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1. Introduction 

Multistability exists in nature and engineering systems in 
various fields, such as biology [2], electronics [3] and 
mechanics [4]. In recent years, many researchers have 
been paying attention on how control of multistability can 
be achieved with regard to its high sensitivity to system 
parameters and external perturbation [5]. Control of 
multistability can enhance system efficiency by switching 
its state from an undesired state with large amplitude 
periodic motion to a desired one with small amplitude 
periodic motion. For example, maintaining small 
amplitude periodic oscillations in drill-strings can 
improve the efficiency of drilling, and therefore, 
extending lifespan of equipment and reducing 
maintenance cost. Maintaining large amplitude motion for 
energy harvester can generate more energy and improve 
its efficiency. In order to control multistable systems, 
several control methods have been proposed, including 
steering the system by a feedforward control strategy [6], 
applying a short pulse to multistable systems [7], and 
using a pseudo-periodic force to destroy the undesired 
attractor [8]. These proposed methods are capable of 
altering an undesired state to a desired state in multistable 
systems. However, these control laws have limitations. 
For example, when co-existing attractors in a multistable 
system are destroyed, its parameters may be affected, and 
the structure of basins of attraction of the system may 
become complex. This makes control the system difficult. 
If the system is under the influence of noise or 
perturbation, the system may be switched back to 
undesired state easily. The control law is then switched on 
and off continuously in high speed and the system will 

exhibit chattering behaviour.  Therefore, it is important to 
keep the original basin of attraction intact, and thus, 
guarantee that the system stays in desired state in the 
presence of noise. 

Liu et al. proposed an intermittent control law for state 
switching in multistable systems [1]. Intermittent control 
applies an impulse force to the system in order to switch 
the system to the desired state. However, this control law 
requires the information of the nonlinearity of the plant 
model, which is sometimes difficult to acquire accurately. 
In this paper, a new PD-like control that does not depend 
on the nonlinearity of the plant is proposed. The proposed 
control law is simple to be implemented and the basin of 
attraction of the system will not be changed.  

In order to evaluate the performance of this proposed 
control law, an impact oscillator, which is a typical 
multistable system, is selected for investigation in this 
work. It is a simple one degree of freedom system that 
models the basic mechanism for a variety of engineering 
systems, such as rotor, gearbox and percussive drilling 
system [9]. The study of basins of attraction of this system 
has been extensively reported in literature through 
numerical analysis and experiment [10-12].  

The paper is organised as follows. In Section 2, the 
mathematical model of the selected multistable system is 
presented. The proposed PD-like control law and its 
stability are studied using the Lyapunov direct method in 
Section 3. In Section 4, the performance of the proposed 
control law is evaluated using the selected multistable 
system through simulation. Finally, some concluding 
remarks are given in Section 5. 
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2. Impact oscillator 
The mathematical model of an impact oscillator is 
presented as follows. The physical model of the impact 
oscillator is shown in Figure 1. It includes a mass which 
is connected to a linear spring and a viscous damper, and 
the impact oscillator is excited by harmonic force. When 
the displacement of the mass exceeds the gap between the 
mass and the secondary spring, impact will occur. 
Nondimensional model of the impact oscillator is shown 
below. 

�� � 	� ������� � ���� � � � ��� � ����� � ��      (1) 

Equation 2 shows the process of changing dimensional 
parameters of the impact oscillator in figure 1 to the 
nondimensional parameters. 

� � �
�� , � � ���, � � ��

�� , � � �
��,	

� � �
���� , � � �

�� , � � �
�� 																				(2) 

 
 
 
 
 
 
 
 
 
 
 
 
Two reference values are used for the nondimensional 

formula. One is the reference distance �� � �	and the 
other is the natural frequency	�� � �����. Moreover, � 
and � are nondimensional displacements of the mass and 
time separately. �	is the stiffness ratio, � is the frequency 
ratio and � is the damping ratio, whilst � and � denote the 
nondimensional amplitude and the gap between mass and 
the second spring respectively. ��	� � is the Heaviside step 
function. 

3. The Proposed Control Law 

In this section, we present the proposed PD-like contro 
law and its stability proof on an impact oscillator. 

3.1 The Governing equations 

In general, when a multistable system is controlled by a 
state switching control law ����, its dynamic model is 
written as follow. 

�� � �	��, �� � � ���� � ����                      (3) 

After the system is switched to its desired state, its 
dynamic model becomes. 

