View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Access Institutional Repository at Robert Gordon University

Refinement in Response to Validation

Susan Craw
School of Computer & Mathematical Sciences,
The Robert Gordon University, St Andrew Street,
Aberdeen AB1 1HG, Scotland, UK

smc@csd.abdn.ac.uk
Tel: +44 224 262715
FAX: 4+44 224 262727

D. Sleeman
Department of Computing Science,

University of Aberdeen, Elphinstone Road
Aberdeen AB9 2UE, Scotland, UK

sleeman@csd.abdn.ac.uk
Tel: +44 224 272288
FAX: +44 224 273422

Fxpert Systems with Applications, 8(3), 1995.

Also appears in J. Cardefiosa and P. Meseguer, editors, Proceedings of the

FUROVAVY93 Workshop, pages 85-99, Palma, SPAIN, 1993.

Abstract

Knowledge based systems (KBS) are being applied in ever increasing numbers.
In parallel with the development of knowledge acquisition tools, is the demand for
mechanisms to assure their quality, particularly in safety critical applications.
Quality assurance is achieved by checking the contents of the KBS at various stages
throughout its life cycle. But how does testing for quality assurance aggravate
the already well-known knowledge acquisition bottleneck? The partial automation
of checking and correcting the Knowledge Base (KB) is an obvious approach to
reducing the bottleneck, but also a more routine treatment of checking will provide
improved facilities for quality assurance. In addition to identifying the occurrence
of faults, this paper suggests that responding to faults identified by validation is
both useful and important. Therefore, refinement should be thought of as a
companion to validation.

https://core.ac.uk/display/222838844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

This backdrop has seen the recent emergence of validation as a theme in main stream
Al. However, the field has concentrated on the identification of faults. We wish to
suggest that responding to faults identified by validation is both useful and important,
and so refinement should be thought of as a companion to validation. On completion
of a validation step, refinement should be executed with the benefit of the information
assembled by validation.

This paper advocates the inclusion of refinement within a validation toolbox and
describes the role of KRUST as an improvement tool within the ViVa project (Esprit
P6125). For the rest of this paper we shall use the term validation+ to refer to a process
which combines refinement with validation; validation will not include the notion of
refinement. The body of the paper is divided into 3 sections: Section 2 describes various
refinement systems but focuses on our KRUST system, Section 3 looks at validation
and Section 4 discusses the integration of validation and refinement with reference to an
Esprit project dedicated to validation+. The final section summarises our ideas on the
integration of validation and refinement.

2 Refinement

A KBS consists of a body of knowledge and a means of making deductions. In a real
application, it is relatively easy to select an appropriate problem-solving strategy, but
it is most unusual for the knowledge to be perfect. It is common for the knowledge to
contain inconsistencies, be incomplete or perform badly on examples, and many of these
faults must be removed before the KBS is of an acceptable quality. In this case, it is often
assumed that the procedural component of the KBS is suitable, and refinement of the
KB is the established technique to correct a KBS. As an exception, CONKRET (Lopez,
1991) does refine the control mechanism, because control is represented as declarative
meta-knowledge.

A refinement system responds to the existence of evidence suggesting the need for
change. Since many faults rely on the way that deductions are made from the knowl-
edge, it is common for a refinement system to have some knowledge about the procedural
mechanism so that it can explore causes of faults and possible solutions, but this clearly
depends on the form of evidence given to the refinement system. So what types of ev-
idence can be provided? Certainly, if the faulty knowledge is pinpointed exactly, (e.g.
Rules R;, R;, Ry form a loop) then refinement can implement changes to this knowledge.
However often the effects of the faults are identified and the major effort within refine-
ment is precisely: “identifying exactly what should be changed, and how”. Thus, the
evidence may not refer directly to the KB; instead there may be an example which the
KBS wrongly solves, or fails to solve. Such evidence may be quite rich; if it is accompa-
nied by the expert’s solution, a criticism of the KBS’s solution, etc.

