

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ______________________ version of an article originally published by ____________________________
in __
(ISSN _________; eISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

CASE STUDY

Ethical and Professional Complications
in the Construction of Multi-Developer Hobbyist
Games

Michael James Heron1

Received: 13 May 2016 / Accepted: 15 August 2016 / Published online: 24 August 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The modern availability of powerful video game development frame-

works has resulted in something of an indie renaissance. Within this blossoming of

small scale development are numerous hobbyist developers who build games for

their own inherent satisfaction rather than with the expectation of any financial

remuneration. While many of these individuals labour in isolation, some have

undertaken projects of sufficient scale and complexity to require the recruitment of

multiple developers over long periods of time. The lack of direct payment for

volunteered efforts in such environments creates numerous interpersonal issues that

must be considered—these relate to aspects of intellectual property ownership and

the treatment of developers, as well as to the expectations of those players who may

invest their time in a hobbyist title. The nature of recruitment for such projects is

such that formal experience in software development or games design cannot be

assumed, and the management complexities this paradigm introduces are of suffi-

cient complexity that few tools are available to ensure the coherent development of

a game. This paper is a reflective analysis of the issues that emerged through the

development of one such game. The observations contained within however are

applicable to all multi-developer projects where financial compensation for con-

tributions are likely to be non-existent.

Keywords Hobbyist development � Epitaph � Multi developer projects �
Collaboration � Video games � Game development

& Michael James Heron

m.j.heron1@rgu.ac.uk

1 Robert Gordon University, Aberdeen AB10 7QB, Scotland, UK

123

Comput Game J (2016) 5:115–129

DOI 10.1007/s40869-016-0025-0

http://orcid.org/0000-0003-3393-0733
http://crossmark.crossref.org/dialog/?doi=10.1007/s40869-016-0025-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40869-016-0025-0&domain=pdf

1 Introduction

The easy availability of popular game development frameworks along with the rise

of digital distribution platforms such as Steam, Xbox Live, the App Store and the

Google Play store has resulted in a large expansion in the opportunities for indie and

hobbyist game developers (Swain 2009; Martin and Deuze 2009; Guevara-

Villalobos 2011; Lipkin 2012). Game development is now a hobby that is within

the reach of individuals who may have previously been excluded as a consequence

of the scale of the task and the difficulty of securing distribution opportunities. Not

since perhaps the era of the bedroom programmer has the production and

development of games been quite so accessible to those who have no vocational role

in the game industry. Although many games developed by hobbyists are of a

necessity restricted in terms of scope and complexity there are still titles that involve

many people collaborating on code and content over long periods of time. It is

within this context that this paper is situated.

Within this paper too will define hobbyist development as primarily differen-

tiated from indie development by the trait that no member of the team has a full or

even part-time vocational role in development—all members of a hobbyist

development team are volunteers, and it is this aspect that makes the movement

significant. Within this definition, all hobbyists games are indie games, but not all

indie games are hobbyist games.

Despite this new renaissance of unremunerated game development, there has not

been a corresponding increase in the awareness developers have with regards to the

professional and ethical issues that may be associated with their work. The tools

have gotten better, but they still work in the same human context. Within the realm

of purely hobbyist development, where significant remuneration may not ever

materialise, the task of building a volunteer team to collaboratively develop a

substantial project introduces considerable interpersonal complexity. While this

complexity is true of any team, within a hobbyist project the usual financial levers

and incentives are not available to managers.

This social complexity in turn creates a potentially fraught situation—lacking

financial remuneration for the effort others might invest in the project, issues of

intellectual property and the future prospects of monetization can result in an ethical

and legal tangle which few are equipped to unpick. Formal licences for developer

contribution can help resolve these issues, but when individuals initially accrete

organically and informally around a shared set of goals, such licences may be

adopted too late, if ever. The nature of building a development team in hobbyist

communities has its own complexities, and there may never be a ‘right’ time to

insist on a firm legal and ethical foundation for contribution.

We discuss these issues in relation primarily to the development of the

collaborative hobbyist game Epitaph Online (Heron 2015), a text-based MMO

developed primarily, but not exclusively, by the author of this paper. We discuss the

collaboration regime of the game; the decisions that set its technical framework in

place; and the emergent issues of legality and ethics that evolved over its 4 years of

closed development. We also discuss the ethical and professional issues that emerge

116 Comput Game J (2016) 5:115–129

123

from ‘releasing’ the game in its various open phases. The nature of hobbyist

development largely precludes formalised closed testing and this has a correspond-

ing impact on those who invest their recreational time in the game—bugs are

inevitable, and the lack of a dedicated customer support team means that

recompense, if available, may not be possible to apply consistently. Software

development skills cannot be assumed of those who volunteer (Townsend and

Heron 2013) and this in turn exacerbates issues of quality control.

While the issues discussed in this paper cannot ever be fully resolved within the

limitations implied by hobbyist development, it is possible that awareness can

reduce the likelihood that they will unexpectedly derail a promising project.

