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Abstract. Undoped and Cu doped In2O3 films are prepared by radio frequency magnetron 
sputtering technique. The effects of Cu doping and high energy electron beam irradiation on the 
structural and optical properties of as-prepared films are investigated using techniques such as X-
ray diffraction, X-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic 
image analysis, energy dispersive X-ray (EDX) spectroscopy, micro-Raman and UV-visible 
spectroscopy. Moderate doping of Cu in In2O3 enhances the intensity of (222) peak indicating the 
alignment of crystalline grains along <111>. Electron beam irradiation promotes the orientation of 
crystalline grains along <111> in undoped and moderate Cu doped films. EDX spectroscopic 
analysis and XPS analysis reveal the incorporation of Cu2+ ions in the lattice. Transmittance of Cu 
doped films decreases with e-beam irradiation. A systematic reduction of bandgap energy with 
increase in Cu doping concentration can be seen in unirradiated and electron beam irradiated films. 
 
 

 

Introduction 

 In2O3 with direct band gap energy of 3.55-3.75 eV [1] has attracted much interest as an important functional 

oxide semiconductor in both fundamental research and practical studies [2]. It finds applications as transparent 

windows in liquid crystal displays [3], solar cells [4], electrochromic devices [5], optoelectronic devices [6], gas 

sensors [7] etc., owing to its electrical conductivity and high optical transparency in the visible region [8]. The 

optical and electrical properties of semiconductors depend on the inclusion of dopants in the host material as well as 

on its structural parameters such as bond length, crystallite size, lattice constants, stress-strain mechanism etc. [9]. 

Copper oxide (CuO) is a p-type semiconductor possessing an indirect band gap energy in the range 1.2-1.9 eV 

[10,11]. CuO-based materials have a variety of applications in optoelectronics, catalysis etc. owing to their distinct 

properties [10]. Wen et al. prepared In2O3, In2O3:SnO2 and Cu doped In2O3, In2O3:SnO2 ceramics, investigated the 

transport properties of the ceramics and analysed the relation between carrier concentration, mobility and density. 

They observed a decrease in the absorbance in In2O3 ceramics with increase in Cu doping concentration whereas in 

In2O3:SnO2 ceramics, they observed an increase in the absorbance with increase in Cu doping concentration [12]. 

Copper indium oxide films prepared by Singh et al. by reactive RF magnetron sputtering technique at different 

substrate temperatures namely 300 and 400 °C showed two values of band gap energy (i.e. 3.3 and 4.3 eV) [13]. 

Kaleemulla et al. studied the influence of annealing temperature on the morphological, structural and optical 

properties of Cu doped films synthesized by the method of flash evaporation. An enhancement in the transmittance 
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of the films with increase in annealing temperature was reported [14]. Cu doped In2O3 films with varying Cu 

concentration were synthesized using perfume atomizer technique by Deepa et al. [11,15]. They observed intense 

UV emission and low values for electrical resistivity for the films. In2O3: Cu films were synthesized using electron 

beam evaporation technique by Krishna et al. and they analysed the effect of Cu concentration on the structural and 

magnetic properties of the In2O3 films. An enhancement in the concentration of oxygen vacancies and strength of 

ferromagnetic behaviour with increase in Cu concentration was reported. They related the ferromagnetic property to 

the oxygen defect mediated ferromagnetic exchange between two Cu+ ions [16]. 

 Irradiating materials with high energy electron beam can modify its microstructure, crystal structure and 

change the physical properties [17-19] and hence affects the optical and electrical properties. Intrinsic stress in the 

vacuum deposited amorphous films can be either reduced or enhanced with irradiation, thereby modifying its 

structural and optical properties [20]. Fast electrons (with kinetic energies > 10 keV), being charged particles, 

interact strongly with both atomic nuclei and electrons in a Coulombic manner [21]. Most of the energy losses at 

high energy electron bombardment are caused by electron-electron collisions, rather than the electron-nucleus 

collisions. Electron-electron collisions lead to film heating, which results in radiation annealing and relaxation of the 

lattice [22]. Thus, interaction of electron with materials can be the key factor for induced modification of properties 

of materials. In the present work, the effect of Cu doping on the structural and optical properties of In2O3 films 

prepared by RF magnetron sputtering are investigated. The influence of electron beam irradiation on the structural 

and optical properties of undoped and Cu doped In2O3 films is also analyzed. 

