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Re�nement in Response to Validation 21 IntroductionThis backdrop has seen the recent emergence of validation as a theme in main streamAI. However, the �eld has concentrated on the identi�cation of faults. We wish tosuggest that responding to faults identi�ed by validation is both useful and important,and so re�nement should be thought of as a companion to validation. On completionof a validation step, re�nement should be executed with the bene�t of the informationassembled by validation.This paper advocates the inclusion of re�nement within a validation toolbox anddescribes the role of KRUST as an improvement tool within the ViVa project (EspritP6125). For the rest of this paper we shall use the term validation+ to refer to a processwhich combines re�nement with validation; validation will not include the notion ofre�nement. The body of the paper is divided into 3 sections: Section 2 describes variousre�nement systems but focuses on our KRUST system, Section 3 looks at validationand Section 4 discusses the integration of validation and re�nement with reference to anEsprit project dedicated to validation+. The �nal section summarises our ideas on theintegration of validation and re�nement.2 Re�nementA KBS consists of a body of knowledge and a means of making deductions. In a realapplication, it is relatively easy to select an appropriate problem-solving strategy, butit is most unusual for the knowledge to be perfect. It is common for the knowledge tocontain inconsistencies, be incomplete or perform badly on examples, and many of thesefaults must be removed before the KBS is of an acceptable quality. In this case, it is oftenassumed that the procedural component of the KBS is suitable, and re�nement of theKB is the established technique to correct a KBS. As an exception, CONKRET (Lopez,1991) does re�ne the control mechanism, because control is represented as declarativemeta-knowledge.A re�nement system responds to the existence of evidence suggesting the need forchange. Since many faults rely on the way that deductions are made from the knowl-edge, it is common for a re�nement system to have some knowledge about the proceduralmechanism so that it can explore causes of faults and possible solutions, but this clearlydepends on the form of evidence given to the re�nement system. So what types of ev-idence can be provided? Certainly, if the faulty knowledge is pinpointed exactly, (e.g.Rules Ri; Rj; Rk form a loop) then re�nement can implement changes to this knowledge.However often the e�ects of the faults are identi�ed and the major e�ort within re�ne-ment is precisely: \identifying exactly what should be changed, and how". Thus, theevidence may not refer directly to the KB; instead there may be an example which theKBS wrongly solves, or fails to solve. Such evidence may be quite rich; if it is accompa-nied by the expert's solution, a criticism of the KBS's solution, etc.2.1 Traditional ApproachesThe classic re�nement system, TEIRESIAS (Davis, 1984), has many similarities withmore recent projects, such as SEEK (Politakis, 1985), Dipmeter Adviser Re�ner (Smith,Winston, Mitchell, & Buchanan, 1985), ODYSSEUS (Wilkins, 1988), namely:



Re�nement in Response to Validation 3� wrongly solved examples trigger re�nement;� the KB is rule-based; and� knowledge of the problem-solving method identi�es causes of faults.With the exception of ODYSSEUS, these re�nement systems choose to re�ne the KBin one particular way and then make only these changes to the KB. In ODYSSEUS,problem-solving meta-knowledge identi�es faults in the KB; any meta-rule which fails to�re indicates a possible fault in the domain knowledge. This approach may produce toomany false alarms, so ODYSSEUS needs a way of separating true from false alarms andcontrolling the number of possible changes in reaction to an alarm, but this has not beendescribed.Re�nement systemsmay use heuristics to focus attention on most likely causes of errorand so restrict the search for possible changes to particular areas of the KB. However, anextensive supply of meta-knowledge, as required by Smith et al. (Smith et al., 1985), hasthe same, or worse, knowledge acquisition overhead as domain knowledge. In contrast,background knowledge, essential for re�nement (and validation) systems, is more easilyprovided, being attribute types, value hierarchies, etc. It links existing faulty knowledgeto appropriate replacement knowledge.Traditionally, re�nement has been identi�ed as a sub�eld of Knowledge Acquisition;or Machine Learning if re�nements are automatically proposed and only sanctioned bya human. Re�nement is often a distinct step in the �nal phases of knowledge acquisition;most of the KB is acceptable, but small changes are made to the content of the knowledge(not the structure) so that unwanted behaviour does not re-occur. Here we argue thatre�nement is a