2 The Context of Contribution

The nature of hobbyist game development tends to better support solitary, rather

than collaborative, development effort. Work must be accomplished during

developer free time, which as a currency is often difficult to accumulate and to

spend reliably. The highly asynchronous and seasonal nature of development does

not permit for organisational traction to be easily generated, and the fitful nature of

progress can have a significant dampening effect on momentum. Pragmatics too

dictate that a hobbyist game should be, as far as is possible, something that can

genuinely be completed and released—this tends to bias hobbyist development

away from large, complex games that require multiple developers and towards

smaller, more abstract games that focus on mechanics, or procedural generation

rather than large amounts of specifically tailored content.

However, neither of these are iron-clad observations without exception.

Substantial numbers of hobbyist games do end up being developed either in

partnership with another interested individuals or as the result of a consortium of

developers who are inspired enough to volunteer their effort without any likely

financial reward. The Multiuser Dungeon (MUD) scene which was most vibrant in

the early nineties (c.f. Young 1998; Dourish 1998; Heron 2013) is an area where the

popularity of the games led to a constant stream of new developers—largely

recruited from interested players—joining the creator staff and developing new, on-

going content. However, again the nature of voluntary collaboration complicates

this—turnover is rapid, and even when an individual volunteers they may end up

costing more time in training than they save in development.

In 1998, the first author of this paper started playing one such game—Discworld

MUD (Karlsen 2008). After a year of dedicated participation in the player

community, which included membership of emergent social structures and de-facto

player government structures, he volunteered his services as a developer—or in the

parlance of the game, a creator. No financial reward was associated with the position

of being a creator, and it conferred no in-game advantages upon player characters.

Attempting to influence the game was in fact an offence for which a creator could be

dismissed and all impacted players deleted. Such dismissals occurred with some

regularity, and the owners of the game put many systems in place to identify creator

misconduct and allow for it to be effectively dealt with. After a lengthy tenure as a

Comput Game J (2016) 5:115–129 117

123

developer on Discworld MUD, which eventually led to his being promoted to the

highest creator rank of Admin, this author resigned his position to begin

development of his own game—Epitaph Online.

Contribution as a creator in hobbyist environments is driven primarily by a sense

of intrinsic motivation—the desire to contribute to a game and have those

contributions experienced and appreciated by other people. In many respects, the

motivations for developers in these environments can be understood in the same

terms as those contributing to open source projects. Contribution offers opportu-

nities for the perfecting of expertise (Moody 2002; Raymond 2001; Lakhani and

Wolf 2003; Von Krogh 2003); the enhancing of personal reputation (Bezroukov

1999; Lakhani and Wolf 2003; Raymond 2001; Von Krogh 2003); and for the

inherent fun of building game content (Von Krogh 2003; Lakhani and Wolf 2003;

Moglen 1999). Others are motivated by a belief in the game and its community

(Hertel et al. 2003; Raymond 2001). Participation in the game development also has

the potential to yield real world benefits, with several creators having explicitly

acknowledged the role that their contribution had in securing real world

employment.

Many too become creators to address what they perceive as fundamental

problems with the game they have played such as balance issues or missing

functionality. However, the freedom that is required to make sweeping changes to

game content is not usually given to new creators. The expectation is that

contributors will ‘make their bones’ by proving themselves trustworthy through

sustained, high-quality contribution. Once a track record of authorial leadership

(Reagle 2007) has been established, they are usually permitted to agitate for their

own personal pet projects and given the freedom to develop them, within

constraints.

The key element of this is that individuals contribute for their own personal

reasons—they are not, in the main, selling their skills. As such, the relationship they

form with the code or content that they produce is not simply that of a disinterested

producer creating ‘work for hire’—it is an on-going and personal connection. It is

also, unless formal contribution criteria are put in place, code that belongs legally

and ethically to the person that produced it and not the game for which it was

developed. However, even making that assumption about the ownership rights that

the game may possess over contributions is additionally frustrated by the widely

divergent geographical and legal jurisdiction within which contributors are located.

3 Project Management in Hobbyist Environments

Within environments such as these it is not strictly speaking possible to employ any

standard project management techniques. The various tools and levers available to a

manager are largely absent. The only real punishment with any force available

beyond social approbation is the ultimate sanction of removing a developer from the

team. Such an action generates drama, creates resentment, and is ultimately self-

defeating—it deprives the project of someone who was, at least at one point, an

118 Comput Game J (2016) 5:115–129

123

advocate for its success. There are few sticks available within a totally volunteer

environment.

Carrots, where they are available, tend to focus on intrinsic reward—recognising

accomplishment with ever-grander developer titles (such as senior creator) and

through permitting more freedom to self-direct developments. Developers may also

be encouraged to take on more visible leadership roles, allowing for a higher degree

of recognition and a greater ability to shape the development of the game over the

long term (Reagle 2007). In a large sense, the reward for significant contribution to

the game is the ability to make further significant contributions.

The overall impact of this is that those who are responsible for managing a

project’s success over the long term must place an unusually large amount of trust in

those who have volunteered their time—this is true whether that is a natural

inclination on the part of the manager or otherwise. Intrinsic motivation can be

fragile (Frey and Jegan 2000) and easily compromised (Schulze and Frank 2003;

Bolle and Otto 2010). The role of management then becomes identifying those areas

in which someone is most interested in working and creating opportunities there. A

competent manager then must work with the developer to collaboratively identify a

project that is both attractive to them and valuable for the game. Finally, the

manager must make available the resources and remove the obstacles that would

stand in the way of its successful completion. Beyond that, a manager’s ability to

influence the project or the developers that work on it is limited.