2.1 Traditional Approaches

The classic refinement system, TEIRESIAS (Davis, 1984), has many similarities with
more recent projects, such as SEEK (Politakis, 1985), Dipmeter Adviser Refiner (Smith,
Winston, Mitchell, & Buchanan, 1985), ODYSSEUS (Wilkins, 1988), namely:

o wrongly solved examples trigger refinement;
e the KB is rule-based; and

e knowledge of the problem-solving method identifies causes of faults.

With the exception of ODYSSEUS, these refinement systems choose to refine the KB
in one particular way and then make only these changes to the KB. In ODYSSEUS,
problem-solving meta-knowledge identifies faults in the KB; any meta-rule which fails to
fire indicates a possible fault in the domain knowledge. This approach may produce too
many false alarms, so ODYSSEUS needs a way of separating true from false alarms and
controlling the number of possible changes in reaction to an alarm, but this has not been
described.

Refinement systems may use heuristics to focus attention on most likely causes of error
and so restrict the search for possible changes to particular areas of the KB. However, an
extensive supply of meta-knowledge, as required by Smith et al. (Smith et al., 1985), has
the same, or worse, knowledge acquisition overhead as domain knowledge. In contrast,
background knowledge, essential for refinement (and validation) systems, is more easily
provided, being attribute types, value hierarchies, etc. It links existing faulty knowledge
to appropriate replacement knowledge.

Traditionally, refinement has been identified as a subfield of Knowledge Acquisition;
or Machine Learning if refinements are automatically proposed and only sanctioned by
a human. Refinement is often a distinct step in the final phases of knowledge acquisition;
most of the KB is acceptable, but small changes are made to the content of the knowledge
(not the structure) so that unwanted behaviour does not re-occur. Here we argue that
refinement is a natural extension to validation systems, and may even be considered as
a collaborating system, which gains from the analysis undertaken during fault-finding.
Since validation should be an ongoing process throughout the life cycle, refinement too
should be used at all stages of the KBS development.

2.2 KRUST

Our interest in validation+ stems from our work in knowledge refinement; we have pre-
viously implemented a refinement system, KRUST (Craw & Sleeman, 1990). In common
with other refinement systems, it refines rule-based KBSs and the process is triggered
when the KBS fails to solve an example correctly. In contrast to other systems, however,
KRUST considers many suggested refinements, but executes only a small subset of the
refinements on the KB, thus proposing a small number of replacement KBs. It filters the
refinements by setting increasingly selective tests which the refinements must pass. As
the refinements reduce in number, the tests can be computationally more complex. In
this way KRUST only rejects a proposed refinement once evidence against it has been
found; i.e. it fails one of the tests.

KRUST’s architecture is shown in Figure 1. A training example, which the KBS
fails to solve correctly, is input and KRUST enters an interpretation phase. Possible
causes of the failure are identified and the rules are classified into different categories
of interest, from which suitable refinements are suggested. The refinement generation
step gathers a set of possible refinements, each consisting of a set of rule changes; e.g.
a named rule should be strengthened (made more difficult to satisfy), weakened (made
easier to satisfy), given an increased chance of firing, etc. At this stage, the actual changes

Figure 1: KRUST’s Architecture

are not specified; a refinement contains the aims of the changes. The refinements now
meet the first filter; meta-knowledge and heuristics discard those proposed refinements
which are believed to be poor. Only after this first selection process are the refinements
executed on the KB, thus creating a set of refined KBs. At this stage, it is possible, and
feasible, to run the refined KBs on sample tasks and compare the results with expert
solutions. The second filter applies each refined KB to the training example and a set of
tasks which must be solved correctly; we call these tasks “chestnuts”. Any refined KB
which fails a test is rejected. All refined KBs which pass these tests can be suggested to

the expert, or alternatively, as in the existing system, a fairly detailed judgement phase
ranks the refined KBs and selects the most suitable one. A fuller description of KRUST’s
architecture and its application to a wine KB is presented in (Craw & Sleeman, 1990).
An effect of KRUST’s approach of generating many refinements and testing their
suitability, is that the tests available to KRUST can be varied, to allow KBs with different
features to succeed. We have experimented by comparing the following two scenarios

(Craw & Sleeman, 1991):

Black Box Testing: The refined KB must solve the training example correctly but
one does not care how the KB has been changed. KRUST was applied to a KB
where the tests were biased towards ones which the original KB would pass. This
corresponds to a realistic use of KRUST; the KB is faulty, but not very!