��� � �	���, ���� � ����                        (4) 

where x, ��  and ��, ��� are the displacement and velocity 
of current state and desired state of the system 
respectively, ���, �� �  and ����, ����	 model the 
nonlinearity of the system at current and desired states 
respectively, ���� is the external harmonic excitation and 
���� is the control law applied to the system.  

 
Define 

�� � �	 �	��
 �� � �� 	� 	���                              (5) 

which are the difference in displacement and velocity 
between the current and desired trajectories respectively. 
The proposed PD-like control law is shown as follows:  

���� � �	���� � ����                         (6) 

where �� and �� are the positive gains of the control law. 
When the control law is switched on, the system will 

be driven to the desired state (�� ,	��� ) within a certain 
duration of time i.e. �� and �� are zeros and the control 
input ���� becomes zero. Thus, the system is switched 
from the current undesired state to the desired state. This 
control law can steer dynamical systems without changing 
the parameters of the system and thus the structure of 
basin of attraction is not affected. Furthermore, when the 
system is affected by sensor noise and external 
disturbance, this control law forces the system to remain 
in the desired state, or move back to the desired state. 
Indeed, the control law guides the system by exploiting 
only the difference between the current state and desired 
state under the same parameters. Exact knowledge of the 
nonlinearity of the plants is not required. In order to 
prevent damage to the actuator within the system, the 
control input ���� is bounded by actuator limit ���� and 
the control law is modified as follows:

���� � 	 ������ � ����											��� � ����
������� � ����								��� � ���� 					 (7) 

3.2 Stability Analysis 

The stability of the proposed PD-like control law is 
studied on the selected multistable system using 
Lyapunov Stability Theorem. The error dynamics after 
the control law is applied to the system is defined as: 

��� � �	∗ �	���� � 	����                     (8) 

where �	∗ � ���, �� � � ����, ����. Note that the effect of 
the external harmonic excitation ���� is cancelled in the 
error dynamics and it is an autonomous system. 

A Lyapunov function is proposed for the error 
dynamics of the system. 

����, ��� � �
� ��� � ����� � �

� ��� � ��� � ������  (9) 

where � � � � ��  so that the Lyapunov function is 
positive definite. 

Fig. 1. Schematics of impact oscillator [10] 
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Time derivative of the Lyapunov function is given as: 

�� ���� ��� � ��� � �����	∗ � �� � ������ � ������	(10) 

For the impactor oscillator, �∗ is defined as, 

�	∗ � ����� � �� � ���� � ����� � ��    (11)

���� � ������ � ���                                
if  

�� � �� � ��� � �� � ��	              (12) 

�� ���� ��� is negative definite and the system 
converges to the desired trajectory asymptotically.  
Detailed stability proof is presented in the Appendix. 

4. Numerical Simulation 
In order to evaluate the performance of the proposed 
control law, MATLAB simulation was conducted using 
the impact oscillator. 

4.1 Impact oscillator 

Figure 2(a) shows the basin of attraction of the impact 
oscillator with parameters ( � =0.01, � =29, � =0.01, 
� =1.0385 and � =0.686). There are two co-existing 
attractors. Figure 2(b) shows the trajectory of the two co-
existing attractors, one is a period-2 response with one 
impact (purple region in figure 2(a) and red line in figure 
2(b)) and the other one is a period-2 response with two 
impacts (blue region in figure 2(a) and black line in figure 
2(b)). The process of state switching is shown in blue line 
in figure 2(b). Figures 2(c) and (d) show respectively the 
displacement and velocity responses of the system when 
the proposed control law is applied to the system at around 
45 seconds under the control parameters (��= 1 and ��= 
5.5). ��  is equal to the minimum value according to 
equation 12. The system switches to the desired state 
within 15 seconds. Moreover, when the system converges 
to the other state, the control input ���� becomes 0, as 
shown in Figure 2(e). 

