prior removal of methanol. These solutions 

subsequently underwent photocatalysis in the reactor.  This allowed the 

observation of how methanol acted as a competing oxidant with GSM. 

 

The effect methanol has on the destruction of GSM can be clearly seen by 

comparing the photocatalysis of GSM solutions with and without methanol   

(Figure 4-7).  The reduced rate of GSM destruction was most pronounced for        

5 and 1 µg mL-1 GSM solutions containing methanol, with GSM reduction after       

5 minutes ~30 % lower when compared with comparable GSM solutions 

containing no methanol.  This decrease in the rate of GSM degradation 

between the solutions containing and not containing methanol became more 

pronounced after 5 minutes of photocatalysis. 

 

The decrease in the rate of GSM degradation in the 5 and 1 µg mL-1 GSM 

solutions containing methanol is unsurprising as TOC analysis of these 

solutions (Figure 4-8) demonstrated that organic carbon was highest for the      

5 and 1 µg mL-1 solutions.  TOC analysis of solutions containing only GSM only 

detected GSM at the highest concentration (5 µg mL-1), with a TOC 

concentration of 6 ppm. 

 

Bekbolet et al. (2002) reported that the presence of 1 % methanol caused 

significant retardation of the P-25 photocatalysis of methylene blue, with a 50 % 

reduction in the rate of methylene blue degradation.  A mechanism for the effect 

of methanol within the photocatalytic system was not discussed. The 5 µg mL-1 

GSM solution contained approximately 0.12 % methanol, this also caused 50 % 

reduction in the initial rate of GSM destruction.  The effect of methanol on the 

retardation of photocatalysis observed here is significantly greater than that 

observed by Bekbolet et al. (2002). 
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Figure 4-7. Destruction of geosmin by Hombikat K01/ C TiO2 photocatalysis at 
different concentrations with methanol present (a) and methanol absent  

(b) 5 µµµµg mL -1 ( ); 1 µµµµg mL -1 ( ); 0.5 µµµµg mL -1 ( ); 0.1 µµµµg mL -1 ( ).  
Photocatalysis monitored by GC-MS.  

Bars equivalent to one standard deviation (n=2).  
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One of the main factors affecting the degradability of organic compounds by 

TiO2 photocatalysis is solution polarity (Guisnet et al., 1993).  Brezova et al. 

(1997) investigated the selective photocatalytic reduction of 4-nitrophenol to                     

4-aminophenol in P-25 titanium dioxide suspensions prepared in aliphatic 

alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, i-butanol). The 

photoreduction rate of 4-nitrophenol was found to be significantly affected by 

the solvent polarity, with the rate of photoreduction increasing with an increase 

in solvent polarity.  Therefore, the best solvent for the reduction of 4-nitrophenol 

was methanol.  However, as water is more polar than methanol, photocatalysis 

should be greater when using water as a solvent as opposed to methanol. 

 

This fact is supported by the findings of Habibi et al. (2005) who reported on the 

TiO2 photocatalytic degradation of methyl phenyl sulfide (MPS) and methyl 

benzimidazoyl sulfide (MBS) using water and methanol as a solvent.  The 

degradation of MPS and MBS in water was 85 and 80 % respectively, 

compared with 7 and 5 % in methanol.  Additionally methanol is an effective 

hole acceptor and may be competing with GSM for oxidation on the catalyst 

surface. 

 

Figure 4-8. TOC analysis of GSM solutions, prepared  without the removal of 
methanol, prior to photocatalysis; total carbon ( );  total organic carbon ( );  

inorganic carbon ( ). Bars equivalent to one standar d deviation (n=2). 
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The GSM reduction rate of the 0.5 µg mL-1 GSM solutions, containing methanol 

and not containing methanol, were very similar (Figure 4-7). However, the initial 

rate of GSM destruction (after 5 minutes) for the 0.1 µg mL-1 GSM solution, 

containing methanol was 50 % greater than the corresponding GSM solution 

that did not contain methanol (Figure 4-5). 

 

Clearly the presence of methanol, especially at higher concentrations, has the 

effect of reducing the rate of GSM degradation by TiO2 photocatalysis.  The 

major contributor to this decrease in the rate of GSM reduction is likely to be the 

effect of methanol as a competing reactant to GSM. 

 

 

4.3.5  Influence initial of pH on the photocatalysis of GSM 
 

The pH of solutions was altered by the addition of either sodium hydroxide or 

nitric acid to attain the desired pH.  A pH meter (Delta 320, Mettler-Toledo Ltd., 

England) was used to monitor the pH of solutions and determine when the 

necessary pH had been reached.  The pH of the reaction was not found to have 

a major influence on the overall rate of GSM destruction (Figure 4-9 and    

Figure 4.10).  However, there was a general trend, indicating the initial rate of 

GSM degradation increased at lower pH.  Remaining GSM after 5 minutes for 

pH 1 was 28 (± 0.11) %, compared to 43 (± 0.24) % GSM remaining at pH 11 

(Figure 4-10).  Photocatalysis of GSM at   pH 7 resulted in the slowest rate of 

GSM degradation after 5 minutes, with 56 % remaining.  There was however, 

poorer reproducibility, 15.12 % RSD, at this pH.  This was also true for 

photocatalysis of GSM conducted at pH 3, with 14.48 % RSD.  The effect on 

lower pH on the increased rate of GSM destruction is also observed after 10 

minutes of photocatalysis (Figure 4-10). Losses of GSM under control 

conditions for the different pH valuess was within the same range, ~30 % GSM 

lost after 25 minutes (Figure 4-9), as that typically observed when conducting 

photocatalysis of GSM in Milli-Q.  Slight changes in the pH values after 25 

minutes were observed, likely caused by the test solutions being unbuffered. 
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Figure 4-9. Destruction of geosmin by TiO 2 photocatalysis at different pH values, 
(a) pH controls and (b) photocatalysis at different  pH values; pH1 ( ); 

 pH3 ( );pH5 ( ); pH7 ( );pH9 ( ); pH11 ( ).  Photocatal ysis 
monitored by GC-MS.Bars equivalent to one standard deviation (n=2). 
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Ku et al., (1996) also reported this general trend of increased degradation at 

lower pH values for the degradation of 2-chlorophenol by TiO2 photocatalysis, 

but at a greater magnitude. The complete disappearance of 2-chlorophenol was 

achieved in 3.5 hours at pH 3, compared to 10 hours at pH 11.  It was also 

reported that the higher removals at acidic conditions were possibly attributed to 

the increased amounts of undissociated 2-chlorophenol species adsorbed on 

the TiO2 surface.  The destruction of a number of microcystins, a cyanobacterial 

metabolite, using P-25 TiO2 photocatalysis was also found to be pH dependant 

by Lawton et al. (2003).  The pH dependence was associated with catalyst 

surface charge and the altered hydrophobicity and net charge of the 

microcystin. The two most hydrophobic microcystins (-LW and -LF) were found 

to have high dark adsorption (98 and 91 % at pH 4) in contrast to             

microcystin-RR, which was found to have almost no (2- 3 %) dark adsorption 

across all pH values. 

 

 

Figure 4-10. Geosmin remaining after 5 ( ) and 10 ( )  minutes of TiO 2 
photocatalysis at different pH values, Photocatalys is monitored by GC-MS. 

Bars equivalent to one standard deviation (n=2). 
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As GSM appears to be stable at the pH values investigated here (Figure 4-9) 

the increased rate of GSM destruction at lower pH values must be due to the 

effect of pH on the surface charge of the catalyst and the charge of the 

pollutant. The interpretation of the effect of pH on the efficiency of 

photocatalysis is difficult because of its multiple effects.  The ionisation state of 

the TiO2 surface is affected by pH according to the following reactions (Habibi et 

al., 2005): 

 

 

TiOH + H+     TiOH2
+   (Equation 4-2) 

 

TiOH + OH-    TiO- + H2O   (Equation 4-3) 

 

 

Hydroxyl radicals can be formed by hydroxide ions and positive holes.  At low 

pH the positive holes are considered the major oxidation species, with hydroxyl 

radicals the predominant species at neutral or high pH (Kormann et al., 1991).  

Hydroxyl radicals are more readily generated in alkaline solution as more 

hydroxide ions are available on the TiO2 surface,  The formation of hydroxyl 

radicals could however be prevented by the Coulombic repulsion between the 

negatively charged surface of the photocatalyst and the hydroxide anions, 

decreasing photooxidation (Konstantinou et al., 2004). 

 

The ionisation state of the reactants can also be affected by pH.  The 

combination of the pH effects on the reactant and the catalyst can therefore 

influence the adsorption of the GSM onto the surface of the TiO2, an important 

factor in photocatalysis. The zero point of charge (pHzpc) of the TiO2 is pH 6.25             

(Hoffmann et al., 1995).  Therefore, the surface charge of the TiO2 is positive in 

acidic media (pH < 6.25), attracting anions, and negative in alkaline media          

(pH > 6.25), attracting cations. 

