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Abstract—Multi-Mode Resource Constrained Project Problem
(MRCPSP) is a multi-component problem which combines two
interacting sub-problems; activity scheduling and mode assign-
ment. Multi-component problems have been of research interest
to the evolutionary computation community as they are more
complex to solve.

Estimation of Distribution Algorithms (EDAs) generate solu-
tions by sampling a probabilistic model that captures key features
of good solutions. Often they can significantly improve search
efficiency and solution quality.

Previous research has shown that the mode assignment sub-
problem can be more effectively solved with an EDA. Also, a
competitive Random Key based EDA (RK-EDA) for permutation
problems has recently been proposed. In this paper, activity and
mode solutions are respectively generated using the RK-EDA and
an integer based EDA. This approach is competitive with leading
approaches of solving the MRCPSP.

I. INTRODUCTION

Multi-component problems such as the Multi-Mode Re-
source Constrained Project Problem (MRCPSP) have been of
research interest to the computational intelligence community
in recent years [1], [2]. This class of problems consists of
two or more sub-problems that cannot be solved in isolation.
MRCPSP consists of the Activity Scheduling and Mode As-
signment sub-problems. Activity Scheduling is a permutation
based problem that requires assigning start and finish times
to activities of a project such that precedence constraints are
respected. The Mode Assignment problem defines the mode
in which each activity of the project will be performed. A
solution to this problem is the selection of a mode of execution
for each activity such that resource constraints are respected.

Best practice regarding how to handle multi-component
problems remains a question in the community. The MRCPSP
has previously been solved with hybrid approaches. In [3],
different algorithms were used for each sub-problem of the
MRCPSP. The Genetic Algorithm (GA) was applied to the
activity scheduling sub-problem while EDA was applied to
the mode assignment sub-problem. Most existing approaches
however use the same algorithm for both components but
also apply some local search improvement methods. Existing
approaches of solving the MRCPSP include EDAs [4], [5],
Differential Evolution (DE) [6], GAs [7], [8], [9], [10], Particle
Swarm Optimisation (PSO) [11] and Scatter Search (SS) [12].
Although there is considerably more research on GAs applied

to MRCPSP than EDAs, the use of EDA for the Mode
Assignment problem has been reported to improve on the GA
[3]. Previous attempts to apply EDA to both sub-problems
have resulted in algorithms with relatively poor performance
[13]. This is due to the difficulty and complexity of using
EDAs on permutation problems. In this paper, we apply RK-
EDA [14], an EDA designed for permutation problems to
the activity scheduling sub problem. This is combined with
a previously published EDA approach to mode assignment [3]
yielding a pure EDA approach that performs competitively
across the board and is particularly strong on larger problems.

The rest of the paper is structured as follows. In Section
II, a background to this study is presented, the MRCPSP is
formulated and some existing approaches reviewed. Section
III describes the proposed algorithm. Section IV presents the
experimental configurations and parameter settings. Section
V describes results and analysis. Section VI presents the
conclusions and suggests directions for future research.

II. BACKGROUND

A. Problem Formulation

The MRCPSP is formally defined as follows. A project
consists of a set of activities labelled from 1,...,n where 1 and
n are dummy start and finish activities. Activity i, i ∈ [2, n]
has predecessor(s) Predi which suggests that i cannot be per-
formed until every activity h, h ∈ Predi has been completed.
Each activity i must be performed in a mode k ∈ [1,mi],
where mi is the number of possible modes of i. Given that
there are A renewable resources, each renewable resource r,
r ∈ [1, |A|] is available per period of time. The maximum
per period availability of r is denoted by αmaxr. There are
also B non-renewable resources that cannot be replenished
once used up. The overall availability of the non-renewable
resource l, l ∈ [1, |B|], denoted by βmaxl, must therefore
not be exceeded while executing the project. Each mode
of execution k of an activity i is composed of an integer
vector of renewable resources (αi,k,1, ..., αi,k,|A|), an integer
vector of non-renewable resources (βi,k,1, ..., βi,k,|B|) and the
associated duration/execution time ti,k.

The aim of the MRCPSP is to select exactly one mode of
execution for each activity subject to resource and precedence
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constraints. This is such that makespan is minimised. We
formulate the MRCPSP as follow.