Glass Box Testing: The original KB must be retrieved after an intentional corruption.
KRUST was applied to the artificially corrupted KB, but now, the tests were not
favourable to this (the corrupted) KB, but to the KB before the corruption,
because we wanted KRUST to retrieve the original situation from the corruption,
and so wanted KRUST to favour refined KBs which were most like the original KB,

before the corruption.

Changes in Best Refined KB Black | Black-1 | Glass
Weaken 1 Rule only 1% 2% 0%
Strengthen at least 1 Rule only 51% 4% | 20%
Weaken 1 Rule and Strengthen at least 1 Rule 3% — 0%
Lower the Certainty of at least 1 Rule 0% 0% 0%
Raise the Certainty of 1 Rule 0% 0% 0%
Weaken 1 Rule and Lower the Certainty of at least 0% — 0%
1 rule
Weaken 1 Rule and Raise its Certainty 3% — 0%
Strengthen at least 1 Rule and Lower the Cer- % 8% 0%
tainty of at least 1 rule
Change the Conclusion of 1 Rule 9% 10% | 20%
Add a New Rule 25% 27% | 60%
Number of Best Refined KBs 67 63 3

Table 1: Changes in Best Refined KB

We compared the types of changes made during the refinement process in both trials
and found that KRUST’s behaviour was distinctive, despite the small number of runs in
the glass box testing. Table 1 shows the type of change in the refined KB selected as
best. The columns contain the following data:

Black: the results from black box testing;

Black-1: the results from black box testing where only refined KBs with single changes
were counted!; and

Glass: the results from glass box testing.

By comparing the distribution of changes it would appear that strengthening a rule
is much less favoured in glass box testing, whereas inserting a new rule is much more
effective. We should like to investigate this testing further, to ensure that these results
are echoed in more extensive studies with glass box testing.

KRUST proved to be quite sensitive to the tests with which it was provided. In the
glass box testing above, KRUST was given tests which favoured the original KB and the
refinement corresponding to the original KB survived all filtering processes. It was not
necessarily chosen as the best KB, because some other refined KBs might out-perform it
in the final ranking, for the particular test examples. (This is quite understandable, since
the original KB might not be the optimal KB for these test examples.) In earlier glass
box testing, KRUST had been given tests favouring the input KB; i.e. the corrupted
KB, and although the refinement recreating the original KB had always been generated,
it was always rejected during the test case filter.

We shall argue later that the flexibility provided by KRUST’s speculative refinement
generation and tailorable rejection of refinements makes it particularly suitable for inte-
gration with fault-finding systems.

3 Validation

The validation of KBSs does not conform to the standard definitions of Verification and
Validation for conventional software, because the specifications for KBSs are fundamen-
tally different from those for other software, primarily because of their great reliance on
knowledge. The knowledge within a KBS must be validated as part of quality assurance,
but it requires different sorts of specifications and special checking techniques. We are
interested in the validation of the declarative parts of a KBS; i.e. the KB. This links
with our interest in the refinement of the declarative knowledge. Although the valida-
tion is aimed at the declarative knowledge, we often need to explore the effects of the
inference engine, because potentially faulty knowledge may not produce faults when used
in conjunction with the inference engine. We note that the procedural components of a
KBS can be specified and validated using techniques for conventional software, and is
not addressed here.