Real life obligations frustrate any attempt at coherent scheduling. The inherent

ebb and flow of personal motivation along with what may be a complicated

geographical dispersal mean that face-time cannot be guaranteed. The presence of

both parties in a manager-managed dyad may be erratic on a day by day or week by

week basis. It is perfectly possible that the time frames and availability of both may

never sync up. Planning and organisation too are made difficult by the fact that

much of the decision making must be devolved to those undertaking the work

requiring a certain amount of management by motivation (Frey 2002; Roberts et al.

2006). Intrinsic motivation in these environments is bound up in large part with

autonomy to shape how a project develops, and this rarely survives being given a

fixed specification and being told ‘implement that’. A sense of ownership over a

project’s evolution is required to ensure that the work remains sufficiently

interesting to warrant a developer’s on-going commitment, however this can

fracture a game’s thematic consistency and create difficulties in ensuring game

balance.

This in turn leads to complications working across a large project—the more

autonomy is given, the more inconsistent and incompatible projects will be unless

collaboration to a common end is somehow enforced or encouraged. Within

Discworld MUD for example there are several implementations of a basic ‘faction’

system including the crime and legal systems in the city of Genua, the family system

within the Counterweight Continent and the City Watch system within Ankh-

Morpork. Lacking a common architecture upon which these systems could be built,

they all have their own infrastructure and do not integrate with each other.

Similarly, the various crafting systems that have been implemented do not represent

any coherent or cohesive workflow—the outputs of one part rarely feed as inputs

Comput Game J (2016) 5:115–129 119

123

into another no matter how logical that feed-through might be. The systems simply

are not designed to work together. They behave differently in equivalent

circumstances. Since they share no code, when a new piece of functionality is

added to one system it does not rattle through to the others. Each generates its own

bugs, and each bug must be dealt with in that specific system—fixes in one are not

reflected as fixes in the others. This is all as a result of too much developer

autonomy being ceded in an environment where formal expertise in software

development is rare. This is to the cost of the development of the game itself.

Management then becomes a balancing act between ensuring intrinsic motivation

can be harnessed whilst also being respectful of the context and pragmatics of

software development (Townsend and Heron 2013).

For the most part, simply providing the right tools in the game engine is enough

to resolve these issues, and this is the path that was taken for Epitaph. Epitaph has

more factional representation than Discworld, but all factions operate from a

common core which ensures that when new functionality is added, or bugs are fixed,

it is an improvement for all represented factions. Similarly, all the various flavours

of crafting within Epitaph are handled by a common core of code. However, these

specific examples are obvious only with the benefit of hindsight—the future

problems of code divergence on Epitaph were dealt with early because of

experience gained within Discworld MUD. They are also, importantly, things that

were put in place before other developers were brought on board so served to anchor

expectations as to how game systems were developed. Resolving these problems in

the early stages of a project requires considerable foresight or a large body of

generalizable experience. It also requires a developer that can invest the time into

building an architecture that will work in a multi-developer environment, and doing

so at a time when multiple developers may be a distant, even unlikely, dream.

Part of the role of management in environments like this too must then be as an

educator—helping those new to the game architecture to learn how things are done,

either through the provision of formal training material (c.f. Heron 2010) or through

helping locate relevant exemplar assets within the game itself. The nature of the

environment requires a peculiar blend of skills that other, more traditional, projects

do not necessarily need to emphasise. Discipline is vital in ensuring the effective

development of any significant piece of software, but it is precisely this aspect that

hobbyist development is least able to leverage.

The nature of collaboration in environments like Epitaph tends, much like the

hobbyist development process itself, to progress organically and in fits and starts.

Generally speaking, projects are an emergent property of largely unstructured social

interactions. Developers discuss game-related topics through whatever social tools

are provided. These discussions will lead to further discussions about what can be

done to improve the game relative to the topic that has emerged. These discussions

will then either be forgotten about when the next topic arises, or enthuse participants

sufficiently that they look to collaborate to bring it to fruition. Townsend and Heron

(2013) discuss this issues with regards to identifying anything as solid as

‘authorship’ with regards to these nebulous and organic relationships—essentially,

the tightly interrelated nature of software development makes such terms unhelpful

120 Comput Game J (2016) 5:115–129

123

for understanding what any individual may contribute to the overall project. This in

turns adds complexity to identifying legal authorship or ownership of contributions.

Collaboration then is a product of the social environment, and similarly difficult

to direct from the top-down. A will to collaborate must exist or any participation in

such activity will be half-hearted at best (Zeiller and Schauer 2011). Given the

difficulties though of directing development, collaboration adds a new and

challenging dimension to the task of shepherding a hobbyist game to completion.

Collaboration may enthuse development in a direction that, while exciting, only

exacerbates issues of feature creep (Levesque 2005; Senyard and Michlmayr 2004)

while directing effort away from core deliverables. Such ad hoc projects are usually

ancillary as far as the game goes—they might eventually end up being core features,

but they are rarely in their initial conception so important to the game that their

development must be instantly begun—if they were, they’d already be part of the

emerging infrastructure of the game itself.