Minimise ftn subject to:

∀ i ∈ [1, n], sti ≥ fth ∀ h ∈ Predi (1)

Let Cp be the set of activities being executed during time
period [p-1,p], then∑

i∈Cp
αi,ki,r ≤ αmaxr ∀ r, r ∈ [1, |A|],∀ p (2)

n∑
i=1

βi,ki,l ≤ βmaxl ∀ l, l ∈ [1, |B|] (3)

We denote the start and finish times of activity i by sti and
fti respectively. The precedence constraint is presented in (1)
while the renewable and non-renewable resource constraints
are respectively presented in (2) and (3). In (2) and (3), ki is
the allocated mode of i and can only be one of the predefined
modes of i. Also, αi,ki,r and βi,ki,l are respectively the amount
of renewable resource r and non-renewable resource l required
by activity i performed in mode ki.

B. Genotype to Phenotype Translation

In previous research on MRCPSP, a permutation based
representation referred to as Activity List (AL) is often used
for the Activity Scheduling sub-problem while an integer
based representation called Mode List (ML) is used for the
Mode Assignment sub-problem [13]. For Activity Scheduling,
there are some researches based on the Random Key (RK)
representation [12], [10]. With RK, floating point values are
used to represent each activity of a project. These values are
then sorted in ascending order to yield an execution order
for the activities. AL has previously been considered superior
to RK until the research in [15] that shows that RK can
also perform well. RK has since been used in some of the
leading approaches of solving the MRCPSP [13]. In this paper,
we respectively use the RK and ML representations for the
Activity Scheduling and Mode Assignment problems.

The Schedule Generation Scheme (SGS) is used to translate
genotype to phenotype by creating a schedule from a solution
representation. SGS can either be serial or parallel [16]. In
serial SGS, each job is scheduled at the earliest precedence
and resource feasible time. However, at a selected time, the
parallel SGS attempts to perform as many activities as can
be performed subject to resource and precedence constraints.
The difference between both methods is that the serial SGS
performs activity-incrementation while the parallel SGS per-
forms time-incrementation [16]. Serial SGS is more frequently
used as the parallel SGS is sometimes unable to reach the
optimal makespan [17]. We therefore use the serial SGS, which
schedules each activity of a project at the earliest precedence
and resource feasible time. A formal description of the SGS
is presented in [16].

It is however common practice to embed some makespan
improvement procedures into the standard SGS. The SGS
has been improved with techniques such as Multi Mode

Forward Backward Improvement (MM-FBI) [8]. It has also
been improved with procedures to improve infeasible solutions
as well feasible ones and referred to as Multi-mode Serial
Schedule Generation Scheme (MSSGS) [5]. Another improved
version of the SGS is presented in [10], the authors embedded
a mode improvement method (described in Alg. 3) into the
SGS. The resulting procedure is referred to as the extended
SGS.

C. Literature Review

Many meta-heuristics applied to MRCPSP rely on a lot of
local search and other improvement procedures to optimise
their performance. A review of these algorithms [13] has
shown that algorithms that use more of these additional
methods present better results than those that do not. It is
particularly common to embed a local search procedure in
the SGS. We briefly outline some approaches of solving the
MRCPSP.

SS [12] presents the best results on common MRCPSP
problem sets. It relies on a lot of additional methods, it
uses three improvement and some additional two local search
methods. The authors proposed the feasibility improvement,
critical path improvement and work content improvement
methods. The feasibility improvement method tries to improve
solutions that are infeasible with regards to non-renewable
resources and therefore requires the continuous evaluation of
the Excess Resource Requirement (ERR) (described in eq.
(6) of mode solutions. The critical path and work content
improvement respectively improve the critical path and the
amount of resources required to perform a job. Although
SS uses the highest number of improvement procedures, its
strength lies in the ability to apply improvement methods
based on the property of a problem instance. The SS also uses
the mode improvement procedure and the multi-mode left shift
in [7].

Furthermore, the most common stopping criteria for measur-
ing the performance of algorithms is based on the number of
schedules generated. For algorithms such as the Differential
Algorithm (DE) in [6] that do not use any form of local
search, this is set as the number of fitness evaluations. Lova
et al [8] however identified that the computational effort of
one improvement pass is greater than what is needed to
generate two SGSs. For this reason, the number of schedules
is calculated by dividing the sum of the number of times each
activity of the project has obtained a feasible start/finish time
by the total number of activities. This allows for a fairer
comparison amongst algorithms. Most existing approaches
adopt this method. In the SS [12] however, some other meth-
ods of evaluating a solution which correlates strongly with
the makespan are used. For instance, to determine whether
to execute the critical path and work content improvement
methods, the critical sequence lower bound (CSLB) of solu-
tions are calculated. CSLB together with Critical Path Lower
Bound (CPLB) and Resource Based Lower Bound (RBLB) are
three evaluation methods of an MRCPSP solution [18]. The
computational cost of executing each of these methods are