 

Experimental details 

 Undoped and Cu-doped In2O3 films were prepared by RF magnetron sputtering technique. CuO powder with 

different mole percentage (0, 1, 2, 4, 6 and 10 mole %) were added to In2O3 powder (Sigma Aldrich 99.99% purity) 

and grounded well. This powder mixture was pressed and used as the targets for sputtering. The deposition chamber 

was first evacuated to a base pressure of 3x10-6 mbar and pure argon gas was admitted to the chamber (Ar pressure-

0.015 mbar). Deposition of the films was done on quartz substrates (substrate- target distance-5cm), for a duration of 

40 minutes using an RF power of 120 W. The as-deposited films with different Cu doping concentrations (viz., 0, 1, 

2, 4, 6 and 10 mole %) are designated as ICu0, ICu1, ICu2, ICu4, ICu6 and ICu10 respectively. The films were 

irradiated with electron beam using 8 MeV Microtron facility at Mangalore University, Mangalagangotri, India. 

Samples (1 cm2 in size) sealed in transparent thin polythene sheets were exposed to e- beam at 30 cm from the beam 

exit port at a pulse repetition rate of 50 Hz. The electron doses delivered to the samples were monitored using a 

current integrator calibrated with appropriate radiation dosimeters. The samples were irradiated for 5kGy doses at a 

dose rate of around 200 Gy per minute.  The dose delivered has a uniform distribution of 8 cm x 8 cm area.  The 

irradiated samples with respective Cu doping concentrations are coded as RICu0, RICu1, RICu2, RICu4, RICu6 and 

RICu10 respectively. 
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  Structural properties of unirradiated and irradiated films were investigated by X-ray diffraction (Bruker AXS 

D8 Advance) measurements employing CuKα1 radiation with a wavelength of 1.5406 Å in the 2θ range 20°-70°. 

Micro-Raman spectra of the films were recorded using Labram HR-800 (Horiba JobinYvon) spectrometer with a 

spectral resolution ~1 cm-1 using an excitation radiation of 514.5 nm from an argon ion laser. Transmittance spectra 

of the films were recorded using a UV-Visible (JASCO, V-550) double beam spectrophotometer. The thickness of 

the films was estimated by a Nova Nano SEM 450 (FEI) field emission scanning electron microscope (FESEM) 

using lateral FESEM images. The elemental analysis of the films was carried out using electron energy dispersive 

X-ray spectrometer (EDS-Quantax 200, Germany) attached with FESEM. X-ray photoelectron spectra (XPS) were 

recorded with XPS spectrometer (Omicron Technology) with monochromatic Al Kα (1486.7 eV) X-ray source.  

Results and discussions 

 Figure 1(a) shows XRD patterns of unirradiated In2O3 films with different Cu doping concentrations. XRD 

patterns reveal polycrystalline nature for all the unirradiated films. XRD pattern of ICu0 film presents an intense 

peak at 2θ value 30.60° and a weak peak at 2θ value 21.47° corresponding to (222) and (211) lattice reflection 

planes of cubic bixbyite crystalline phase of In2O3 respectively [JCPDS Card No. 71-2195]. The broad hump like 

structure in the 2θ range 15°-30° observed in the XRD pattern for ICu0 film indicates that the film is not fully 

crystalline in nature. XRD patterns of Cu doped In2O3 films also reveal the formation of cubic bixbyite phase in 

them. In ICu1 film, the intensity of (222) peak increases by 3.86 times compared to that of ICu0 film and a peak 

corresponding to (440) lattice reflection plane of cubic bixbyite phase also appeared. 
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The XRD patterns of ICu2 and ICu4 films show three additional weak peaks corresponding to lattice reflection 

planes (332), (431) and (622) respectively of cubic bixbyite In2O3 phase. The intensity of the (222) peak in ICu2 and 

ICu4 films are respectively 3.37 and 4.34 times that of ICu0 film (Fig. 1(a) and 1(c)). The hump like structure 

observed in the XRD pattern of ICu0 film almost disappeared in the XRD patterns of ICu1, ICu2 and ICu4 films. In 

the XRD patterns of ICu6 and IC10 films, two peaks corresponding to lattice reflection planes (222) and (440) are 

only visible, that too with less intensity. Also, the hump like structure reappears in the XRD patterns of these two 

films. In all the unirradiated films, (222) peak shows the highest intensity. For cubic bixbyite phase, (222) is the 

plane with high atomic density and lower surface energy [23]. Among the unirradiated films investigated, ICu4 film 

