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The concept of personalized nutrition and exercise prescription represents a topical

and exciting progression for the discipline given the large inter-individual variability

that exists in response to virtually all performance and health related interventions.

Appropriate interpretation of intervention-based data from an individual or group of

individuals requires practitioners and researchers to consider a range of concepts

including the confounding influence of measurement error and biological variability. In

addition, the means to quantify likely statistical and practical improvements are facilitated

by concepts such as confidence intervals (CIs) and smallest worthwhile change (SWC).

The purpose of this review is to provide accessible and applicable recommendations

for practitioners and researchers that interpret, and report personalized data. To achieve

this, the review is structured in three sections that progressively develop a statistical

framework. Section 1 explores fundamental concepts related to measurement error and

describes how typical error and CIs can be used to express uncertainty in baseline

measurements. Section 2 builds upon these concepts and demonstrates how CIs can

be combined with the concept of SWC to assess whether meaningful improvements

occur post-intervention. Finally, section 3 introduces the concept of biological variability

and discusses the subsequent challenges in identifying individual response and non-

response to an intervention. Worked numerical examples and interactive Supplementary

Material are incorporated to solidify concepts and assist with implementation in practice.

Keywords: measurement error, biological variability, individual response, typical error, meaningful change,

responders

INTRODUCTION

It is widely recognized that traditional group intervention-based studies that focus on mean
response are limited in the context of personalized sports nutrition, and that across populations,
large inter-individual variability exists in response to health and performance related interventions.
This variation occurs due to a myriad of factors, including an individual’s genotype, phenotype,
training status, and nutritional intake (1, 2). Accordingly, an increasing number of investigations
are attempting to interpret individual data and classify participants as responders or non-
responders to nutrition or exercise based interventions (3–11). In order to accurately interpret
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individual data collected from group-based interventions it is
essential that researchers and practitioners consider a range of
concepts including the confounding influence of measurement
error and biological variability. In addition, the ability to interpret
practical and statistical significance are enhanced by concepts
such as smallest worthwhile change (SWC) and confidence
intervals (CIs). The aim of this review is to describe a statistical
framework that can be used by researchers and practitioners in
the fields of applied sports nutrition and exercise physiology.
The review is structured into three sections that build upon each
other and develop into a coherent statistical framework. The
initial section introduces concepts from classical test theory (12),
namely measurement error, and describes how the calculation of
typical error and the application of CIs can be used to express
uncertainty in baseline values. Section two of the review builds
upon the previous section and demonstrates how CIs can be
combined with the concept of SWC to assess whether meaningful
changes have occurred following an intervention. The final
section of the review discusses the concepts of individual
response and non-response and describes how the statistical
framework developed can be used to estimate the proportion of
response in a group-based intervention.

Key terms that will be used throughout the review have been
defined in Table 1 and are italicized on first use. To facilitate
understanding, worked examples are included throughout the
review, from a hypothetical randomized controlled study (n
= 20) investigating the influence of 12 weeks of beta-alanine
supplementation on: (1) body composition [assessed by sum of
7 skinfolds]; (2) muscle carnosine content [assessed by high-
performance liquid chromatography; HPLC], and (3) high-
intensity cycling capacity [assessed by the CCT110%, a time-to-
exhaustion test]. The study design is illustrated in Figure 1. Mock
data from the study along with all worked examples are included
in the accompanying supplementary digital file (SF). Automated
spreadsheets are also included for readers to incorporate their
own data sets and follow the procedures described within this
review.

TABLE 1 | Definitions of key terms.

Term Definition

True score A hypothetical value representing the score on a test that would be achieved if there were no measurement error.

Measurement error Processes that causes an observed score on a test to be different from the true score. Measurement error comprises instrumentation

and/or biological noise.

Observed score The recorded value from a test, which comprises the true score, along with measurement error.

Instrumentation noise Measurement error caused solely by the measurement apparatus, while true score remains unchanged.

Biological noise Measurement error caused by biological processes (such as circadian rhythm, nutritional intake, sleep or motivation), while true score

remains unchanged.

Typical error The standard deviation of observed scores in repeated tests where true score remains unchanged.

Confidence interval An interval that provides a range of plausible values for quantities that must be estimated (for example, true score) given the observed data.

Biological variability Non-intervention related processes that cause true scores to change.

Smallest worthwhile change A reference value selected by a practitioner or researcher to indicate a value beyond which a change in true score is likely to be

meaningful in practice.

Response Occurs when change in true score directly attributable to an intervention exceeds the smallest worthwhile change.

1. ESTABLISHING PLAUSIBLE BASELINE
VALUES (TRUE SCORE)

Practitioners and researchers routinely select and evaluate
interventions depending on baseline information collected from
an individual. Therefore, it is essential to consider the accuracy
of baseline information and account for error in any decision-
making process. An individual’s true score can be viewed as
their current stable level in the test of interest. In practice, we
can never know an individual’s true score as all measurement
incorporates error and therefore, a single measurement from a
test is simply referred to as an observed score. In classical test
theory, it is assumed that if it were possible to conduct a large
number of tests on the same individual then the values observed
would follow a normal (Gaussian) distribution, with mean
equal to the true score and standard deviation (σ ) describing
variability around this mean (12). In mathematical notation,
we state that the observed score (Os) comprises a hypothetical
true score (Ts) and measurement error (ǫ), such that Os =
Ts + ǫ (13). This perspective has clear implications when using
baseline measurements to select interventions as an individual’s
true score always remains unknown. For tests that frequently
produce large measurement errors, there is greater likelihood
that observed scores will differ substantially from the true score,
such that conclusions drawn, and interventions adopted may be
unnecessary, ineffective, or indeed inappropriate.