In order to study the sensibility to the control 
parameters, more sets of the control parameters are used. 
Different performances of the control signal are observed. 
Figure 3(a) shows the maximum peak of nondimensional 
control force ����  with different sets of ��  and �� . In 
figure 3(a), the maximum peak of control force ���� 
varies from 8.89 to 29.47. The maximum peak of control 
force ���� increases with the increasing �� . Moreover, 
the maximum peak of control force ���� decreases with 
increasing �� . Moreover, the switching duration of 
different ��  and �� are shown in figure 3(b). The 
switching duration varies from 2.51 seconds to 13.31 
seconds. Both of the maximum peak of the control force 
����  and the switching duration are sensitive to the gains 
in control law. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

(d) 

(c) 
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4.2 Comparison with Intermittent Control 

The intermittent control law proposed in [8] is shown as 
follows: 

�� � �	��� �� � � ���� � ����

���� � �	 0																		|��| � �
��∗ � ���� � ����			|��| � �	       (13) 

�∗ � �	��� �� � � �	���� ����

�� � ���|�������|���
� 																											(14) 

where � and � define the error of the displacement and 
velocity between the current undesired and desired 
trajectories respectively and they are adequately small. 
When |��| � �  and |��| � � , the intermittent control 
switches on. �� is the first time the system satisfies this 
condition and �  is the duration of time when the 
intermittent control law is on. Moreover, the control 
parameter �� can be chosen according to equation (14). 
The proposed PD-like control law looks like the 
intermittent control law except the nonlinearity term �∗ is 
absent.   

The performance of the proposed PD-like control law 
and the intermittent control law are compared by applying 
them to the impact oscillator, discussed in Section 4.1, 
with the following parameters: 

� = 1.2, � =	10��, ��	= 1 and ��	= 5.5  
both control laws are applied with the same ��  and �� 
gains. Figure 4 shows the control input ���� to the impact 
oscillator when the proposed PD-like control and 
intermittent control are applied to the impact oscillator 
under the same system parameters and control parameters. 
There is no time limit for both control laws or � � ��. In 
Figure 4, both control laws can switch the system to the 
desired state. Moreover, the trough magnitude of the 
control input, generated by the PD-like control law, is 
smaller than that of the intermittent control law. The 
control input generated by the PD-like control law has 
fewer troughs. Furthermore, the PD-like control law takes 
less time to switch the system from the present state to the 
desired state than the intermittent control law.  

Figure 5 depicts simulation results when the external 
control input is bounded in both control laws due to 
actuator limit ����. Equation (15) shows the constrained 
PD-like control, and equation (16) shows the constrained 
intermittent control. 

���� � ������ � ����											|�| � ����
������� � ����									|�| � ���� 							(15)

u��� � �
0																																																																									(16)
�	�	∗ �	���� �	����	|��| � 	�	,	|�| � ����
������� � ����												|��| � �	,	|�| � ����

 

where ����  is the bound of the absolute magnitude of 
control input ����. 

Both control laws have the same control parameters 
and they are applied at the same time to the impact 
oscillator. Both of them are capable of switching the 
system into the desired state with various ���� . For 
example, when ����= 5, both control laws exhibit very 

Fig. 2. The simulation result of applying the PD-like control law
on an impact oscillator. Parameters of the system: � =0.01,
�=29, �=0.01, �=1.0385 and �=0.686. Parameter of control
law: �� =1 and �� =5.5. (a) Basin of attraction. (b) State
trajectories of the two co-existing attractors on phase plane. (c),
(d) Displacement and velocity of mass respectively. (e) The
applied control force  

(e) 

Fig. 3. The simulation result of apply the PD-like control law on
impact oscillator with different �� and ��. The colour bars show
the magnitude of nondimensional control force ����  and
switching duration (a) The nondimensional control force ����
with different ��  and �� . (b) The switching duration of the
control law with different �� and �� 

(a) 

(b) 
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similar behaviours in ���� shortly after application of the 
control action. Overall, the control input generated by the 
PD-like control law has fewer peaks and troughs than 
those generated by intermittent control, and it takes less 
time to complete state switching using the PD-like control 
laws.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 shows the simulation results of the control 
input ����  when the constrained value of the external 
control input is very small �����= 0.5). The intermittent 
control law fails to switch the impact oscillator to the 
desired state. Figure 6(a) shows that the control input ���� 
oscillates with high frequency and does not stop. On the 
other hand, the suggested PD-like control law can switch 
the system to the desired state in 35 seconds. Obviously, 
the process of state switching takes a longer time when 
small actuator limits compared to Figures 4 �����= ∞) 
and 5 �����= 5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5. Conclusion and Future Work 
A PD-like control law was proposed to switch multistable 
systems to their desired states, without knowing exact 
knowledge of their nonlinearity, and without destroying 
the structure of the basin of attraction of the system. 
Numerical simulations using an impact oscillator 
demonstrate that the proposed control law can switch 
impact oscillator from its current, undesired state to the 
desired state successfully. Moreover, the control input 

Fig. 4. Control input ���� to the impact oscillator using
intermittent control law (blue dashed line) and PD-like control
law (red solid line). System parameters: �=0.01, �=29, �=0.01,
�=1.0385 and �=0.686. Control parameters: �=1.2, �=10�� ,
��=1 and ��=5.5. The inset shows the minimum of the control
input generated by two control laws. 