Fig. 1. XRD patterns of undoped and Cu doped In2O3 films: (a) unirradiated and (b) electron beam 
irradiated. Variation of: (c) areal intensity of (222) peak, (d) FWHM of (222) peak and (e) crystallite size 
of unirradiated and irradiated Cu doped In2O3 films with doping concentration. The error bars are 
shown in the figure. 
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possesses the lowest value of full width at half maximum (FWHM) for (222) peak. The highest intensity and the 

lowest value of FWHM for (222) peak for ICu4 film suggests its superior crystalline quality. Moderate doping of Cu 

in In2O3 lattice seems to promote the preferred orientation of crystal growth along (222) plane.  

 XRD patterns of e-beam irradiated films are shown in Fig. 1(b). In the XRD pattern of the e-beam irradiated 

undoped film (RICu0), the intensity of the (222) peak is about 8.18 times that of the intensity observed for ICu0 

film. FWHM of the (222) peak in RICu0 is 0.1697° whereas in ICu0 film, it is 0.1957°. These observations suggest 

that the crystallinity of the undoped film has enhanced considerably on irradiating with e-beam. On irradiation of the 

film, energy can be transferred from the e-beam to the crystal lattice. Microscopic arrangement of nanocrystals or 

rearrangement of atoms may also take place in the film due to irradiation [24].  High temperature can increase the 

atomic mobility which may increase the ability of atoms to find the most energetically favoured sites. This can result 

in better crystalline quality of the films [25]. In films with 1 and 2 mole % Cu doping also, the (222) peak shows 

enhancement in intensity on e-beam irradiation. The intensity of this peak in these films on e-beam irradiation is 

respectively 1.77 and 1.92 times that of their unirradiated counterparts (Fig 1(c)). No significant change in the 

intensity of (222) peak is observed on e-beam irradiation in films with higher Cu doping concentration. Some 

additional peaks with less intensity can be seen in the XRD patterns of RICu0 film and irradiated films with 

moderate Cu doping concentration. FWHM values of (222) peak in all the irradiated samples are lower than that in 

unirradiated films (Fig. 1(d)). Among the irradiated films, RICu4 film shows lowest value of FWHM (0.1481°) and 

RICu0 film shows the highest intensity for (222) peak.  

  The texture coefficient (TC) is a measure of preferred orientation of the films. TC can be calculated from the 

measured intensity of the )(hkl  plane [ )(hklI ] and the standard intensity of the )(hkl plane [ )(0 hklI ] taken from 

the JCPDS data card by the following relation [26,27]: 

 

  (1) 

 

 

 

TC for (222) and (440) planes are calculated for unirradiated and irradiated films (Table I). The value of TC > zero 

but less than one suggests lack of grains in a particular )(hkl  direction. )(hklTC  = 1 represents films with 

randomly oriented crystallites indicating the lack of preferred orientation while higher values of )(hklTC  [TC >1] 

indicate the abundance of grains oriented in a given )(hkl direction indicating the preferred orientation [26, 28]. 

Among the unirradiated samples, ICu0, ICu6 and ICu10 possess values TC=1, indicating the lack of preferred 

orientation in them. ICu1, ICu2 and ICu4 films possess TC value >1 for (222) plane indicating that <111> can be the 

preferred direction of crystalline growth in them. All the irradiated samples except RICu6 and RICu10 films show 

preferred direction of crystalline growth along <111>.   

  In the unirradiated films, moderate Cu doping enhances the intensity of the (222) peak. The undoped and 

moderately Cu doped films show appreciable enhancement in intensity of the (222) peak on e-beam irradiation. The 
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enhancement in the intensity along a particular plane can be due to the orientation of crystallites along that plane, 

enhancement of the crystallinity of the material or due to the film thickness. The thickness of the films is estimated 

using lateral FESEM images (Fig. 2 (a)) and the observed values are listed in Table I. The values of thickness lie in 

the range 198-230 nm. The thickness of ICu6 and ICu10 films is found to be higher than that of ICu0 film but the 

intensity of the (222) peak in these films doesn’t change much. Average size of the crystallites is calculated using 

Scherrer formula [29] for both unirradiated and e-beam irradiated films. In the unirradiated films, average size of 

crystallites ranges from 35 nm to 47 nm whereas in irradiated films, it is in the range 42-49 nm (Fig. 1(e)). The 

average size of the crystallites in all the films increases by e-beam irradiation.  