Measurement error associated with any test comprises two
primary sources, namely instrumentation noise, and biological
noise. Here, we define instrumentation noise as error caused
solely by the measurement apparatus. For example, offsets in
calibration or variation in saddle position may cause observed
performances in a cycling-based test, such as the CCT110% to
differ from the individuals true score (14). In contrast, we define
biological noise as error in observed scores caused by biological
processes, including, but not limited to, phenomena such as
circadian rhythm, nutritional intake, sleep and motivation (1).
When selecting and administering tests, every effort should
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be made to minimize the magnitude of measurement error.
This can be achieved through adherence to standardized set-
up, calibration and testing protocols, along with standardization
of external factors likely to impact test scores through the
introduction of additional biological noise (e.g., time of testing,
nutritional intake and activity performed prior to testing). It is
important to acknowledge, however, that these processes can only
serve to reduce, but never to eradicate, measurement error.

KEY POINTS:

• Due to the presence of measurement error, an individual’s true score

representing their current ability in a test always remains unknown and can

only be estimated.

• Observed scores comprise the hypothetical true score and measurement

error due to instrumentation and biological noise.

1.1. Calculating the Typical Error of a Test
As all observed measurements include error, it is important
to estimate the potential magnitude of this error and thereby
quantify uncertainty in any single measurement. Based on the
assumption that observed scores follow a normal distribution
centered on the true score, ∼68% of observed scores lie in
the interval Ts ± σ and ∼95% of observed scores lie in the
interval Ts ± 2σ (Figure 2). Therefore, the key to quantifying
likely measurement error and ultimately providing ranges for
true scores consistent with the data, requires estimation of the
standard deviation (σ ) for repeated tests. In applied physiology
literature, this standard deviation is commonly referred to as the
typical error (15) (TE), and from this point forward we will use
the notation TE in all formulae instead of σ .

Two primary methods are available to estimate the TE of a
test, including: (1) multiple repeated tests performed by a single
individual; or (2) a single test-retest performed by a group of
individuals. Using the first approach, the TE is estimated by
calculating the standard deviation of observed scores obtained
from a single individual performing multiple tests within a
time-frame whereby the true score remains theoretically stable.
Suitable time-frames will depend on the specific characteristics
of a given test. For example, true score in the CCT110% is largely
dependent on the capacity of the cardiovascular and muscular
systems, neither of which are likely to undergo substantial
physiological changes in the absence of intervention within
short time-frames. The true score for CCT110% performance
should therefore remain stable across days or even weeks,
although biological noise in particular (e.g., motivational factors),
may cause observed scores to fluctuate within this time-frame
(16). The accuracy of the TE estimate based on repeated tests
conducted with an individual will generally increase with the
number of repeated tests but may require more than 10–20 tests
to obtain suitable accuracy. This requirement presents logistical
difficulties in relation to resources required to repeatedly
administer many tests with any one individual. In addition,
even if these logistical difficulties could be overcome, the testing
process itself may lead to a change in the individual’s true score,
and as a result, the estimate of the TE will become inflated (15).
Continuing the CCT110% example, repeated performance of a
high-intensity activity to exhaustion is likely to create a strong

stimulus for adaptation (17), thereby causing true score to change
and estimates of variation to subsequently increase. For these
reasons, single individual approaches to estimate TE are rarely
used in the exercise sciences.

Based upon the aforementioned limitations, the most popular
method to estimate the TE of a test relies on multiple individuals
each performing a single test-retest assessment (15). This
approach is well suited to those working with sport teams or
groups taken from a relatively homogenous population. Group
based calculations for estimating TE generally rely on the
assumption that, whilst true scores may vary between individuals,
TE is consistent across the population being assessed. Based on
this assumption, if test-retest values are obtained from a group
of individuals over a period where true scores are expected to
remain constant, TE can be estimated from the difference scores
obtained. Difference scores are calculated for each individual in
the group test-retest by simply subtracting the observed scores in
test 1 from the observed scores in test 2 (i.e., observed[test2]—
observed[test1]). These difference scores are described by a
normal distribution with mean 0 and standard deviation equal to√
2TE. The standard deviation is equal to

√
2TE as the variance

(which is equal to the square of the standard deviation) of the
difference scores is equal to the variation in test 1 plus the
variation in test 2 (i.e., TE2 + TE2 = 2TE2). Therefore, to obtain
the TE estimate with a group test-retest design, we first calculate
the difference score for each individual, calculate the standard
deviation of the differences scores, then divide this value by√
2. Formulae and worked examples of this TE calculation are

included in the Supplementary File (SF-S2) using test-retest data
from sum of skinfolds and muscle carnosine biopsies conducted
48–72 h apart (i.e., a time frame where true score is unlikely to
change). For the muscle carnosine data, the standard deviation
of the difference scores from the repeated tests was calculated to
be 0.74 mmol·kg−1dm; hence the estimate of TE is 0.74/

√
2 =

0.52 mmol·kg−1dm. It is important to note that this calculation
represents an estimate of TE and is unlikely to exactly match the
real value. Therefore, we use the notation T̂E from this point
forward in calculations where we refer to an estimate of TE.

KEY POINTS:

• Typical error represents the variation in observed scores caused by

measurement error when an individual performs repeated tests.

• An estimate of typical error can be obtained by calculating the standard

deviation of repeated tests performed by a single individual, or more

commonly using test-retest data from a group over time periods where true

scores are not expected to change.

1.1.1. True Score Confidence Intervals
Once an observed score and TE estimate have been obtained, a
confidence interval (CI) for the true score can be created. CIs are
used to quantify uncertainty in estimates that cannot be directly
measured (18). Therefore, calculation of a CI for a true score
provides a range of plausible values given the observed data.
We have highlighted that conceptually, true score is equal to the
mean of a large number of non-interacting repeated tests, and
that observed scores follow a normal distribution around this
mean. Therefore, measurement error in a single observed score
is just as likely to be positive as it is negative. Therefore, true
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Familiarisation Test - Retest Reliability Trial

1 2

CCT110%

Muscle Biopsy 

Sum of 7 Skinfolds

Randomised-Controlled Supplementation Intervention

Baseline Testing

3

Post-Intervention 

Testing
β-A or PLA

(12 Weeks)

4

(Allocation Randomised)

CCT110%

Muscle Biopsy 

Sum of 7 Skinfolds

CCT110%

Muscle Biopsy 

Sum of 7 Skinfolds

FIGURE 1 | Schematic of hypothetical study design. CCT110%, High-intensity cycling capacity test; B-A, Beta-alanine supplementation; PLA, Placebo.