4 Project Scoping and Feature Creep

Runaway Projects (Keil et al. 2000) are often the result of short-lived enthusiasms

for a particular development—when the originators are no longer available, or are

distracted with other tasks, new developers may be assigned to the project in what

becomes an effective and on-going demonstration of the destructive power of the

sunk cost effect (Keil et al. 1995). The projects are, in and of themselves,

sufficiently interesting to get new developers excited about taking them on—that is

part of the problem. If fully developed, the projects may well be as impressive and

satisfying as everyone has planned—but these projects will never be completed in

their existing form. These new developers, when assigned to the project, spark off

their own enthusiastic extensions because few in these environments want to simply

implement someone else’s creative idea. The project then becomes ever more epic

in scope and potential. However, faced with the difficulty of then bringing the

original plans plus the new extensions to life, the developer sooner or later loses

motivation in the face of the immensity of the task and drifts away. All that is left

behind are the plans that they made, and the code representing what relatively

meagre amount of progress they were able to achieve.

The cycle then repeats, until a project becomes so mammoth and impossible that

all it serves to do is sap away new talent that might have been able to thrive and

build confidence with a more manageable project brief. Few new developers have

the self-confidence to say ‘This project is way too big, let’s do a smaller version of

it’ because that is simultaneously a critique of what may have been years of

developer effort, and also an acknowledgement that they are not up to the task as it

is presented. That the task presented may be a poisoned chalice is immaterial in this

respect. That the project exists and has been started creates a kind of psychological

requirement for it to be completed a la the Zeigarnrik Effect (Zeigarnrik 1938;

Norton et al. 2011). They are rarely abandoned except grudgingly and when the

attrition cost associated with losing promising new developers becomes too high to

justify.

Comput Game J (2016) 5:115–129 121

123

These issues emerge when the management of a game cannot simply set the

parameters of contribution. In an environment where people are paid for what they

do, the act of assigning projects and ensuring their timely completion can be viewed

as a managerial transaction. In multi-developer, hobbyist environments it’s more

about curating an on-going relationship in which those that are being managed

perversely have all the genuine power.

Given the social context of this collaboration, a second important issue is

raised—that which has been termed ‘design by committee’ (Henning 2006) as a

consequence of a kind of ‘concurrent engineering’ (Maier 2009, p 3). Much of the

social interaction in the development of a game is about the game itself—what

would be fun, what is not fun, and what balance issues need to be addressed. The

low cost nature of suggestion means that there are lots of ideas and many of these

will be high quality and highly relevant. The more people involved in the

conversation though, the more likely that discussions will tend incorporate issues of

the ‘long tail’. Ideas will grow arms and legs, possible abuses will be highlighted

and countermeasures designed in. A brainstorming session about a reasonably well

constrained scenario will become increasingly blue-sky the longer the discussion

persists. An exchange about a relatively obscure scenario in which a particular

system has an unusual quirk will eventually, as time goes by, result in someone

saying ‘Basically we need to rewrite this system from the ground up and add in all

these new capabilities’. From a purely theoretical perspective, it’s probably even

true—working within the context of a budget and deadline, such discussions can be

more effectively re-contextualised and limited to what is manageable. Hobbyist

developments rarely have the same pressures.

However, when it comes time to implement any of these ideas actual contribution

beyond the conceptual is far more difficult to generate. Developer time and

enthusiasm are scare resources and must be spent wisely. When the committee

design stage has fizzled out, the person that has been tasked with implementing the

project finds they are now faced with a largely impossible task because of the well-

meaning additions that were suggested during an enthusiastic discussion. What may

have been a simple change with a well-defined scope becomes a massive project

that will yield, in the end, only incremental benefits over what is already in place.

We have a natural tendency as human beings to spend other people’s time more

freely than we spend our own—when those making suggestions have no ‘skin in the

game’ when it comes to implementation, it is only natural that their reach will

exceed the actual developer’s grasp.

It is clear then that there are multiple layers of what might define contribution in

multi-developer environments, and that the ability of individuals to at least partially

self-select their own contribution is mandated by the voluntary nature of the system.

At one level is the provision of general ideas and suggestions that others will then

take on to develop. At the other is the development of fully featured systems and

frameworks that will make their way into the game proper. Given the environment,

it can be hard to separate out the contributions that an individual has made in terms

of their relative value or importance. A good idea presented in the right way may be

much more important to a project’s eventual success or popularity than weeks of

coded effort that duplicates existing but non-generic functionality. While generally

122 Comput Game J (2016) 5:115–129

123

speaking it is usually argued that ideas are ten-a-penny (Elaine 2012) and all that

matters is the execution (West 2002), the situation is somewhat more nuanced

within game development—the right change to the right game system may yield

great player satisfaction even if it only ends up being a few lines of code. Ten

diligent hours of play testing might result in a value in one system changing from a

ten to a nine, with tremendous impact on playability. We cannot exclude the

evaluative element of player appreciation from our definitions of contribution, and

this in turn creates some of the ethical and legal complexity which we will address.

5 Dealing with Intellectual Property

What we are describing is a complex and socially fragile environment in which to

develop software, and everyone involved is generally doing so out of a sense of

attachment to the game itself, or the creative outlet it provides (Postigo 2007).

However, the loose nature of collaboration and contribution creates a very real

difficulty when it comes time to assess rights over intellectual property, and a game

is little more than an encapsulation of intellectual property within an externally

compelling package.

