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Abstract—Random Key (RK) is an alternative representation
for permutation problems that enables application of techniques
generally used for continuous optimisation. Although the benefit
of RKs to permutation optimisation has been shown, its use
within Estimation of Distribution Algorithms (EDAs) has been
a challenge. Recent research proposing a RK-based EDA (RK-
EDA) has shown that RKs can produce competitive results
with state of the art algorithms. Following promising results
on the Permutation Flowshop Scheduling Problem, this paper
presents an analysis of RK-EDA for optimising the total flow time.
Experiments show that RK-EDA outperforms other permutation-
based EDAs on instances of large dimensions. The difference in
performance between RK-EDA and the state of the art algorithms
also decreases when the problem difficulty increases.

I. INTRODUCTION

Many real-world scheduling problems can be naturally
represented as permutations and so there has been a lot of
research on solving permutation problems in the evolutionary
computation community. Some of the most widely studied per-
mutation problems are Quadratic Assignment Problem (QAP),
Linear Ordering Problem (LOP), Travelling Salesman Prob-
lems (TSP) and Permutation Flowshop Scheduling Problem
(PFSP). In recent years, there has particularly been a lot of
research interest in solving the PFSP, using various objective
functions [1], [2], [3], [4], [5].

Modelling the space of permutations is generally considered
a difficult task and has been a challenging area for Estimation
of Distribution Algorithms (EDAs) whose results did not
match those of state of the art methods [6]. This was attributed
to the fact that a large proportions of EDAs were based on con-
cepts borrowed from the integer and continuous optimisation
domains rather than using characteristics of the permutation
spaces. The need to respect variable mutual exclusivity is a
key challenge to the modelling of permutations [7], [8], which
often results in the use of additional procedures or alterna-
tive representations. Random Keys (RKs) have been used in
several continuous-based EDAs [6]. The RK representation
uses continuous values that can be ranked to order items
into a permutation, without expensive translation mechanism.
However, EDAs using RKs generally exhibit poor results [6].

A limitation of the RK representation is that several distinct
RKs may produce similar permutations, introducing redundan-
cies and plateaux in the search space [9], [10]. Variability

in the values that capture the same priority across solutions
of a population has also been mentioned as an issue of RKs
that limits the information captured by probabilistic models
and affect the quality of their results [11]. Models that are
more specific to permutations such as histogram models [12],
[13], permutation distribution models [3], [14], [7] and fac-
toradics [15] showed better performances. RKs however have
an advantage over most other permutation representations as
they always produce permutation feasible solutions [16]. The
problem with most RK based EDAs is that the representation
has not been sufficiently adapted for the permutation domain.

Some examples of RK based EDAs are REDA [17],
EGNAee & UMDAc [18]. REDA uses the triangulation of
Bayesian network approach and focuses on model efficiency
by modelling subset nodes of a problem. EGNAee builds a
Gaussian network where the structure of a problem is learnt
using edge exclusion tests [18]. The UMDAc which is also a
structure identification algorithm based on Gaussian network
performs hypothesis tests to identify the density of its model’s
components. In addition, IDEA-ICE [9] can also be classified
as a RK based EDA, although it uses a crossover operator to
preserve building blocks in addition to its probabilistic model.
To increase the chances of properly combining the building
blocks, RKs associated with the building blocks are rescaled.
The IDEA-ICE showed better performance compared to the
RK based EDAs.

In [19], a novel Random Key based Estimation of Dis-
tribution Algorithm (RK-EDA) was proposed. RK-EDA is
a light weight univariate EDA whose probabilistic model,
similar to UMDAc, is based on mean values of genes in more
promising solutions of a population. It exploits already found
good genes by sampling a Gaussian distribution based on
mean and variance values. Unlike UMDAc, RK-EDA imposes
a user defined variance parameter rather than a population
generated one. Furthermore, RK-EDA uses a cooling scheme
to automatically control the defined variance value which
creates an exploration-exploitation balance in the algorithm.
To limit the effect of redundancies introduced by the RK repre-
sentation, RK-EDA normalises its RKs. These changes made a
significant difference making RK-EDA more competitive than
other EDAs that use the RK representation on TSP, LOP and
in particular on PFSP using makespan. The research in [19]
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also suggested that RK-EDA is competitive with other leading
EDAs such as Node Histogram Based Sampling Algorithm
(NHBSA) [12], Edge Histogram Based Sampling Algorithm
(EHBSA) [13] and Generalised Mallows model based EDA
(GM-EDA) [3].