Ts Ts+ TsTs-σTs - 2σ

I1

I2

Approximately 68% of 

observed scores lie in the 

interval I1

Approximately 95% of 

observed scores lie in the 

interval I2

σ 2σ+

FIGURE 2 | Graphical representation of the normal distribution of observed scores centered on true score. Ts, true score; σ standard deviation of repeated observed

scores [also referred to as typical error (TE)].

score CIs are created by adding and subtracting a multiple of the
estimated TE to the observed score, with larger multiples creating
wider intervals (Figure 2). CIs are interpreted as a property of a
procedure and when used repeatedly, the percentage of intervals
calculated that include the true value being estimated will match
the % CI used (19). In other words, if a practitioner routinely
follows the procedure of estimating TE and calculating, say, 95%
CIs for true scores, then through maintaining a compilation
of these values over their career the percentage of intervals
that contain the true score will be ∼95%. A key point here is

that a CI based on a single dataset should not be interpreted
probabilistically (19), as it is possible to obtain a very high, or very
low estimate of TE by chance, such that true score CIs calculated
will be inappropriate.

1.1.2. Calculating True Score Confidence Intervals of

Different Widths
The measurement assumptions outlined in the previous section
enable practitioners to calculate various CI widths by multiplying
their TE estimate by values that are based on the normal
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distribution. In the first row of Table 2, we provide the values
required to obtain a range of standard CI widths. Returning to
our muscle carnosine example where we obtained a TE estimate
of 0.52 mmol·kg−1dm, an approximate 95% true score CI for
an individual with an observed score of 11.3 would equal 11.3
± (1.96×0.52) = (10.3−12.3) mmol·kg−1dm. It is important to
note that the values provided in the first row of Table 2 provide
only approximate CIs as the TE value describing variation of
repeated performances is unknown and only the estimate T̂E is
available. The accuracy of this estimate depends primarily on the
number of individuals (or number of repeated trials) used in the
test-retest calculation. CIs based on a TE estimate from smaller
samples sizes (e.g., 6–12 participants) will in general, be less
accurate than those based on larger sample sizes (e.g., >30). To
account for this additional uncertainty, the value used tomultiply
T̂E and obtain a given CI should be adjusted and a larger multiple
used. In the subsequent rows of Table 2, we present adjusted
values that provide more accurate CIs over a range of test-retest
sample sizes. Values presented in Table 2 clearly illustrate that for
CI widths close to 50%, the sample size used to estimate TE has
minimal effect on the multiple required. However, for wider CIs
such as a 95% CI, adjustment for smaller test-retest sample sizes
can result inmore notable differences. In our previous example (n
= 20), the individuals 95% true score CI for muscle carnosine was
10.3− 12.3 mmol·kg−1DM. In contrast, if T̂E was obtained from
test-retest with only 5 individuals, the adjusted 95% CI would
equal 11.3 ± (2.78 × 0.52) = 9.9 − 12.7 mmol·kg−1dm. To
identify the number of individuals required for a test-retest, the
values presented in Table 2 can provide insight. Practitioners can
make an initial estimate of TE and create for example, 95% true
score CIs adjusting for n = 5, 10, 20, 30, and 50. Interpreting the
practical relevance of the different CI widths generated can then
be used to inform sample size used. For readers that require more
detail on the adjustment approach a full explanation of how to
obtain the values for any sample size and CI width is presented
in Appendix 1. We also present in the Supplementary File an
interactive calculator to calculate unadjusted and adjusted CIs of
different widths, that can be combined with the mock data set
(SF-S4) or a reader’s own data set (SF-S5).

KEY POINTS:

• Confidence intervals can be used to present plausible values of an estimate

given the observed data. Repeated application of estimating typical error and

associated confidence intervals will result in a match between the percentage

of intervals containing the true value and the percentage interval adopted.

• True score confidence intervals can be calculated using the observed score

and a multiple of the estimated typical error. The multiple selected depends

on the desired width of the confidence interval and the number of individuals

(or number of repeated tests) used to estimate the typical error.

1.2. Literature Based Confidence Intervals
In circumstances where it is not feasible to perform repeated
measurements on a single individual or group, practitioners
can create CIs for true scores using reliability data published
in the literature. To obtain accurate CIs it is recommended
that practitioners source reliability data collected using the
same test protocols employed with their own clients, and

that the populations match as close as possible. TE estimates
are commonly reported in reliability studies and practitioners
can directly use these published values to calculate CIs using
the methods described in Section 1.1.1. It is also common
for researchers to report other reliability statistics that can
be transformed into a TE estimate. One commonly reported
reliability statistic that can easily be transformed is the coefficient
of variation (CV). The coefficient of variation is a percentage
that expresses the size of the TE relative to the mean [CV% =
(TE/mean) × 100; (20)]. Therefore, a true score CI can be
obtained using published CV values by first identifying the
TE estimate from T̂E = (CV × Os)/100, then applying the
procedures outlined in Section 1.1.1. In our hypothetical study,
duplicate measurements were not available for the CCT110%, and
therefore we describe here (and in Supplementary File: SF-S6)
how to estimate a TE and true score CI based on previously
published data. Saunders et al. (21) reported that the CV for
total work done in the CCT110% was 4.94% (21). Therefore, for
an individual with an observed score of 43.0 kJ, we calculate
an estimated TE of (4.94 × 43.0)/100 = 2.1 kJ. Using the
values in Table 2, we can calculate a range of true score CIs.
If we select, say, an unadjusted 75% CI then we would obtain
43.0 ± (1.15× 2.1) = 40.6 − 45.4 kJ. An overall summary of
the process for estimating TE and calculating true score CIs is
presented in Figure 3.

SUMMARY OF KEY POINTS FROM SECTION 1.2:

• Confidence Intervals can be calculated from literature using published TE

values or other reliability statistics (e.g., coefficient of variation (CV)).