however comparable to executing the SGS. In addition to the
CSLB, other evaluation methods used by the SS includes the
evaluation of the critical path of solutions. These evaluation
functions are repeated for every mode change made to a
solution needing critical path improvement until it satisfies the
set criteria. With this approach, only good quality solutions
are scheduled with the SGS and only these count as part
of the number of schedules generated. Comparing with other
algorithms based on the same number of schedules therefore
may not give a true account of the competitiveness of the SS.
This is because it uses far more computation cost to arrive
at its results. It is therefore difficult to directly compare SS
because of the additional effort. So we do not do statistical
comparison but present the reported quality results.

The GA has been the most popular of meta-heuristics
applied to the MRCPSP. Some of the recent and competitive
research on the application of GAs to the MRCPSP are as
follows.

The GA in [19] is one of the most recent applications of
GA on the MRCPSP. It uses a SAT solver approach in a
similar way as the GA in [20]. The former is an improvement
of the latter. They use the SAT solver to optimise activity
solutions in a feasible manner. They also use a greedy search
approach to improve feasibility in solutions. The GA in [19]
incorporates some additional procedures so that the algorithm
is more efficient and scales better to larger problems than [20].

The GA in [9] uses the conventional improvement of initial
population procedure to reduce infeasibility with regards to
non-renewable resources. It solves the MRCPSP as a bi-
objective problem. It also uses a ranked-based fitness assign-
ment method and a clustering approach to compute densities.
This algorithm however does not scale well to the largest
problems.

Furthermore, a Hybrid GA called (MM-HGA) is proposed
in [8]. It uses an improvement method called MM-FBI,
which is embedded in the SGS. This method is applied to
every solution that is feasible with respect to non-renewable
resources. The aim is to reduce the project completion time
by changing the mode of execution of an activity creating an
improvement in its start/finish time. MM-HGA also proposed
the massive mutation which attempts to improve the feasibility
of solutions that are non-renewable resource infeasible. This is
done by changing the modes of execution of randomly selected
activities until it is feasible or a maximum number of tries is
reached. These methods make a significant improvement in
the performance of the algorithm.

The Bi Population Genetic Algorithm (BPGA) in [10] is one
of the most competitive algorithms in literature. It presents the
best results amongst GAs applied to the MRCPSP. The major
improvement method used in [10] is the mode improvement
method described in Alg. 3. Although the mode improve-
ment procedure does not guarantee an improvement in the
makespan, its approach makes it easier for activities to run in
parallel thereby encouraging a reduction in makespan. It is also
more efficient than other schedule improvement procedures as
it focuses on improving the finish time of one activity rather

than the entire schedule. This method has also been used in
[12] and [3] and has led to significant improvements in the
quality of solutions produced. The mode improvement method
is embedded in the SGS and referred to as the extended SGS.

Furthermore, a combination of GA and EDA has also been
applied to the MRCPSP. The Bi Population Genetic Algorithm
with Estimation of Distribution Algorithm (BPGA-EDA) [3]
an algorithm created by hybridising the GA in [10] with an
EDA is also one of the most competitive algorithms. Most
of the methods used in [10] are used by BPGA-EDA. It was
shown that the BPGA-EDA can outperform BPGA suggesting
that the EDA generates better mode solutions than the GA.
The performance of BPGA-EDA was also improved by using
the extended SGS.

To the best of our knowledge, there are only two applica-
tions of EDAs to both sub-problems of the MRCPSP which
are presented in [5] and [4]. The latter is an improvement of
the former.

These EDAs use two probabilistic models to generate an
MRCPSP solution. The probabilistic model for generating
activity solutions is of size n×n while that of mode solutions
is of size n×m. To satisfy the mutual exclusivity constraint
such that each activity appears in an ordering only once, they
use the permutation-based Probability Generation Mechanism
(PGM) [5]. This method entails re-calculating probabilities
based on eligible activities. This is a necessary procedure for
many permutation based EDAs in order to avoid duplicates in
orderings.

