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Abstract—The Multi-mode Resource Constrained Project
Scheduling Problem (MRCPSP) has been of research interest for
over two decades. The problem is composed of two interacting sub
problems: mode assignment and activity scheduling. These prob-
lems cannot be solved in isolation because of the interaction that
exists between them. Many evolutionary algorithms have been
applied to this problem most commonly the Genetic Algorithm
(GA). It has been common practice to improve the performance
of the GA with some local search techniques. The Bi-population
Genetic Algorithm (BPGA) is one of the most competitive GAs
for solving the MRCPSP. In this paper, we improve the BPGA by
hybridising it with an Estimation of Distribution Algorithm that
focuses on improving how modes are generated. We also suggest
improvement to the existing experimental methodology.

I. INTRODUCTION

The Multi-Mode Resource Constrained Project Scheduling
Problem (MRCPSP) is a generalisation of the well-known
Resource Constrained Project Scheduling Problem (RCPSP).
The RCPSP entails assigning start and finish times to activities
that make up a project such that precedence and resource
constraints are respected. The most common objective of this
problem is to reduce the total project duration (makespan)
[1]. Other objectives based on tardiness or earliness have also
been considered in previous research [2]. The RCPSP captures
real-world situations originating from different industries such
as planning, maintenance, management and manufacturing
[3]. However the RCPSP does not adequately capture the
interaction between man-hours required for a job and the
resources used [4]. This additional factor is considered in the
formulation of the MRCPSP.

MRCPSP is considered to be more complex than the stan-
dard RCPSP. This is because, in addition to determining the
order in which activities are executed (i.e activity scheduling),
decision needs to be made as to how each activity will be
executed (i.e mode assignment). The activity scheduling and
mode assignment aspects of the MRCPSP are interrelated and
cannot be solved in isolation.

Activity scheduling entails assigning priorities to activities
that make up a project such that precedence constraints are
respected (i.e each activity must be performed before its suc-
cessor(s)). Mode assignment entails assigning a mode of exe-
cution to each activity of a project while respecting resource
limits. A mode of execution is a vector of resources (renewable
and non-renewable) and the corresponding duration required
to completely perform an activity. Renewable resources are

replenished per period of time while non-renewable resources
are limited for the entire project. The modes of execution
of an activity have varying resource and time requirements.
A solution to the MRCPSP is an allocation of modes, start
and finish times to all the activities of a project such that
precedence and resource constraints are respected. This is with
the overall aim of minimising makespan of the project.

Several meta-heuristics such as Scatter Search, Simulated
Annealing, Particle Swarm Optimisation, Ant Colony Optimi-
sation, Genetic Algorithms (GA) and Estimation of Distribu-
tion Algorithms (EDA) have been applied to this problem. A
review of applications of meta-heuristics to the MRCPSP is
presented in [5] and we will be making a lot of reference to
this literature. The GA has been a frequent choice amongst
researchers applying metaheuristics to MRCPSP [6], [7], [8],
[9], [10], [11]. Although Scatter Search reports better solutions
than other meta-heuristics on many problem sets, the best
performing GAs [6], [8] are however better on larger problems
[5].

Performances of algorithms particularly the GAs differ
much from each other. This can be attributed to some im-
plementation choices, one such choice is the use of local
search procedures, which has been reported to significantly
improve the performance of GAs [5]. GAs that use more local
search procedures perform better than the ones that use few
or none [5]. We seek to understand the effect of configuration
choices on algorithm performance. We particularly investigate
the mode improvement local search method presented in [8]
which performs two major tasks: feasibility and makespan
improvement.

Generally, local search methods have been applied to the
mode assignment sub-problem questioning the suitability of
the GA for this aspect of the MRCPSP. The crossover operator
of the GA is limited in its ability to learn the interrelations
between problem parameters [12]. We aim to improve the
GA by applying EDA to the mode assignment aspect of the
problem.