2. ASSESSING WHETHER MEANINGFUL
CHANGES HAVE OCCURRED
POST-INTERVENTION

As described in the previous section, an individual’s true
score cannot be known due to the existence of measurement
error and this uncertainty must be accounted for when
interpreting pre- to post-intervention change. This requirement
is particularly relevant in sports nutrition based interventions
where improvements are often small in magnitude whilst many
performance based outcome measures may be prone to relatively
large measurement errors. For example, Jeukendrup et al. (22)
showed that a time-to-exhaustion test at 75% of previously
determined maximal power output had a CV of 26.6%, which
is far in excess of the 5-15% changes in exercise capacity shown
with beta-alanine supplementation (23–26). In Section 1.1.2,
we used CIs to express our level of uncertainty in baseline
test scores. Similarly, CIs can be used to express the level of
uncertainty in the change in test scores due to an intervention
(true score change). Many of the tools and calculations that were
introduced in the previous section on baseline scores are also
relevant when considering appropriate methods to quantify and
interpret change across an intervention. In the following sections
we describe minor alterations required to calculate CIs for true
score change in comparison to baseline true score. We also
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TABLE 2 | Typical error multiples required to calculate confidence intervals of different widths (non-adjusted and adjusted for sample size).

Confidence interval width 50% 60% 70% 75% 80% 85% 90% 95% 99%

TE multiple non-adjusted 0.67 0.84 1.04 1.15 1.28 1.44 1.64 1.96 2.58

TE multiple adjusted (n = 50) 0.68 0.85 1.05 1.16 1.30 1.46 1.68 2.01 2.68

TE multiple adjusted (n = 30) 0.68 0.85 1.06 1.17 1.31 1.48 1.70 2.05 2.76

TE multiple adjusted (n = 20) 0.69 0.86 1.07 1.19 1.33 1.50 1.73 2.10 2.86

TE multiple adjusted (n = 10) 0.70 0.88 1.10 1.23 1.38 1.57 1.83 2.26 3.25

TE multiple adjusted (n = 5) 0.74 0.94 1.19 1.34 1.53 1.78 2.13 2.78 4.60

introduce the concept of SWC to better assess the effectiveness
of an intervention.

2.1. Confidence Intervals for True Score
Change
If we assume that measurement error of a test is not only
consistent across individuals in a group, but also consistent for
individuals across an intervention, then observed scores will
display the same variation around the true pre-intervention
score and the true post-intervention score. It follows that
observed change scores (OSpost − OSpre) are described by a
normal distribution with mean equal to the true score change
and standard deviation (i.e., standard deviation of the change
scores) equal to

√
2TE. Note, this is the same result discussed

in section 1 for the test-retest situation, except here we expect
true scores to change due to the intervention. Therefore, to
estimate this standard deviation we simply take our previous TE
estimate (obtained from repeated tests on a single individual,
test-retest for a group, or from published literature) and multiply
by

√
2. CIs are then obtained using the procedures outlined

in section 1.1.2, except here we apply our estimate around the
observed difference across the intervention. For example, in our
hypothetical data set, the TE for the muscle carnosine content
analysis was 0.52 mmol.kg−1DM, with participant 8 (from
the beta-alanine group) displaying an observed change score
(difference pre-post) of 4.37 mmol·kg−1DM. For this example,
we will calculate an unadjusted 50% true score change CI using
the appropriate multiplier presented in Table 2. The required

calculation is therefore (OSpost − OSpre) ±
(
0.67×

√
2T̂E

)
=

4.37 ±
(
0.67×

√
2× 0.52

)
= 3.9 − 4.9 mmol.kg−1DM.

Interactive true score change CI calculators are provided in the
Supplementary File for the study mock data (SF-S7) and the
readers own data (SF-S8).

SUMMARY OF KEY POINTS FROM SECTION 2:

• True score change occurs whenever the underlying stable characteristic

measured by a test changes.

• The estimated typical error can be used to create confidence intervals for

true score change pre- to post-intervention.

2.2. Criteria for Assessing Meaningful
Changes and the Smallest Worthwhile
Change
In the previous section we described procedures to calculate
true score change CIs that provide a range of plausible values
given the data observed. In practice, it is recommended that

interventions are classified as successful or not for each individual
based on whether CIs for true score change lie within a pre-
defined region (27). If for example, a practitioner deems that
any true score change in the desired direction is to be regarded
as meaningful, then an intervention for an individual would be
classified as successful if both ends of the true score change
CI lie to the desired side of the zero line (see Figures 4A,B).
It has also been suggested that CIs for true score change
be calculated based on the observed change plus/minus the
estimated TE (OSpost −OSpre± T̂E; (27)). This simple calculation
provides a close approximation for a 50% true score change
CI ∗1. Additionally, with the assumption that observed score
change provides a non-biased estimate, we should expect on
50% of occasions for the true score change to lie within the
calculated interval, on 25% occasions the true score change to
lie below the interval, and on 25% of occasions the true score
change to lie above the interval. As a result, if interventions
are deemed a success only if observed score change ± T̂E
lie to the desired side of the 0 line, then the proportion of
times an intervention will correctly be identified as a success
will be greater than 75% in the long-run. The accuracy of this
statement is illustrated in Figure 4 using the most conservative
successful case, where the approximate 50% CI bound lies on
the zero line. Detailed calculations of this process are presented
in the Supplementary File (SF-S8), however, we briefly provide
an example here. In our hypothetical data set, participant 4
recorded an observed decrease of 7.1mm in the sum of 7
skinfolds pre- to post-intervention. Additionally, the TE estimate
obtained for sum of seven skinfolds from the hypothetical data
was 1.35mm. Therefore, we calculate the approximate 50% true
score change CI with −7.1 ± 1.35 = (−8.45 to −5.75) mm. As
both the upper and lower bound of the interval are negative
(which is the desired direction indicating a reduction in body
fat), we conclude that the intervention was successful for this
participant.

