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Abstract
Whilst colistin (polymyxin E) represents the last mainstream treatment option for multidrug-resistant Gram-negative patho-
gens, details of its mechanism of action remain to be fully resolved. In this study, the effects of sub-inhibitory, inhibitory-
bactericidal, and supra-bactericidal levels of colistin on the membrane integrity and morphology of Escherichia coli and 
Pseudomonas aeruginosa were investigated using potassium loss, flow cytometry, and scanning electron microscopy (SEM). 
Supra-bactericidal colistin concentrations induced just 4–12% intracellular potassium loss from bacteria after 24 h. Flow 
cytometry data suggested colistin might alter cell arrangement, and SEM confirmed the antibiotic causes bacterial aggre-
gation. Filamentation was not detected in either species at any concentration or time-point up to 24 h. These results argue 
against the hypotheses that colistin kills bacteria by puncturing the cytoplasmic membrane or disrupting DNA synthesis. 
The colistin-induced bacterial aggregation detected has implications for the interpretation of MBC, time-kill, and other test 
results obtained with this antibiotic.
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Introduction

Colistin (polymyxin E) is an antibiotic with a spectrum of 
activity that includes problematic carbapenem-resistant and 
extensively drug-resistant Gram-negative bacteria such as 
Pseudomonas aeruginosa and Escherichia coli. Systemic 
use of colistin largely ceased in the 1970s due to concerns 

about nephrotoxicity and neurotoxicity, but growing resist-
ance to other antibiotic classes prompted a reassessment 
of its safety at the turn of the century (Tängdén and Giske 
2015; Tran et al. 2016). Under suitable dosage regimens 
and with careful monitoring, it is now accepted that the risk 
of colistin-induced kidney or nerve damage can be mini-
mized (Kelesidis and Falagas 2015; Shields et al. 2017), 
and the antibiotic has been returned to use as a last option 
or salvage therapy (Poirel et al. 2017). Clinical indications 
include treatment of ventilator-associated pneumonia and 
lung infections in cystic fibrosis patients (Gu et al. 2014; Liu 
et al. 2015) as well as bacteraemia and urinary tract infec-
tions (Tängdén and Giske 2015; Bader et al. 2017) caused by 
extensively drug resistant Gram-negative organisms. Trans-
missible colistin resistance emerged in 2011 and has spread 
worldwide, but its prevalence is still quite low (Giske 2015; 
Liu et al. 2016; Baron et al. 2016).

Because colistin is rapidly bactericidal against Gram-
negative but not Gram-positive species, and has a strong 
binding affinity for lipopolysaccharide (LPS), it is widely 
accepted that this antibiotic targets the bacterial outer mem-
brane. However, precise details of how colistin exerts its 
antibacterial effect remain unclear (Tran et al. 2016; Poirel 
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et al. 2017). At the time of its discovery and development 
in the late 1940s, regulatory and licensing bodies such as 
the Medicines and Healthcare products Regulatory Agency 
(MHRA) were not in existence, and the substantial body 
of microbiological and pharmacological evidence now nec-
essary for licensing an antibiotic was simply not required 
(Landersdorfer and Nation 2015). Therefore, a relatively 
limited body of information on the antibacterial effects of 
colistin is available to inform rational use (Honoré et al. 
2014; Theuretzbacher 2014). Elucidation of further details 
could permit optimization of colistin dosing, prediction of 
synergistic drug combinations, prediction of drug combina-
tions that reduce the risk of additional resistance emerg-
ing, and the development of second-generation polymyxins 
(Deris et al. 2014; Poirel et al. 2017).