 

Another possible explanation for the increased rate of GSM degradation 

observed at low pH may be due to the presence of HNO3, nitric acid was used 
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to adjust test solutions to low pH.  Epling et al. (2002) reported that the 

degradation rate of two dyes, methylene blue and methylene green, by P-25 

photocatalysis was accelerated in the presence of HNO3. The photocatalytic 

degradation of methylene blue and methylene green increased by 24 and 37 % 

over 1 hour in the presence of 0.01 M HNO3.  This effect was not explained, but 

the increase observed in the rate of GSM destruction after 5 and 10 minutes in 

the presence of HNO3 was 46 and 40 % compared to photocatalysis conducted 

in its absence (Figure 4-10).  The increase in photodegradation of GSM at lower 

pH is of a similar magnitude to that found by Epling et al., (2002) for the 

presence of HNO3. 

 

 

4.3.6  Effect of light intensity on the photocatalysis of GSM 
 

The rate of GSM destruction was proportional to the light intensity investigated 

with GSM destruction increasing with increasing light intensity (Figure 4-11).  

For example GSM remaining, after 5 minutes at the lowest light intensity, was 

58 (± 2.5) %, compared to 19 (± 2.6) %, at the highest light intensity.  

 

Figure 4-11. Destruction of geosmin by Hombikat K01 /C TiO2 photocatalysis  
at different light intensities (µµµµmol s -1m-2); 1735 ( ); 690 ( );  

319 ( ); 199 ( ).  Photocatalysis monitored by GC-MS.    
Bars equivalent to one standard deviation (n=2). 
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A plot of the reciprocal initial rate of GSM destruction (R0) against light intensity 

demonstrates that the increase in GSM destruction is linear at low light 

intensities, but reducing at the higher light intensities, possibly moving into a 

square root relationship between light intensity and GSM destruction        

(Figure 4-12). A similar relationship has been observed by other workers. A 

reduction in GSM was observed under control conditions with approximately   

70 % GSM remaining after 25 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12. Relationship between reciprocal Initia l Rate (1/R 0) and lamp (400 W 
UVASpot 400 lamp; spectral output 330 – 450 nm) int ensity for destruction of 

GSM (1 µµµµg mL -1) using Hombikat K01/C. 
 

Previous studies (Egerton et al., 1979; Ollis et al., 1991; Hoffmann et al., 1992; 

Hoffmann et al., 1995; Chen et al., 1998) of the effect of light intensity on the 

kinetics of the photocatalysis process indicated that at low light intensities              

(0-20 W cm-2), and mass transfer dependant, the reaction rate would increase 

linearly with increasing light intensity (first order).  At intermediate intensity 

levels (~20 W cm-2),  the reaction rate increases with the square root of light 

intensity.  At high light intensities the rate is independent of light intensity.  This 

is probably caused by the competition of electron-hole pair separation and 

recombination, resulting in a reduced effect of light intensity on the reaction 

rate.  At low light intensities electron-hole recombination is negligible.  The work 
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conducted here clearly demonstrates a similar relationship between the rate of 

GSM destruction and increasing light intensity. 

 

 

4.3.7  Influence of aeration rate on the photooxidation of GSM  
 

An increase in aeration rate was found to increase the rate of GSM destruction, 

with an increase in GSM destruction plateauing at an air flow rate of               

150 mL min-1 (Figure 4-13).  However this increase in GSM loss can be 

attributed to the increase in system loss of GSM.  Adjusting GSM loss, by 

subtracting GSM loss under control conditions from the GSM reduction under 

photocatalytic conditions, shows there is negligible difference in the rate of GSM 

destruction. For the flow rates of 30, 60, 120, and 150 min-1, adjusted GSM loss 

was 48, 46, 49, and 44 % respectively after 5 minutes. 

 

Although data suggest that air stripping is unlikely to remove GSM from water 

(Lalezary et al., 1984), results in this study appear to show that an increase in 

aeration rate does have an effect on the volatilisation of GSM.  This effect is 

most pronounced when comparing the aeration rates of 30 mL min-1, the 

standard air flow rate used in this study for the photocatalysis of GSM, and the 

150 mL min-1 flow rate, under control conditions (Figure 4-13). GSM losses 

under these conditions are 34 and 67 % for the 30 and 150 mL min-1 flow rates 

respectively after 25 minutes.  Although a proportion of these losses can be 

associated with non-specific adsorption of GSM within the reactor and dark 

adsorption onto the catalyst surface, it is clear that a significant percentage of 

the GSM loss observed at the 150 mL min-1 flow rate is caused by volatilisation.   

 

Dijkstra et al. (2001) reported on the photocatalytic efficiency of P-25 in 

immobilized and suspended reactors in degrading formic acid.  Although the 

reactor was considerably larger (volume 124 x 10-6 m3) than he one used in this 

study (volume 4.39 x 10-8 m3), 2800 larger, the design was very similar. The 

reactors were evaluated with and without the addition of oxygen, with addition of 

oxygen to the suspended system having little effect on degradation of formic 

acid.  In the immobilised system addition of oxygen through the bottom of the  
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Figure 4-13. Destruction of geosmin by Hombikat K01 /C TiO2 photocatalysis at 
different aeration rates, (a) aeration controls (b)  photocatalysis ; 

30 mL min -1 ( ); 60 mL min -1 ( ); 120 mL min -1 ( ); 
150 mL min -1 ( ). Photocatalysis monitored by GC-MS. 

Bars equivalent to one standard deviation (n=2). 
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reactor greatly increased the quantum yield of the system from 0.063 to 0.28.  

The addition of oxygen was believed to increase mass transfer by enhancing 

agitation. 

 

Increasing the aeration rate, and therefore enhancing mass transfer, did not 

increase the rate of GSM degradation. This effect has also been noted by other 

researchers.  Chen et al. (1995), in a study of  P-25 photocatalysis of 1,2-

dichloroethane (DCE), reported that the limiting rate of adsorption to be 

approximately twice the rate of photodegradation in upper concentration ranges.  

It was concluded that this limiting rate was much higher than the rate of 

photodegradation in the lower range of concentrations and did not impede the 

overall kinetics.  In these two studies the rate of substrate degradation was not 

significantly affected by mass transfer.  From the results reported here GSM 

destruction, using the TiO2 catalyst in this reactor configuration and under the 

conditions investigated, was also not influenced by mass transport. 

 

 

4.3.8  Photocatalysis of GSM and Microcystin-LR in D2O 
 

The destruction of GSM was investigated in both Milli-Q (H2O) and heavy water 

(D2O) solvents (Figure 4-14). The rate of destruction of GSM was significantly 

reduced when photocatalysis was conducted in the D2O solvent.  GSM was still 

present after 25 minutes of photocatalytic treatment in D2O for all 

concentrations, in contrast to photocatalysis conducted in H2O under standard 

conditions where no GSM was detectable after 25 minutes.  The degradation 

profiles of GSM in D2O displayed the same trend as GSM degradation in H2O 

with respect to concentration. The rate of GSM destruction was similar for 5, 1, 

and 0.5 µg mL-1 concentrations, with only the 0.1 µg mL-1 GSM concentration 

displaying a faster degradation rate. The typical loss of 30 % GSM after 25 

minutes was observed under control conditions.  
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Figure 4-14. The photocatalytic destruction of diff erent geosmin concentrations,      
1 µµµµg mL -1 ( ), 0.5 µµµµg mL -1 ( ), 0.1 µµµµg mL -1 ( ), and 5 µµµµg mL -1 ( ), using 
Hombikat K01/C, in D 2O (a) and Milli-Q (b).  Photocatalysis monitored by  GC-MS.  

Bars equivalent to one standard deviation (n=2). 
 

 

 

 

P
er

ce
nt

ag
e 

ge
os

m
in

 r
em

ai
ni

ng
 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100
0 5 10 15 20 25

  (a) 

  (b) 
  Time (minutes) 



 132 

To confirm the kinetic isotope effect of D2O in the photocatalysis of GSM, 

another cyanobacterial metabolite was selected for photocatalysis in D2O, 

microcystin-LR (MC-LR). MC-LR was rapidly degraded in H2O and D2O using 

TiO2 photocatalysis with a D50 of approximately 7 and 12 minutes. Again the 

rate of substrate destruction was reduced considerably when photocatalysis 

was conducted in D2O (Figure 4-15), confirming the kinetic isotope effect for 

Hombikat K01/C. 

 

 

 

Figure 4-15. Destruction of MC-LR by TiO 2 photocatalysis in Milli-Q ( ) 
  and D 2O ( ).  Photocatalysis monitored by HPLC.  

Bars equivalent to one standard deviation (n=2). 
 

 

The primary isotope effect for the destruction of GSM using Hombikat K01/C 

TiO2 was calculated to be 1.61 (Table 4.3). Photocatalysis of GSM in D2O 

reduced the rate of destruction for GSM.  This effect was verified by the 

photocatalysis of MC-LR in D2O, where the primary isotope effect was 

calculated to be 1.56 (Table 4.3).  Robertson et al. (1998) and Cunningham et 
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isotope effect of 3 reported by Robertson et al. (1998) was similar to the effect 

of 3.3 reported by Cunningham et al. (1998).  The results of both studies 

suggest that the formation of hydroxyl species is the main agent in substrate 

degradation and may be the rate limiting factor in the photocatalytic process.  It 

was also proposed that the reduced rate of photocatalytic degradation was due 

to the lower quantum efficiency for the formation of ●OD radicals on the TiO2 

surface, resulting in a reduction of ●OD radicals on the TiO2 surface for 

subsequent attack on substrate molecules. Alternatively, the lower rate of 

oxidation rate may be due to the fact that ●OD radicals have lowered oxidation 

potential when compared to ●OH radicals.  