Thus far in this section, we have focused on scenarios
where any true score change greater than 0 in the desired
direction is considered meaningful. In many research settings,
this approach will be appropriate, given that researchers are likely
to deal with experimental scenarios and unknown outcomes. In
contrast, in other situations, researchers and practitioners may
implement interventions whereby relatively large improvements

1The calculation used to obtain a true score change is
(
OSpost − OSpre

)
±M

√
2TE,

where M is the multiple used to set the CI width. With
(
OSpost − OSpre

)
± TE we

have setM to
(

1√
2

)
= 0.71, and if we check the unadjusted multiples provided in

Table 2, this approximately equates to a 50% CI.
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Establishing Plausible Baseline Values 

(True Score)

Are the reliability 

measurements to be taken 

from a single client or across a 

group of individuals from a 

relatively homogenous 

population?Single Client Group

Are the logistic and 

economic resources 

available sufficient 

for a large number of 

repeated tests to be 

conducted?

Yes

No

Will test repetition 

likely lead to a change 

in the individuals underlying

true score? 

(See section 1.1)

No

Yes

Estimate Using Published 

Reliability Literature

Identify TE estimates reported in 

published reliability trials. Or transform 

commonly reported reliability statistics 

into TE estimates (i.e. Coefficient of 

variation) 

No

Can a test -retest trial 

be conducted on 

each individual 

within the group? 

Yes

Is the group size 

sufficient to obtain 

appropriate TE 

estimate?

(See section 1.1.2)

No

Yes

Estimate Group Based Calculation

(1) For each individual in the group test -retest, 

calculate the difference score (i.e. 

Observed[test2] - Observed[test1])

(2) Calculate the standard deviation of the 
difference scores (across the individuals)

(3) Divide this standard deviation value by 

Estimate 

Individual client undergoes multiple retests. 

The standard deviation of the observed scores 

provides an estimate of typical error (
The more tests performed, the more precise

the estimate.

Calculate True Score CI

T
s

CI calculated using the Os and a 

multiple (M) (adjusted or non- adjusted 

for n tests or participants) of the 

estimated typical error. The multiple 

(M) selected also depends upon the 

desired width of the confidence interval. 

(See section 1.1.1)

Many Repeated Tests

FIGURE 3 | Schematic overview of procedures to estimate typical error and calculate true score confidence intervals.

are expected, such that more substantive changes are required
in order to classify an intervention as a success. Take for
example our hypothetical intervention, which aims to increase
muscle carnosine content through beta-alanine supplementation.
Previous investigations indicate that 4 weeks of supplementation
can increase muscle carnosine content by 40–60% (28) and
more recently, maximal increases ranging from 60 to 200%

have been reported for participants supplementing for 24
weeks (26). Increased intramuscular carnosine content causes
a subsequent increase in intramuscular buffering capacity,
which may counteract high-intensity induced acidosis and thus
fatigue (29). Given this context, establishing that a participant
experienced a true score increase in intramuscular carnosine just
beyond zero would be considered practically meaningless, given
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Lower bound of the 50% CI is above the zero-based threshold when an 

increase in the observed outcome measure is expected following some 

intervention (i.e. MCARN following    - Alanine intervention).

Range of possible true score change

Zero-based threshold

Difference score

β

50% CI

~ (

(change > 0)

Range of possible true score change

Zero-based threshold

Difference score

50% CI

~ (

Range of possible true score change

Difference score

Zero-based threshold

50% CI

~ (

A B

C

lufsseccuSlufsseccuS

Upper bound of the 50% CI is below the zero-based threshold when a

decrease in the observed outcome is expected following some

intervention (i.e. S7SF post-weight loss intervention).

The 50% CI crosses over the zero-based threshold (regardless of the direction of 

change expected from the intervention), and thus you cannot reasonably be sure that 

true score change has occured.

(change < 0)

Unsuccessful

FIGURE 4 | Interpretation of true score change confidence intervals using zero-based thresholds.

the negligible influence on buffering capacity and subsequent
high-intensity exercise performance. Instead, researchers and
practitioners may choose to identify threshold values beyond
zero that represent the smallest change required to be practically
relevant. This threshold value is generally referred to as the
SWC and is often selected subjectively by practitioners based on
what they believe is practically relevant or from their experience
working with a particular client base using similar interventions.
Alternatively, calculations of effect size (e.g., Cohen’s D) can
be used to objectively determine the SWC, with a value of
0.2 times the baseline between-individual standard deviation
often considered to be appropriate (27). Approaches to calculate
SWC are discussed in detail elsewhere (30–32). Once a SWC
value has been selected, the general approach to determining
meaningful change post intervention remains the same and for
each participant an intervention is classified as a success if the
true score change CI lies beyond the selected SWC (Figure 5A,
with non-success illustrated Figure 5B).

To effectively implement these procedures, tests that comprise
appropriate measurement error relative to the SWC are required.
It is recommended when implementing this approach that an
a priori determination of the SWC deemed practically relevant
is made. In most cases, it would be expected that the majority

of individuals that engage in an intervention should exceed the
SWC, therefore, the threshold set should be below the likely
projected change for most individuals. An appropriate test with
regards to measurement error would then be one where the TE is
no larger than the gap between these two values (namely expected
change and SWC). As an example from the hypothetical study
considered here, a practitionermay decide to set a SWC threshold
for the CCT110% by multiplying the baseline between-participant
standard deviation by 0.2 (i.e., a ‘small’ effect), providing a
value of 1.6 KJ. From previous research, 4 weeks of beta-
alanine supplementation has been shown to improve CCT110%

performance by ∼10–15% (23–25). If we consider participant 1
from the supplementation group with a baseline value of 42.8
kJ and expect a realistic 10% improvement, then we project
a value of 47.1 kJ by the end of the intervention equalling
an improvement of ∼4.3 kJ. Given a TE value of 2.2 kJ and
implementing the recommended process, in order to judge the
intervention successful, participant 1 would require an observed
score improvement of at least 1.6 + 2.2 = 3.8 kJ (which exceeds
the a priori set SWC but is also less than what we expect in
general). In contrast, if the estimated TE was considerably higher
(e.g., due to lack of control for instrumentation or biological
noise), say 5 kJ, then the same participant would require an
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Zero

Difference score

Lower bound of the 50% CI is above the 
SWC threshold.