As a matter of de-facto policy, those charged with the day to day operating and

administration of the game require the ability to authorise access to code or to the

executed representation that the code presents to players. However, the authority for

this is largely simply assumed. The expectation is that the very low stakes involved

would disincentive legal challenges in the case that it was seriously contested by

another party. Given how these games are operated, usually, for no profit and with

no formally valued assets, there is little hope for someone seeking financial

compensation for the unlicensed use of their work—enforcing intellectual property

rights, after all, is largely the province of the wealthy. Lacking the credible risk of

costly legal action, administrators are largely guided instead by their own sense of

ethical responsibility to those who have contributed. This in turn is inverted in their

dealings with other individuals—in the event that the game’s intellectual property is

violated, there are few credible opportunities for seeking recompense or restriction.

Several times during the life of Discworld MUD, the entirety of the game’s

gigabytes of code were downloaded by dissatisfied creators and used to start

unauthorized ‘forks’ of the game. Contribution to hobbyist environments requires at

least some degree of access to either the underlying code or closed tools that

generate content—within Discworld and Epitaph, coders gain increasing access to

the code as they prove their ability to contribute. Hobbyist environments are, in

large part, trust economies—access to game systems is something that is earned via

showing that a developer can be trusted with that access. When that trust is violated

the consequences for the integrity and originality of a game system can be

significant.

Many environments lack a formal policy on the ownership of contribution. At

best there is an informal policy which states generally ‘The code that you write here

belongs to you, but you grant us the right to use it as we wish’. This informal policy

serves reasonably well for most environments, and acts as the foundation tenet of a

Comput Game J (2016) 5:115–129 123

123

kind of ‘ethical ownership’ of the game code. However, it is not a legal ownership

in any real sense and its lack of formality means that the arrangement can be

revoked at any time by the person who contributed code. Given the tangled nature of

what contribution means in these environments, this can be a difficult demand to

meet unless the code is easily identified as belonging to a single person, and not too

tightly integrated into other game systems.

As part of the normal course of developing a complex game engine,

administration teams often make available subsets of the engine for others who

want to build their own similar games. These offerings usually contain only

structural elements, and rarely if ever include game content beyond that required to

demonstrate how the various systems can be used. These are sometimes known as

mudlibs or codebases. Discworld MUD has released a number of these over the

years, and a variant form of the Discworld mudlib was used to build Epitaph.

Epitaph in turn formally forked from the Discworld mudlib in 2012, naming its

derivative branch the Epiphany lib. Each version serves to create a basis upon which

others can create their own games by using the various building blocks of the

engine. They also permit for expanding and changing the game systems to meet a

new developer’s particular preferences. Other mudlibs and codebases exist, each

with their own strengths and weaknesses. The Discworld mudlib is released with the

following licence attached (spelling errors preserved as they are in the README

file):

Discworld mudlib distribution - version 20.0

This is the Discworld mudlib distribution, it is distributed as a publically

usable mudlib based off the code running at Discworld mud. There is no

warenty for it’s use and we cannot be held responsible for anything you do

with the code. This code is required to be used in a free way, no commercial

use may be made of any of the code contained in this distribution.

The Discworld administration team (admin@discworld.imaginary.com):

Pinkfish, Turrican, Ceres, Sojan and Hobbes

Two features are especially notable about this licence. The first is that it is not a

legal licence, and isn’t a variation of any of the commonly used open source

licences that serve as a baseline for distribution of modern software. This is, in part,

a legacy from the original release of the Discworld mudlib which came at a time

which issues of intellectual property ownership in software development were not

so high profile or so high impact.

The second thing is that none of the administration team have a firmly established

legal right to issue any licence at all. There is no formal transfer of authority from

the developer to the administration team, and even if there were that team has

undergone many changes from the first years of the game—of the administration

team named above, currently at the time of writing only one remains in an active

administration role within the game. As such, while there may be an ethical or moral

case of ownership that can be exerted by the administration team, it has little or no

legal weight behind it. The nature of hobbyist development is such that

opportunities for commercialising such a game are limited to non-existent, and so

there are few opportunities to violate the licence in any case. However, in the event

124 Comput Game J (2016) 5:115–129

123

such a breach occurred there is no mandate for the administration team to negotiate

on behalf of all the coders who have contributed to the mudlib over the game’s 20?

years of operation—for Discworld that number is a surprisingly large 1000?

developers. The effort they may have invested into the game is also not possible to

assess in the aggregate—as in most such projects, there is a very long tail of

contribution (Heron et al. 2013).

Strikingly, in this scenario it is those who develop the code, rather than those that

exert moral authority, that have all the power. There is an asymmetrical relationship

where the administration team can be legally denied (in theory, if not in credible

practise) the right to use any code that has been submitted to the game. They in turn

cannot deny permission of anyone else unless individual coders permit them a

suitable licence. They have only the legal rights that their individual contributions

grant them. Strictly speaking, it is likely not legally possible for the administration

team of Discworld to release a mudlib at all, largely because there is no formal

policy of ownership. It may be a largely academic issue, given how challenges to

the admin’s team authority to distribute the code of their developers are rare, but in

higher-stake environments where real money might be involved it would be an

important and problematic situation. This has relevance to Epitaph and all games

built using a Discworld mudlib, they are built from a mudlib that the Discworld

MUD administration team likely had no legal authority to release. Given the small

stakes, everyone involved simply pretends the issues do not exist. This is a luxury

that not all hobbyist games would be able to enjoy.