Several recent studies have explored how colistin interacts 
with the bacterial cell using transmission electron micros-
copy (TEM), model membranes, and other techniques. 
Consensus exists that initial electrostatic and hydrophobic 
interactions occur between colistin molecules, which are 
positively charged, and the negatively charged LPS layer 
of the outer membrane. This first step, sometimes referred 
to as ‘self-promoted uptake’, leads to displacement of the 
divalent cations  (Ca2+ and  Mg2+) that normally stabilize the 
LPS monolayer (Velkov et al. 2013). How colistin then kills 
bacterial cells is uncertain. One longstanding hypothesis 
is that colistin molecules disrupt the physical integrity of 
the cytoplasmic membrane, causing leakage of intracellular 
contents (Velkov et al. 2010; Poirel et al. 2017). Another 
hypothesis is that colistin causes the inner layer of the outer 
membrane and outer layer of the cytoplasmic membrane to 
come together, resulting in phospholipid exchange, and an 
osmotic imbalance (Clausell et al. 2003; Velkov et al. 2013). 
Additional possibilities, not necessarily mutually exclusive, 
are that colistin inhibits vital respiratory enzymes (type II 
NADH-quinone oxidoreductases) at the cytoplasmic mem-
brane (Deris et al. 2014), that colistin induces the formation 
of reactive oxygen species when it crosses the cytoplasmic 
membrane (Yu et al. 2017) or, in a similar manner to other 
cationic antimicrobial peptides, that colistin binds to bac-
terial DNA (Kong et al. 2011) inhibiting replication and 
transcription.

The purpose of the present study was to gain further 
insight into the interaction between colistin and bacterial 
cells including its underlying mechanism of action. Cyto-
plasmic membrane damage was assessed by measuring 
potassium loss from colistin-treated cells, as leakage of this 
intracellular solute is an early sign that membrane integrity 
has been compromised (Yu et al. 2016; Liang et al. 2016). 
Colistin-treated bacteria were also examined by flow cytom-
etry and scanning electron microscopy (SEM) as changes 
in the size and shape of cells can be useful in identifying 
antibiotic targets too (Peach et al. 2013; Cushnie et al. 2016). 

To account for the fact that antibiotic-induced morphologi-
cal changes can vary with antibiotic concentration (Alsteens 
et al. 2008), inoculum density (Diver and Wise 1986), and 
test bacterial species (Wojnicz et al. 2007), we examined the 
effects of sub-inhibitory, inhibitory, and bactericidal concen-
trations of colistin upon two species, E. coli and P. aerugi-
nosa, using minimum inhibitory concentration (MIC) and 
minimum bactericidal concentration (MBC) values deter-
mined for assay-specific inoculum densities.

Materials and methods

Bacteria

E. coli NCTC 4174, P. aeruginosa NCTC 6750 and Staph-
ylococcus aureus NCTC 6571 were obtained from the 
National Collection of Type Cultures (Health Protection 
Agency Culture Collections, UK). These bacteria were 
stored, sub-cultured, harvested, and washed as described 
previously (O’Driscoll et al. 2013).

Antibacterial agents, chemical reagents, and growth 
media

Colistin sulfate, phosphate buffered saline (PBS) tablets, iso-
propanol (99+%), and sodium phosphate were purchased 
from Sigma-Aldrich Company (Poole, UK). Potassium 
dihydrogen orthophosphate SLR and glutaraldehyde were 
from Fisons Scientific (Loughborough, UK), and sodium 
carbonate was from BDH (Poole, UK). Sodium chloride 
(NaCl; general-purpose grade), acetone (technical grade), 
and formaldehyde were purchased from Fisher Scientific 
(Loughborough, UK), and nutrient broth and agar were 
from Oxoid (Basingstoke, UK). The BacLight™ Live/Dead 
Kit was obtained from Molecular Probes (Invitrogen, Pais-
ley, UK), while flow cytometry Sheath fluid, Flow Check™ 
fluorospheres and all plastic disposable equipment were 
from Beckman Coulter (Buckinghamshire, UK).