natural extension to validation systems, and may even be considered asa collaborating system, which gains from the analysis undertaken during fault-�nding.Since validation should be an ongoing process throughout the life cycle, re�nement tooshould be used at all stages of the KBS development.2.2 KRUSTOur interest in validation+ stems from our work in knowledge re�nement; we have pre-viously implemented a re�nement system, KRUST (Craw & Sleeman, 1990). In commonwith other re�nement systems, it re�nes rule-based KBSs and the process is triggeredwhen the KBS fails to solve an example correctly. In contrast to other systems, however,KRUST considers many suggested re�nements, but executes only a small subset of there�nements on the KB, thus proposing a small number of replacement KBs. It �lters there�nements by setting increasingly selective tests which the re�nements must pass. Asthe re�nements reduce in number, the tests can be computationally more complex. Inthis way KRUST only rejects a proposed re�nement once evidence against it has beenfound; i.e. it fails one of the tests.KRUST's architecture is shown in Figure 1. A training example, which the KBSfails to solve correctly, is input and KRUST enters an interpretation phase. Possiblecauses of the failure are identi�ed and the rules are classi�ed into di�erent categoriesof interest, from which suitable re�nements are suggested. The re�nement generationstep gathers a set of possible re�nements, each consisting of a set of rule changes; e.g.a named rule should be strengthened (made more di�cult to satisfy), weakened (madeeasier to satisfy), given an increased chance of �ring, etc. At this stage, the actual changes
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Re�nement in Response to Validation 5the expert, or alternatively, as in the existing system, a fairly detailed judgement phaseranks the re�ned KBs and selects the most suitable one. A fuller description of KRUST'sarchitecture and its application to a wine KB is presented in (Craw & Sleeman, 1990).An e�ect of KRUST's approach of generating many re�nements and testing theirsuitability, is that the tests available to KRUST can be varied, to allow KBs with di�erentfeatures to succeed. We have experimented by comparing the following two scenarios(Craw & Sleeman, 1991):Black Box Testing: The re�ned KB must solve the training example correctly butone does not care how the KB has been changed. KRUST was applied to a KBwhere the tests were biased towards ones which the original KB would pass. Thiscorresponds to a realistic use of KRUST; the KB is faulty, but not very!Glass Box Testing: The original KB must be retrieved after an intentional corruption.KRUST was applied to the arti�cially corrupted KB, but now, the tests were notfavourable to this (the corrupted) KB, but to the KB before the corruption,because we wanted KRUST to retrieve the original situation from the corruption,and so wanted KRUST to favour re�ned KBs which were most like the original KB,before the corruption.Changes in Best Re�ned KB Black Black-1 GlassWeaken 1 Rule only 1% 2% 0%Strengthen at least 1 Rule only 51% 54% 20%Weaken 1 Rule and Strengthen at least 1 Rule 3% || 0%Lower the Certainty of at least 1 Rule 0% 0% 0%Raise the Certainty of 1 Rule 0% 0% 0%Weaken 1 Rule and Lower the Certainty of at least1 rule 0% || 0%Weaken 1 Rule and Raise its Certainty 3% || 0%Strengthen at least 1 Rule and Lower the Cer-tainty of at least 1 rule 7% 8% 0%Change the Conclusion of 1 Rule 9% 10% 20%Add a New Rule 25% 27% 60%Number of Best Re�ned KBs 67 63 5Table 1: Changes in Best Re�ned KBWe compared the types of changes made during the re�nement process in both trialsand found that KRUST's behaviour was distinctive, despite the small number of runs inthe glass box testing. Table 1 shows the type of change in the re�ned KB selected asbest. The columns contain the following data:Black: the results from black box testing;



Re�nement in Response to Validation 6Black-1: the results from black box testing where only re�ned KBs with single changeswere counted1; andGlass: the results from glass box testing.By comparing the distribution of changes it would appear that strengthening a ruleis much less favoured in glass box testing, whereas inserting a new rule is much moree�ective. We should like to investigate this testing further, to ensure that these resultsare echoed in more extensive studies with glass box testing.KRUST proved to be quite sensitive to the tests with which it was provided. In theglass box testing above, KRUST was given tests which favoured the original KB and there�nement corresponding to the original KB survived all �ltering processes. It was notnecessarily chosen as the best KB, because some other re�ned KBs might out-perform itin the �nal ranking, for the particular test examples. (This is quite understandable, sincethe original KB might not be the optimal KB for these