Furthermore, existing applications of EDAs to the MRCPSP
use the improved serial SGS, MSSGS. The MSSGS includes
a procedure for tackling infeasibility as well as improving the
finish times of activities in a solution. This method randomly
selects the mode of an activity and changes it to that which
improves its feasibility. The second aspect of the MSSGS
attempts to improve the finish time of an activity in a feasible
solution. It does this by changing its mode to that which
improves its finish time without delaying the finish time
of other activities. Checking each mode of execution of an
activity in a bid to improve the solution imposes a significant
addition to the computational cost of evaluating a solution.
In addition, these EDAs also use the local search method
called Multi-mode version Permutation-Based Local Search
(MPBLS). This method attempts to make local improvements
to the best solutions found at each generation. This is done by
changing the mode of randomly selected activities as well as
its priority.

In addition to all these methods, the EDA in [4] introduced
a random walk local search. This is the principal difference
between the two EDAs. For a selected activity, the local search
selects a mode with the minimum ERR in resource infeasible
solutions or mode with minimum duration in resource feasible
solutions. Adding this extra local search method improves the
quality of solutions produced by the former.

In this paper, the proposed approach generates both activity
and mode solutions with EDAs. It uses RK-EDA proposed
in [14], which is a competitive EDA for solving permutation



based problems, for generating new activity solutions. The
probabilistic model for mode generation is similar to that
proposed in [3]. Although we use the same size of probabilistic
model for mode solutions as existing EDAs, we use a lighter
weight model of size n + 1 for generating new activity
solutions. Also, the proposed approach does not require the use
of PGM or any similar procedure since RKs always produce
permutation feasible solutions.

III. PROPOSED APPROACH

In this paper, we use the bi-population approach in [21]
which is based on a population of left-justified schedules
(POPL) and another of right-justified schedules (POPR). As
shown in Alg. 1, we start by executing the conventional prepro-
cessing procedure of Spreecher et al [22]. After this, POPL is
randomly generated. The conventional feasibility improvement
of initial mode solutions [10] is executed to improve solutions
in the initial POPL. This procedure reduces the number of
resource infeasible solutions in the initial population. This is
done by changing the modes of randomly selected activities
to those that reduce the infeasibility with respect to non-
renewable resources. The solutions in this population are then
evaluated using the SGS.

A selected population S which contains the best ts (trun-
cation size) solutions in POPL is generated. Probabilistic
models of activity solutions and mode solutions, PMact and
PMmod are generated based on POPL as shown in Sections
III-A and III-B .

Probabilistic models LPMmod and RPMmod which are
respectively used for generating mode solutions in POPL

and POPR are both initialised with PMmod. Probabilistic
model RPMact for generating activity solutions in POPR

is initialised with PMact. Probabilistic model LPMact for
generating activity solutions in POPL is however generated
based on ts most promising solutions in POPR. In a similar
way, POPR is updated based on ts most promising solutions
in POPL.

At each generation, the solution that generates the best
schedule in POPL, Lbest is rescheduled as a right justified
solution and set as an offspring of POPR. In a similar
way, the best solution in POPR, Rbest is rescheduled as a
left justified solution and set as an offspring of POPL. To
produce the remaining population of right/left justified sched-
ules, RPMact and RPMmod / LPMact and LPMmod are
sampled to produce RChild / LChild. RChild / LChild is
evaluated using backward SGS/ forward SGS where activities
are scheduled as late as possible/as early as possible within
resource and precedence feasibility. Also, while the forward
SGS or schedules activities in increasing order of their RKs,
backward SGS schedules in decreasing order of RKs.

Note that when mode improvement is used, the extended
SGS is used in place of the standard SGS.

Also, once each solution has been scheduled, the RKs of that
solution are updated to respect the order in which the activities
were performed. This is because the order depicted by the RKs
would not be the same as the order of execution because of

Algorithm 1 Proposed EDA for the MRCPSP
The algorithmic details of the proposed approach is presented
as follows.

1: execute preprocessing procedure
2: generate initial population POPL

3: evaluate POPL with SGS
4: select best ts < |POPL| solutions to form S.
5: build probabilistic models PMact and PMmod from S
6: initialise LPMmod = RPMmod = PMmod

7: initialise RPMact = PMact

8: repeat
9: set Lbest as best solution in POPL

10: for i = 1 to |POPL| do
11: if i = 1 then
12: set RChild as the genome of Lbest
13: else
14: sample RPMact and RPMmod to produce

RChild
15: apply backward SGS to RChild
16: end if
17: update POPR with RChild
18: end for
19: build probabilistic model LPMact from POPR