The rest of the paper is structured as follows. In Section 2,
we present a background to our study. Here, we formulate
the problem, present a brief review of GA configuration
choices and motivation for a hybrid approach. In Section 3,
we present our proposed solution approach. Section 4 presents
the experimental configurations and parameter settings while
results and analysis are described in Section 5. Section 6



presents our conclusions and suggests directions for future
research.

II. BACKGROUND

A. Problem Formulation

The MRCPSP can be formerly defined as follows: A project
consists of a set of n activities. Every activity i is labeled
from 1,...,n. Activity i, i ∈ [2, n] has a set of predecessors
Predi which suggests that activity i cannot be performed
until every predecessor h, h ∈ Predi has been completed.
Activity i must be performed in a mode k ∈ [1,mi],
where mi is the number of possible modes of i. Given that
there are A renewable resources, each renewable resource r,
r ∈ [1, |A|] is available per period of time. The maximum
per period availability of r is denoted by αmaxr. Apart
from renewable resources, there are also B non-renewable
resources that cannot be renewed but available for the entire
project duration. The overall availability of the non-renewable
resource l, l ∈ [1, |B|] is denoted by βmaxl. Each mode
of execution k of an activity i is composed of an integer
vector of renewable resources (αi,k,1, ..., αi,k,|A|), an integer
vector of non-renewable resources (βi,k,1, ..., βi,k,|B|) and the
associated duration/execution time ti,k.

The aim of the MRCPSP is to select exactly one mode of
execution for each activity subject to resource and precedence
constraints. This is such that makespan is minimised. We
formulate the MRCPSP as follow.

Minimise ftn subject to:

∀ i ∈ [1, n], sti ≥ fth ∀ h ∈ Predi (1)

Let Cp be the set of activities being executed during time
period [p-1,p], then∑

i∈Cp
αi,ki,r ≤ αmaxr ∀ r, r ∈ [1, |A|], ∀ p (2)

n∑
i=1

βi,ki,l ≤ βmaxl ∀ l, l ∈ [1, |B|] (3)

We denote the start and finish times of activity i by sti and
fti respectively. The precedence constraint is presented in (1)
while the renewable and non-renewable resource constraints
are respectively presented in (2) and (3). In (2) and (3), ki is
the allocated mode of i and can only be one of the predefined
modes of i. Also, αi,ki,r and βi,ki,l are respectively the amount
of renewable resource r and non-renewable resource l required
by activity i performed in mode ki.

B. Algorithm Configuration for Leading GAs

Genetic algorithms are amongst the most competitive algo-
rithms for solving the MRCPSP. Results in [5] show that GAs
are better on common large problem sets. The Bi-Population
Genetic Algorithm (BPGA) [8] performs better than other GAs
[5]. Hence, we consider it state of the art. In this section,
we describe the conventional configuration choices in the
most competitive GAs at solving the MRCPSP. This is with
particular attention to local search methods.

The preprocessing technique of Sprecher et al. [13] is
commonly executed before applying GAs to the MRCPSP.
This technique which is not only limited to GA applications is
formerly defined in [13]. It reduces the search space of feasible
solutions by eliminating non-executable modes, redundant
resources and inefficient modes. The preprocessing technique
has been used in [6], [8], [7] amongst others.

Furthermore, the use of local search procedures has also
been very common when solving the MRCPSP with meta-
heuristics. Four main local search procedures are commonly
used: improvement of initial population, makespan improve-
ment, feasibility improvement and forward-backward proce-
dures, these are described in [5]. These local search methods
have mainly been applied to mode solutions. Their effects
range from improving feasibility to improving makepsan of
a solution by refining its mode selection.

The generation of initial population of solutions is often
done with a quality improvement procedure: improvement of
initial population local search. This improves the feasibility of
a mode solution by changing the mode selections of randomly
selected activities until feasibility is attained or a number of
iterations have been reached [8], [6] .

The Schedule Generation Scheme (SGS) is the principal
procedure for most heuristic solution to a project scheduling
problem [14]. This is a step-wise procedure that builds a
schedule from a schedule representation by activity incre-
mentation (serial) or time incrementation (parallel) [14]. The
parallel SGS is however less common because it is sometimes
unable to reach optimal [15]. The SGS has been extended to
the MRCPSP and is the conventional approach for generating
schedules. Furthermore, some extensions of the SGS have been
proposed which mainly combine SGS with local search.