To avoid these problems for Epitaph’s future, early on in its development a code

ownership policy was put in place to define on what basis contribution was made to

the game. It enshrined the right of creators to their own intellectual property and to

use it in whatever context they wished outside Epitaph, but it also stressed that code

submitted was irrevocably donated as a ‘fork’ to the game. The full policy can be

seen at http://drakkos.co.uk/help/tutorials/creator/code_ownership.html—it is not a

binding document, written as it was without the assistance of any legal represen-

tation, but it serves as the basis for formalising the agreement that all creators make

upon being employed. Formal legal representation, given the lack of a budget to

support hobbyist development, is not lightly retained.

To avoid the issue of impermanence of the administration staff roster, a company

was set up to act as an overarching owner for Epitaph—this in turn ensures that

there is a continuation of ownership should anything happen to the original owner of

the game. This company, Imaginary Realities, is not intended to generate a profit—

merely ro act as a resolution for issues of ownership. Developers then agree to

provide Imaginary Realities with an irrevocable right to use, modify and distribute

the code they submit under any licence that the administration team consider

appropriate. A restriction is placed in the policy though that this will never be for

commercial purposes—while the legal validity of the Discworld licence may be

questionable, the Epitaph licence still honours its ethical validity.

In the situation for Epitaph Online, it is further complicated by the fact that the

mudlib runs on a second application—a driver called FluffOS. This in turn comes

with its own bespoke licence. This in itself is a fork of an earlier application called

MudOS, which was dervived from LPMud:

Comput Game J (2016) 5:115–129 125

123

http://drakkos.co.uk/help/tutorials/creator/code_ownership.html

This game, LPmud, is copyright by Lars Pensj|, 1990, 1991.

Source code herein refers to the source code, and any executables created from

the same source code.

All rights reserved. Permission is granted to extend and modify the source

code provided subject to the restriction that the source code may not be used in

any way whatsoever for monetary gain.

The name MudOS is copyright 1991–1992 by Erik Kay, Adam Beeman,

Stephan Iannce and John Garnett. LPmud copyright restrictions still apply.

In addition, the entire package is copyright 1995 by Tim Hollebeek.

FluffOS is a range of patches to MudOS distributed as the patched source tree

for convenience. LPmud and MudOS copyright restrictions still apply.

Both FluffOS and its earlier ancestor MudOS come with a similar issue to the

Discworld lib itself, although one that is perhaps more tractable given how the

number of contributors over the years is considerably smaller. However, both

licences prohibit the use of the code for commercial purposes, and this is not an

unusual restriction amongst such games. The popular DIKU codebase for example

has been the subject of considerable controversy over the years regarding whether or

not derivatives have been changed ‘sufficiently’ to free developers of its licence,

which states, among other things:

You may under no circumstances make profit on *ANY* part of DikuMud in any

possible way. You may under no circumstances charge money for distributing any

part of dikumud—this includes the usual $5 charge for ‘‘sending the disk’’ or ‘‘just

for the disk’’ etc. By breaking these rules you violate the agreement between us and

the University, and hence will be sued.

Leaving aside the unlikely outcome that anyone will attempt to sue over a breach

of the DIKU licence, it itself exhibits a confused grasp of who is responsible for

violating an agreement—the agreement between the creators and the University is

not legally binding in itself on those who use the software. Such legally incoherent

licences are a feature of the time period in which the code was developed—standard

templates such as the GPL or the various Creative Commons licences were either

not available, or sufficiently obscure that knowledge of their existence cannot have

been assumed. The licence here then represents an agreement unlikely to stand up to

much dedicated scrutiny in court, but again exerts an ethical prohibition against

profiteering from the work of others.

There is little then to credibly stop someone who wishes to make a profit from

their game from doing so even when the mudlib or the codebase they use insists on

non-commercialisation. Lacking much in the way of legal architecture or precedent,

the community has instead solidified around a culture of vocal condemnation for

those that violate licences. Zen (2003) discusses one particular case—that of the

mud called Medievia:

It is important to understand from the license that it was never meant to be a

legal barrier for developers. The lack of legal counsel in writing the licensing

agreement is clear when examining the misspellings, non-legal terminology,

126 Comput Game J (2016) 5:115–129

123

and loopholes in the agreement. Thus, the licensing agreement was really a

request from the DIKU authors to acknowledge their efforts if other

developers used the DIKU code.

The reaction of the community is similarly discussed:

Consequently, despite the large amount of support shown for Medievia,

backlash from the developers within the MUD community was harsh. Many

crusaded against Medievia by trying to inform gamers about the illegality of

the Medievia or, in the case of the cracker who stole Medievia code, directly

attack Medievia. Even some Medievia players decided to stop playing because

of the ethics involved while others felt that because of the DIKU license issue,

the game had stopped focusing on its players and had declined in recent years.

Two of Medievia’s coders, Cestus (Kurt Schwind) and Thranz (Keith Hudson)

resigned from Medievia in 2000 due to ethical objections to the game code.