50% CI

~ (

SWC

Range of possible true score change

Zero

Difference score

50% CI

~ (

SWC

Range of possible true score change

ASuccessful BUnsuccessful

FIGURE 5 | Interpretation of true score change confidence intervals using smallest worthwhile change.

observed score improvement of at least 1.6 + 5 = 6.8 kJ,
which is a larger change than the literature indicates would
typically be expected. This approach may therefore frequently
lead to interventions being deemed not-successful when in fact
the large TE may have masked any detectable improvement. In
situations such as this, consideration of factors which may reduce
the TE of the test are advised (e.g., enhanced standardization
of procedures, repeat familiarisations), however if this is not
possible, then this particular test may lack the sensitivity required
to detect meaningful changes, and an alternative one may be
required. Worked examples of this entire process with mock
data are presented in the Supplementary File (SF-S9) along with
an interactive calculator that can be used to identify successful
interventions with readers own data (SF-S10).

KEY POINTS:

• When assessing the effectiveness of an intervention, it is recommended that

practitioners identify a smallest worthwhile change (which in some cases may

be zero).

• Practitioners may choose to judge an intervention successful for an individual

if the observed score change (post-pre)± typical error lie beyond the smallest

worthwhile change.

• Practitioners must ensure that tests include typical error values that are

not too large such that individuals require unrealistic improvements for

confidence interval bounds to lie beyond smallest worthwhile change values.

3. RESPONSE TO INTERVENTION AND
THE ROLE OF BIOLOGICAL VARIABILITY

Throughout sections 1 and 2 we described procedures to
quantify the level of uncertainty in baseline values, quantify
the level of uncertainty in change across an intervention,
and to identify if observed changes represent meaningful
improvements. These procedures outlined do not, however,
identify whether underlying changes occurred as a direct result of
the intervention or as a result of unrelated confounding factors.
Across time periods reflecting those typically used for chronic
supplementation or training interventions, it is possible that an

individual’s true score may change due to factors external to
the intervention. Take for example our 12 week hypothetical
study, where CCT110% was used to assess cycling capacity. High-
intensity exercise performance is influenced by a wide range of
factors, including nutritional intake, chronic sleep patterns and
physical activity levels, with 12 weeks providing sufficient time
for true scores to change in response to alterations in any of
these factors. We refer to these intervention independent causes
of change as biological variability. When combining this concept
with measurement error, the potential challenges in identifying
if a single individual has accrued meaningful improvements as a
direct result of an intervention become clear. In section 2 of this
review we outlined procedures that can be used to judge whether
meaningful changes were likely to have occurred. However, these
procedures do not determine the extent to which changes were
the direct result of the intervention or effectively “random”
external causes. For this reason, we recommend that individual
responders (those that experience meaningful changes due to the
direct effects of an intervention) and non-responders (those that
do not experience meaningful changes due to the direct effects of
an intervention) be considered as theoretical constructs that can
never truly be known. Additionally, intra-individual variation in
response to an intervention is rarely considered. For example,
even if it were possible to establish that an individual’s true
score had not changed due to direct effects of an intervention
(to be accurately labeled as a non-responder), it does not hold
that the same result will occur if the intervention is repeated
at a later time, or more conceptually, that this would be the
case in each instance were it possible for the individual to
complete the intervention on many occasions simultaneously.
Indeed, inconsistent intra-individual changes to the same sodium
bicarbonate based intervention have previously been reported,
with individual analysis showing only 1 out of 15 participants
improved on all four occasions above the normal variation of the
test, whereas 9 out of 15 improved on at least one occasion (10).
Consequently, the term response (and non-response) is preferred
to indicate that in a single instance of a particular intervention,
an individual has experienced (or not) a true score change caused
directly by the intervention that exceeds the SWC. Given all the
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challenges that exist in identifying if an individual has responded
to an intervention with only a small number of data points, we
concur with recent recommendations (33, 34) that researchers
focus on identifying the proportion of response in group-based
interventions (discussed in the following sections) or attempt to
identify factors associated with response/non-response (which
is considered beyond the scope of this particular review, with
readers referred to Hopkins (34) for further discussion).

In the remaining sections of this review we describe
procedures in group-based interventions to estimate variability
in true score change directly attributable to the intervention,
and, subsequently, to estimate proportion of response in a group.
The procedures outlined are required during interventions with
periods long enough for true score change to occur as a result of
biological variability. In contrast, many nutritional supplements
(e.g., caffeine or sodium bicarbonate acutely function after a
single dose (35, 36) and provided the repeated tests take place
within a sufficiently short time-period, then consideration of
measurement error alone may be sufficient to identify proportion
of response and non-response.

KEY POINTS:

• Non-intervention related factors can often cause true scores to change.

Collectively, these factors are referred to as biological variation.

• The terms response and non-response are used to indicate whether an

individual’s true score change caused by the intervention alone exceeds the

smallest worthwhile change, or not, respectively.

3.1. Estimating Variability Caused by
Intervention
It is widely recognized that the most logical means of quantifying
variability caused by an intervention is to include a control
group or to use data from similar controls published in literature
(2, 33, 34). Quantifying variation in change across a control
group provides an assessment of both measurement error and
biological variation. In contrast, variation in change experienced
in an intervention group also accounts for the differential effects
caused by the intervention. As a result, true score variation
due to an intervention is equal to the change score variance
of the intervention group minus change score variance of the
control group. As with all concepts described in this review,
variation is most useful when expressed as a standard deviation,
and here we define the quantity of interest as the intervention
response standard deviation (σIR). In practice, this standard
deviation is estimated with the following formula σ̂IR =√
SD2

Int − SD2
Con, where SD2

Int is the square of the calculated

standard deviation of the observed score change from the
intervention group, and SD2

Con is the square of the calculated
standard deviation of the observed change scores from the
control group (34). Using data from our hypothetical study as
an example, MCARN standard deviations of observed score
change from the control and intervention group were found to
be 1.24 and 5.22 mmol.kg−1DM. Note, this large difference in
standard deviations measured between groups provides evidence
that true change directly attributable to the intervention was
highly variable across participants (33). We find that σ̂IR =

√
SD2

Int − SD2
Con =

√
5.222 − 1.242 = 5.07 mmol.kg−1DM, and

as explained in the following section, this value can then be used
to estimate the proportion of response.