20: Update RPMmod with POPR

21: set Rbest as best solution in POPR

22: for i = 1 to |POPR| do
23: if i = 1 then
24: set LChild as the genome of Rbest
25: else
26: sample LPMact and LPMmod to produce LChild
27: apply SGS to LChild
28: end if
29: update POPL with LChild
30: end for
31: build probabilistic model RPMact from POPL

32: update LPMmod with POPL

33: until stopping criteria satisfied
34: return overall best solution

resource and precedence constraints. We therefore respectively
rank the activities of solutions in POPL and POPR by start
and finish times. To fulfil the normalisation step of the RK-
EDA [14], the RK of each activity in the jth rank is set to
j−1
n where n is the number of activities in the project

A. Probabilistic Model of Activity Solutions

PMact is based on the procedures of RK-EDA [14]. It
contains n+ 1 values where each value µi ∈ [1, n] represents
the mean of all RKs relating to activity i in S. The n + 1th

value of PMact is the variance. PMact is described as follows.
Cooling rate c, as shown in ln. 1, is calculated such that its

value reduces as the number of generations g increases. Note
that maximum number of generations MaxGen is calculated
by dividing the maximum number of schedules allowed by
the population size. To estimate the generational variance σg



Algorithm 2 Probabilistic Model for Activity Solutions
1: c = 1− g

MaxGen
2: σg = σ ∗ c
3: for i = 1 to n do
4: calculate µacti

5: PMacti = N(µacti , σg)
6: end for

in ln. 2, c is multiplied by the initial variance σ. This approach
increases exploration at earlier generations of the run and
exploits more closer to the end. Note that σ is a parameter
of the RK-EDA that needs to be set.

To generate a new activity solution, the RK of each activity
i is generated by sampling a normal distribution based on the
mean of RKs in S relating to activity i and variance σg . Note
that the same value of σg is used to sample every RK in every
solution at a particular generation.

B. Probabilistic Model for Mode generation

PMmod is created based on the fraction of activities
performed in certain modes of execution in population S.
The probability that activity i will be performed in mode
k; PMmodi,k

is calculated as count(i,k)
b where count(i, k)

denotes the number of solutions in S where activity i is
performed in mode k.

PMmod =

p11 · · · p1m
...

. . .
...

pn1 · · · pnm

 (4)

Note that the probabilistic model for mode generation
uses a Population-Based Incremental Learning (PBIL) style
where the model at each generation learns from the previous
generation.

If we respectively represent pik values of PMmod at gener-
ation g and g− 1 by pik(g) and pik(g− 1), each pik(g) value
will be estimated as shown in eq. (5).

pik(g) = (lr ∗ pik(g)) + ((1− lr) ∗ pik(g − 1)) (5)

Probability values pik(g) is updated by pik(g − 1) using a
learning rate lr as shown in eq. (5). The probabilistic model is
updated at the end each generation until the stopping criteria
is met.

C. Mode Improvement

The mode improvement method [10] attempts to improve
feasibility as well as the finish time of an activity. To achieve
the first aim of improving feasibility with regards to non-
renewable resources, there is a need to calculate the ERR
of a mode solution µ. ERR(µ) is described in Eq. (6).

ERR(µ) =

|B|∑
x=1

(max(0,

n∑
i=1

βi,ki,l − βmaxl)) (6)

ERR(µ) is set to zero if µ is feasible. Otherwise, it is set
to the difference between the sum of non-renewable resource
requirements βi,ki,l ∀ l ∈ [1, |B|], for each activity i in their
modes of execution ki, and availability βmaxl.

The mode improvement procedure is described as follows.

Algorithm 3 Mode Improvement Method
1: for j = 1 to |mi| do
2: set new mode solution µ′ to existing mode solution µ
3: compute ERR(µ)
4: if ki ̸= j then
5: set new mode ki

′ = j
6: update mode solution µ′ with ki

′

7: compute ERR(µ′) (see Eq. (6))
8: if ERR(µ′) ≤ ERR(µ) then
9: compute fi

′

10: if fi′ < fi then
11: µ = µ′

12: ERR(µ) = ERR(µ′)
13: fi = fi

′

14: end if
15: end if
16: end if
17: end for

For an activity i, a mode solution µ′ is generated by
replacing ki in µ with another mode ki

′. The ERRs of
the existing mode solution µ and the new mode solution µ′

are calculated. If ERR(µ) is not higher than ERR(µ′), the
procedure executes the next stage. This stage compares the
finish times of i based on mode solutions µ′ and µ and are
respectively denoted by fi

′ and fi. If fi
′ is less than fi,

mode solution µ, ERR(µ) and fi are respectively set to µ′,
ERR(µ′) and fi

′ .