In this paper, we investigate the extended SGS [8] which
combines SGS with a mode improvement local search. The
mode improvement procedure is a combination of makespan
improvement and feasibility improvement and is described as
follows. For an activity i, another mode mi

′ is selected. The
Excess Resource Requirement ERR of the new mode solution
x′ is evaluated by summing the additional non-renewable
resource requirements of x′. ERR(x′) is compared with that
of the original mode solution x. If ERR(x) is not better than
ERR(x′), the procedure further checks for improvement in
the finish time of that activity. If an improvement is achieved
in the finish time of activity i, mode solution x is set to x′.
Otherwise, mode solution x is retained. The pseudocode for
the mode improvement procedure is presented in [8]. This
procedure is reported to significantly improve the SGS.

Another extension of the SGS is the forward-backward
SGS proposed in [6] which combines the forward-backward
local search and the SGS. The forward-backward SGS seeks
to improve mode selection during scheduling and iteratively
transforms left justified schedules (jobs are scheduled as early
as possible) into right justified schedules (jobs are scheduled
as late as possible) and vice versa until no further improvement
can be made in the makespan. The concept of scheduling
jobs forward and backward has also been used in [8]. They



proposed the BPGA which is a GA with two populations,
one is a population of left justified schedules while the
other is a population of right justified schedules. The GAs
presented in [6] and [8] are considered the most competitive
GA applications for the MRCPSP [5].

In this paper, we focus on the mode improvement local
search of the BPGA.

C. Motivation for Hybridising GA with EDA

To the best of our knowledge, there are only two applica-
tions of EDAs [16], [17] to the MRCPSP.

EDAs, different from GAs have further relied on local
search methods to improve activity solutions. One is the Multi-
Mode Version Permutation-Based Local Search Strategy (MP-
BLS) in [16]. MPBLS swaps two activities in a list alongside
their corresponding modes subject to precedence constraints.
Another activity based local search is the random walk local
search in [17]. An improvement was made to the algorithm
in [16] by introducing random walk local search for the
purpose of better exploring the space of activity solutions [17].
Both implementations use the Population-Based Incremental
Learning (PBIL) based on two separate probabilistic models.
One is used for generating activity lists while the other is used
for generating mode lists.

These applications of EDA are however not as competitive
as the GAs. These applications have identified the need to
explore the search space of activity solutions better which
is not the case with the GA. We therefore consider the GA
more suitable for generating activity solutions. Furthermore,
given that the GA relies on local search to improve the way
modes are generated, we attribute this to its limitation in
learning the structure of a problem. The EDA is designed to
tackle this kind of problem by sampling a probabilistic model
of promising solutions [12]. It is able to preserve structure
and learn mode selections that contribute to more promising
solutions. We therefore consider it more suitable for generating
mode solutions. This motivates the hybridisation of BPGA
with an EDA.

III. SOLUTION APPROACH

In this section, we present the BPGA-EDA which is an
extension of the BPGA approach in [8]. The BPGA-EDA is
the BPGA assisted by an EDA for the generation of mode
solutions. We use a PBIL style which refines those presented
in [17] and [16]. BPGA-EDA is configured as follows.

A. Representation

The BPGA-EDA uses the random key representation for
activity solutions as presented in the BPGA [8]. Each RK value
serves as a priority value for the activity defined by that index.
Activity with a lower priority value is considered before that
with a higher value. The mode assignment is represented as a
string of integers and the value at each index defines the mode
in which the activity defined by that index will be performed.
The string lengths correspond to the number of activities in
the project.

B. Initial Population

The BPGA-EDA generates its initial population of mode
and activity solutions at random. The improvement of initial
population local search is afterward applied to mode solutions
in the same way as the BPGA [8].