 

 GSM MC-LR 
Solvent k (µµµµM min -1) K (µµµµM-1) Relative  

Rate 
k (µµµµM min -1) Relative  

Rate 
H2O 1.56 0.099 1.0 8.55 1.0 
D2O 0.97 0.069   0.62 5.44   0.64 

 

Table 4-3. Kinetic isotope effect based on the phot ocatalytic destruction of GSM 
and MC-LR in two different solvents. Constants k and K determined using simple 

Langmuir-Hinshelwood model for photocatalytic destr uction.  

 

It may be possible that the kinetic isotope effect reported here for GSM (and      

MC-LR), which is approximately 50 % lower than found in the studies by 

Robertson et al. (1998) and Cunningham et al. (1988), is mediated via hydroxyl 

radicals generated from the superoxide radical anion produced at the 

conduction band. This is subsequently hydrated or deuterated by the solvent                      

(Mao et al., 1991).  This may be rate determining since O2 has to be generated 

at the conduction band prior to interaction with the solvent and subsequent 

formation of ●OD or ●OH species.  Therefore the kinetic isotope effect could be 

caused by the interaction of the solvent with the superoxide species rather than 

attack on GSM.  Robertson et al. (1998) proposed that if this was the case that 

a similar kinetic isotope effect should be observed no matter what the substrate 

being treated.  The similarities in the kinetic isotope effect for both GSM and 

MC-LR would suggest that formation of hydroxyl radicals generated via the 

superoxide radical anion produced at the conductance band is a rate 

determining step (Draper et al., 1990). 
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4.4 CONCLUSIONS 
 

The work conducted in this chapter confirms that TiO2 photocatalysis using 

Hombikat K01/C achieves rapid degradation of GSM.  Concentrations of GSM 

used in this study are considerably higher than those found in the environment, 

but even at the highest GSM concentration of 5 µg mL-1, GSM was rapidly 

degraded.  MC-LR was also found to be rapidly destroyed with Hombikat 

K01/C, with no MC-LR detectable after 40 minutes. 

 

A number of experimental conditions were altered to investigate the effects on 

GSM degradation.  Using Langmuir-Hinshelwood rate expressions it was found 

that the effect of initial concentration on GSM degradation is not pronounced.  

Test solutions with lower pH were found to increase the initial rate of GSM 

destruction and the addition of methanol to test solutions was observed to 

significantly retard the rate of GSM destruction.  The effect of methanol on the 

rate of GSM destruction is interesting as it gives a useful indication of what the 

effect of additional reactants may be in more complex test solutions.  The rate 

of GSM destruction was also found to increase with increased illumination of the 

catalyst.  The reactor and catalyst configuration used was not found to be mass 

transport limited.  Finally the kinetic isotope effect for Hombikat K01/C was 

determined using GSM and MC-LR, with the primary isotopes calculated as 

1.61 and 1.56 respectively.  The work conducted on the factors affecting 

photocatalysis of GSM in this chapter proved valuable for the development of 

the pilot photocatalytic flow reactor in Chapter 5. 
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CHAPTER 5 - PILOT PHOTOCATALYTIC FLOW REACTOR 
 

5.1 INTRODUCTION 
 

5.1.1  Photocatalytic reactors 
 

Recent research into larger scale photocatalytic reactors has been carried out  

in reactors where the photocatalyst is immobilized on a suitable surface           

(Mills et al., 1993; Dijkstra et al., 2001; Li et al., 2003; Lee et al., 2004).  The 

pollutant of interest is passed over the film in the presence of a UV source.  

These reactors have the advantage over dispersed or batch style systems 

utilizing a powdered photocatalyst as they do not require an expensive filtration 

or sedimentation step required to remove the photocatalyst after treatment 

(Chen et al., 1988; Mills et al., 1993). 

 

Immobilised catalysts are not without their problems however with two issues 

predominant.  For a given photoactivated volume an immobilized film will have a 

reduced number of activated sites when compared with the same weight of a 

freely suspended catalyst (Matthews, 1993).  Additionally mass transfer 

limitation may become rate controlling at low flow rates (Turchi et al., 1988).  

Most workers have not noticed an appreciable loss in the activity of TiO2 when 

used for the photomineralisation of pollutants in water.  Indeed, the Hombikat 

KO1/C catalyst used in this work was repeatedly used without reduction in GSM 

degradation rates. If semiconductor photocatalysis is to be used extensively as 

a method of water purification then significant extended wear tests need to be 

carried out. (Mills et al., 1993).  A study by Rao et al. (2004) investigated the 

extended wear of P-25 and PC500 TiO2 photocatalysts immobilized on organic 

fibres, pumice and a polymer film.  The degradation of a dye, acid orange 7, 

was used to study the ageing effect on the immobilized TiO2. Long term use    

(4 weeks) of the immobilized TiO2 to degrade the dye resulted in a large 

reduction in dye removal rates when compared to newly prepared catalyst, with 

irradiation time extended by up to 5 times to completely remove the dye.  The 

study concluded that two major effects were responsible for the reduction in the 

rate of dye removal.  Firstly the removal of TiO2 from its support was observed 
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for all catalyst supports.  Secondly fouling of the catalyst by degradation by-

products over an extended period was a concern.  It was concluded that 

degradation by-products were formed more rapidly than they could be 

destroyed, resulting in their accumulation on the catalyst surface.  This 

subsequently caused a reduction in the efficiency of the catalyst to degrade the 

pollutant, or in this case dye.  However, it was also reported that the 

performance of the immobilised catalyst, which had been used for 4 weeks, 

could be restored by 50 % by heating at 150 °C for 3 ho urs.  Though the 

immobilisation supports for TiO2 used in the Rao et al. (2004) study had their 

problems TiO2 has been shown to strongly interact with glass (Matthews, 1993).  

It was suggested that this strong attraction was due to the electrostatic charge 

on the catalyst surface and the negatively charged surface of the glass. 

 

Several factors limit the efficient design of a photocatalytic reactor; good contact 

between reactants and the catalysts; efficient exposure of the catalyst by light 

irradiation, as well as conventional reactor complications such as, flow patterns, 

mixing, mass transfer and reaction kinetics (Mukherjee et al., 1999). 

 

The development of a pilot photocatalytic flow reactor began with considering 

the design of the successful V.3 reactor (Figure 3-3, Chapter 3) and how the 

Hombikat K01/C catalyst could be deployment within a flow reactor.  The V.3 

reactor was a batch reactor and degradation results proved that the catalyst 

was not mass transfer limited when deployed in the reactor and also benefited 

from efficient illumination of light. To have effective destruction of GSM using a 

flow reactor sufficient contact time between the reactant (GSM) and the catalyst 

is required.  Two main options exist to increase contact time, recirculation of the 

polluted water though the flow reactor and/or using a combination of reduced 

flow rate and increased catalyst.  A flow reactor comprising a glass tube 

spiralled around a suitable light source, with Hombikat K01/C pellets deployed 

within the tube would achieve these required attributes. A similar flow reactor 

with TiO2 coated on the inside of a glass tube has been reported (Matthews, 

1988).  With a design selected a pilot flow reactor was constructed and 

evaluated as part of this research to evaluate its effectiveness in degrading 

GSM. 
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5.1.2  Field testing photocatalytic flow reactor 
 

Off-flavour is a major problem in the aquaculture industry (Schrader et al., 

2003).  Much of the research is based on cat fish aquaculture in the southern 

USA (van der Ploeg et al., 1992; King et al., 2003; Zimba et al., 2003;                       

Schrader et al., 2005b), but problems have been reported in European trout 

aquaculture (Robertson et al., 2003; Robin et al., 2006).  Off-flavour in these 

cases is caused predominantly by cyanobacteria growing in the surface waters 

of ponds that are used to rear the fish.  Less common is the use of indoor ponds 

to rear fish with a recirculatory system for providing water to the tanks.           

Off-flavour in these circumstances is believed to be caused by actinomycetes 

growing within the recirculatory system as there is little or no natural light to 

allow cyanobacteria to grow. 

 

An opportunity arose to field test the flow reactor using water naturally 

contaminated with GSM.  The source of the water was a Danish eel farm in 

central Jutland.  Eels affected by off-flavour, by being in contact with water 

contaminated with GSM, has been an ongoing problem for Danish eel farmers 

for a number of years. The water used in the eel farm is sourced from ground 

water, which is then recirculated around the various rearing tanks. The eels are 

cultured in large indoor tanks over two stages, the first stage involves rearing 

immature glass eels (Figure 5-1), after which they are transferred to larger tanks 

to mature. This water quickly becomes contaminated with feed, chemicals 

added during production and waste generated by the eels.  The water is treated 

on a regular basis, with a proportion replaced with fresh groundwater every 

week. Initial testing of water collected from three different stages of the 

recirculatory system detected significant concentrations of GSM (~19 ng L-1 

mean) present.  The GSM detected is likely to be caused by actinomycetes 

(Klausen, et al., 2005) that are growing within the culturing tanks and related 

aquaculture apparatus.  Water samples were collected in stainless steel 

containers to minimise GSM adsorption.  This water was returned to the Royal 

Veterinary and Agricultural University laboratories in Copenhagen were it was 

used to evaluate the pilot photocatalytic flow reactor. 
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Figure 5-1. Eel farm Jutland, Denmark.  First stage  culturing tanks (top)  
containing immature glass eels (bottom). 
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5.2 METHODS 
 

5.2.1 Construction of pilot photocatalytic flow reactor 
 

Borosilcate glass tubing (diameter 10 mm) was selected that had the necessary 

dimensions to allow Hombikat K01/C pellets to be placed inside the tubing.  