RK-EDA was shown to be particularly promising on PFSP
in [19] suggesting that RK-EDA may scale well to larger
instances of the problem. In this paper, we apply RK-EDA
to a wider range of the well-known Taillard’s PFSP instances
[20]. Results presented are based on Total Flow Time (TFT)
optimisation criterion. This paper not only compares RK-EDA
with leading EDAs but also other state-of-the-art algorithms.
We are able to show the scalability of RK-EDA on the largest
PFSP instances.

The rest of this paper is structured as follows. Section
II formally defines the PFSP and also presents a review
of some of the most competitive algorithms at solving the
PFSP. Section III describes RK-EDA. Section IV presents the
experimental settings while Section V presents some results
and evaluation. Conclusions are presented in Section VI.

II. PERMUTATION FLOWSHOP SCHEDULING PROBLEM

The PFSP consists of a set of jobs indexed 1, ..., n to be
scheduled on a set of m machines. Each job has m operations
to be performed by all m machines where the jth operation
of each job must be performed by machine j. A job can
have its jth operation performed once its j − 1th operation
has been completed by machine j − 1 and machine j is
available. The objective of this problem is to find a sequence
of jobs that minimises the sum of times that each job remains
on the flowshop known as the TFT. This objective function
was chosen in order to compare results with those of most
recent algorithms. Another common objective is to minimise
makespan and we refer the reader to [19] for more details and
additional results of RK-EDA. The TFT of an ordering of jobs
π is formally defined as follows.

F (π) =
n∑
i=0

Cπ(i),m (1)

In eq. (1), Cπ(i),m denotes the completion time of a job ranked
π(i) on machine m and is calculated as follows.

Cπ(i),j =


Pπ(i),j i = j = 1

Pπ(i),j + Cπ(i−1),j i > 1, j = 1
Pπ(i),j + Cπ(i),j−1 i = 1, j > 1

Pπ(i),j +Max(Cπ(i−1),j , Cπ(i),j−1) i > 1, j > 1
(2)

In eq. (2), we denote the processing time required to perform
a job ranked π(i) on machine j by Pπ(i),j .

The review in [6] presents a range of EDAs applied to
the PFSP as well as other common permutation problems.
The most competitive results were obtained by the histogram
based sampling algorithms, NHBSA [12] and EHBSA [13].
NHBSA models node frequencies at each position while
EHBSA models the relative relation between two nodes in

solutions of a population [13]. These algorithms directly en-
codes permutations thereby needing no additional translation
procedure. They also do not require repair procedures.

Another competitive EDA proposed for solving the PFSP
is based on the Generalised Mallows model called GM-EDA
[3]. GM-EDA is the first main attempt at solving permutation
problems based on parametric models. It uses a distance-
based exponential probabilistic model over the space of per-
mutations. GM-EDA was able to outperform the histogram
based sampling algorithms on many large problem instances.
A hybrid of GM-EDA with Variable Neighbourhood Search
(VNS) called HGM-EDA , which enhances the performance
of GM-EDA, was also proposed in [3]. Both GM-EDA and
HGM-EDA use a restart mechanism where the population is
regenerated once all solutions in the population become the
same [3].

Apart from GM-EDA and HGM-EDA, the Asynchronous
Genetic local search Algorithm (AGA) in [1] and Differential
Evolution Algorithm for Permutation (DEP) [5] also make
use of restart mechanisms and local search (LS) methods to
improve their search. These are some of the most competitive
meta-heuristics applied to the PFSP. In addition to these, some
LS approaches have presented even more competitive results
on certain instances of the Taillard’s problem set. They are the
VNS4 [21], Iterated Greedy Algorithm (IGA) [2] and Iterated
Local Search (ILS) [2].

III. RK-EDA

In this section, we present the algorithmic details of RK-
EDA.

Algorithm 1 RK-EDA
1: Initialise σ, ts and ps
2: Generate initial population P of size ps
3: for g = 1 to MaxGen do
4: Evaluate and rescale individuals in P
5: Select best ts < ps solutions to form S
6: Calculate µ = {µ1, µ2, · · · , µn}
7: c = 1− g

MaxGen
8: σg = σ ∗ c
9: M = N(µ, σg)

10: Pnew = ∅
11: repeat
12: Sample M to generate offspring off
13: Add off to Pnew
14: until |Pnew| = ps
15: P = Pnew
16: end for

As shown in Alg. 1, RK-EDA requires the initialisation of
three parameters which are initial variance σ, truncation size ts
and population size ps. Since the stopping criteria is based on
the number of fitness evaluations allowed (FEs), the maximum
number of generations MaxGen is estimated by dividing FEs
by ps.