Determination of MIC and MBC values for colistin

MICs were determined according to the CLSI broth micro-
dilution method (CLSI 2006; Wiegand et al. 2008), but with 
the following necessary modifications. Rather than using 
the CLSI-recommended inoculum density of 5 × 105 cfu 
 mL−1 and CLSI-recommended incubation time of 16–20 h, 
MICs were determined for assay-specific inoculum densi-
ties (1 × 106 cfu  mL−1 bacteria for the potassium loss and 
flow cytometry assays, and 1 × 107 cfu  mL−1 bacteria for 
scanning electron microscopy analysis) and assay-specific 
incubation time of 24 h. Microtitre plates (96-well; Bibby 
Sterilin, Staffordshire, UK) were sealed with an optically 
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clear, gas-permeable seal (Fisher Scientific) and incubated 
at 37 °C (Versamax Microplate Reader, Molecular Devices, 
Berkshire, UK).

MBC values were established by a replica plating proce-
dure, with 1–2 µL from each well transferred to the surface 
of a 13.5-cm-diameter nutrient agar plate using a 96-pin 
multi-point replicator (Boekel Scientific, US). The presence 
or absence of growth was recorded after 24 h aerobic incuba-
tion at 37 °C. All assays were conducted in triplicate on six 
separate occasions.

Quantification of intracellular potassium loss 
from populations of colistin‑treated bacteria

Populations of 1 × 106 cfu  mL−1 E. coli and P. aeruginosa 
were incubated with inhibitory-bactericidal (1 × MIC and 
1 × MBC) and supra-bactericidal (10 × MBC) levels of 
colistin (37 °C; 150 rpm) for various time periods (0, 1, 2, 4, 
8 and 24 h), and examined for potassium loss using a flame 
atomic absorption spectrophotometer (Model AA3110, 
Perkin Elmer, Beaconsfield, UK) as described previously 
(O’Driscoll et al. 2013). Untreated cells were used as a nega-
tive control. Sub-inhibitory levels of colistin (1/20 × MIC) 
induced negligible potassium loss during preliminary test-
ing, and were excluded from the study to allow more rapid 
processing of samples from the other test conditions (i.e. 
untreated, inhibitory-bactericidal, and supra-bactericidal). 
Total intracellular potassium content was determined by son-
icating each cell sample (Misonix XL 2010 Ultrasonic Liq-
uid Processor; Heat Systems, Farmingdale, US) at 20 kHz 
for four 30-s pulses, pausing between pulses to place the 
centrifuge tube on ice. All assays were conducted in tripli-
cate on three separate occasions.

Analysis of colistin‑treated bacterial populations 
by flow cytometry

Populations of 1 × 106 cfu  mL−1 E. coli and P. aeruginosa 
were incubated in nutrient broth containing sub-inhibi-
tory (1/20 × MIC), inhibitory-bactericidal (1 × MIC and 
1 × MBC) and supra-bactericidal (10 × MBC) levels of 
colistin (37 °C for 24 h; 150 rpm) prior to analysis by flow 
cytometry using BacLight™ Live/Dead Bacterial Viabil-
ity reagents (Invitrogen). In accordance with the manu-
facturer’s instructions, bacterial populations incubated in 
aqueous 0.9% (w/v) NaCl and 70% (v/v) isopropyl alcohol 
were employed as viable and non-viable controls. All bac-
terial populations, both control and colistin-treated, were 
prepared for flow cytometric analysis as follows. Firstly, 
10 µL of each bacterial suspension was pipetted into a 
series of sterile 1.5-mL microcentrifuge tubes contain-
ing 987 µL of 0.9% (w/v) NaCl with 1.5 µL of Syto9 and 
1.5 µL propidium iodide (PI) fluorescent dye solutions. 

Tubes were then incubated in the dark for 15 min at room 
temperature prior to analysis using an Epics®XL MCL 
flow cytometer (Beckman Coulter). Prior to using the 
flow cytometer, the discriminator was set at 0.2 µm and 
the laser alignment was checked and adjusted using Flow 
Check™ fluorospheres. The test samples were processed 
once the half-peak co-efficient variation was ≤ 2% on 
channels FL1, FL2, FL3 and FL4. Channels FL1 and FL3 
were set to detect Syto9 and PI, respectively. When being 
analysed, each sample either had 10,000 events recorded 
requiring approximately 5 s for controls, or was left for up 
to 5 min permitting the maximum number of events to be 
gathered. All assays were conducted in triplicate on three 
separate occasions.