3.1 Terminology

There is much debate about the terminology in knowledge validation since it does not
fit the conventional model. The debate centres on the relationship between the type of
specification being checked and the terminology given to the process. We shall adopt the
position of Laurent (Laurent, 1992); namely:

Validation is the general process of checking that a KBS satisfies its specifications and
is composed of:

1 This selects those runs which were similar to that used for black box testing; i.e. where only a single
corruption (and hence a single correction) was introduced.

e the Verification of formal specifications; and

e the Evaluation of pseudo-formal specifications.

We use the general term validation, without the need to say whether the tool performs
verification or evaluation, because, from our perspective of refinement, we are interested
in the output of validation tools, rather than the type of specifications they check. The
only possible effect for refinement, of distinguishing between verification and evaluation,
is that an evaluation anomaly may not be sufficiently well-founded to justify a refinement.

3.2 Consistency Checking

Consistency checking looks for contradictions in the knowledge and is based on a set of
specifications defined within a consistency model. If the KBS satisfies all consistency
specifications, then it is declared to be consistent. In practice, consistency checkers oper-
ate by looking for inconsistencies! The consistency model contains formal specifications
and so strictly these are verification tools. The following descriptions could be converted
into formal specifications for a consistency model:

o the required arity of attributes - e.g. the arity of parents is 2;

e contradictory values for attributes which must not occur together - e.g. the apoc-
ryphal pregnant male

e no rule is redundant - a rule is redundant if its conditions imply the conditions of
another with the same conclusion;

e no rules are ambivalent - two rules are ambivalent if the conditions of one imply
the conditions of another and they contain contradictory conclusions; e.g. one rule
deduces that the patient is male, the other deduces “he” is pregnant.

e no looping rules.

There are two approaches to consistency checking:

Static Analysis: considers only the knowledge explicitly represented in the KB and
identifies the items of knowledge which contradict a specification; e.g. an attribute
arity is wrong, contradictory values appear within a rule, redundant rules (the num-
ber of conditions determines the strength of conditions), ambivalent rules (subsets
of conditions provide simultaneous firing), looping rules (but these may fit more
neatly in the next category), etc. The output from static analysis contains explicit
items of knowledge which contradict a particular specification.

Dynamic Analysis: explores deductions within the KB which contradict a specifica-
tion; e.g. a deduction is false, contradictory values appear in a deduction, redundant
and ambivalent rules (allowing deduction may increase the number of rule inter-
actions), looping rules (these are more appropriate here where chains of rules are
automatically explored), etc. Dynamic analysis is computationally expensive be-
cause it involves the exhaustive search of all possible deductions. In circumstances
where this is not feasible, heuristics may guide the search for likely inconsistencies.
Since dynamic analysis is deduction based, the anomalies are expressed in terms of
examples or traces.

Static consistency checking can often be achieved exhaustively as in ONCOCIN’s
checker (Suwa, Scott, & Shortliffe, 1984). Although COVADIS (Rousset, 1988) and
COVER (Preece & Shinghal, 1992) are exhaustive dynamic checkers, SACCO (Ayel &
Laurent, 1991) relies on heuristic guidance to avoid the computational complexity of
dynamic checking.

Clearly exhaustive checking produces a complete set of anomalies with respect to
the specifications, whereas heuristic checking is unlikely to find all anomalies. We also
note that the anomalies found are only possible faults; they logically follow from the
knowledge but they may not occur in practice, if the KBS has a restrictive inference
engine. The anomalies must be checked under the inference engine, to determine whether
they are actual faults. Alternatively, the inference engine can be taken into account when
defining the specifications.

3.3 Completeness Checking

Completeness checking is closely related to knowledge acquisition, but the term implies
that the process occurs towards the end of a particular acquisition phase; one believes
that the knowledge is complete, but fears that small items of knowledge are missing. The
repertory grids of AQUINAS (Boose, 1988) display existing knowledge in a structured,
but domain independent way, and allow the user to inspect the knowledge and thus
volunteer additional knowledge. OPAL (Musen, Fagan, Combs, & Shortliffe, 1987) is
designed specifically for the cancer therapy domain and displays its knowledge in a stan-
dard cancer therapy format, familiar to its users. These systems cannot be considered
to automatically discover missing knowledge. In contrast, ONCOCIN’s checker (Suwa
et al., 1984) is an automated static completeness (as well as consistency) checker, and
MOLE and SALT, described in (Marcus, 1988), use knowledge about problem solving to
identify knowledge which is believed to be relevant.