test examples.) In earlier glassbox testing, KRUST had been given tests favouring the input KB; i.e. the corruptedKB, and although the re�nement recreating the original KB had always been generated,it was always rejected during the test case �lter.We shall argue later that the exibility provided by KRUST's speculative re�nementgeneration and tailorable rejection of re�nements makes it particularly suitable for inte-gration with fault-�nding systems.3 ValidationThe validation of KBSs does not conform to the standard de�nitions of Veri�cation andValidation for conventional software, because the speci�cations for KBSs are fundamen-tally di�erent from those for other software, primarily because of their great reliance onknowledge. The knowledge within a KBS must be validated as part of quality assurance,but it requires di�erent sorts of speci�cations and special checking techniques. We areinterested in the validation of the declarative parts of a KBS; i.e. the KB. This linkswith our interest in the re�nement of the declarative knowledge. Although the valida-tion is aimed at the declarative knowledge, we often need to explore the e�ects of theinference engine, because potentially faulty knowledge may not produce faults when usedin conjunction with the inference engine. We note that the procedural components of aKBS can be speci�ed and validated using techniques for conventional software, and isnot addressed here.3.1 TerminologyThere is much debate about the terminology in knowledge validation since it does not�t the conventional model. The debate centres on the relationship between the type ofspeci�cation being checked and the terminology given to the process. We shall adopt theposition of Laurent (Laurent, 1992); namely:Validation is the general process of checking that a KBS satis�es its speci�cations andis composed of:1This selects those runs which were similar to that used for black box testing; i.e. where only a singlecorruption (and hence a single correction) was introduced.



Re�nement in Response to Validation 7� the Veri�cation of formal speci�cations; and� the Evaluation of pseudo-formal speci�cations.We use the general term validation, without the need to say whether the tool performsveri�cation or evaluation, because, from our perspective of re�nement, we are interestedin the output of validation tools, rather than the type of speci�cations they check. Theonly possible e�ect for re�nement, of distinguishing between veri�cation and evaluation,is that an evaluation anomaly may not be su�ciently well-founded to justify a re�nement.3.2 Consistency CheckingConsistency checking looks for contradictions in the knowledge and is based on a set ofspeci�cations de�ned within a consistency model. If the KBS satis�es all consistencyspeci�cations, then it is declared to be consistent. In practice, consistency checkers oper-ate by looking for inconsistencies! The consistency model contains formal speci�cationsand so strictly these are veri�cation tools. The following descriptions could be convertedinto formal speci�cations for a consistency model:� the required arity of attributes - e.g. the arity of parents is 2;� contradictory values for attributes which must not occur together - e.g. the apoc-ryphal pregnant male� no rule is redundant - a rule is redundant if its conditions imply the conditions ofanother with the same conclusion;� no rules are ambivalent - two rules are ambivalent if the conditions of one implythe conditions of another and they contain contradictory conclusions; e.g. one rulededuces that the patient is male, the other deduces \he" is pregnant.� no looping rules.There are two approaches to consistency checking:Static Analysis: considers only the knowledge explicitly represented in the KB andidenti�es the items of knowledge which contradict a speci�cation; e.g. an attributearity is wrong, contradictory values appear within a rule, redundant rules (the num-ber of conditions determines the strength of conditions), ambivalent rules (subsetsof conditions provide simultaneous �ring), looping rules (but these may �t moreneatly in the next category), etc. The output from static analysis contains explicititems of knowledge which contradict a particular speci�cation.Dynamic Analysis: explores deductions within the KB which contradict a speci�ca-tion; e.g. a deduction is false, contradictory values appear in a deduction, redundantand ambivalent rules (allowing deduction may increase the number of rule inter-actions), looping rules (these are more appropriate here where chains of rules areautomatically explored), etc. Dynamic analysis is computationally expensive be-cause it involves the exhaustive search of all possible deductions. In circumstanceswhere this is not feasible, heuristics may guide the search for likely inconsistencies.Since dynamic analysis is deduction based, the anomalies are expressed in terms ofexamples or traces.