Examination of the effect of colistin treatment 
on bacterial cells and populations by scanning 
electron microscopy

Populations of 1 × 107 cfu  mL−1 E. coli and P. aeruginosa 
were incubated with sub-inhibitory (1/20 × MIC), inhibi-
tory-bactericidal (1 × MIC and 1 × MBC), and supra-bac-
tericidal (10 × MBC) levels of colistin (37 °C; 150 rpm) for 
various time periods (0, 1, 2, 4, 8, and 24 h), then prepared 
for and analysed by SEM (LEO S430, Carl Zeiss SMT Ltd., 
UK) using a protocol described previously (O’Driscoll et al. 
2013). A slightly higher bacterial cell density was needed in 
this assay compared to potassium loss and flow cytometry 
assays, as cells in untreated control populations of 1 × 106 
cfu  mL− 1 appear sparse when examined by SEM prior to 
24 h incubation (data not shown) and antibiotic-induced 
morphological changes are known to occur much earlier than 
24 h (sometimes within just 1 h of treatment; Cushnie et al. 
2016). The size of cells and cell aggregates was determined 
using LEO S430 software. After extensive examination at a 
range of magnifications (4000× to 400,000×), micrographs 
of those fields of view representing typical bacterial charac-
teristics were captured.

Results

Determination of MIC and MBC values for colistin

The MIC and MBC values determined for colistin against 
the test species of bacteria, at cell densities of 1 × 106 and 
1 × 107 cfu  mL−1, are shown in Table 1. These results cor-
respond well with previously published MICs and MBCs 
(Li et al. 2006; Cummins et al. 2009; Alhanout et al. 2010), 
and confirm the lack of activity of colistin against Gram-
positive bacteria.
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Quantification of intracellular potassium loss 
from populations of colistin‑treated bacteria

Low level potassium loss was detected in untreated con-
trol populations of 1 × 106 cfu  mL− 1 E. coli (1.3% at time 
zero, and 3.6% after 24 h) in this study (Fig. 1a), probably 
a consequence of shear forces encountered during sample 
centrifugation (Peterson et al. 2012) and low level osmotic 
lysis occurring in the hypotonic potassium-free environment 
(Cushnie et al. 2009). E. coli populations treated with inhib-
itory-bactericidal (0.28 mg  L−1; 1 × MIC and 1 × MBC) 
and supra-bactericidal (2.8 mg  l−1; 10 × MBC) levels of 
colistin, respectively, lost 5.7 and 5.9% of their total potas-
sium content within 1 h of exposure (Fig. 1a). Potassium loss 
readings taken at 24 h were not much higher, just 5.9% for 
1 × MIC (1 × MBC) treated cells and 11.6% for 10 × MBC 
treated cells.

A similar response was seen with P. aeruginosa (Fig. 1b). 
Low level potassium loss was detected in untreated con-
trol populations of 1 × 106 cfu  mL−1 P. aeruginosa (1.4% 
at time zero, and 3.7% after 24 h). Suspensions of P. aer-
uginosa treated with inhibitory-bactericidal (1.5 mg  L−1; 
1 × MIC and 1 × MBC) and supra-bactericidal (15 mg  L− 1; 
10 × MBC) levels of colistin, respectively, lost 3.8 and 4.0% 
of their total potassium pool within 1 h, these values remain-
ing unchanged or almost unchanged (3.8 and 4.1%, respec-
tively) when cells were examined at 24 h.