KEY POINTS:

• Variation in the effect of an intervention across individuals can be estimated

by comparing the standard deviation of observed score change in an

intervention and control group.

• The statistic that reflects variation in intervention effect across individuals is

referred to as the intervention response standard deviation (σIR).

3.2. Estimating Proportion of Response
Consistent with all approaches used previously in this review to
estimate quantities of interest (e.g., baseline true score, true score
change, or here, proportion of response), we assume a normal
distribution, such that true score change directly attributable
to the intervention follows a normal distribution centered on
the mean observed score change, with standard deviation equal
to σIR (see Figure 6). As the total area of any probability
distribution is equal to one, the estimate of the proportion of
response is obtained by calculating the area of the derived normal
distribution that lies beyond the SWC (Figure 6). A full example
calculation covering this process is included in Supplementary
File (SF-S11), along with automated spreadsheet where readers
can estimate proportion of response for their own datasets (SF-
S12). Here we continue our example using the muscle carnosine
data from our hypothetical study to provide greater clarity.
The mean observed score change from the intervention group
across the twelve-week period was 10.20, and as calculated in
the previous paragraph, σ̂IR = 5.07. Therefore, the true score
change attributable to the intervention is modeled as a normal
distribution with mean 10.20 mmol.kg−1DM and standard
deviation 5.07. If we select a SWC from standard procedures by
calculating 0.2 times the baseline standard deviation, we obtain
a threshold value of 2.0 mmol.kg−1DM. Using the interactive
calculator in the Supplementary File (SF-S11), we find that
0.947 of the area of the normal distribution described lies
beyond the SWC and so we estimate that the proportion of
individuals that responded to the intervention with regards
to muscle carnosine content was 0.947 (i.e., we estimate that
∼95% of the supplementation group responded). This value is
only an estimate, that we expect will become more accurate
with greater numbers in both the intervention and control
groups due to better precision in estimating σ̂IR. Proportion of
response is a more complex estimator than those encountered
previously in the review, and confidence intervals are best
derived through a resampling process such as bootstrapping.
Briefly, in bootstrapping we treat our sample data as the
population and repeatedly draw random samples (from the
original data) each time carrying out the same calculation (e.g.,
proportion of response). Uncertainty in the estimate is then
expressed by examining variation in the results obtained. In the
Supplementary File we have included an automated spreadsheet
to estimate proportion of response with the readers own data
and to calculate selected confidence interval widths through
bootstrapping (SF-S12). For the muscle carnosine data, the 95%
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SWC

Mean observed score change

(intervention group)

Proportion of response
(percentage of area under the curve

above the SWC)

Possible change values

FIGURE 6 | Proportion of intervention group response. SWC, smallest

worthwhile change; σIR, Intervention response standard deviation.

CI for the proportion of response estimate was found to be
88.2–100%.

KEY POINTS:

• The different effects of an intervention across individuals can be modeled

as a normal distribution centered on the mean observed score change with

standard deviation σIR.

• Proportion of response is estimated by calculating the area of the normal

distribution that lies beyond the smallest worthwhile change.

• Confidence intervals for the proportion of response estimate can be obtained

through bootstrapping.

Summary and Practical Recommendations
Throughout this review, we have described procedures required
to interpret data collected from individuals both pre- and post-
intervention. Careful and deliberate procedures are required
to interpret the data appropriately, due to the fact that all
measurement incorporates some degree of error (measurement
error = instrumentation noise + biological noise), and changes
can often occur due to factors independent of the intervention
(biological variability). The procedures we have outlined enable
practitioners and researchers in the area of sports nutrition
to (1) establish plausible baseline values; (2) assess whether
meaningful changes have occurred after an intervention; and
(3) estimate the proportion of individuals in a group-based
intervention that responded/did not respond to the intervention.
We conclude this reviewwith a brief summary including practical
recommendations.

Prior to conducting any intervention, practitioners and
researchers require baseline data to direct their choice of
intervention and provide initial values to monitor and assess an
intervention’s progress and effectiveness. Tests and measurement
procedures adopted should seek to minimize measurement
error, which includes both instrumentation and biological noise.
It must be recognized, however, that even when the testing
environment is controlled as much as possible, some degree of
measurement error will always exist. Therefore, typical error
should be calculated and CIs applied to baseline measurements to
provide a range of plausible true scores given the data observed.

Ideally, CIs should be calculated with reliability data obtained
by the practitioner using the actual equipment and procedures
implemented with their clients. However, where this is not
feasible, it is recommended that practitioners obtain data from
published reliability studies that match their own procedures
as closely as possible with regards to testing protocols and
participants.

In situations where CI widths are so wide as to provide no
actionable baseline information, practitioners should re-consider
the specific %CI used and consider whether this can be reduced
given the context of the measurement. For example, 95% CIs
frequently produce large ranges for true scores and practitioners
have to consider whether they require the actual true score to
reside within intervals calculated in 95% of occasions. Where the
safety of a client is not influenced by the intervention, narrower
%CIs can be justified. For example, practitioners may choose
instead to construct CIs with the observed score plus/minus the
estimated TE. This calculation is simple to create and maintain
across spreadsheets that practitioners may create and for baseline
scores provides approximate 70% true score CIs. However, if
true score intervals calculated with similar %CIs still provide
limited actionable information, this suggests that the test and/or
measurement processes adopted create measurement errors too
large to be of practical use, and therefore an alternative and more
reliable test should be considered.