A population P of RKs is randomly generated, evaluated
and rescaled. For the rescaling procedure to be carried out, the
RKs are converted to ranks as illustrated in Figure 1 for the
RKs [0.12, 0.57, 0.23, 0.25, 0.99]. The ranks are then rescaled
to values between int the [0,1] interval. This is done by setting
rescaledRKi =

ranki−1
n−1 where rescaledRKi and ranki are

respectively the rescaled RK and rank of gene i, and n is the
problem size. Based on this approach, a distinct set of RKs
(for example [0.01, 0.06, 0.03, 0.04, 0.2]) representing the
same permutation will have the same rescaled RK value. This
approach minimises redundancy and improves the information
captured by the probabilistic model.

Fig. 1. RK rescaling

Once rescaled and evaluated, the best ts solutions in P are
selected to generate a population of promising solutions S.
The mean of all RKs at each index {1, · · · , n} is computed
from S. µ is the vector of all indices’ mean µi.

Furthermore, the cooling rate c is calculated with respect to
the algorithm’s current generation such that its value is higher
at the start of the search and low at the end. The rate c is used
to generate generational variance σg . Multiplying c with σ to
form σg makes it possible to achieve higher exploration at the
start of the run and more exploitation as g increases.

The probabilistic model M saves µ, which comprises of n
values as well as σg , which is a single value. M is therefore
of size n+1 and is defined as a normal distribution N(µ, σg).
M is updated at the end of each generation g.

An offspring solution off is generated by sampling M . Each
gene offi is generated by sampling N(µi, σg). off is repeatedly
added to the offspring population Pnew until its size equals
ps. At the end of each generation, Pnew completely replaces
the parent population P . Note that although offi obtained by
sampling M may be outside the [0, 1] interval, it does not
represent an issue as it does not prevent the RKs to be ranked
and rescaled.

IV. EXPERIMENTAL SETTINGS

In this section, we present the test sets and parameter
settings for RK-EDA.

A. Problem sets

To be able to assess the performance of RK-EDA on dif-
ference sizes of the PFSP, we apply RK-EDA to the Taillard’s
benchmark problems [20].

The following problem sets were considered.
1) Size 20: 20× 5, 20× 10, 20× 20,
2) Size 50: 50× 5, 50× 10, 50× 20,
3) Size 100: 100× 5, 100× 10, 100× 20,
4) Size 200: 200× 10, 200× 20 and
5) Size 500: 500× 20

For the main experimental analysis, RK-EDA is compared
with other algorithms using the first two instances of each
problem set (sizes 20 - 200). In order to gain insight on the
performance of RK-EDA on large dimensions, additional runs
were carried out on the 10 largest instances, that is the 500×
20 problems to understand how RK-EDA scales to difficult
problems.

RK-EDA is run 20 times for each instance and perfor-
mance measured using Average Relative Percentage Deviation
(ARPD) from best and is calculated as shown in Eq. 3.

ARPD = (
20∑
i=0

(Algorithmi −Best)× 100

Best
)÷ 20 (3)

As discussed in Section II, RK-EDA is compared to leading
EDAs, which are GM-EDA, NHBSA and EHBSA based on
the results gathered in [3]. Performance is also compared
with other leading algorithms such as ILS, IGA, AGA, VNS4

and HGM-EDA based on the results presented in [5]. For all
comparisons, statistical significance (95% confidence interval)
is measured by means of unpaired t-test.

B. Parameter Setting

TABLE I
PARAMETER VALUES FOR RK-EDA

Parameters Values
Population Size (ps) 10n
Truncation Size (ts) 0.1*ps
Variance (σ) 0.15
Maximum Number of Generations (MaxGen) FEs/ps
Number of Runs 20

TABLE II
STOPPING CRITERIA: NUMBER OF FITNESS EVALUATIONS

Problem Sizes Fitness Evaluations
20× 05 182,224,100
20× 10 224,784,800
20× 20 256,896,400
50× 05 220,712,150
50× 10 256,208,100
50× 20 275,954,150
100× 5 235,879,800
100× 10 266,211,000
100× 20 283,040,000
200× 10 272,515,500
200× 20 287,728,850



To be able to compare with the leading EDAs, we use
similar parameters as [3] except that we do not consider
elitism. This is because preliminary experiments show that
elitism does not improve the performance of RK-EDA. The
parameter values are presented in Table I. These values include
a population size of 10n and 10% of it as truncation size. We
set the initial variance to 0.15 across all problems.