Analysis of colistin‑treated bacterial populations 
by flow cytometry

To further scrutinize the effects of colistin, we sampled 
and analysed by flow cytometry populations of 1 × 106 cfu 
 mL−1 bacteria exposed to the antibiotic for 24 h. For popu-
lations of E. coli treated with sub-inhibitory (1/20 × MIC) 
levels of colistin (Fig. 2b), there was only a slight difference 
compared to the untreated control (Fig. 2a). In samples of 
E. coli treated with inhibitory-bactericidal (1 × MIC and 
1 × MBC) and supra-bactericidal (10 × MBC) levels of 
colistin, by contrast, very few events were detected in the 

gated population (Fig. 2c, d). The discriminator was set at a 
threshold of 0.2 µm such that only cells or structures larger 
than this and within the gate would be detected.

The P. aeruginosa control culture (Fig. 3a) appeared more 
heterogeneous than the E. coli control culture (Fig. 2a), with 
two sub-groups apparent within the gated population. These 
two sub-groups probably reflect diversity of individual 

Table 1  Minimum inhibitory concentration (MIC) and minimum bac-
tericidal concentration (MBC) values of colistin against different cell 
densities of the test bacteria

Strain MIC (mg  L−1) MBC (mg  L−1)

1 × 106 
cfu 
 mL−1

1 × 107 
cfu 
 mL−1

1 × 106 
cfu 
 mL−1

1 × 107 
cfu 
 mL−1

S. aureus NCTC 6571 100 156 100 156
E. coli NCTC 4174 0.28 9.8 0.28 9.8
P. aeruginosa NCTC 6750 1.5 4.9 1.5 4.9

Fig. 1  Potassium loss from populations of a 1 × 106 cfu  mL−1 E. coli 
and b 1 × 106 cfu  mL−1 P. aeruginosa incubated with and without 
colistin for 24 h (error bars represent standard error of the mean for 
three assays). The total intracellular potassium content, determined by 
sonication, was 3.2 mg/L for both E. coli and P. aeruginosa. Triangle: 
untreated control; unfilled circle: 1 × MIC (equal to 1 × MBC) colis-
tin; unfilled square: 10 × MBC colistin
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bacterial cell size in a normal growing population, and sim-
ply indicate that overnight P. aeruginosa cultures contain 
cells which are in two size groupings. Having established 
that two groups exist, examination of bacterial popula-
tions following treatment with sub-inhibitory (1/20 × MIC) 
colistin revealed a decrease in number of the smaller-sized 
cells and a slight increase in number of the larger-sized 
cells (Fig. 3b). In the P. aeruginosa cultures treated with 
inhibitory-bactericidal (1 × MIC and 1 × MBC) and supra-
bactericidal (10 × MBC) levels of colistin, very few events 
were detected in the gated population (Fig. 3c, d).

Examination of the effect of colistin treatment 
on bacterial cells and populations by SEM

Treatment of populations of 1 × 107 cfu  mL−1 E. coli with 
sub-inhibitory (0.49 mg  L−1; 1/20 × MIC), inhibitory-bac-
tericidal (9.8 mg  L−1; 1 × MIC and 1 × MBC), and supra-
bactericidal (98 mg  l−1; 10 × MBC) levels of colistin trig-
gered an immediate response. Within 60 min, profound 
cell aggregation was observed, these aggregates being 
spherical in shape and measuring 5–15 µm in diameter 
depending on the antibiotic concentration (Fig. 4). Aggre-
gates remained visible in the colistin-treated populations 
at all concentrations [1/20 × MIC, 1 × MIC (1 × MBC), 
and 20 × MBC] and time-points (1, 2, 4, 8, and 24 h; 
data shown for 60 minutes only), although in populations 
treated with sub-inhibitory colistin (1/20  ×  MIC) the 

Fig. 2  Flow cytometric analysis of populations of 1 × 106 cfu  mL− 1 
E. coli incubated for 24  h. a Without colistin, b with 1/20  ×  MIC 
colistin, c with 1  ×  MIC (equal to 1  ×  MBC) colistin, and d with 