Completeness checkers inspect the existing knowledge to identify gaps by predicting
a case which cannot be solved or identifying a set of related rules which exclude some
circumstance.

3.4 Testing

Testing Tools judge the quality of the KBS by running it on examples. Testing tools, such
as VORTEX (Cross & Grisoni, 1990), may record the effects of testing by documenting
traces or providing a statistical summary of rule usage. Another function of testing
tools is to record any examples which the KBS cannot solve; this provides evidence of
incompleteness.

Of course testing depends heavily on the relevance, importance or even criticality of
the examples. SYCOJET (Ayel & Laurent, 1991) approaches testing from a different
angle; it generates pertinent examples by exploring possible deductive chains within

the KB.

3.5 Validation Knowledge

The validation tools described above are knowledge-based, and in particular, the specifi-
cations may require knowledge about the attributes; e.g. value types, value hierarchies,

arity, etc. Also, non-exhaustive validation requires heuristics to guide the search for
anomalies; e.g. borderline cases may provide a source of likely faults.

4 Validation+

Validation+ integrates Refinement and Validation. Instead of requiring the expert to
supply task-solution pairs, the refinements are based on the evidence provided by the
validation tools. Towards the end of the development of a KBS, the emphasis may be
on demonstrating that the KBS is correct (faults are not expected), however validation
should be an ongoing process throughout development, and assistance to correct faults,
as they appear, is a natural extension to finding the faults in the first place. Although the
VALID project (Esprit P2148) produced a validation+ toolbox offering a range of tools,
the tools did not appear to be closely integrated. VORTEX (Cross & Grisoni, 1990)
contains a set of integrated tools but is dedicated to a single KB. Here we describe an
integrated toolbox whose aim is to validate+ a range of KBSs.

4.1 Integrating KRUST

We are interested in developing KRUST so that it benefits from the additional evidence
which can be provided by validation, to re-use searches required during validation and to
judge the quality of refined KBs using validation. We first consider the types of additional
evidence.

In Figure 2, we have superimposed some validation tools on KRUST’s architecture.
The arrows show the flow of evidence to KRUST, their labels indicating the type of
evidence. We have separated test sample generation from general testing tools since
these have a special use within KRUST: providing task-solution pairs for choosing the
best refined KB, and possibly chestnut cases for filtering.

Many dynamic validation tools explore deduction chains within the KB, a type of
search conducted by KRUST. The validation tools can pass the results of these efforts?
directly to KRUST, which then removes those deductions not produced by the inference
engine, as another filtering process. Thus, the search effort within the integrated tools is
not duplicated. Figure 2 also shows the links to KRUST from the Validation Knowledge,
described in Section 3.5. It is a source of heuristics for refinement filtering and relevant
replacement knowledge for knowledge updates.

KRUST adopts the generate and test model and thus benefits from the availability
of rejection criteria. In Figure 2, the Completeness, Consistency and Testing tools have
been enclosed in a box whose shading matches the second filter in KRUST, for which
these validation tools can provide tests; e.g. consistency checking rejects KBs contain-
ing contradictory values. In particular, incremental verification (Meseguer, 1992) would
explore faults introduced by changes. Testing tools provide an empirical checking as is
used currently in KRUST. Another aspect of validation is the development of KB met-
rics, available to finally rank KRUST’s remaining refined KBs, and select the best to
present to the user.

2The search within SACCO (Ayel & Laurent, 1991) and Meseguer’s incremental verifier (Meseguer,
1992) provides extended labels for the conclusions within the KB.