Table II shows the number of fitness evaluations used by
RK-EDA for problem instances of dimensions 20 to 200. This
budget matches the one used by the algorithms included in the
comparison. Note that only 20% of this budget was used for
instances of dimension 500 (52,063,350 evaluations), used to
gain insight on the scalability of RK-EDA.

V. RESULTS AND DISCUSSION

In this section, we present the results obtained by RK-
EDA on the selected PFSP problem instances. Results are first
compared with those of other permutation-based EDAs before
being compared to those of the leading algorithms on PFSP.
Finally, we investigate whether mechanisms inherent to RK-
EDA such as its cooling scheme are able to maintain diversity
throughout the search without requiring the use of LS.

A. Results

The ARPDs of RK-EDA on the 22 selected problem in-
stances are presented in Table III, along with the ARPD of all
other algorithms considered in the comparison. The TFTs for
the best known solutions used to compute the ARPD values
are also given for reference.

Table IV shows results obtained on RK-EDA on the 10
instances of size 500 using a fifth of the budget allocated
to other algorithms. In Tables III and IV, ARPDs that are
significantly worse than that of RK-EDA are presented in
italics while those that are significantly better are presented
in bold.

B. Comparing RK-EDA with stand-alone EDAs

The first objective of this study is to assess the performance
of RK-EDA with respect to other EDAs. For this purpose, we
focus on the three standalone EDAs that are NHBSA, EHBSA
and GM-EDA and do not consider hybrid methods, such as
HGM-EDA.

As shown in Table III, the histogram model based EDAs
(NHBSA and EHBSA) are able to reach the best known total
flow time on the smaller problems. They also perform better
than the GM-EDA or RK-EDA on these problems. However,
as the dimension of the problems increases, they become less
competitive. GM-EDA and RK-EDA present better results on
the larger problems.

Although RK-EDA is significantly worse than the NHBSA
on the first eleven problems, it is significantly better on the
other half which are the larger ones. A similar trait is exhibited
on the EHBSA where RK-EDA is significantly better on the
largest 8 of the 22 instances considered in Table III. However,
there is no clear winning algorithm between GM-EDA and
RK-EDA on the smaller problems. This is because RK-EDA

is sometimes significantly better than GM-EDA and vice versa
while other times their results are not statistically different.
RK-EDA is however steadily significantly better than the GM-
EDA on problems of size 200. In general, RK-EDA presents
the best results of the four EDAs on some of size 100 problems
and all of size 200 problems.

Futhermore, on the large instances (of size 500), RK-EDA
significantly outperforms all of the EDAs, despite using much
less evaluations. On those instances, the ARPD of RK-EDA
is between 7 and 26 times lower than NHBSA, between 9
and 30 times lower than EHBSA and between 9 and 32
times lower than GM-EDA. Although these results are only
preliminary, RK-EDA appears as the most suitable EDA for
large PFSP problems. In [3], the authors suggest that GM-EDA
may suffer from slow convergence on large dimensions, an
issue avoided by RK-EDA and its cooling scheme as discussed
in Section V-D.

C. Comparing RK-EDA with Leading Algorithms

The other algorithms included in the study are HGM-EDA,
AGA, VNS4, ILS, IGA and DEP. Among those, DEP exhibits
the best ARPD on problems of dimensions 200 or lower. On
problems of similar sizes, HGM-EDA shows good results and
shows that when combined with LS procedures, EDAs can be
competitive with other types of algorithms on PFSP. RK-EDA
is able to significantly outperform the VNS4 on one of the size
100 instances and all of the size 200 instances considered.
Although RK-EDA is significantly worse than HGM-EDA,
AGA, ILS, IGA and DEP on problems of size 200 and lower,
its performance is more comparable as problem size becomes
bigger.

Figure 2 shows the ratio between the ARPD of RK-EDA
and the best algorithm on each instance. It also shows the
ratio between the ARPD of the best EDA on each instance
and the best algorithm on each instance. Despite variations
and being significantly outperformed by the best algorithms,
RK-EDA’s performance tends to get closer to those of the
best methods as the dimension increases. A similar trend is
observed on the performance gap between the best EDAs and
the best algorithms.