Once an intervention has been completed, it is good practice
to estimate true score change and provide a CI to identify a
range of plausible values given the observed data. Such CIs
represent the all cause change across the intervention and do
not distinguish between change caused by the intervention and
external factors. Where appropriate, practitioners can identify
the SWC deemed to be of practical relevance for the individual,
with success judged to occur when the observed score change
plus/minus the estimated TE lie beyond the threshold set. In
research settings, the threshold value may be set at 0, however,
practitioners should select this value a priori. Practitioners should
ensure that the estimated TE is not so large that successful
interventions will frequently be deemed not-successful. To
ensure this is not the case, it is recommended that practitioners
identify, for example, average observed changes for specific
groups of clients (which should be larger than the SWC) and
make sure that TE is smaller than the difference between the
average change and SWC. Where this cannot be achieved,
participants will in general, be required to obtain true score
changes greater than average in order for interventions to be
deemed successful.

The existence of biological variability renders it challenging
to isolate true score change directly caused by the intervention.
For this reason, we recommend that researchers interested in
this area and limited to designs with infrequent data collection
(e.g., pre-intervention and post-intervention), focus at the
group level and estimate proportion of response rather than
attempt to identify any one individual as a responder or non-
responder, and where appropriate, attempt to identify factors
associated with response/non-response [see Hopkins (34) for
further discussion]. To estimate the proportion of response, a
control group is required, with variation between control and
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intervention groups compared to quantify variation in true score
change directly attributable to the intervention. An estimate of
the proportion that responded can then be calculated by using
the observed difference scores, standard deviations calculated
from intervention and control groups, and the SWC. For all
calculations and procedures suggested in this review, we have
provided instructions and resources in the Supplementary File to
assist.

Finally, it is important to acknowledge the differences between
combining procedures outlined to identify an intervention
successful for an individual (e.g., true score change CI’s
and SWC, as demonstrated in SF-S9), and estimating the
proportion of response in group-based interventions (SF-S11).
With the former, there is no attempt to distinguish between
intervention and non-intervention causes of change. In addition,
the procedures outlined for the individual are heavily influenced
by the relative magnitudes of measurement error and SWC. The
approach described herein, requires that an individual’s observed
score change exceeds the SWC by, at least, the TE of the test.
In scenarios where the TE is large, individuals will typically
require true score changes substantially beyond SWC to identify
an intervention as a success. Note, this conservative approach
is required to routinely avoid individuals obtaining observed
score changes greater than the SWC due to the randomness of
measurement error alone. In contrast, the procedures described
in section 3 to estimate proportion of response do distinguish
between intervention and non-intervention causes of change.
Estimating the proportion of response using this approach, is
to some extent, less influenced by large measurement errors.
This is due to the fact that the effects of measurement
error are accounted for by variation observed in the control
group and are thus removed from the final calculation. With
greater participant numbers in the intervention and control
group, estimates will become more precise and uncertainty
reduced. As a result of these differences, it is possible that the

proportion of individuals identified to experience a successful
intervention (SF-S9), and the estimate of the proportion of
response (SF-S11) will be different. Given the infrequent data
collection points routinely used in practice (e.g., pre- and
post-intervention), caution is required when interpreting at
the level of individuals and it should be remembered that

CI’s are to be interpreted over the long-run. In scenarios
where large measurement errors occur, practitioners/researchers
can use knowledge of group-based estimates of response, to
provide greater context when evaluating data observed from
individuals.

CONCLUSION

A personalized approach to sports nutrition is increasing in
popularity due to recognition of the myriad of factors that
influence individual response to nutrition and exercise related
interventions. The presence of measurement error and biological
variation renders identification of baseline values, change values
and response status challenging, thus strategies to account for
these issues have been proposed, enabling practitioners, and
researchers to make informed decisions and judgements from the
data they collect.
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4. APPENDIX I

For the calculation of CIs it is useful to introduce additional
notation and concepts. The first is the notation: 100 (1− α)%,
which describes the width of the CI. Here, α is a variable that we
choose to set the interval and importantly link the width to the
correct multiple of our TE estimate. For example, to set a 90%
CI then α must be set to α = 0.1 to give 100 (1− 0.1)% =
90%. Given the consistent assumptions that observed scores
are normally distributed we evoke the relevant properties of
the distribution, such that a 100 (1− α)% CI for true score is
obtained with Os ± TE × Z(1−α/2). The coefficient Z(1−α/2) is
referred to as the (1− α/2)-th quantile of the standard normal
distribution. In our example where we set α to 0.1 (i.e., for a 90%
confidence interval), we require Z(1−0.1/2), or the 0.95th quantile
of the standard distribution. To obtain this value we can look up
standard statistical tables or use software such as MS Excel. Using
these methods, we find that Z0.95 is equal to 1.64 and so a 90%
true sore CI for an individual would equal Os ± TE× 1.64.

It is important to acknowledge that we can never definitively
state the TE and studies only report imperfect estimates T̂E,

where accuracy will depend primarily on the number of
individuals (or number of repeated trials) used in a test-retest.
To account for this additional uncertainty, we use the (1− α/2)-
th quantile value from a t-distribution which is similar in shape
to the normal distribution but has heavier tails (i.e., greater
proportion of values away from the center). The specific t-
distribution is based on numbers used in our TE estimate and
we say that it has degrees of freedom equal to n − 1. In the
data sets provided in this review, we include 20 participants
(n = 20) to estimate TE from test-retests, and as such a
90% true score CI for each individual is equal to Os ± T̂E ×
t19, 0.95, (i.e., the 0.95th quantile of the t-distribution with 19
degrees of freedom). Looking up statistical tables or use of
software identifies that t19, 0.95 = 1.73 and so our 90% true
score CI is calculated with Os ± T̂E × 1.73. Alternatively, if we
wanted to calculate a 50% true score CI with the t-distribution,
we would set α = 0.5, t19, 0.75 = 0.69 to give Os ± T̂E ×
0.69. What is important to note, is that as the number of
individuals increases the t-distribution approaches the normal
distribution such that the coefficients used to multiply the TE
become similar.
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