Figure 2: KRUST’s Integration within Validation+

4.2 The ViVa Project

The ViVa project (Esprit P6125)% addresses the issue of Validation+. Its aim is exempli-
fied by its title, “Verification, Improvement & VAlidation of Knowledge Based
Systems” with the following (shortened) descriptions from the Technical Annexe:

Verification denotes the process of determining whether the outcome of a given phase
of KBS development meets all the requirements established during the previous
phase. This corresponds to the question of whether the KBS is built the right way.

Improvement denotes the process which interprets the discrepancies and anomalies
identified by the verification and validation processes and which supports the con-
sequent refinement of the KBS.

3The partners in this project are Computer Resources International A/S (DK), CISI Ingenierie (F),
Furopean Space Agency (Int), Lloyd’s Register of Shipping (UK), Logica Cambridge Ltd. (UK), Uni-
versity of Aberdeen (UK) and Université de Savoie (F).

Validation denotes the process of evaluating a KBS to ensure compliance with the
requirements. This corresponds to the question of whether the KBS is the right
system.

In addition to providing an integrated toolbox of Validation+ tools, ViVa will define
a methodology for using the tools. An important criterion for validation+ tools, and
knowledge acquisition tools in general, is their suitability for real-life KBSs. Access to
real-life KBSs is often difficult for researchers, but the ViVa project is applications-driven,
and will provide both KBSs and descriptions of the validation+ needs of KBS developers.

4.3 ViVa Tools

Improvement, as defined above, implies the two stages: interpretation of faults and
implementation of changes. This coincides with our notion of refinement, whose major
task is identifying the cause of “failure”; making the changes is normally a relatively easy
exercise. The two stages of interpretation and implementation were indicated in Figure 1
by shading. The other ViVa tools cover the types of validation described in Section 3 and
satisfy the Verification and Validation objectives of the project. Figure 2 thus represents
the functionality of a KRUST-based improvement tool within ViVa.

KRUST is currently a prototype refinement system, which acts on a restricted set of
KBSs, in response to the evidence provided by wrongly solved cases. Within the ViVa
project, KRUST will be developed to refine a wider range of rule-based systems and
other knowledge representations, and to respond to a greater variety of fault-indicating
evidence, produced by validation tools.

4.4 Knowledge Representation
Validation+ systems must have access to the KBS, but this may restrict target KBSs to:

e one particular KBS, e.g. TEIRESIAS (Davis, 1984) refines MY CIN;

e one particular shell or model, e.g. SEEK (Politakis, 1985) refines KBSs built in
EXPERT; or

e one standard representation into which the KBS must be translated, e.g. COVER
(Preece & Shinghal, 1992) validates a Prolog representation of the KBS.

Clearly the last option is the most general but it does demand that translation occurs at
some stage; either before the validation+ tool is used, or as part of its operation.

It is common for an integrated toolbox to adopt the last option and have a Common
Knowledge Representation, tailored to the tools, so that all the necessary hooks required
by the tools are easily available. ViVa has chosen this approach. Applications must be
converted to this formalism, but translators from standard shells should be straightfor-
ward.

5 Summary

This paper has described how refinement can enhance the functionality of validation
systems. Instead of simply identifying possible faults, these are explored further, so that

anomalies can be rectified by actually refining the KB in response to the evidence that
faults have been found. We believe that KRUST is a suitable refinement system for
integration with various validation systems because its behaviour can be moulded to suit
the available evidence. It generates many refinements to remove a particular anomaly,
but it can be influenced when choosing which of these refinements to reject. Thus it is
sufficiently flexible to adapt to the various types of change which may be required.

The aim of a general validation+ approach is to ease the process of validation. By
incorporating a wide-ranging validation+ toolbox, within a structured knowledge acqui-
sition methodology, it is hoped that ViVa can provide validation+ at all stages of the
life cycle. Of course, we are interested in improvement throughout the life cycle and
would anticipate that easing the validation burden by additionally suggesting how to fix
anomalies, may make validation, in the form of validation+, a more attractive undertak-
ing. Currently, KBS developers fear using validation because of the anomalies it may
uncover; indicating how repairs may be made should lessen this fear.

6 Acknowledgements

We thank our ViVa project partners for useful discussions on validation and its applica-
tion.