C. Fitness Computation

This is a measure of the quality of a solution. As much
as makespan is a good discriminatory factor, it cannot be
directly used as the fitness function because resource infeasible
solutions will eliminate good solutions in the search. We use
the fitness function proposed in [7] which is the one that has
been used for the BPGA. The fitness function is as follows:

f(x) =

max mak feas pop+mak(x)−min CP + ERR(x) ifERR(x) > 0

mak(x) otherwise

(4)
The fitness of a feasible solution is equal to its makespan.
However, the makespan of infeasible solutions are penalised.
The maximum makespan amongst the feasible solutions in
a population is denoted by max mak feas pop. Also, the
minimal critical path obtained by selecting modes with
the least duration and assuming there is no resource re-
striction is denoted by min CP . The difference between
max mak feas pop and min CP as well as ERR(x) are
added to the makespan of an infeasible solution.

D. Probabilistic Model

To create a mode solution, we sample a probability matrix.
The probability matrix is defined as follows.

Mp =

p11 · · · p1m
...

. . .
...

pn1 · · · pnm

 (5)

Each probability value pik in this n by m probability matrix
is the probability that activity i will be performed in mode
k. Modes of an activity that are impossible or have been
eliminated during the preprocessing stage will have probability
scores equal to 0. This is because they will not have occurred
in the initial population as we execute the preprocessing
procedure before the initial population is generated.

The scatter search procedure in [18] which is one of the
most competitive meta-heuristic for solving the MRCPSP [5]
used Sum of Durations SUD to select modes for the first
population. This is a measure of mode solutions only and has
been reported to have a strong correlation with fitness [18]. It
is calculated as follows.

SUD =
n∑

i=1

ti,k (6)

The execution time ti,k for each activity in its allocated
mode is summed up to obtain the SUD value. This approach
improved the quality of their initial solutions and we initialise
our EDA in a similar way.



To create the initial probability matrix, each solution in the
initial population is evaluated using the SUD. This means that
in our fitness function (for the first population), the makespan
is replaced with the SUD value and infeasible solutions are
penalised in the same way as the makespan. We rank all mode
solutions in the population from best (lowest fitness value) to
least (highest fitness value). The top (best) b solutions are
selected from the population using truncation selection. The
probability score is calculated as follows. For an activity i,
we divide the number of occurrences of each possible mode
of execution by b. e.g if the truncation size is ten and amongst
the best ten solutions, activity 2 was executed in mode 1 : six
times, mode 2 : four times and no occurrence of mode 3.
The probability values p21, p22 and p23 will be 0.6, 0.4 and 0
respectively.

Initialisation based on SUD is an improvement on previous
approaches [17], [16] that initialise their model using equal
probabilities. The disadvantage of the previous approach is
the possibility of sampling impossible modes, to tackle this
problem an additional step of setting impossible modes to 0
is performed. We however do not require this additional step.

Subsequently, the mode solutions are paired with activity
solutions to form complete solutions. This is done in order of
solution generation. These solutions are then ranked according
to their fitness (based on makespan). Probability scores are
recalculated for each mode of every activity. Since we use a
PBIL, we update the model using a learning rate lr as shown
in (7).

pik(g) = (lr ∗ pik(g)) + ((1− lr) ∗ pik(g − 1)) (7)

In (7), pik(g) and pik(g−1) are pik values at generations g
and g − 1 respectively. The probabilistic model is updated at
the end each generation until the stopping criteria is met. This
is because it is more computationally efficient than updating
after the creation of each solution.

E. BPGA-EDA Workflow

The BPGA approach involves the use of two separate
populations POPL and POPR. POPL is a population of
left justified schedules while POPR is a population of right
justified schedules. In a left-justified schedule, activities are
scheduled using the SGS (activities are scheduled as early
as possible) while in a right-justified schedule, activities are
scheduled using the backward SGS (activities are scheduled
as late as possible).

In the BPGA, each individual i in POPL or POPR goes
through crossover and serves as the first parent (parent1), the
second parent (parent2) is selected by tournament selection
of size two. Two offspring are generated via crossover. The
activity and mode solutions of the offspring go through mu-
tation at specified rates. The best of the two offspring from
POPL replaces individual i in POPR and vice versa. The best
solutions in POPL or POPR are however not replaced except
the new offspring is better. The overall best solution is returned

at the end of each generation. The algorithm is stopped once
optimal or maximum number of schedule is reached.