 The lattice strain in the unirradiated and e-beam irradiated Cu doped In2O3 films is calculated using the relation 

[29]: 




 
cos

tan
D

T        (2) 

 

where T is the lattice strain, λ is the wavelength of X-rays used, θ is the Bragg angle, D is the crystallite size, and β 

is the FWHM of intense (222) peak. Cu doping in In2O3 lattice does not affect the lattice strain significantly (Table 

I). A slight reduction in the value of lattice strain can be seen for e-beam irradiated films. The observed reduction in 

the lattice strain in the films can be due to the thermal effect as a result of e-beam irradiation. The calculated values 

of lattice constant for the films are given in Table I.  

  A shift of the XRD peaks from the corresponding stress-free data of the bulk material suggests the existence 

of stress in the films which depends on the material and the synthesizing conditions [30,31]. Several factors which 

result in the development of stress include lattice mismatch, difference in thermal expansion coefficient between the 

film and the substrate, dynamic processes such as inter-diffusion, recrystallization, impurities, voids, dislocations, 

ionic size mismatch between the host and dopant ions etc. [32,33]. The (222) peak position of the unirradiated films 

are shifted towards higher 2θ angles compared to the In2O3 powder [JCPDS Card No. 71-2195] suggesting the 

presence of compressive stress in them. For the unirradiated films, even though we do not observe a monotonic shift 

of the (222) peak position with varying Cu concentration, all the films except ICu2 film show a shift of (222) peak 

towards higher diffraction angles. The ionic radius of Cu2+ ions (0.074 nm) [34] that of In3+ ions (0.080 nm) [35]. 

We can expect a slight shrinkage of lattice when Cu ions of lower ionic radius gets substituted for In ions of higher 

ionic radius. As a result, the peak may get shifted to higher angles. On e-beam irradiation, the intense (222) peak 

shows a shift towards lower 2θ values in undoped and doped films with Cu concentration up to 4 mole % whereas in 

films with higher doping concentration, (222) peak shows a shift to higher 2θ values on e-beam irradiation. A shift 

of the XRD peaks towards lower angles is an indication of tensile stress [31,36]. Hence, it is found that the 

compressive stress of the undoped and moderately Cu doped In2O3 films changes to tensile stress on e-beam 

irradiation whereas the higher doped films retain its compressive stress. This can be attributed to the annihilation of 

dislocations/defects as well as due to the growth of grains induced by e-beam irradiation [31]. 
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*U-unirradiated films, #I- electron beam irradiated films     Lattice constant of bulk In2O3-10.118 Å 

 

 The XRD analysis gives an indication of the substitution of Cu2+ ions in the sites of In3+ ions. To verify the 

incorporation of Cu ions, elemental analysis using EDX spectroscopy and XPS are carried out. EDX analysis (Fig. 2 

(b) and 2 (c)) shows the incorporation of Cu in the film.  Both the analysis show the incorporation of Cu in the films.  

  Metal oxide semiconductor films have imperfect surfaces even when impurities are absent. These 

imperfections can act as acceptors or donors [37]. The various defects present in semiconductor oxides include 

oxygen/metal vacancies, oxygen/metal interstitials etc. [38,39]. The presence of defects mainly the oxygen 

vacancies directly or indirectly determine the reactivity and surface chemistry of metal oxides [40]. Metal 

interstitials and oxygen vacancies can lead to oxygen deficient oxides relative to the stoichiometric composition 

[39]. In oxides, oxygen vacancies may be generated naturally [40]. Optimization of preparation conditions also play 

a significant role on the stoichiometry of the film. The oxygen vacancies may be present at the oxide surface or 

within the bulk [40] and their presence can control the electronic structure, optical, chemical, transport and magnetic 

characteristics of the material [40-42]. Oxygen vacancies can lead to shallow level defects or traps near the 

conduction band and can tune the band structure of materials [43]. The performance of the material in various 

applications can also be affected by the formation of defects/oxygen vacancies [41]. In the present study, the films 

are deposited under high vacuum conditions. This can result in the formation of non-stoichiometric films which are 

oxygen deficient. In the present case, XPS analysis suggest the formation of oxygen deficient films. 