Re�nement in Response to Validation 8Static consistency checking can often be achieved exhaustively as in ONCOCIN'schecker (Suwa, Scott, & Shortli�e, 1984). Although COVADIS (Rousset, 1988) andCOVER (Preece & Shinghal, 1992) are exhaustive dynamic checkers, SACCO (Ayel &Laurent, 1991) relies on heuristic guidance to avoid the computational complexity ofdynamic checking.Clearly exhaustive checking produces a complete set of anomalies with respect tothe speci�cations, whereas heuristic checking is unlikely to �nd all anomalies. We alsonote that the anomalies found are only possible faults; they logically follow from theknowledge but they may not occur in practice, if the KBS has a restrictive inferenceengine. The anomalies must be checked under the inference engine, to determine whetherthey are actual faults. Alternatively, the inference engine can be taken into account whende�ning the speci�cations.3.3 Completeness CheckingCompleteness checking is closely related to knowledge acquisition, but the term impliesthat the process occurs towards the end of a particular acquisition phase; one believesthat the knowledge is complete, but fears that small items of knowledge are missing. Therepertory grids of AQUINAS (Boose, 1988) display existing knowledge in a structured,but domain independent way, and allow the user to inspect the knowledge and thusvolunteer additional knowledge. OPAL (Musen, Fagan, Combs, & Shortli�e, 1987) isdesigned speci�cally for the cancer therapy domain and displays its knowledge in a stan-dard cancer therapy format, familiar to its users. These systems cannot be consideredto automatically discover missing knowledge. In contrast, ONCOCIN's checker (Suwaet al., 1984) is an automated static completeness (as well as consistency) checker, andMOLE and SALT, described in (Marcus, 1988), use knowledge about problem solving toidentify knowledge which is believed to be relevant.Completeness checkers inspect the existing knowledge to identify gaps by predictinga case which cannot be solved or identifying a set of related rules which exclude somecircumstance.3.4 TestingTesting Tools judge the quality of the KBS by running it on examples. Testing tools, suchas VORTEX (Cross & Grisoni, 1990), may record the e�ects of testing by documentingtraces or providing a statistical summary of rule usage. Another function of testingtools is to record any examples which the KBS cannot solve; this provides evidence ofincompleteness.Of course testing depends heavily on the relevance, importance or even criticality ofthe examples. SYCOJET (Ayel & Laurent, 1991) approaches testing from a di�erentangle; it generates pertinent examples by exploring possible deductive chains withinthe KB.3.5 Validation KnowledgeThe validation tools described above are knowledge-based, and in particular, the speci�-cations may require knowledge about the attributes; e.g. value types, value hierarchies,



Re�nement in Response to Validation 9arity, etc. Also, non-exhaustive validation requires heuristics to guide the search foranomalies; e.g. borderline cases may provide a source of likely faults.4 Validation+Validation+ integrates Re�nement and Validation. Instead of requiring the expert tosupply task-solution pairs, the re�nements are based on the evidence provided by thevalidation tools. Towards the end of the development of a KBS, the emphasis may beon demonstrating that the KBS is correct (faults are not expected), however validationshould be an ongoing process throughout development, and assistance to correct faults,as they appear, is a natural extension to �nding the faults in the �rst place. Although theVALID project (Esprit P2148) produced a validation+ toolbox o�ering a range of tools,the tools did not appear to be closely integrated. VORTEX (Cross & Grisoni, 1990)contains a set of integrated tools but is dedicated to a single KB. Here we describe anintegrated toolbox whose aim is to validate+ a range of KBSs.4.1 Integrating KRUSTWe are interested in developing KRUST so that it bene�ts from the additional evidencewhich can be provided by validation, to re-use searches required during validation and tojudge the quality of re�ned KBs using validation. We �rst consider the types of additionalevidence.In Figure 2, we have superimposed some validation tools on KRUST's architecture.The arrows show the ow of evidence to KRUST, their labels indicating the type ofevidence. We have separated test sample generation from general testing tools sincethese have a special use within KRUST: providing task-solution pairs for choosing thebest re�ned KB, and possibly chestnut cases for �ltering.Many dynamic validation tools explore deduction chains within the KB, a type ofsearch conducted by KRUST. The validation tools can pass the results of these e�orts2directly to KRUST, which then removes those deductions not produced by the inferenceengine, as another �ltering process. Thus, the search e�ort within the integrated tools isnot duplicated. Figure 2 also shows the links to KRUST from the Validation Knowledge,described in Section 3.5. It is a source of heuristics for re�nement �ltering and relevantreplacement knowledge for knowledge updates.KRUST adopts the generate and test model and thus bene�ts from the availabilityof rejection criteria. In Figure 2, the Completeness, Consistency and Testing tools havebeen enclosed in a box whose shading matches the second �lter in KRUST, for whichthese validation tools can provide tests; e.g. consistency checking rejects KBs contain-ing contradictory values. In particular, incremental veri�cation (Meseguer, 1992) wouldexplore faults introduced by changes. Testing tools provide an empirical checking as isused currently in KRUST. Another aspect of validation is the development of KB met-rics, available to �nally rank KRUST's remaining re�ned KBs, and select the best topresent to the user.2The search within SACCO (Ayel & Laurent, 1991) and Meseguer's incremental veri�er (Meseguer,1992) provides extended labels for the conclusions within the KB.