IV. EXPERIMENTAL SETTINGS

In this section, we present the problem sets and parameter
settings used in this paper.

A. Problem sets

The most common MRCPSP problem sets in literature are
J10, J20 and J30 from the PSPLIB [23]. They respectively
require the scheduling of 10, 20 and 30 activities. They also
respectively consist of 536, 554 and 552 feasible instances.
The proposed algorithm is compared with the BPGA and
BPGA-EDA based on J10, J20 and J30 as done in [3]. In
addition to these problem sets, PSPLIB also contains J12,
J14, J16 and J18. They are respectively made up of 547, 551,
550 and 552 problem instances as well as 12, 14, 16 and 18
activities to be scheduled. With the exception of J30, existing
EDAs have been applied to the entire PSPLIB instances.
The EDA in [5] does not present results for J30 while the
EDA in [4] was not able to achieve 100% feasibility on J30.
Comparison with existing EDAs is therefore done based on
J10-J20.



More recently, certain disadvantages have been identified
with the PSPLIB problem sets. One is the fact that modes of
execution can be eliminated by executing the preprocessing
technique, simplifying the problems significantly. Also, some
of the instances do not have any feasible solution. To avoid
these disadvantages, MMLIB problem sets which also consist
of larger problem instances were created [13]. In this paper, we
use the MMLIB50 and MMLIB100 that respectively require
the scheduling of 50 and 100 activities. They consist of 540
instances each. Comparison with a broader range of algorithms
was based on the J10, J20, J30, MMLIB50 and MMLIB100.
We are able to get results of running several algorithms on
these problem sets from the review in [13].

B. Parameter settings

RK-EDA which is used for generating activity solutions and
the integer based EDA used for generating mode solutions
require two parameters in common which are population size
ps and truncation size ts . The integer based EDA in addition
requires a learning rate lr while RK-EDA requires a variance
parameter σ. The parameters used in this paper are presented
in Table I.

TABLE I
PARAMETER SETTINGS

Parameter PSPLIB MMLIB

Population Size (ps) 3000
n

100
Truncation Size (ts) 0.1× ps 0.1× ps
Variance (σ) Minimum of 0.2 and 3

n
0.05

Mode improvement rate 0.0, 0.2 0.0, 0.2
Learning rate 0.8 0.8
Number of evaluations 5000 5000
Number of Runs 10 10

Values presented in Table I are derived based on preliminary
tests. These test reveal that different ps and σ values are
required for the MMLIB and PSPLIB problem sets. This may
be attributed to the difference in formulation of both libraries.

We have set the limit on the number of evaluations to 5, 000
as this is the most frequently used stopping criteria [13].

The most common performance measure using number
of schedules as stopping criteria is the average percentage
deviation from optimal (APDO) and is calculated as follows.

APDO =
∑n

i=0(((bestF it−optimal)/optimal)∗100)
n (7)

In eq. (7), bestF it is the fitness of the best solution
generated by the algorithm. The value of optimal is either
the reported optimal values for J10 and J20 or the critical
path based lower bound (CPBLB) for J30, MMLIB50 and
MMLIB100. This is the usual practice in previous research
especially the review in [13]. The CPBLB is estimated using
the critical path based on the modes with the least durations.
Average percentage deviation from CPBLB (APDC) is there-
fore calculated by replacing optimal with the CPBLB in Eq.
(7)

Since several problem instances in the datasets of PSPLIB
have similar characteristics, it is common practice to run
algorithms only once across all problems. Irrespective of the
similarity in problem instances, it was shown in [3] that several
runs are still needed to capture the true performance of non-
deteministic algorithms applied to these datasets. In this paper,
results are averaged over ten runs. We use student t-test to test
for statistical significance

Furthermore, local search methods have been reported to
significantly improve the performance of meta-heuristics [13].
The proposed approach also considers the mode improvement
method which is one of the most efficient improvement method
shown to improve the performance of most of the leading
algorithms. These includes the SS, BPGA and BPGA-EDA.
Since the proposed approach uses a similar approach as
the BPGA and BPGA-EDA, we will be comparing directly
with these algorithms with and without the use of the mode
improvement local search method.