Fig. 5. Simulation results of the impact oscillator with
intermittent control law (blue dashed line) and PD-like control 
law (red solid line). System parameters: �=0.01, �=29, �=0.01,
�=1.0385 and �=0.686. Control parameters: ����=5, �=1.2,
�=10��, ��=1 and ��=5.5. 

Fig. 5. Simulation results of the impact oscillator with the 
intermittent control law (blue line) and the PD-like control law
(red line). System parameters: �=0.01, �=29, �=0.01, �=1.0385 
and �=0.686. Control parameters: ����=0.5, �=1.2, �=10��,
�� =1 and �� =5.5. (a) Control input generated by the two 
control laws. (b) Detail of control input generated by the PD-like 
control. (c) State trajectories of response on the phase plane after
applying the two control laws.

(a) 

(c) 

(b) 
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generated by the proposed PD-like control is smoother 
than that generated by the intermittent control. 
Constrained control force is considered to avoid 
exceeding actuator limit. The smaller the control force 
limit, the longer the switching duration.  

 The peak value of control force ���� and switching 
duration of control law are sensitive to the control gains. 
Smoothness of the control force ����	can be optimised by 
minimising the number of peaks, the peak value in ���� 
and the switching duration through finding the optimal �� 
and ��  gains and switching time. Some of these 
objectives are conflicting and multi-objective 
optimisation of the smoothness of ����  will be 
investigated. 
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Appendix
The stability proof of the proposed PD-like control law 
on impact oscillator is presented. 

Given a Lyapunov function 

����� ��� � �
� ��� � ����� � �

� ��� � ��� � ������  (17) 

Where � � � � �� so that the Lyapunov function is a 
positive definite. 

In order to prove the �� ���� ���  is negative definite. 
Four case are considered 

1. � � �	and �� � � 

�� ���� ��� � �� � ������ � ������              (18) 

���� � ��������� � ���   
a. When ��  and ��  have the same sign, �� ���� ���  is 

negative definite. 
b. When ��  and ��  have different signs and |��| �

|��|.  There exists a 	�  which makes ��� � ��������� �
��� � � and thus �� ���� ��� is negative definite. 

c. When �� and �� are different signs and |��| � |��|，
There is a bound for �� : �� � � � ��  to guarantee 
�� ���� ��� is negative definite. 

2. � � � and	�� � �
�� ���� ��� � �� � ������ � ������              (19) 

���� � ��������� � �� � �����										
a. When ��  and ��  have the same sign, �� ���� ���  is 

negative definite. 
b. When ��  and ��  have different signs and |��| �

|��|.  There exists a 	�  which make sure that ��� �
��������� � �� � ����� � �  and thus �� ���� ���  is 
negative definite. 

c. When �� and �� are different signs and |��| � |��|, 
There is a bound for �� : �� � �� � ��� � �� � �� to 
ensure that �� ���� ��� is negative definite. 

3. � � � and	�� � �
�� ���� ��� � �� � ������ � ������            (20)  

���� � ��������� � �� � ��� � ���	   
 
Since	� � � and	�� � �,	� � � � � � �� 
a. When	�� � �, �� ���� ��� is negative definite. 
b. When	�� � � and	|��| � |��|, There exists a	� to 

guarantee that ��� � ��������� � �� � ��� � ��� � � 
and thus �� ���� ��� is negative definite. 

c. When �� � � and	|��| � |��|. There is a bound for 
�� :  �� � �� � ��� � �� � ��  to make sure that 
�� ���� ��� is negative definite. 

4. � � � and	�� � �
�� ���� ��� � �� � ������ � ������               (21) 

���� � ��������� � �� � ���� � ���	 
Since	� � � and	�� � �,	�� � � � �� � � 
a. When	�� � �, �� ���� ��� is negative definite. 
b. When	�� � � and	|��| � |��|, There exists a � to 

ensure that ��� � ��������� � �� � ���� � ��� � � and 
thus �� ���� ��� are negative definite. 

c. When �� � � and	|��| � |��|. There is a bound for 
�� :  �� � �� � ��� � �� � ��  to make sure that 
�� ���� ��� is negative definite. 
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