Cu 
dopin

g 
conce
ntrati

on 
(mole

%) 

FWHM of (222) 
peak 
(°) 

Texture 
coefficient 

of (222) 
plane 

Texture 
coefficient 

of (440) 
plane 

Lattice constant  
a 

(Å) 

Lattice strain Thick
ness 
of 

films 
(nm) 

Bandgap 
(eV) 

*U #I *U #I *U #I *U #I *U #I *U #I 

0 0.1957 0.1697 1 1.67 - 0.33 10.113 
±0.0129 

10.116 
±0.0129 

0.0014 
±0.00036 

0.0012 
±0.00042 

198 3.60 
±0.06 

3.53 
±0.03 

1 0.2348 0.2189 1.26 1.49 0.37 0.51 10.112 
±0.0129 

10.125 
±0.0129 

0.0017 
±0.00030 

0.0016 
±0.00032 

200 3.57 
±0.03 

3.52 
±0.01 

2 0.2125 0.1481 1.17 1.59 0.83 0.41 10.121 
±0.0129 

10.122 
±0.0129 

0.0015 
±0.00033 

0.0011 
±0.00048 

216 3.56 
±0.05 

3.51 
±0.03 

4 0.1934 0.1742 1.13 1.38 0.87 0.62 10.105 
±0.0128 

10.112 
±0.0129 

0.0014 
±0.00037 

0.0012 
±0.00041 

230 3.54 
±0.05 

3.48 
±0.01 

6 0.2216 0.1930 1 1 - - 10.109 
±0.0128 

10.103 
±0.0128 

0.0016 
±0.00032 

0.0014 
±0.00037 

211 3.49 
±0.03 

3.43 
±0.02 

10 0.2308 0.1879 1 1 - - 10.113 
±0.0129 

10.105 
±0.0128 

0.0016 
±0.00031 

0.0013 
±0.00038 

205 3.45 
±0.03 

3.41 
±0.01 

Table I Structural and optical parameters of unirradiated and electron beam irradiated Cu doped In2O3 films 
deposited on quartz substrate by RF magnetron technique. 
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  Gaussian fitting of the In 3d core level spectra show double peaks with a spin orbit splitting of 7.6 eV, 

corresponding to the characteristic In 3d3/2  and In 3d5/2 levels (Fig. 2 (d) and 2 (e)). This indicates the presence of In 

in +3 oxidation state in the films [44]. The O1s XPS spectra on deconvolution (Fig. 2 (d) and 2 (e)) gives two peaks- 

OI and OII. The OI peak ~ 529.45 eV in the films can be assigned to In-O bonding in In2O3 [45] and the OII peak ~ 

531.36 eV in the films is related to O2- ions in the oxygen deficient region or to the surface adsorbed oxygen [46]. 

The core level spectra of Cu 2p region depicted in Fig. 2 (f) show very weak peaks of Cu2+ [47] which might be due 

to the low concentration of Cu in the doped films.  

 

 

  Micro-Raman spectra of typical films (undoped film and films with Cu doping concentrations 2 mole % and 

10 mole %) which are unirradiated and irradiated with e-beam are shown in Figure 3(a)-3(f). In2O3 crystallises in 

cubic bixbyite structure with space group Ia3 having 8 formula units per Bravais unit cell. Raman spectra of all the 

Fig. 2. (a) Typical cross-sectional FESEM images of unirradiated Cu doped In2O3 films showing the 
thickness of the films-ICu0 and ICu4, (b) EDX spectrum of 10 mole % unirradiated Cu doped In2O3 

film, (c) table showing the composition of elements in unirradiated Cu doped In2O3 films, (d) In 3d and 
O 1s spectra of ICu0 film, (e) In 3d and O 1s spectra of ICu10 film and (f) Cu 2p spectrum of ICu10 
film. 
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films are characterized by a broad intense band extending from 200-550 cm-1 along with a number of medium 

intense to weak bands. Apart from slight intensity variation among the peaks, the spectral features remain almost 

same in all the films indicating that Cu incorporation do not affect the spectral behaviour of In2O3 film. On 

deconvolution, the broad spectral feature extending from 250-700 cm-1 yields 5 spectral components ~365, 449, 495, 

602 and 625 cm-1 (shown in inset). Raman bands at 107, 117, 133 and 493 cm-1 have been reported for cubic bixbyite 

In2O3 [48,49]. Frost et al. observed additional bands at 186, 208 and 220 cm-1 in In2O3 powder [50]. Krishnan et al. 

have observed an additional band at 170 cm-1 in In2O3 powder [51]. 