Mode improvement rate relates to the number of activities
that improved when scheduling a project. Based on prelim-
inary results, 0.2 mode improvement rate gave the best the
results. Also, results on larger problems showed that the
effect of mode improvement on the largest problems is not
as significant as others. For this reason, rather than use the
extended SGS at each generation, we also tried to use it at
every other generation. Moreover, the mode improvement rate
still incurs additional computation such as estimating ERR.

V. RESULTS AND DISCUSSION

In this section, the proposed approach is compared with
other leading and recently published results for the MRCPSP.
Results for J10-J20 are based on APDO while J30, MMLIB50
and MMLIB100 are based on APDC . All are averaged across
ten runs.

A. Comparing the proposed approach with BPGA-EDA and
BPGA

To be able to compare based on several runs for results
based on the standard SGS and extended SGS, results for the
BPGA are obtained from [3].

In Table II, we present the APDO averaged over ten runs
(alongside the standard deviation) for the BPGA, BPGA-EDA
and the proposed EDA. These results are based on the standard
SGS (i.e without the use of mode improvement).

TABLE II
RESULTS BASED ON SGS - AVERAGE APDO (STANDARD DEVIATION)

Problem sets BPGA BPGA-EDA Proposed EDA
J10 0.61 (0.08) 0.20 (0.04) 0.19 (0.04)
J20 2.34 (0.05) 1.60 (0.07) 1.05 (0.08)
J30 17.89 (0.18) 15.06 (0.07) 14.52 (0.07)

In Table II, the best results as well as results that are not
significantly different from the best are presented in bold. The
proposed EDA is significantly better than the BPGA on J10,
J20 and J30 problem sets. The performance of the EDA is



also better than the BPGA-EDA with no statistical difference
on J10 but significantly better result on J20 and J30.

The performance of the EDA in comparison with BPGA-
EDA show that RK-EDA can produce better quality of activity
solutions than GA. Since the Proposed EDA uses similar
procedures as the BPGA and BPGA-EDA, Its relative perfor-
mance also show that EDA can outperform the GA on both
components of the MRCPSP.

Since previous research has shown that the mode improve-
ment method can significantly improve the performance of
BPGA and BPGA-EDA, we also compare performance based
on the use of this improvement method. Table III presents the
APDO (and Standard deviation) averaged across ten runs of
the algorithms. The results presented are based on the use of
mode improvement local search (i.e. solutions are scheduled
with the extended SGS [10]).

TABLE III
RESULTS BASED ON EXTENDED SGS - AVERAGE APDO /APDC

(STANDARD DEVIATION)

Problem sets BPGA BPGA-EDA Proposed EDA
J10 0.05 (0.02) 0.03 (0.02) 0.06 (0.02)
J20 0.88 (0.04) 0.69 (0.04) 0.64 (0.04)
J30 14.41 (0.05) 13.87 (0.07) 13.66 (0.07)

Based on Table III, there is no difference between the
performance of the EDA and BPGA on J10 but the EDA
performs significantly better than the BPGA on J20 and J30.
The EDA is however not statistically worse than the BPGA-
EDA on J10 but better on J20 and J30.

Results for BPGA and BPGA-EDA in Tables III and III are
retrieved from results presented in [3].

B. Comparing the proposed EDA with existing EDAs

Since existing EDAs use an improved SGS (MSSGS), we
compare them with the proposed EDA based on extended SGS.
Table IV presents the result of the EDAs in [5] and [4] as well
as the proposed EDA.

TABLE IV
RESULTS COMPARING THE PROPOSED EDA WITH OTHER EDAS: AVERAGE

APDO

Problem Sets Proposed EDA EDA [5] EDA [4]
J10 0.06 0.12 0.09
J12 0.17 0.14 0.12
J14 0.28 0.43 0.36
J16 0.40 0.59 0.42
J18 0.48 0.90 0.85
J20 0.64 1.28 1.09
J30 13.95 15.55 -

Although the results of the EDA in [4] are based on several
runs, information about variance are however not presented.
Similarly, there are no information on variance provided in
[5]. We are therefore unable to test for statistical significance.
Apart from J12, the proposed EDA shows better performance
than the EDA in [5] or [4].

This is a competitive performance by the proposed EDA
considering the fact that it uses less improvement methods

and also a lighter weight model. The probabilistic model used
by this EDA (of size n + 1) for activity solutions is much
smaller than that of existing EDAs (of size n× n)

C. Comparing the proposed EDA with leading or recent
algorithms

As previously noted, results presented based on applications
of meta-heuristics to the MRCPSP are often based on a single
run. This includes the review in [13]. However, to be able to
compare with other algorithms on the MMLIB datasets as well
as PSPLIB, most results are retrieved from [13]. Some more
recent algorithms not captured in the review such as algorithms
presented in [4], [24] and [19] are however retrieved from the
authors’ papers. Apart from results presented in [4] which are
averaged across many runs, the results for the BPGA based on
a single run as presented by its authors are used. Some more
literature on MRCPSP exist but we have not been able to
compare with them because they have presented results based
on different criteria such as CPU time.