In order to strengthen the idea that RK-EDA performs
particularly well on large problems, it was run for a small
number of evaluations on the dimension 500 instances. The
results gathered in Table IV shows that on the largest PFSP
instances, RK-EDA significantly outperforms HGM-EDA on
all instances despite not using any LS procedure. This demon-
strates the ability of the proposed RK model to efficiently
guide the search. It also significantly outperforms the DEP
and VNS4 on all instances of size 500. Although it does
significantly worse than the AGA on the second instance of
the size 500 problem, it is significantly better on four others
and not significantly different on the rest.

Figure 3 highlights how RK-EDA performs with respect to
the best algorithms on the large instances (ILS, IGA and DEP).
It’s better performance compared to the DEP corresponds to
the relative difficulties exhibited by DEP on larger problems



Fig. 2. Ratio between ARPD of RK-EDA and best algorithm; and best EDA and best algorithm

TABLE III
ARPD RESULTS FOR FIRST TWO INSTANCES OF TAILLARD’S BENCHMARK SETS 20× 5 - 200× 20

Problems Best Known TFT RK-EDA GM-EDA EHBSA NHBSA HGM-EDA AGA VNS4 ILS IGA DEP
tai20-5-0 14033 0.37 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tai20-5-1 15151 0.48 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tai20-10-0 20911 0.44 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tai20-10-1 22440 0.98 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tai20-20-0 33623 0.22 0.65 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tai20-20-1 31587 0.28 0.28 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tai50-5-0 64803 1.30 0.79 0.03 0.79 0.12 0.05 0.78 0.05 0.07 0.05
tai50-5-1 68062 2.06 0.94 0.03 0.91 0.12 0.06 0.88 0.13 0.14 0.08
tai50-10-0 87204 2.33 2.11 0.72 1.86 0.39 0.33 1.12 0.44 0.40 0.18
tai50-10-1 82820 2.46 2.45 1.03 1.97 0.60 0.22 1.09 0.59 0.39 0.30
tai50-20-0 125831 1.81 1.76 1.20 1.75 0.39 0.10 0.65 0.33 0.41 0.14
tai50-20-1 119247 1.11 1.59 0.98 1.75 0.23 0.05 0.52 0.14 0.15 0.07
tai100-5-0 253605 1.23 0.87 1.08 1.75 0.23 0.29 1.25 0.48 0.46 0.05
tai100-5-1 242579 1.51 1.08 0.88 1.83 0.35 0.30 1.80 0.80 0.82 0.05
tai100-10-0 299101 1.70 1.80 2.80 2.60 0.44 0.43 1.63 0.42 0.56 0.16
tai100-10-1 274566 2.25 2.08 3.17 3.03 0.69 0.60 1.58 0.54 0.85 0.28
tai100-20-0 366438 1.96 2.26 4.55 3.12 0.67 0.80 1.70 0.79 0.71 0.37
tai100-20-1 373138 1.82 2.04 4.13 3.17 0.58 0.55 1.43 0.54 0.73 0.25
tai200-10-0 1047541 1.18 1.20 5.03 4.06 0.19 0.49 1.26 0.29 0.15 0.22
tai200-10-1 1035783 1.25 1.49 5.89 4.65 0.32 0.94 1.54 0.71 0.65 0.15
tai200-20-0 1225282 1.07 1.72 6.26 5.24 0.39 0.76 1.48 0.30 0.40 0.20
tai200-20-1 1239246 1.32 1.66 6.98 5.59 0.54 1.07 1.67 0.64 0.74 0.21