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Figure 2: KRUST's Integration within Validation+4.2 The ViVa ProjectThe ViVa project (Esprit P6125)3 addresses the issue of Validation+. Its aim is exempli-�ed by its title, \Veri�cation, Improvement & VAlidation of Knowledge BasedSystems" with the following (shortened) descriptions from the Technical Annexe:Veri�cation denotes the process of determining whether the outcome of a given phaseof KBS development meets all the requirements established during the previousphase. This corresponds to the question of whether the KBS is built the right way.Improvement denotes the process which interprets the discrepancies and anomaliesidenti�ed by the veri�cation and validation processes and which supports the con-sequent re�nement of the KBS.3The partners in this project are Computer Resources International A/S (DK), CISI Ingenierie (F),European Space Agency (Int), Lloyd's Register of Shipping (UK), Logica Cambridge Ltd. (UK), Uni-versity of Aberdeen (UK) and Universit�e de Savoie (F).



Re�nement in Response to Validation 11Validation denotes the process of evaluating a KBS to ensure compliance with therequirements. This corresponds to the question of whether the KBS is the rightsystem.In addition to providing an integrated toolbox of Validation+ tools, ViVa will de�nea methodology for using the tools. An important criterion for validation+ tools, andknowledge acquisition tools in general, is their suitability for real-life KBSs. Access toreal-life KBSs is often di�cult for researchers, but the ViVa project is applications-driven,and will provide both KBSs and descriptions of the validation+ needs of KBS developers.4.3 ViVa ToolsImprovement, as de�ned above, implies the two stages: interpretation of faults andimplementation of changes. This coincides with our notion of re�nement, whose majortask is identifying the cause of \failure"; making the changes is normally a relatively easyexercise. The two stages of interpretation and implementation were indicated in Figure 1by shading. The other ViVa tools cover the types of validation described in Section 3 andsatisfy the Veri�cation and Validation objectives of the project. Figure 2 thus representsthe functionality of a KRUST-based improvement tool within ViVa.KRUST is currently a prototype re�nement system, which acts on a restricted set ofKBSs, in response to the evidence provided by wrongly solved cases. Within the ViVaproject, KRUST will be developed to re�ne a wider range of rule-based systems andother knowledge representations, and to respond to a greater variety of fault-indicatingevidence, produced by validation tools.4.4 Knowledge RepresentationValidation+ systems must have access to the KBS, but this may restrict target KBSs to:� one particular KBS, e.g. TEIRESIAS (Davis, 1984) re�nes MYCIN;� one particular shell or model, e.g. SEEK (Politakis, 1985) re�nes KBSs built inEXPERT; or� one standard representation into which the KBS must be translated, e.g. COVER(Preece & Shinghal, 1992) validates a Prolog representation of the KBS.Clearly the last option is the most general but it does demand that translation occurs atsome stage; either before the validation+ tool is used, or as part of its operation.It is common for an integrated toolbox to adopt the last option and have a CommonKnowledge Representation, tailored to the tools, so that all the necessary hooks requiredby the tools are easily available. ViVa has chosen this approach. Applications must beconverted to this formalism, but translators from standard shells should be straightfor-ward.5 SummaryThis paper has described how re�nement can enhance the functionality of validationsystems. Instead of simply identifying possible faults, these are explored further, so that
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