This glass tubing was then fashioned into a coil approximately 1200 mm in 

length; external diameter 110 mm; internal diameter 70 mm; internal volume 

1150 cm3 (Vitrum Ltd., Aberdeen, UK). The internal diameter of the coil was 

sufficient to allow a UV strip lamp to be passed through the centre of the coil 

(Figure 5-2). Between the lamp and the coil was a borosilcate glass tube that 

was used to support the coil. 

 

 

 

 

Figure 5-2 Pilot photocatalytic flow reactor.  The compressor is used to 
pressurize the stainless steel reservoir containing the test solution.  The  

valves on the reservoir are used to control the flo w (indicated by the arrows)  
of the solution through the coil.  The UV lamp is h oused within the centre of  
the coil and is powered by control gear (not shown) .  Teflon tubing is used  

to connect the reservoir to the coil. 
 

 

Glass spiral containing  
Hombikat K01/C pellets 
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  Stainless  
  steel 

  reservoir 

UV lamp 
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Hombikat K01/C pellets (1 kg) were washed with Milli-Q to remove any residual 

titanium dioxide powder from the manufacturing process. It had been observed 

previously that new pellets would sometimes split upon immersion in Milli-Q. 

These split pellets were removed and the pellets placed into a moderately hot 

oven (50 °C) for 24 hours to remove any residual water. The pellets were then 

graded to achieve more uniform pellet size.  Firstly pellets of similar diameter 

(approximately 5 mm) were selected and then cut, if required, to produce 

sections approximately 5 - 7 mm in length.  This pellet size was selected to 

minimise the chance of the glass coil being blocked when it was being filled with 

the catalyst.  Using a combination of compressed air and water to move the 

pellets, the coil was filled with the catalyst.  In total 842 g of Hombikat K01/C 

pellet was placed into the glass coil.  The volume of the coil, with catalyst 

loaded, was 895 cm3. 

 

Both the inlet and the outlet of the coil were fitted with Quickfit fittings          

(Figure 5-3) that reduced the diameter of the coil tubing, by tapering to a smaller 

aperture.  These fittings allowed tubing to be fitted as required and also served 

to act as a barrier to prevent the pellets from leaving the coil when under 

pressure.  The reactor was completed by placement within a cylindrical plastic 

housing. 

 

The light source selected for the reactor was a black light UV lamp (40 watt 

General Electric lamp, the Light Bulb Company, UK; spectral output                

300 – 400 nm; Peak emission wavelength 368 nm.  Additional information 

available in Appendix 2). The lamp (1220 mm in length) was passed through the 

centre of the glass tube supporting the coil.  The lamp was aligned centrally 

within the glass tube with two Perspex discs 80 mm from each end of the lamp 

(Figure 5-3).  The discs were machined to allow them to pass over the lamp and 

were the same internal diameter as the glass tube. 
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Figure 5-3. Completed photocatalytic flow reactor.  (A) Compressor, reservoir 
and coil reactor within housing. (B) UV lamp in ope ration. (C) Inlet and outlet 

detail. 
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A 33 L stainless steel pressure vessel (Biotage, UK) was chosen as a reservoir 

for the test solutions (Figure 5-3).  Selection of a stainless steel reservoir would 

ensure that non-specific adsorption of GSM would be minimised within the 

reservoir (Huck et al., 1995).  The reservoir was connected to the coil with 

Teflon tubing (Teflon FEP, Nalgene 890, Fisher, UK) which will again minimise 

loss of GSM (Elhadi et al., 2004a).  All valves that came into contact with a 

wettable surface were constructed from stainless steel (Swaglelok, UK).  A 

compressor (Jun Air Model OF301, Jun Air, Denmark) was connected to the 

reservoir.  This provided the source of compressed air to move the test solution 

from the reservoir and through the coil.   

 

The absorbance of the glass used to construct the coil was tested using a            

Perkin-Elmer Lambda 950 UV/Vis spectrophotometer (Perkin-Elmer, UK).  This 

established that the vessel had a very similar absorption profile (Appendix 1) as 

the glass vessel used in reactor V.3 (Chapter 3), absorbing light in the                

260 – 320 nm region. 

 

 

5.2.2  Photocatalytic destruction of GSM using coil reactor 
 

An aqueous solution of geosmin (100 mL; ~1 µg mL-1) was prepared.  The 

reservoir was filled with 20 L of Milli-Q.  The geosmin solution (3 mL) was then 

added to the reservoir.  An additional 10 L of Milli-Q was added to the reservoir. 

Adding the Milli-Q in two stages ensured that the added GSM solution was 

mixed. The test solution concentration (100 ng L-1) represents a GSM level that 

is comparable to that found in the environment.  After filling the reservoir three 

100 mL samples were taken from the reservoir (control) and the compressor 

switched on and set to 20 psi pressure.  The valves on the reservoir were 

opened to allow the test solution to pass through the reactor.  This continued 

until the coil was full of the test solution and all large air bubbles had been 

removed.  The flow rate was then altered and maintained at a constant flow 

rate.  The flow rates investigated were 50, 75, 100, and 200 mL min-1.  Upon 

adjustment of the flow rate four 100 mL samples were taken in succession from 

the outlet on the coil, this would provide the data on adsorption of GSM within 
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the reactor.  The UV lamp was then activated and the solution allowed to flow 

through the coil until the 895 mL (capacity of the reactor with catalyst loaded) of 

solution had passed through.  Four consecutive 100 mL samples were then 

taken with the lamp on. All samples were analysed by SPE-GC-MS (See 

section 2.2.4.4). 

 

 

5.2.3  Photocatalytic destruction of GSM in spiked tap and raw waters 
 

The procedure was carried out as in section 5.2.2 with two main alterations.  

Only 10 L of each water type under investigation was required, therefore 1 mL 

of GSM stock was added to each water to give the required GSM concentration                     

(~100 ng L-1).   

 

The water samples were collected from two lochs and two rivers. Loch 

Rescobie and Forfar Loch, both located in Angus, Scotland, regularly support 

cyanobacterial blooms. Forfar loch represented a highly eutrophic water body.  

Water from the rivers, Carron and Cowie, Aberdeenshire, Scotland, represented 

water bodies with no previous exposure to cyanobacterial blooms as might be 

expected for relatively fast flowing waters. Despite the relative proximity of the 

rivers Cowie and Carron, their catchments and thus their chemistry are diverse. 

River Cowie passes through forested land and is high in humic compounds 

whereas the Carron passes through predominantly agricultural land.  The tap 

water was sourced from a cold water tap within the laboratory. 

 

The water was filtered prior to use with GF/C filter disks (110 mm, Whatman 

International Ltd., Maidstone, UK) to remove particulates.  Also only two flow 

rates were evaluated, 50 and 75 mL min-1.  These flow rates were selected on 

the basis that they were most likely to show significant GSM degradation.  

 

Samples were collected from the reservoir prior to the solution being pumped 

through the reactor, from the coil outlet after the solution had passed through 

the reactor (lamp off) and post photocatalysis. These were analysed using TOC 

(see section 4.2.4). The samples that were taken from the reservoir were also 
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analysed using a Helios Gamma UV-Vis Spectrophotometer (Thermo Scientific, 

UK). Their absorbance at 368 nm (the peak emission wavelength of the UV 

light) was recorded.  The analysis was conducted to determine whether any of 

the waters used absorbed light in the 368 nm region, as this may affect 

photocatalysis of GSM. 

 

The flow reactor was tested with each GSM spiked raw water at the 75 mL min-1 

flow rate, with the black light UV lamp substituted for the xenon lamp used with 

reactor V.3 (Chapter 3), to determine if light intensity was a limiting factor in 

GSM degradation for this reactor design. 

 

 

5.2.4  Photocatalytic destruction of GSM in raw water collected from 

Danish eel farm 

 

The purpose of this procedure was to evaluate the ability of the coil flow reactor 

in degrading GSM occurring naturally in water.  Water from an eel farm in 

Denmark was used that was known to contain a detectable concentration of 

GSM (~ 19 ng L-1).  The water collected would be passed through the coil 

multiple times to give an indication of the contact time required to degrade the 

GSM present completely. Method 5.2.2. was used with the following alterations: 

 

The main consideration was that once the water had passed through the coil it 

was collected to be returned to the reservoir for the next treatment. Water from 

the eel farm (8 L) was added to the reservoir.  Three 100 mL samples were 

taken (samples also taken for TOC and UV/Vis analysis) and the reservoir 

sealed and pressurised to 20 psi. The valve on the reservoir was opened and 

water allowed to fill the coil until all large air bubbles had been removed.  The 

flow was then adjusted and maintained at 50 mL min-1.  Upon adjustment of the 

flow rate four 100 mL samples were taken in succession, this would provide 

information on adsorption of GSM within the reactor.  The UV lamp was then 

activated and the solution allowed to flow through the coil until the 895 mL 

(capacity of the reactor with catalyst loaded) of solution had passed through.    
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From this point onwards the UV lamp was left on for the remainder of the 

experiment.  Four consecutive 100 mL samples were then taken with the lamp 

on.  The water flowing through the coil was collected in a large glass bottle until 

the reservoir was empty. The reservoir was then depressurized and refilled with 

the water which had passed through the reactor.  The reservoir was then re-

pressurized and the above process repeated with four 100 mL samples 

collected after each pass through the coil for a total of four passes (1 pass for 

GSM adsorption and 3 passes with the UV lamp on).  Samples were not 

collected for GSM adsorption on subsequent passes.  All samples were 

analysed by SPE-GC-MS (See section 2.2.4.4). 
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5.3 RESULTS AND DISCUSSION 
 

5.3.2  Photocatalytic destruction of GSM using flow reactor 
 

The flow reactor was found to degrade GSM across all the flow rates 

investigated (Figure 5-4). The general trend observed is that GSM degradation 

is related to the flow rate, as the flow rate was reduced the rate of GSM 

degradation was observed to increase. This is represented by the GSM 

remaining after exposure to UV and catalyst for the 50 and 200 mL min-1, with 

33 (± 3.1) % and 81 (± 13.0) % GSM remaining respectively. 