10 × MBC colistin. FL1 LOG channel measured Syto9 fluorescence 
and FL3 LOG channel measured propidium iodide (PI) fluorescence
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Fig. 3  Flow cytometric analysis 
of populations of 1 × 106 cfu 
 mL−1 P. aeruginosa incubated 
for 24 h. a Without colistin, b 
with 1/20 × MIC colistin, c with 
1 × MIC (equal to 1 × MBC) 
colistin, and d with 10 × MBC 
colistin. FL1 LOG channel 
measured Syto9 fluorescence 
and FL3 LOG channel meas-
ured propidium iodide (PI) 
fluorescence

Fig. 4  Scanning electron micrographs of populations of 1 × 107 cfu  mL− 1 E. coli incubated for 60 min. a Without colistin, b with 1/20 × MIC 
colistin, c with 1 × MIC (equal to 1 × MBC) colistin, and d with 10 × MBC colistin
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aggregates displayed more wide-ranging sizes (Fig. S1; 
Supplementary material). No change in cell length was 
detected at any colistin concentration or any time-point 
with E. coli. No blebbing of the bacterial cell surface was 
detected at any concentration or time-point with E. coli 
either.

For populations of 1 × 107 cfu  mL−1 P. aeruginosa 
treated with sub-inhibitory (0.25 mg  l−1; 1/20 × MIC), 
inhibitory-bactericidal (4.9  mg  L−1; 1  ×  MIC and 
1 × MBC), and supra-bactericidal (49 mg  l−1; 10 × MBC) 
levels of colistin, the morphological changes observed 
were both concentration- and time-dependent. After 
60 min, a decrease in the length of individual cells was 
detected in populations treated with sub-inhibitory 
(1/20 × MIC) and inhibitory-bactericidal (1 × MIC and 
1 × MBC) levels of colistin (Fig. 5b and c). Compared to 
control cells which were 2.0–2.5 µm in length, cells treated 
with sub-inhibitory levels of colistin were just 0.9–1.8 µm 
in length, and cells treated with inhibitory-bactericidal 
levels of colistin were only ~ 0.8 µm in length. Aggrega-
tion was only detected at the highest colistin concentration 
(10 × MBC) at 60 min (Fig. 5d), but became apparent for 
the other two concentrations [1/20 × MIC and 1 × MIC 
(1 × MBC)] by 2 h (data not shown). This aggregation 
initially manifested as layers of bacteria interlinked by 
strands of extracellular material, with spherical clumps 
not detectable until 8 h and remaining extremely sparse 

until 24 h (Fig. S2c and S2d; Supplementary material). 
Blebbing of the bacterial cell surface was detected from 
8 h onwards (data not shown).

Discussion

The polymyxin antibiotic colistin has recently been resur-
rected for the treatment of infections with extensively drug-
resistant Gram-negative bacteria. We investigated the impact 
of a range of colistin concentrations upon E. coli and P. 
aeruginosa populations to obtain a clearer understanding 
of how this antibiotic functions. To determine if colistin 
compromises cytoplasmic membrane integrity as part of 
its antibacterial mechanism of action, we examined popula-
tions of E. coli and P. aeruginosa for loss of the intracellular 
solute potassium. The data obtained show that, even after 
24 h treatment with supra-bactericidal (10 × MBC) levels 
of colistin, E. coli populations lost less than 12% of their 
total potassium pool and P. aeruginosa populations lost less 
than 5%. Genuinely cytoplasmic membrane-active agents 
such as protegrin and cathelicidin have, by comparison, been 
shown to induce 90–100% potassium loss in similar studies 
with E. coli in less than 1 h (Orlov et al. 2002; Bolintineanu 
et al. 2010). Overall, the fact that colistin-treated popula-
tions retain more than 85% of their total potassium pool 
confirms the cytoplasmic membrane remains intact, if not 

Fig. 5  Scanning electron micrographs of populations of 1 × 107 cfu  mL− 1 P. aeruginosa incubated for 60  min. a Without colistin, b with 
1/20 × MIC colistin, c with 1 × MIC (equal to 1 × MBC) colistin, and d with 10 × MBC colistin
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functional, in most of the treated cells. Results presented 
here correlate well with two previous studies, the first by 
Zhang et al. (2000) which showed that colistin exerts a lethal 
effect on P. aeruginosa without affecting cytoplasmic mem-
brane proton motive force, and the second by Alhanout and 
colleagues (2010), which showed that 4 h treatment with 
4 × MIC colistin led to E. coli and P. aeruginosa popula-
tions losing just 4–5% of their total intracellular ATP. Taken 
together, these findings argue against the longstanding and 
widely cited hypothesis that colistin kills bacterial cells by 
puncturing the cytoplasmic membrane.