Additionally, the same year, two of the community’s major resources on the

Web, Top Mud Sites and the MudCenter, removed Medievia from their MUD

listings. Clearly, many in the development community and those in charge of

resource centers believed that Medievia benefited greatly from the DIKU

code, and they felt that Medievia was illegally generating revenues. By

omitting Medievia from their databases, Top Mud Sites and MudCenter

greatly altered the geography of the MUD community. As major resources

within the community, this omission is a signal to others that to the people in

the MUD community, Medievia should not exist.

The effectiveness of such reactions are questionable, given how Medievia

survives to this day while other less morally dubious games have withered away.

However, what is shown in this short discussion is the extent to which the

community itself will act to police what it sees as licence violations. Such

controversies rarely make themselves known to players however, as developers tend

to congregate on sites where those individuals are correspondingly rare.

6 Conclusion

In this paper we have addressed some of the legal and ethical issues that developers

of hobbyist games will face, especially in multi-developer environments. We’ve

done this primarily with reference to the text game Epitaph Online and its ancestor

Discworld MUD, as this is where the largest bulk of these issues have been

encountered. While Epitaph Online is a game that has a very specific style and

niche, the lessons are relevant to all titles and genres.

It’s incumbent on those responsible for administering the evolution of a game

that they understand the implications of intellectual property obligations. When

working just within a small group of friends, concepts like code ownership policies

may seem abstract and potentially divisive. However, the long term implications of

not agreeing upon these issues early are considerable—it’s entirely possible that

Comput Game J (2016) 5:115–129 127

123

someone can lose all legal right to do anything at all with their game by not being

mindful of the consequences.

Similarly, outside of the legal context of licensing there is an ethical and

professional context that revolves around being a productive member of a larger

community. Even in cases where the legal sanctions that might be applied are

unlikely to have much weight, community responses can be striking in their

righteous indignation. There are already many more games in the world than any

one person can possibly play, and the last thing a developer needs is a whole

community of otherwise like-minded souls actively briefing against their offering.

It is incumbent then on those responsible for the management of mulit-developer,

hobbyist environments to proactively consider the implications of intellectual

property before they become an issue. This may often seem like putting the cart

before the horse, worrying about the legal ownership of a product that does not exist

in any meaningful form. As we have seen in this paper though, leaving these

considerations aside until there is a concrete need has the inevitable consequence of

rendering future negotiations all but impossible to fairly conclude.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

Bezroukov, N. (1999). Open source software development as a special type of academic research:

Critique of vulgar Raymondism. First Monday, 4(10). doi:10.5210/fm.v4i10.696.

Bolle, F., & Otto, P. E. (2010). A price is a signal: On intrinsic motivation, crowding-out, and crowding-

in. Kyklos, 63(1), 9–22.

Dourish, P. (1998). Introduction: The state of play. Computer Supported Cooperative Work (CSCW), 7(1),

1–7.

Elaine, J. (2012). Ideas are easy. Storyline, 32, 67.

Frey, B. S. (2002). ‘‘How does pay influence motivation?’’ In Successful management by motivation (pp.

55–88). Berlin, Heidelberg: Springer.

Frey, B. S., & Jegen, R. (2000). Motivation crowding theory: A survey of empirical evidence. Journal of

Economic Surveys, 15(5), 589–611.

Guevara-Villalobos, O. (2011). ‘‘Cultures of independent game production: Examining the relationship

between community and labour.’’ In Proceedings of DiGRA 2011 Conference: Think design play.

Henning, M. (2006). ‘‘The rise and fall of CORBA’’. Queue, 4(5), 28–34.

Heron, M. J. (2010). ‘‘The epitaph survival guide’’. Retrieved June 10 2013. Available Online at http://

www.scribd.com/doc/135219005/Epitaph-Survival-Guide.

Heron, M. J. (2013). ‘‘Likely to be eaten by a Grue’’—the relevance of text games in the modern era.

Computer Games Journal, 2(1), 55–67.

Heron, M. J. (2015). ‘‘A case study into the accessibility of text-parser based interaction.’’ In Proceedings

of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (pp. 74–83).

ACM.

Heron, M., Hanson, V. L., & Ricketts, I. (2013). ‘‘Open source and accessibility: Advantages and

limitations’’. Journal of Interaction Science, 1(1), 1–10.

Hertel, G., Niedner, S., & Herrmann, S. (2003). ‘‘Motivation of software developers in open source

projects: An internet-based survey of contributors to the linux kernel’’. Research Policy, 32(7),

1159–1177.

128 Comput Game J (2016) 5:115–129

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5210/fm.v4i10.696
http://www.scribd.com/doc/135219005/Epitaph-Survival-Guide
http://www.scribd.com/doc/135219005/Epitaph-Survival-Guide

Karlsen, F. (2008). ‘‘Quests in context: A comparative analysis of discworld and world of warcraft’’.

Game Studies, 8(1), 1–18.

Keil, M., Mann, J., & Rai, A. (2000). Why software projects escalate: An empirical analysis and test of

four theoretical models. Mis Quarterly, 24(4), 631–664.

Keil, M., Truex, D. P., & Mixon, R. (1995). ‘‘The effects of sunk cost and project completion on

information technology project escalation’’. IEEE Transactions on Engineering Management, 42(4),

372–381.