 

 

 

 

 

 

 

 

 

Figure 5-4. Destruction of GSM by Hombikat K01/C ph otocatalysis in flow  
reactor at different flow rates. GSM loss monitored  by GC-MS.   

Bars equivalent to one standard deviation (n=4). 
 

 

 

 

Figure 5-4. Destruction of GSM by Hombikat K01/C ph otocatalysis in flow 
reactor, at different flow rates. GSM loss monitore d by GC-MS. 

Bars equivalent to one standard deviation (n=4). 
 

 

The results confirm that GSM is degraded successfully in the flow reactor. 

Calculating the molar destruction rate of GSM reveals that the number of moles 

of GSM destroyed increased slightly at the 100 and 200 mL min-1 flow rates, 4.3 

and 3.8 mol min-1 respectively, as apposed to 3.3 and 3.0 for the 75 and       

100 mL min-1.  Previous work by Turchi et al. (1988) speculated that 

degradation in fixed film systems is limited to a thin water layer near the catalyst 
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surface.  Therefore, the degradation rate would be controlled by the rate at 

which the pollutant passed over the catalytic film. The molar destruction rate 

appears to increase as flow rate increases. 

 

The rate of GSM destruction is considerably lower than that observed using the 

V.3 batch reactor (Chapter 4). The GSM in Milli-Q degradation data for the flow 

reactor (50 mL min-1 flow rate), demonstrates that after 18 minutes of irradiation 

approximately 33 percent GSM remained.  In comparison the V.3 batch reactor 

evaluated in Chapter 4 rendered the lowest GSM concentration investigated,      

0.1 µg mL min-1, undetectable after 15 minutes. This concentration of GSM is 

1000 times higher than the concentration used to evaluate the flow reactor. 

Table 5-1 compares the catalyst loading and catalyst surface area for the two 

different reactors. The catalyst loading is slightly higher for the flow reactor, 

consequently so is the catalyst surface area.  The catalyst surface area for the 

flow reactor is also increased as a result of a greater proportion of the total 

catalyst used being comprised of smaller pellets.  Therefore, the difference in 

the performance of the two reactors in degrading GSM is not a result of the 

different catalyst loading.  The catalyst surface area was determined by a 

colleague by nitrogen adsorption and was very similar to the surface are of P-25 

(50 m2 g-1). 

 

 

 

Reactor Catalyst loading  
(% w/v) 

Catalyst surface 
area (m2 g-1) 

Reactor V.3 75 49 
Flow 94 49 

 

Table 5-1. Comparison of Hombikat K01/C catalyst lo ading and catalyst surface 
areas for Reactor V.3 (Batch reactor) and flow reac tor.  Catalyst surface area 

determined by nitrogen adsorption  
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5.3.3  Photocatalytic destruction of tap and raw waters spiked with GSM 

using flow reactor 
 

The presence of compounds within the raw waters evaluated, had a clear effect 

on GSM degradation (Figure 5-5).  This is clearly demonstrated when 

comparing the degradation of GSM in Milli-Q with GSM degradation in the other 

waters evaluated, with the reduction most pronounced at the 50 mL min-1 flow 

rate.  The effect of increasing the flow rate from 50 to 75 mL min-1 resulted in a 

10 – 20 % decrease in the rate of GSM coversion for all raw waters (including 

tap water, excluding Milli-Q).  The magnitude of the reduction in the rate of GSM 

conversion between the flow rates was not as high as that observed for the 

degradation of GSM in Milli-Q at 50 to 75 mL min-1 (44%).  Substitution of the 

irradiation source, from the UV tube lamp to the Xenon lamp, did not result in an 

increase in photocatalytic degradation of GSM (Figure 5.6).  The GSM 

degradation rate when the xenon lamp was used (75 mL min-1 flow rate) was 

slower in all waters when compared to the GSM degradation using the black 

light UV lamp (75 mL min-1 flow rate), with a 10-23 % reduction in GSM 

degradation observed. 

 

Carbon analysis conducted (Figure 5-7) highlighted the significant difference in 

the total organic carbon (TOC) and inorganic carbon (IC) for the different 

waters. The negative TOC value obtained for tap water is due an instrumental 

error. This was caused by the method used to calculate TOC (TC-IC).  If a 

sample has significantly higher IC content than TOC content this can result in a 

negative result for TOC detection as detection accuracy decreases with 

increasing IC concentration. As expected the TC, TOC, and IC levels found in 

the raw waters were considerably higher than the levels found in Milli-Q and tap 

water. 
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Figure 5-5. Destruction of GSM by Hombikat K01/C in  flow reactor, with UV lamp 
off and lamp activated, at (a) 50 mL min -1 (b) 75 mL min -1. Milli-Q ( ); Tap ( ); 

Cowie ( );Rescobie ( ); Carron ( ); and Forfar ( ).  GS M loss monitored  
by GC-MS.Bars equivalent to one standard deviation (n=4). 
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Figure 5-6. Destruction of GSM by Hombikat K01/C in  flow reactor, with xenon 
lamp off and lamp activated, at 75 mL min -1. Tap ( ); Cowie ( ); Rescobie ( );  

Carron ( ); and Forfar ( ). GSM loss monitored by GC- MS.  
Bars equivalent to one standard deviation (n=4). 

 

 

The waters were analysed to determine whether they absorbed light at 368 nm, 

the peak emission wavelength of the UV light  (Figure 5-8).  This would give an 

indication as to whether any of the waters contained compounds that would 

absorb light that could be utilized by the catalyst. As expected the Milli-Q did not 

absorb light at 368 nm, Rescobie, Forfar and Tap water did (~0.025), but most 

noticeable was the absorbance of River Carron (0.138) and River Cowie (0.421) 

water. 

 

The presence of additional organic and inorganic compounds in the test solution 

during photocatalysis was found to have a significant effect on the degradation 

rate of GSM.  Photocatalysis is non-selective in its oxidation so it is likely that 

these compounds present are acting as direct competitors with GSM for binding 

sites on the catalyst and/or acting as competing reactants in solution.  This had 

the effect of lowering the rate of GSM destruction.   
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Figure 5-7. Carbon analysis of waters, prior to pho tocatalysis; total carbon ( ); 
total organic carbon ( ); inorganic carbon ( ).  The TOC value ( *)for tap water is 

an experimental error. Bars equivalent to one stand ard deviation (n=2). 
 

 

 

Figure 5-8. Absorbance (368 nm) of waters prior to photocatalysis.  
Bars equivalent to one standard deviation (n=2). 

 

Photocatalysis of GSM (50 mL-1 min flow rate) in Milli-Q, a water with minimal 

TOC and IC and no absorbance at 368 nm, resulted in 33 % GSM remaining 
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after one treatment (~18 minutes). Conducting photocatalysis of GSM in tap 

water reduced the rate of GSM degradation significantly, with 54 % GSM 

remaining at the 50 mL-1 min flow rate.  The tap water used had very low TC   

(~6 ppm) and IC was a very large proportion of the carbon detected. An 

increase in TOC, by the addition of methanol as a competing reactant, has been 

shown to effect photocatalysis of GSM, but it did not produce a reduction in the 

rate of GSM degradation until the TOC concentration was above 14 ppm 

(Chapter 4). Therefore it is likely that the IC, or perhaps some other constituents 

of the water that have not been determined, is causing the reduction in the rate 

of GSM destruction. One of the possible constituents affecting the rate of GSM 

destruction may be nitrate (NO3
-). In the UK it is a regulatory requirement for 

nitrate in drinking water to be below 50 mg L-1, though the tap water is unlikely 

to have a concentration as high as this it may contain a level high enough to 

affect photocatalysis. There are conflicting reports in the literature as to whether 

nitrate retards photocatalysis.  Abdullah et al. (1990) reports that nitrate has 

little effect on photocatalysis, but Mills et al. (1993) and Chen et al. (1997) both 

reported that nitrate can significantly reduce the rate of substrate destruction. 