TABLE IV
ARPD RESULTS FOR TAILLARD’S BENCHMARK SET 500× 20

Instances Best Known TFT RK-EDA GM-EDA EHBSA NHBSA HGM-EDA AGA VNS4 ILS IGA DEP
tai500 20 0 6687476 0.29 9.24 8.87 7.60 2.34 0.42 0.66 0.13 0.22 1.32
tai500 20 1 6809182 0.68 8.91 8.54 7.20 2.25 0.55 0.69 0.24 0.36 0.96
tai500 20 2 6734895 0.47 8.66 8.88 7.46 2.23 0.42 0.59 0.14 0.13 1.25
tai500 20 3 6767341 0.63 9.07 8.55 7.31 2.18 0.56 0.74 0.16 0.19 1.13
tai500 20 4 6720679 0.98 9.28 8.92 7.54 2.45 0.91 0.93 0.15 0.17 1.26
tai500 20 5 6723390 0.60 9.04 9.44 7.78 2.56 0.60 0.84 0.14 0.18 0.73
tai500 20 6 6681650 0.52 9.59 9.20 7.68 2.46 0.68 0.86 0.17 0.21 1.34
tai500 20 7 6769821 0.42 8.62 8.88 7.40 2.09 0.31 0.58 0.28 0.20 0.73
tai500 20 8 6701696 0.38 8.99 8.64 7.37 2.19 0.43 0.74 0.10 0.12 1.24
tai500 20 9 6755620 0.32 8.70 8.63 7.35 2.18 0.37 0.62 0.15 0.10 1.04

Fig. 3. ARPD of RK-EDA and best algorithms on dimension 500 instances

Fig. 4. Measure of KTD on tai20 5 0

due to slow convergence [5]. However, RK-EDA fails to match
the level of performance of ILS and IGA, both very robust on
those instances. ILS and IGA are the algorithms that scale the
best and thus present the best results on problems of size 500.

Fig. 5. Measure of KTD on tai100 10 0

It is important to note however that in this setting, RK-EDA
used 80% fewer fitness evaluations than its counterparts.



D. Diversity in RK-EDA

Since RK-EDA does not use restart mechanisms or LS
methods, it is important to ensure that the algorithm allows the
search to both explore and exploit the space. To understand
the behaviour of RK-EDA, the diversity in this population is
measured. For this purpose, the Kendal Tau Distance (KTD)
[22] is often used. It represents the number of adjacent trans-
position that needs to be performed to transform a permutation
into another one.

Pairwise KTD between two permutations π1 and π2 is
calculated following eq. 4. The elements i and j belong to
the set P of unordered pairs of elements obtained from π1
and π2. Kij(π1, π2) equals either 0 if i and j are in the same
order, or 1 if i and j are in a different order in π1 and π2

KTD(π1, π2) =
∑
{i,j}∈P

Kij(π1, π2) (4)

We calculate the KTD for all pairwise comparison from
all solution pairs in a population at each generation. These
are summed up and averaged by the number of pairwise
comparison. To normalise the average KTD, we divide it by
n(n − 1)/2 where n is the problem size. This way a value
of 1 indicates maximum disagreement while 0 indicates two
identical permutations.

Figures 4 and 5 shows how KTD varies as the search
progressed based on two runs of RK-EDA on tai20 5 0
and tai100 10 0 respectively. Both figures show a similar
pattern despite being based on different dimensions. RK-EDA
generally maintains a KTD above 0.4 for the first half of the
search and exhibit a strong decline in KTD in the last part of
the search to reach a state where all solutions are similar in the
population. The pattern displayed corresponds to the intended
behaviour of RK-EDA and of many algorithms in general by
allowing a long exploration phase before exploiting the most
promising areas of the search space.

The cooling scheme helps to maintain diversity in the
population until its closer to the end of the search. This
is a major difference between RK-EDA and many existing
approaches [3], [5] that need restart mechanism to handle
premature convergence.

VI. CONCLUSIONS

In this paper, we have presented an EDA that uses a light
weight univariate model based on RKs. The light weight
characteristics of the model is of particular importance when
considering that learning a probability structure is considered
the most expensive operation in EDAs [9]. One of the key
feature of RK-EDA is its cooling scheme which manages the
variance used in the model. Diversity computed experimentally
confirmed that RK-EDA avoid premature convergence and
exhibits both exploration and exploitation behaviours during
the search.

RK-EDA produces very competitive results. It outperforms
leading EDAs and several other methods on the largest PFSP
instances. RK-EDA also presents better results than GM-EDA,

an hybrid EDA, without using any LS procedure. Although
RK-EDA is not as efficient as the best algorithms for PFSP,
especially ILS and IGA, the difference between them tends to
decrease significantly as the problem dimension grows.

The present paper highlights the importance of the cooling
scheme and the variance parameter to manage diversity during
the search. It is thus important that a systematic comparison of
different cooling procedures and variance settings be carried
out. Future work should also investigate strategies to improve
RK-EDA’s results on small instances and propose hybrid
algorithms to enhance the results using LS.
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