 

 

 

 

 The observation of Raman bands at 107, 117, 131, 170, 220 and 493 cm-1 confirms the presence of cubic 

bixbyite In2O3 phase in the films [48,49]. Low frequency mode observed at ~ 107 cm-1 can be ascribed to typical Tg 

mode of cubic In2O3 [52] and the band at ~131 cm-1 can be attributed to In-O vibration of InO6 structural unit [53]. 

Fig. 3. (a)-(f) Micro-Raman spectra of typical unirradiated and irradiated Cu doped films: 
Deconvoluted spectra is shown as inset. Transmittance spectra of films: (g) unirradiated, (h) irradiated 
and α2 vs hυ plots of films: (i) unirradiated, (j) irradiated. Variation of band gap energy with Cu 
doping concentration is shown as inset of (i) and (j). 
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The mode at 220 cm-1 can be assigned to O-In-O bending modes [50]. Modes at ~493 and 626 cm-1 can be assigned 

to octahedral stretching vibrations of InO6 structural unit [54]. Raman band ~365 cm-1 can be attributed to stretching 

vibrations of In-O-In bridge and can be an indication of oxygen vacancies in the structure [53]. The bands ~ 602 and 

807 cm-1 may be due to the spectral contribution from quartz substrate [55]. Electron beam irradiation does not 

significantly influence the spectral behaviour of In2O3 films. 

  Transmittance spectra of unirradiated and e-beam irradiated Cu doped In2O3 films are shown in Figure 3(g) 

and 3(h) respectively. ICu0 film presents an average transmittance of 80% in the 400 to 900 nm wavelength region. 

In the unirradiated films, a slight systematic reduction in transmittance with increase in Cu doping concentration 

(from 80% to 75%) can be seen. Irradiated films show lower values of transmittance compared to their unirradiated 

counterparts. The band gap values for unirradiated and e-beam irradiated films are estimated from the plots of 

2 versus h  (Figure 3(i) and 3(j)) by extrapolating the linear portion of the curve and bandgap values are given 

in Table I [56]. Linear dependence of 2 with h at higher photon energies in unirradiated and irradiated films 

indicates direct transition in them. ICu0 film possesses a band gap of 3.60 eV. Unirradiated Cu doped films show 

lower values of bandgap energies. Among the irradiated films, the undoped film shows the highest value of bandgap 

energy=3.53 eV. A systematic reduction of bandgap with increase in Cu doping concentration can be seen in both 

unirradiated and irradiated Cu doped films. 

 

Conclusions 

  The structural and optical properties of In2O3 films with respect to Cu doping concentration and electron 

beam irradiation are investigated. XRD patterns of both unirradiated and e-beam irradiated films reveal the 

formation of cubic bixbyite phase of In2O3. Moderate Cu doping promotes the orientation of grains along <111>. On 

irradiating with the e-beam, undoped and moderate Cu doped films show enhancement in intensity of the (222) 

peak. Texture coefficient determination shows that irradiation promotes the alignment of crystallites along the 

<111> direction in undoped and moderately Cu-doped films. The stress in the undoped and moderate Cu doped 

films changes from compressive stress to tensile stress on e-beam irradiation. Average size of the crystallites in the 

irradiated films is found to be higher than that in their unirradiated counter parts. XPS and EDX analysis of the films 

suggest the incorporation of Cu in the films. XPS analysis suggests +3 oxidation state for In ions and +2 oxidation 

state for Cu ions. Micro-Raman analysis reveals the presence of characteristic bands of cubic bixbyite phase of 

In2O3 in the films. Electron beam irradiation does not significantly influence the spectral behaviour of In2O3 films. 

All the films show good average transmittance. Both unirradiated and irradiated Cu doped films possess lower 

bandgap values compared to undoped film.  
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