Chen et al. (1997) reported on the inhibitory effect of a number of inorganic ions 

on the photocatalysis of dichloroethane (DCE).  Nitrate was found to have a 

significant effect on the adsorption and rate of destruction of DCE by TiO2, 

reducing the rate of DCE destruction by 20 %. Mills et al. (1993) also reported 

that nitrate, albeit at a greater concentration (24.8 g L-1), reduced the rate of 

TiO2 photocatalysis, with the rate of 4-chlorophenol degradation reduced by    

50 %.  It was concluded that the reduction in degradation was caused not by 

blocking of oxidation sites on the TiO2, but by UV screening of the catalyst 

particles. The reduction in the rate of photomineralization of GSM in tap water 

may be in part a result of UV screening (absorbance at 368 nm was 0.017). The 

concentration of nitrate (31 mg L-1) used by Chen et al. (1997) is at a level that 

is possible in tap water.  Therefore a proportion of the 38 % reduction observed 

in the destruction of GSM in tap water when compared to Milli-Q, may be 

caused by the combination of the presence of nitrate and UV screening.  This is 

complicated by the fact that nitrate, if the cause of the reduction rate of GSM 

degradation, can also at as an accelerator for photocatalysis by absorbing UV 

light and forming hydroxyl radicals (Chen et al., 1997b). 
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The effect of retardation on the rate of GSM destruction in the four raw waters 

was significantly greater than that observed for tap water.  As retardation on 

GSM destruction had been observed in tap water it was to be expected that the 

effect would be greater in the raw waters.  As the raw waters had been 

untreated, apart from filtering, they contained a far greater concentration of 

organic and inorganic matter when compared to the tap water. This resulted in 

increased concentrations of competitive adsorbents/reactants in the subsequent 

test solutions prepared using these raw waters. This difference is highlighted by 

the carbon analysis of the different waters (Figure 5-7).  Additional water 

chemistry information can be found in Table 5-2 for the four raw waters.   

 

 

 NH4
+ 

(µ(µ(µ(µg mL -1) NO3
- 

(µ(µ(µ(µg mL -1) 
NO2

- 

(µ(µ(µ(µg mL -1) 

PO4
3- 

(µ(µ(µ(µg mL -1) 
DOC 

(µ(µ(µ(µg mL -

1) 
Carron 0.03 6.47 0.007 0.05  5.94 
Rescobie 0.11 8.08 0.041 0.14  7.01 
Forfar 0.57 2.43 0.056 0.36  4.00 
Cowie 0.03 1.88 0.001 0.01   12.40 

 

Table 5-2. Additional water chemistry information f or four raw waters including, 
ammonium, nitrate, nitrite, phosphate and dissolved  organic carbon (DOC) 

concentrations.  Analysis conducted by the Macaulay  Institute.  
 

 

Abdullah et al. (1990) reported on the effect of anions on the 

photomineralization of organic pollutants (salicyclic acid, aniline, and ethanol) 

by TiO2. Perchlorates and nitrates were found to have very little effect, but 

sulfates or phosphates even at millimolar concentrations were rapidly adsorbed 

by the catalyst and reduced the rates of oxidation by 20-70 %. Chen et al. 

(1997) also reported the inhibitory effect of inorganic ions on the P-25 TiO2 

degradation of dichloroethane. The ions were found to effect adsorption in the 

order Cl- < NO3
- < [HCO3

-, CO3
2-] < SO4

2- < [H2PO4
-, HPO4

2-] and the overall 

rate of photodegradation in the order NO3
- < Cl- < HCO3

- < CO3
2- < SO4

2- < 

H2PO4
- < HPO4

2-.  The pH of all test solutions was pH 6, apart from those which 

contained carbonate (pH 10) and phosphate (pH 8). The effect of inhibition on 
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the photocatalytic degradation of DCE was approximately half that on the 

adsorption of DCE.  The strong UV screening effect of nitrate observed by Mills 

et al., (1993), that may have had an effect on the rate of GSM degradation in 

tap water may also have an effect on GSM degradation in the raw waters. 

 

The reduction in GSM degradation observed in the raw waters is likely caused 

by a combination of factors including, nitrate and phosphate concentration, total 

carbon and light absorbance at 368 nm.  These factors and their effect on the 

rate of GSM degradation can be seen in Figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9. The effect of nitrate ( ), phosphate ( ),  light absorbance at 368 nm 
( ) and total carbon ( ) on TiO 2 photocatalysis of GSM ( ).  

A multiplication factor of 10 and 20 has been appli ed to phosphate  
and light absorbance respectively. 

 

 

For the Carron, Rescobie and Forfar raw waters it appears there is correlation 

of the photocatalytic rate with total carbon (TC) concentrate, with the increasing 

TC causing a retardation of the photocatalysis of GSM.  Nitrate, especially for 

the concentrations observed in the Carron and Rescobie raw waters, may be 

causing either the blocking of oxidation sites or UV screening.  The 

concentration of phosphate found in the raw waters, even at the highest 

concentration (0.36 mg L-1 for Forfar raw water), is not likely to effect the rate of 
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GSM degradation.  Abdullah et al. (1990) and Chen et al. (1997) did report that 

phosphate can reduce the rate of substrate degradation during TiO2 

photocatalysis, for the same reasons as nitrate, however the phosphate 

concentrations used where in the range of 48 – 100 mg L-1. 

 

While high TC and nitrate may account for the retardation of GSM 

photomineralization in Rescobie and Forfar waters, it does not fully account for 

Carron and Cowie raw waters.  Both these waters were peaty/yellow in colour, 

indicating the likely presence of humic compounds and had greatly increased 

absorbance values of 0.138 (Carron) and 0.421 (Cowie) at 368 nm.  This is 

unsurprising as both waters were collected from rivers during late autumn, at 

which time the rivers experience significant leaf fall along their lengths.  The 

absorbance values obtained for both Carron and Cowie raw waters clearly 

demonstrate that compounds within the waters are absorbing UV light from the 

lamp used.  This results in screening of the catalyst and stops the light from 

reaching the catalyst.  GSM degradation in both waters is also likely to be 

effected by the presence of increased concentrations of competitive adsorbents/ 

reactants, reflected by their respective TC values.  However as the TC values 

for Carron and Cowie are significantly lower than those for the Rescobie and 

Forfar waters, the effect of UV screening must be considerable. Epling et al. 

(2002) also found, in an extensive study, that humic substances could retard the 

rate of TiO2 photocatalysis of a number of dyes.  He found that with increasing 

concentration of humic acids the rate of dye degradation decreased, at the 

highest concentration of 1000 mg L-1, the degradation rate of methylene blue 

was reduced by 90 %.  It was also reported that the high initial retardation of 

natural humic substances may be attributed to competition between the more 

degradable portion of dissolved organic matter (DOM) in the reaction mixture 

and the less degradable dye.  This effect is likely to be partly responsible for the 

reduced degradation of GSM in Cowie water as the Cowie raw water had the 

highest dissolve organic carbon (12.4 mg L-1) (Table 5-2). Epling et al. (2002) 

concluded that the presence of humic acid in a reaction mixture could 

significantly reduce light transmittal and therefore photooxidation rate.  

Additionally it was suggested that humic acid may also compete with organic 

dyes for active sites on the TiO2 surface, and because of their highly oxidized 
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nature, be more resistant to oxidation than organic dyes, resulting in a longer 

adsorption to the catalyst surface. A recent study by Lin et al. (2007) also found 

that humic substances caused the retardation of TiO2 photocatalysis.  The rate 

of 4-chlorophenol degradation was slowed by 12 times in the presence of        

50 mg L-1 of humic acid.  This study concluded that humic acid caused catalyst 

inhibition (surface deactivation), competition and light attenuation. 

 

A noticeable colour change was observed in Carron and Cowie water post 

photocatalysis, probably caused by the break down of some of the                     

humic compounds. Other workers have also demonstrated TiO2                      

photocatalysis of humic substances (Eggins et al., 1997; Bekbolet et al., 2002;                      

Wiszniowski et al., 2002). 

 

The retardation of substrate degradation by humic acids is not a problem unique 

to photocatalysis. Ozone and O3/UV oxidation processes are also considerably 

affected by the presence of humic acids.  The degradation of nitrobenzene by 

O3 was significantly retarded (treatment time doubled) by humic acids through 

radical scavenging and promotion of radical reaction by hydrogen peroxide 

formation (Latifoglu et al., 2003).  Humic acid caused treatment time to be 

tripled when O3/UV was used.  The effect of humic acids in the O3/UV system 

was found to be inhibitive, the inhibition caused by radical scavenging and UV 

light screening.  The occurrence of other natural organic matter (NOM) has 

been reported to reduce ozonation of GSM and MIB (Sagehashi et al., 2005). 

 

A study by Shon et al., (2005) investigated P-25 TiO2 photocatalysis coupled 

with ferric chloride flocculation and PAC adsorption for the treatment of a 

synthetic wastewater.  The synthetic wastewater contained effluent organic 

matter and NOM. TiO2 photocatalysis of the wastewater was found to increase 

organic concentration of the wastewater by breaking larger molecular weight 

compounds into smaller weight compounds.  Pre-treatment of the wastewater 

by PAC prior to TiO2 photocatalysis did not alleviate this problem as it did not 

adsorb the higher molecular weight compounds.  However, simultaneous 

treatment with PAC and TiO2 photocatalysis was found to remove the problem 

and increased the rate of organic matter degradation, the PAC likely adsorbing 
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the smaller molecular weight compounds generated by TiO2 photocatalysis.  

Finally, pre-flocculation of the waste water improved the rate of organic matter 

destruction further.  This would be expected as flocculation would remove 

significant proportions of organic matter present in the wastewater, increasing 

the efficiency of the TiO2 photocatalytic treatment. 