In Table V, results based on improved SGS are appended a
“✓” while those that are based on standard SGS are appended
a “×”. Also, missing results or problem set for which an
algorithm has not been able to attain feasibility for its instances
are represented by ”-”. Although, we show SS in the table, we
do not directly compare the proposed method with it. This is
because we have shown that it contains many other evaluations
of complete solutions in addition to the SGS, which inhibits
fair comparison.

We present results for the proposed EDA based on the
standard SGS (esgs = 0.0), standard SGS/extended SGS and
at every generation (esgs = 0.5) and extended SGS (esgs =
1.0) only. Of the three configurations, esgs = 0.5 presents
the best results especially on larger problems. The esgs =
1.0 configuration however presents the best results on smaller
problems. We show that the performance of the proposed EDA
approach when esgs = 0.5 is the most competitive on the
largest problem, MMLIB100. This gives an indication that
larger problem require less of the improvement procedure.
This may be because the mode improvement only encourages
more activities to run in parallel [10] but does not guarantee
an improvement in makespan. The mode improvement method
helps to explore the search space better in smaller problems
but do not scale well to larger problems. Moreover, as shown
in [12], certain problem instances benefits more from some
improvement techniques than others.

Moreover, compared to the algorithms that do not use any
schedule improvement procedure (GA in [9] and DE in [6]),
the proposed EDA without schedule improvement presents
much better results. Overall, BPGA presents the best results
on J10 and J20. However, the proposed EDA when esgs =
0.5 presents the best performance on J30, MMLIB50 and
MMLIB100. This is consistent with the behaviour of RK-EDA
[14] scaling better to larger problems.

Summarily, we show that the proposed EDA which uses two
univariate EDAs is one of the most competitive algorithms for
solving the MRCPSP. A multi-variate EDA capturing linkage



TABLE V
RESULTS BASED ON EXTENDED SGS - AVERAGE APDO / APDC

Algorithms Improved SGS J10 J20 J30 MMLIB50 MMLIB100

MMHGA [8] ✓ 0.04 0.89 14.58 28.59 31.01
DE [6] × 0.74 1.62 15.43 32.46 36.87
BPGA [10] ✓ 0.01 0.57 13.75 27.12 29.55
GA [9] × 0.12 1.51 16.16 32.47 40.22
GA [20] ✓ 0.07 0.80 14.44 - -
EDA [5] ✓ 0.09 1.28 15.55 31.95 38.55
EDA [4] ✓ 0.09 1.09 - - -
LS [24] ✓ - - - 33.02 44.11
GA [19] ✓ 0.07 0.94 14.62 29.42 34.60
BPGA-EDA [3] ✓ 0.03 0.69 13.87 27.96 31.38
Proposed EDA (esgs = 0.0) × 0.19 1.05 14.52 28.27 28.94
Proposed EDA (esgs = 0.5) ✓ 0.09 0.71 13.65 26.20 27.47
Proposed EDA (esgs = 1.0) ✓ 0.06 0.64 13.66 26.52 28.46

SS [12] ✓ 0.00 0.32 13.66 25.45 26.51

information between the sub-problems of the MRCPSP may
however produce even better results.

VI. CONCLUSIONS

In this paper, we proposed an EDA approach motivated
by BPGA-EDA which combines GA and EDA to solve the
MRCPSP. The proposed EDA uses RK-EDA, one of the
leading EDAs for permutation problems to solve the Activ-
ity Scheduling problem rather than the GA. Using EDA to
generate mode solutions have previously showed improved
performance. In this paper, we show that RK-EDA applied
for generating activity solutions can present even further
improvements.

The proposed EDA showed better performance than existing
EDAs on most of the problems sets used in this paper. It also
uses more efficient methods and a lighter weight model.

The proposed EDA is also compared with state-of-the-
art approaches of solving the MRCPSP and shown to be
competitive with these approaches. Its performance is most
competitive on the larger problem sets (MMLIB50 and MM-
LIB100).

Application of multi-variate EDA to the MRCPSP is rec-
ommended for further studies.
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