In the next stage of the study, antibiotic-treated popula-
tions of bacteria were examined by flow cytometry, using 
Syto9 and PI fluorescent dyes to identify intact cells of via-
ble and non-viable bacteria, respectively. For E. coli, treat-
ment with inhibitory-bactericidal (1 × MIC and 1 × MBC) 
or supra-bactericidal (10 × MBC) levels of colistin resulted 
in a near-complete loss of signal from the gated population 
(Fig. 2c, d). In the absence of large-scale potassium loss 
(Fig. 1a), this result cannot be due to colistin-induced cell 
lysis. Rather, colistin must be altering the size or arrange-
ment of cells in such a way that they are not being detected. 
With P. aeruginosa, flow cytometry revealed the presence 
of two slightly differently sized sub-populations in overnight 
cultures (Fig. 3a), the number of smaller-sized cells decreas-
ing following treatment with sub-inhibitory (1/20 × MIC) 
levels of colistin (Fig. 3b). This pattern of results might sug-
gest that a cell cycle event subsequent to septation and cell 
separation renders bacteria susceptible to colistin-induced 
cell lysis. Perhaps more likely though, given the accompany-
ing increase in number of larger-sized cells (Fig. 3b), colistin 
is inhibiting cell separation or causing cell aggregation. As 
with E. coli, treatment of P. aeruginosa with inhibitory-
bactericidal (1 × MIC and 1 × MBC) or supra-bactericidal 
(10 × MBC) levels of colistin resulted in a near-complete 
loss of signal (Fig. 3c, d), suggesting colistin modifies cell 
size or arrangement in such a way that they are no longer 
detected.

SEM studies were performed next to visualize directly 
the impact of colistin upon whole populations of E. coli 
and P. aeruginosa. With E. coli, the observation of colistin-
induced aggregation of bacterial cells (Fig. 4 and Fig. S1) 
may explain the small number of events detected during 
flow cytometry (Fig. 2c, d) as aggregation would greatly 
reduce the number of individual cells present. Colistin-
induced aggregation of bacteria has not, to our knowledge, 
been reported previously, but may be more readily detect-
able by SEM than TEM or atomic force microscopy. Aggre-
gation similar to this has been reported in bacteria treated 
with other cationic antimicrobial peptides (O’Driscoll et al. 
2013), but the reason for this population-level change is not 
clear. It may be a direct effect of the antibiotic, for example 
colistin molecules inserting into the outer membrane of cells 

and promoting intercellular attachment in a manner compa-
rable to that observed with liposomes (Wallace et al. 2012). 
Alternatively, it may be a coordinated response on the part 
of the bacterial population to minimize antibiotic exposure. 
Young suggests the ability of bacteria to form aggregates is 
an evolutionary response to predation by protozoa (Young 
2007) and, as observed with bacterial biofilms (Costerton 
et al. 1999), aggregation offers protection from antibiotic 
treatment also. Unlike previous studies with colistin-treated 
E. coli (Koike et al. 1969), we did not observe any blebbing 
of the bacterial outer membrane, but this is more readily 
detectable by TEM than SEM (Cushnie et al. 2016).