 

The presence of NOM also effects water treatment technologies such as 

activated carbon in removing GSM and MIB.  As in TiO2 photocatalysis, the 

NOM competes with the GSM and MIB for adsorption sites resulting in a 

lowered efficiency for removal of GSM and MIB by activated carbon. This has 

been demonstrated by a number of workers (Graham et al., 2000;             

Newcombe et al., 2002; Ho et al., 2005). 

 

The use of a xenon lamp instead of the black light UV lamp did not increase the 

rate of degradation of GSM (Figure 5.6) despite having an output 10 times 

higher, 400 W compared to 40 W. The glass that the coil was constructed from 

had an almost identical composition when compared to the glass vessel used 

for reactor V.3. in Chapter 4 ( Appendix 1), so could not be screening any 

additional light from the xenon lamp.  In Chapter 4 GSM degradation was found 

to have an initial linear relationship with light intensity, moving into a possible 

square root relationship.  It would therefore be expected that the rate of GSM 

degradation would have increased with the use of the xenon lamp.  The black 

light UV lamp lights the coil more efficiently as it extends the length of the coil 

and as it is housed inside the coil is likely to illuminate more of the catalyst.  

However, though the xenon lamp may not illuminate the coil as efficiently, in 

Chapter 4, at distance of 60 cm (199 µmol s-1m-2), a ~1 µg mL-1 GSM solution 

had 80 % GSM removal after 15 minutes. Mills et al. (1993) reports that the use 

of black-light UV lamps (365 nm maximum emission) coupled with a borosilicate 

glass irradiation vessel is a good combination for the destruction of pollutants 

that do not significantly absorb in the 300 – 400 nm wavelength region.  It 

appears that the rate of GSM degradation is not limited by Hombikat K01/C 

illumination for this flow reactor. 
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5.3.4  Photocatalytic destruction of GSM in raw water collected from 

Danish eel farm 
 

GSM present in water collected from an eel farm was degraded by 

photocatalysis (Figure 5.10), with 36 % GSM remaining after three passes 

(approximately 60 minutes exposure to illuminated catalyst). After one pass   

(20 minutes exposure) 33 % GSM was degraded, comparable to the 

degradation rate observed for GSM spiked into the other water types            

(Figure 5.5). The concentration of GSM in the eel farm water prior to 

photocatalysis was 7.2 ng L-1, considerably lower than the concentration used 

when spiking the raw waters (~100 ng L-1).  Carbon analysis of the eel farm 

water prior to photocatalysis gave the following results (ppm); TC 24.40 (±0.74); 

TOC 10.36 (±2.47); IC 14.04 (±1.74).  Absorbance at 368 nm was 0.115, 

comparable to that of Carron river water. 

 

Photocatalysis of naturally occurring GSM in eel farm water was successful, 

and represented the first time that the flow reactor was used to treat water with 

naturally occurring taint.  It also represented the first time that a solution was 

treated with multiple passes through the reactor, allowing increased treatment 

time. Analysis of the GSM in the eel water also provided a robust assessment of 

the analytical procedure developed in Chapter 2 as the GSM concentration was 

very low (7.2 ng L-1). GSM degradation after one pass through the reactor 

(approximately 20 minutes of contact time) was 33 %.  Although the GSM 

concentration in the other spiked raw waters was much higher (~100 ng L-1), the 

rate of degradation was comparable with that of GSM in Forfar water (32 %). 

However, from the data available (additional water chemistry data was not 

available) the eel farm water would appear to be most like the Carron raw 

water. Though the TC for the eel farm water was lower, 24 ppm as opposed to 

42 ppm for Carron raw water, the IC was similar 14 ppm compared to 11 ppm 

and the absorbance was similar 0.115 and 0.138 for eel farm and Carron water 

respectively.  Though these waters are more similar the GSM degradation rate 

was slightly higher for Carron 38 %. It is likely that the rate of GSM degradation 

in eel farm water is effected by the same factors found for the four other raw 
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waters, namely the effects of UV screening and the competitive effect of 

adsorbents/ reactants within the reactant solutions.   

 

 

 

Figure 5.10: Destruction of naturally occurring GSM  in eel farm water by  
Hombikat K01/C photocatalysis. GSM loss monitored o ver 60 minutes by GC-MS.   

Bars equivalent to one standard deviation (n=4). 
 

 

The eel farm water was treated by passing it through the reactor three times to 

increase treatment time and to determine the length of time to reduce GSM to a 

suitable level.  The degradation of the GSM on subsequent passes through the 

reactor is reduced.  After passes one, two and three, the proportion of GSM 

destroyed is 33, 52, and 64 % respectively (Figure 5-10). This appears to be an 

exponential trend (R2 = 0.9971), with the rate of GSM destruction reducing 

(Figure 5-10) with each subsequent pass through the flow reactor, actual GSM 

degraded in pass one, two, three was 33, 21, and 13 % respectively.  This data 

suggest that degradation of GSM in eel farm water follows pseudo-first order 

kinetics. 
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5.4  CONCLUSIONS 
 

The work in this chapter has demonstrated the efficacy of the pilot 

photocatalytic flow reactor, containing Hombikat K01/C, in destroying GSM in 

Milli-Q and raw water.  The reactor was also shown to destroy naturally 

occurring GSM, which was present in water collected from a Danish eel farm.  

 

The complexity of the raw waters, due to the varied concentration and type of 

species present, made it very difficult to elucidate which factors were having an 

effect on the rate of GSM degradation.  No obvious trends where discovered, 

but the overall effect of the raw waters was to reduce the rate of GSM 

degradation.  The likely cause of the reduction of the rate of GSM degradation 

is the combined effects of an increased number of adsorbents, the increase in 

degradation by-products and the effect of UV screening by humic compounds 

and nitrate.  Light intensity and mass transfer were not found to be rate limiting 

for the Hombikat K01/C, when deployed in the flow reactor.  The molar 

destruction of GSM was slightly higher at increased flow rates.  

 

Howgate (2004) suggests that a reasonable estimate of odour detection 

threshold for GSM in water would be 15 ng L-1.  As the average degradation of 

GSM in the four waters, after one pass. is similar to the degradation of GSM in 

eel water, 34 % compared to 33 % , it is likely that the same degradation rate 

after multiple treatments will be followed. Raw water containing 100 ng L-1 of 

GSM would represent a relatively high GSM concentration for potable water 

treatment.  The 50 mL min-1 flow rate was found to give optimal performance 

and at this flow rate a raw water containing 100 ng L-1 of GSM would require 

approximately 110 minutes of Hombikat K01/C TiO2 treatment to degrade the 

GSM present below the 15 ng L-1 odour detection limit.  At this flow rate and 

treatment time that would equate to an output of 1.6 L hr-1, or 38.4 L in 1 day.  

Clearly at this flow rate rapidly treating large volumes of contaminated water is 

not viable with a reactor of this size. 
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If TiO2 photocatalysis is to be used as a method of water purification the 

significant draw backs of TiO2 screening, by abundant natural substances such 

as humic acid, and competitive adsorption/oxidation, caused by species present 

in the water to be treated, must be resolved. Three approaches could be taken 

to improve the performance of the flow reactor evaluated in this Chapter, which 

also apply to TiO2 photocatalysis as a method of water purification.  Firstly, 

treatment time could be increased.  This was the major factor in improving GSM 

degradation within the flow reactor, but this subsequently reduced the flow rate. 

Therefore, to increase overall treatment time without reducing flow rate, the 

reactor could be scaled up to a larger size, or a number of smaller units joined 

together. Secondly pre-treatment, such as coagulation and sedimentation, of 

the raw water to remove the majority of NOM and inorganic substances, prior to 

TiO2 photocatalysis, would reduce catalyst inhibition and UV screening.  This 

would result in increased GSM degradation. This has been demonstrated by 

Shon et al., (2005), with treatment by PAC and coagulation improving the 

performance of the TiO2 photocatalysis of a synthetic wastewater. The second 

point is important in comparing TiO2 photocatalysis to other advanced water 

treatment processes such as activated carbon, membrane processes and 

ozone.  Finally the back-face illumination could be used to reduce the distance 

between the illumination source and the catalyst, allowing more efficient 

illumination of the catalyst and limiting the effect of catalyst screening. 

 

These advanced processes are usually applied after primary (coagulation, 

flocculation and sedimentation) and secondary (filtration) water treatment      

(Figure 1.7), where the majority of NOM and inorganic matter has been 

removed.  TiO2 photocatalysis treatment conducted on raw water containing 

GSM, that has undergone primary and secondary water treatment, would see 

an improvement on GSM degradation rates when compared to GSM 

degradation in the four raw waters evaluated in this chapter.  Therefore, a 

combination of reactor scale up and judicious placement of TiO2 photocatalytic 

treatment within the water treatment process, i.e. after primary and secondary 

water treatment, would give the best performance for GSM degradation using 

this reactor configuration. 
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The benefits of this reactor is that it uses a black light UV lamp (40 watt General 

Electric lamp, the Light Bulb Company, UK; spectral output 300 – 400 nm; Peak 

emission wavelength 368 nm), which when compared to a higher output lamp is 

cheaper to run.  This is important as a large proportion of costs incurred by the 

water industry for water treatment is from power consumption.  Additionally the 

flow reactor was made out of glass to minimise GSM adsorption, however future 

designs could be constructed of cheaper material such as Perspex. 
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CHAPTER 6 - CONCLUSIONS 
 

6.1 INTRODUCTION 
 
The problems of off-flavour caused by GSM and MIB are well documented and 

as standard water treatment is inefficient in removing them from potable water, 

alternative treatment technologies are required. 