Lakhani, K. R., & Wolf, R. G. (2003). Why hackers do what they do: Understanding motivation effort in

free/open source software projects. Working Paper 4425-03, Sloan School of Management, MIT,

Cambridge, MA.

Levesque, M. (2005). ‘‘Fundamental issues with open source software development (originally published

in Volume 9, Number 4, April 2004).’’ First Monday.

Lipkin, N. (2012). Examining Indie’s independence: The meaning of ‘‘Indie’’ games, the politics of

production, and mainstream cooptation. Loading, 7(11), 8–24.

Maier, M. W. (2009). The art of systems architecting. Boca Raton: CRC Press.

Martin, C. B., & Deuze, M. (2009). The independent production of culture: A digital games case study.

Games and culture, 4(3), 276–295.

Moglen, E. (1999). Anarchism triumphant: Free software and the death of copyright. First Monday, 4(8).

doi:10.5210/fm.v4i8.684.

Moody, G. (2002). Rebel code: The inside story of Linux and the open source revolution. New York City:

Basic Books.

Norton, M. I., Mochon, D. & Ariely, D. (2011). ‘‘The ‘IKEA effect’: When labor leads to love’’. Harvard

Business School Marketing Unit Working Paper 11-091.

Postigo, Hector. (2007). Of mods and modders chasing down the value of fan-based digital game

modifications. Games and Culture, 2(4), 300–313.

Raymond, E. S. (2001). The cathedral and the bazaar: Musings on linux and open source by an

accidental revolutionary. Sebastopol: O’Reilly Media Inc.

Reagle, J. M. Jr (2007). ‘‘Do as I do: Authorial leadership in wikipedia.’’ In Proceedings of the 2007

international symposium on Wikis (pp. 143–156). ACM.

Roberts, Jeffrey A., Hann, Il-Horn, & Slaughter, Sandra A. (2006). Understanding the motivations,

participation, and performance of open source software developers: A longitudinal study of the

Apache projects. Management Science, 52(7), 984–999.

Schulze, G. G., & Frank, B. (2003). Deterrence versus intrinsic motivation: Experimental evidence on the

determinants of corruptibility. Economics of governance, 4(2), 143–160.

Senyard, A., & Michlmayr, M. (2004). ‘‘How to have a successful free software project.’’ In IEEE

Software Engineering Conference. 11th Asia-Pacific (pp. 84–91).

Swain, C. (2009). Who needs a publisher… or a retailer or a marketer? Computer, 42(2), 103–105.

Townsend, J., & Heron, M. J. (2013). Authorship and Auteurship in the collaborative development

process of text-based games. In Chercher le text: Locating the text in electronic literature

conference, Paris, France.

Von Krogh, G. (2003). Open-source software development. MIT Sloan Management Review, 44(3),

14–18.

West, Michael A. (2002). Ideas are ten a penny: It’s team implementation not idea generation that counts.

Applied Psychology, 51(3), 411–424.

Young, Kimberly S. (1998). Internet addiction: The emergence of a new clinical disorder. Cyber

Psychology & Behavior, 1(3), 237–244.

Zeigarnik, B. (1938). On finished and unfinished tasks. A source book of Gestalt psychology, 1, 300–314.

Zeiller, M., & Schauer, B. (2011). Adoption, motivation and success factors of social media for team

collaboration in SMEs. In Proceedings of the 11th International Conference on Knowledge

Management and Knowledge Technologies (p. 4). ACM.

Zen, L. (2003). The impacts of medievia and medthievia. Available Online at http://www.stanford.edu/

group/htgg/cgi-bin/drupal/sites/default/files2/lmzen_2003_1.pdf.

Comput Game J (2016) 5:115–129 129

123

http://dx.doi.org/10.5210/fm.v4i8.684
http://www.stanford.edu/group/htgg/cgi-bin/drupal/sites/default/files2/lmzen_2003_1.pdf
http://www.stanford.edu/group/htgg/cgi-bin/drupal/sites/default/files2/lmzen_2003_1.pdf

	coversheetJournalArticles
	HERON 2016 Ethical and professional complications
	Ethical and Professional Complications in the Construction of Multi-Developer Hobbyist Games
	Abstract
	Introduction
	The Context of Contribution
	Project Management in Hobbyist Environments
	Project Scoping and Feature Creep
	Dealing with Intellectual Property
	Conclusion
	Open Access
	References

	OA: GOLD
	OA Logo:
	AUTHORS: HERON, M.J.
	TITLE: Ethical and professional complications in the construction of multi-developer hobbyist games.
	YEAR: 2016
	Publisher citation: HERON, M.J. 2016. Ethical and professional complications in the construction of multi-developer hobbyist games. The computer games journal [online], 5(3), pages 115-129. Available from: https://doi.org/10.1007/s40869-016-0025-0.
	OpenAIR citation: HERON, M.J. 2016. Ethical and professional complications in the construction of multi-developer hobbyist games. The computer games journal, 5(3), pages 115-129. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk.
	Version: PUBLISHED
	Publisher: SPRINGER
	Series: The computer games journal
	ISSN:
	eISSN: 2052-773X
	Set statement:
	License: BY 4.0
	License URL: https://creativecommons.org/licenses/by/4.0
	CC Logo:
		2017-04-03T12:23:24+0100
	OpenAIR at RGU