With P. aeruginosa, sub-inhibitory (1/20 × MIC) and 
inhibitory-bactericidal (1 × MIC and 1 × MBC) levels of 
the antibiotic both caused a decrease in bacterial cell length 
(Fig. 5 and Fig. S2) within 1 h. These results correlate well 
with an atomic force microscopy study by Mortensen et al., 
which found that sub-MBC colistin-treated cells of P. aer-
uginosa also exhibited reduced cell length (Mortensen et al. 
2009). These observations suggest that colistin treatment, 
either directly or indirectly, leads to inhibition of lateral cell 
wall formation. Possible targets include the cytoskeletal Mre 
system (proteins MreB, MreC and MreD) or enzyme PBP2, 
both of which are essential for lateral peptidoglycan synthe-
sis and elongation of the bacterial cell (Osborn and Rothfield 
2007; Varma and Young 2009). Both the Mre system and 
PBP2 are anchored to the cytoplasmic membrane (Adachi 
et al. 1987; Osborn and Rothfield 2007), and would be vul-
nerable to any colistin-induced conformational changes 
taking place at this locale. Colistin-induced aggregation of 
P. aeruginosa cells, whilst slightly different in appearance 
to that visualised with E. coli, was observed (Fig. 5 and 
Fig. S2) and may again account for the small number of 
events detected during flow cytometry (Fig. 3c, d). Bleb-
bing of colistin-treated P. aeruginosa was also detected in 
this study, an observation reported previously by Koike 
et al. (1969) and Alhanout et al. (2010). This ultrastructural 
change, because it is induced by multiple membrane-active 
agents including chlorhexidine and EDTA, is considered an 
indicator of possible outer membrane disruption (Cushnie 
et al. 2016).

When the SEM results for E. coli and P. aeruginosa are 
viewed conjointly, it is clear there are both similarities and 
differences in how colistin affects these bacteria. Filamen-
tation was conspicuous by its absence in both species. Fil-
amentation is a hallmark of DNA damage, induced via the 
SOS response by a diverse range of physical and chemical 
agents including UV, cosmomycin D, metronidazole, mito-
mycin C, the fluoroquinolones, novobiocin, and zidovu-
dine (Cushnie et al. 2016). The failure of colistin to induce 
filamentation at any concentration or time-point in either 
species argues strongly against the hypothesis that colistin 
kills bacterial cells through DNA damage or disruption 
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of DNA synthesis. Colistin-induced cell aggregation was, 
conversely, detected in both species. Whilst it is not clear 
how, or even if, this aggregation relates to colistin mecha-
nism of action, it could have important implications for 
diagnostic laboratories. Colistin-induced clumping of 
cells would reduce colony forming unit (cfu) numbers of 
bacteria in MBC and time-kill assays, resulting in artifi-
cially low MBC values for the antibiotic. Colistin-induced 
cell aggregation could also complicate how the course of 
infections is monitored because, in patients receiving this 
antibiotic, false-negative blood and urine cultures would 
be more likely to occur. Moving on to differences in how 
colistin affects the bacteria, the most noticeable of these 
was the reduction in cell size observed with P. aeruginosa 
but not E. coli. This might be due to slight variations in 
the cell envelope composition or PBP2/Mre protein con-
formation of the two species. Ultimately, this and other 
observed interspecies variations probably reflect indirect 
or peripheral aspects of colistin’s mechanism of action 
as both bacterial species are susceptible to the antibiotic.

In conclusion, our study has shown that colistin induces 
minimal potassium loss and no filamentation in popula-
tions of E. coli or P. aeruginosa, findings which indicate 
the antibiotic does not exert its antibacterial effect by per-
forating the cytoplasmic membrane or disrupting DNA 
synthesis. Future studies should therefore focus on explor-
ing the three remaining hypotheses, namely that colistin 
kills bacterial cells by (1) inducing phospholipid exchange 
between the outer and cytoplasmic membranes, (2) inhib-
iting respiratory enzymes, and/or (iii) inducing reactive 
oxygen species formation. Colistin-induced aggregation 
of bacterial cells hindered our attempt to study this anti-
biotic’s effects by flow cytometry, but represents an inter-
esting observation in itself, one with implications for the 
interpretation of MBC, time-kill, and other microbiology 
assay results.
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