 

The aim of thesis was therefore to investigate as an alternative advanced 

treatment technology for the removal of GSM and MIB from water, TiO2 

photocatalysis.  The novel approach adopted in this work was the use of a new 

TiO2 catalyst, Hombikat K01/C, a pelleted form of TiO2, which is substantially 

different from typical powdered TiO2 catalysts, such as P-25.  The pelleted form 

of the catalyst removes the need for a filtration step to remove the catalyst from 

treated water, as would be the case with using a P-25 suspension. 

 

The findings of this thesis can be divided into 3 sections which address the aims 

outlined in section 1.10: 

 

Those that address the development and optimisation of a rapid analytical 

method for the separation and detection of GSM and MIB in aqueos samples. 

 

• Development of a rapid analytical technique, using SPE and GC-MS, to 

allow trace analysis of large numbers of samples. 

 

• Evaluation of GC-MS instrument for the analysis of GSM and MIB. 

 

 

Those that investigated the design and optimisation of a bench scale batch 

reactor to degrade GSM and MIB. 

 

• Design of a bench scale reactor to evaluate Hombikat K01/C in 

degrading GSM and MIB. 
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• Optimisation of bench scale reactor to minimise the large system losses 

encountered when investigating the photocatalysis of GSM. 

 

• Investigation of the factors effecting the photocatalytic destruction of 

GSM, including initial substrate concentration, pH, light intensity, aeration 

rate and catalysis conducted in deuterated water. 

 

 

Those that investigated the ability of a pilot flow reactor to degrade GSM in raw 

water. 

 

• Development of a pilot photocatalytic flow reactor to evaluate Hombikat 

K01/C in degrading GSM in raw waters 

 

 

6.2 DEVELOPMENT AND OPTIMISATION OF A RAPID 
ANALYTICAL METHOD FOR GSM AND MIB DETECTION 

 

Evaluation of SPE for the separation of GSM and MIB from aqueous samples 

found that C8 cartridges offered the best compromise between recovery and 

reproducibility.  The ability of SPE to act as a trace enrichment and separation 

step, effectively concentrating GSM from large volumes of water, was also 

demonstrated.  This allowed the evaluation of environmental concentrations of 

GSM in this study. Subsequent analysis of the isolated GSM and MIB by the 

developed GC-MS analytical method was successful, with the Agilent GC-MS 

attaining significantly better limits of detection than the Clarus GC-MS.  The 

combination of parallel processing of aqueous samples containing GSM and 

MIB by SPE, and subsequent analysis of the samples by GC-MS (with 

autosampler) allowed large numbers of samples to be processed rapidly.  The 

development of this analytical method was central to this work, as alternative 

methods of analysis would not allow such a large number of samples to be 

processed, making this work conducted here unviable. 

 



 165 

The GSM and MIB used in this study were prepared in methanol to eliminate 

the problem of microbial degradation, allowing long term storage of the 

prepared solutions.  However, for the majority of experiments conducted the 

methanol had to be removed, due to its effect as an additional oxidant during 

photocatalysis  of test solutions.  The removal of methanol from the GSM 

solutions prepared in methanol was achieved by evaporation under nitrogen. 

Subsequent re-suspension of the GSM in water resulted in test solutions 

required for this work.  Regrettably, this method did not work when applied to 

MIB-methanol solutions, with the reasons for this not established.  The 

consequence of this was that the study focussed on investigation of the 

photocatalysis of GSM. 

 

 

6.3 THE DESIGN AND OPTIMISATION OF A BENCH SCALE 
BATCH REACTOR TO DEGRADE GSM AND MIB 

 

A bench scale batch reactor was developed to evaluate the Hombikat K01/C 

TiO2 photocatalysis of GSM.  Three versions of the reactor were evaluated, with 

each subsequent reactor improving on the last.  It became apparent that non-

specific adsorption of GSM to certain wettable surfaces within the reactor was a 

significant issue with the early reactor versions.  This non-specific adsorption of 

GSM within the reactor under control conditions was unacceptable.  The 

problem was traced to the use of peristaltic tubing, which accounted for the 

majority of GSM system losses.  The final reactor design (V.3) was re-designed 

to dispense with the need for a peristaltic pump, and hence peristlatic tubing. 

This resulted in greatly reducing system losses of GSM under control 

conditions. This study clearly demonstrated the challenges of working with a 

compound such as GSM and calls into question the accuracy of other studies 

involving the removal/destruction of GSM that do not report on possible system 

losses. 

 

The improvement in reducing system losses allowed the Hombikat K01/C TiO2 

photocatalysis of GSM to be clearly observed, with GSM being rapidly 

degraded.  A number of experimental variables were altered to observe the 
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effect on GSM degradation within the batch reactor.  The initial concentration of 

GSM was found to have little effect on the rate of GSM destruction, according to 

Langmuir-Hinshelwood rate expressions.  Low pH of the test solutions during 

the photocatalysis of GSM was found to increase the initial rate of GSM.  The 

presence of methanol during the photocatalysis of GSM caused the retardation 

of the rate of GSM destruction.  This gave an interesting initial insight into the 

effect of additional reactants within the photocatalytic system.  Increased light 

intensity was also observed to increase the rate of GSM degradation.  A kinetic 

isotope effect was observed for the degradation of GSM using the Hombikat 

K01/C catalyst, this effect was corroborated by a similar isotope effect of 

microcystin-LR. The reactor and catalyst configuration used was not found to be 

mass transport limited. 

 

 

6.4 INVESTIGATION OF THE ABILITY OF A PILOT FLOW 
REACTOR TO DEGRADE GSM IN RAW WATER 

 

The Hombikat K01/C TiO2 photocatalytic degradation of GSM was observed 

using the flow reactor.  The rate of GSM degradation in Milli-Q solutions was 

comparable to that observed when using the batch reactor, albeit at a slightly 

reduced rate.  However, the GSM degradation rate reduced significantly when 

GSM was present in raw waters.  This effect was observed in four raw waters 

spiked with GSM and one raw water from an eel farm in Denmark that naturally 

contained GSM.  Although difficult to elucidate the exact reasons for this 

decrease in GSM degradation, the major contributors are likely to be the 

presence of additional adsorbents within the test solution and the effect of UV 

shielding of the catalyst. 

 

In conclusion Hombikat K01/C TiO2 photocatalysis has been demonstrated to 

be a promising treatment method for the removal of GSM from potable waters.  

However, further research is required to optimise the performance of scaled up 

photocatalytic reactors.  This requires additional work to be conducted on the 

effects of raw water on the photocatalytic degradation of GSM, which applies to 

photocatalysis as a whole in regards to water treatment. Investigation of the 
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affects of additional constituents present in raw water, such as anions, on the 

rate of photocatlysis is necessary.  In particular the long term usage of the 

catalyst should be observed for alterations in performance and catalyst integrity.  

Results for the degradation of GSM in the water collected from the eel farm 

suggested that the rate of GSM destruction decreased with each subsequent 

treatment in the reactor.  This is likely to be caused by a number of factors.  The 

accumulation of degradation by-products on the catalyst surface and/or the 

poisoning of the catalyst by constituents of the water are a possibility.  

Additionally there may not have been sufficient oxygen present in the reactor, 

resulting in a decrease in the rate of photocatalysis.  All these factors require 

further investigation and would suggest that a cleaning step would be necessary 

after continued use of the catalyst to limit decrease in catalyst performance.  

 

 

6.5 FURTHER WORK 
 
A pilot plant consisting of several of the reactors evaluated in Chapter 5 would 

obviously decrease treatment time and allow larger volumes to be treated.  The 

plant would have to be designed to allow the introduction of clean water, and 

possibly additional cleaning agents, so the catalyst could be cleaned when 

significant performance reduction was observed. A pilot plant would also be 

necessary to determine the affects of long term usage on the integrity of the 

catalyst.  Increased flow rates and significant agitation of the catalyst are likely 

to increase the rate of catalyst degradation.  

 

Investigation of solar energy to activate the catalyst would also be worthwhile as 

a significant proportion of the treatment cost is associated with the cost of 

electricity to power the light source. However, this would only be viable in 

countires with the required sustained periods of sunny weather. 

 

The most realistic use of photocatalysis as a potable water treatment would be 

as an advanced water treatment method.  Therefore it would ideally be used 

after primary and secondary water treatment, were the majority of organic and 

inorganic constituents have been removed. 
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The different raw waters investigated in Chapter 5 significantly reduced GSM 

degradation, but no factor was found to be individually responsible for the loss 

in performance.  Therefore further scope exists for research into how different 

water parameters affect the photocatalytic rate of compounds. 
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APPENDIX 1 - BATCH AND FLOW REACTOR GLASS 
SPECTRAS 

 

 

 

Figure A-1. Comparison of UV/Vis absorbance for ( )  glass vessel used  
in reactors V.1 – V.3 (Chapter 3) and ( ) glass used  to construct coil  

flow reactor (Chapter 5). 
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APPENDIX 2 – UV BLACK LIGHT LAMP DATA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-2. UV black light lamp data (Chapter 5).  