7 References

Ayel, M., & Laurent, J.-P. (1991). SACCO-SYCOJET: Two different ways of verifying
knowledge-based systems. In Ayel, M., & Laurent, J.-P. (Eds.), Validation, Verification
and Test of Knowledge-Based Systems, pp. 63-76. Wiley.

Boose, J. H. (1988). Uses of repertory grid-centred knowledge acquisition tools for
knowledge-based systems. [International Journal of Man-Machine Studies, 29, 287—
310.

Craw, S., & Sleeman, D. (1990). Automating the refinement of knowledge-based sys-
tems. In Aiello, L. C. (Ed.), Proceedings of the ECAI90 Conference, pp. 167-172
Stockholm, SWEDEN. Pitman.

Craw, S., & Sleeman, D. (1991). The flexibility of speculative refinement. In Birnbaum,
L., & Collins, G. (Eds.), Machine Learning: Proceedings of the Eighth International
Workshop on Machine Learning, pp. 28-32 Evanston, IL. Morgan Kaufmann.

Cross, S., & Grisoni, M. (1990). A methodology for producing validated real-time
expert systems. In Proceedings of the Advisory Group for Aerospace Research and De-
velopment: Knowledge Based System Applications for Guidance and Control, AGARD-
CP-474, pp. 27-30.

Davis, R. (1984). Interactive transfer of expertise. In Buchanan, B., & Shortliffe, E. H.
(Eds.), Rule-Based Expert Systems, pp. 171-205. Addison-Wesley, Reading, MA.

Laurent, J.-P. (1992). Proposals for a valid terminology in KBS validation. In Neu-
mann, B. (Ed.), Proceedings of the ECAI92 Conference, pp. 829-834 Vienna, AUS-
TRIA. Wiley.

Lopez, B. (1991). CONKRET: A control knowledge refinement tool. In Ayel, M., &
Laurent, J.-P. (Eds.), Validation, Verification and Test of Knowledge-Based Systems,
pp. 191-206. Wiley.

Marcus, S. (Ed.). (1988). Automating Knowledge Acquisition for Frpert Systems.
Kluwer, Boston.

Meseguer, P. (1992). Incremental verification of rule-based expert systems. In Neu-
mann, B. (Ed.), Proceedings of the ECAI92 Conference, pp. 840-844 Vienna, AUS-
TRIA. Wiley.

Musen, M. A., Fagan, L. M., Combs, D. M., & Shortliffe, E. H. (1987). Use of a
domain model to drive an interactive knowledge-editing tool. International Journal of

Man-Machine Studies, 26, 105-121.

Politakis, P. G. (1985). Empirical Analysis for Fxpert Systems. Research Notes in
Artificial Intelligence. Pitman, London.

Preece, A. D., & Shinghal, R. (1992). Validating knowledge bases by anomaly de-
tection: An experience report. In Neumann, B. (Ed.), Proceedings of the FCAI92
Conference, pp. 835-839 Vienna, AUSTRIA. Wiley.

Rousset, M. C. (1988). On the consistency of knowledge bases:the COVADIS system.
In Proceedings of the FCAIS8 Conference, pp. 79-84 Minchen, GERMANY.

Smith, R. G., Winston, H. A., Mitchell, T. M., & Buchanan, B. G. (1985). Represen-
tation and use of explicit justifications for knowledge base refinement. In Proceedings

of the Ninth IJCAI Conference, pp. 367-374 Los Angeles, CA.

Suwa, M., Scott, A. C., & Shortliffe, E. H. (1984). Completeness and consistency in a
rule-based system. In Buchanan, B. G., & Shortliffe, E. H. (Eds.), Rule-Based FEzpert
Systems, pp. 159-170. Addison-Wesley, Reading, MA.

Wilkins, D. C. (1988). Knowledge base refinement using apprenticeship learning tech-
niques. In Proceedings of the Sixth National Conference on Artificial Intelligence, pp.
646—651 Minneapolis, MN.