In the BPGA-EDA, parameter: edar ∈ [0, 1] is introduced
to determine the rate at which EDA will be applied for
generating mode solutions. We use the following notation
BPGA-EDAedar to express the type of BPGA-EDA used.
BPGA-EDA0 is equivalent to the BPGA (i.e when edar = 0,
EDA is not used), but BPGA-EDA1 indicates that all mode
solutions are generated by the EDA.

In the algorithm, we build two models Mp1 and Mp2 based
on POPR and POPL respectively. We use the same crossover
approach for RKs presented in the BPGA to generate activity
solutions from parent1 and parent2. We generate mode
solution for POPR and POPL by sampling Mp1 and Mp2

respectively.

The BPGA-EDA is formerly defined as fol-
lows.

1: execute preprocessing procedure
2: generate initial population POPL

3: compute fitness for each individual in POPL

4: repeat
5: if edar > 0 then
6: select best b < |POPL| solutions to form S.
7: build probabilistic model Mp from mode assignments

of solutions in S
8: initialise probabilistic models Mp1 and Mp2 with Mp

9: end if
10: for i = 1 to |POPL| do
11: set individual i in POPL as parent1
12: generate parent2 by tournament selection on POPL

13: if rand < edar then
14: perform crossover to generate two offspring activ-

ity solutions
15: sample Mp1 to produce two offspring mode solu-

tions
16: generate two offspring solutions by combining

each pair of offspring activity and mode solutions
17: else
18: perform crossover to generate two offspring solu-

tions
19: end if
20: perform mode mutation
21: perform activity mutation
22: apply backward SGS to the two offspring
23: update POPR with the best offspring
24: end for
25: for i = 1 to |POPR| do
26: set individual i in POPR as parent1
27: generate parent2 by tournament selection on POPR

28: if rand < edar then
29: perform crossover to generate two offspring activ-

ity solutions
30: sample Mp2 to produce two offspring mode solu-

tions
31: generate two offspring solutions by combining



each pair of offspring activity and mode solutions
32: else
33: perform crossover to generate two offspring solu-

tions
34: end if
35: perform mode mutation
36: perform activity mutation
37: apply SGS to the two offspring
38: update POPL with the best offspring
39: end for
40: if edar > 0 then
41: update Mp1 using POPR

42: update Mp2 using POPL

43: end if
44: until stopping criteria satisfied
45: return overall best solution

Note that rand is a random number between 0 and 1.

IV. EXPERIMENTS

One of the principal factors in assessing the performance
of an algorithm is the measure of performance. Although the
meta-heuristics applied to the MRCPSP are non-deterministic,
previous literature do not give information about variance. In
this paper, we investigate variance as part of the measure of
performance. We also describe the choice of problem set, a
proposed sampling method and the measure of complexity
used for parameterising BPGA-EDA.

A. Benchmark Problems

There are many benchmark problems in previous research
such as Boctor [19], PSPLIB [20] and the recently designed
MMLIB [5] problem sets. In this paper, we use the J10, J20
and J30 problem sets from the well-known PSPLIB available
at http://www.om-db.wi.tum.de/psplib/. We chose these three
as they are the most common in literature, hence useful for
comparison. However, not all instances of these problem sets
have at least one feasible solution, we therefore exclude them
in our computation as conventionally done. After eliminating
such problems, the J10, J20 and J30 have 536, 554 and 552
instances respectively.

B. Stopping Criterion and Performance Measure

When applying an algorithm to these problem sets, previous
researchers have used the number of schedules as the stopping
criterion. This is often set to 5000 number of schedules. The
maximum CPU time is another criterion that has been used in
the past. For ease of comparison, we use the maximum number
of schedules as this is most commonly used. We note that a
schedule refers to a single time (start and finish) assignment for
each activity of a project. However, some local search methods
like the makespan improvement [6], [8] may require more than
one time assignment for an activity. To cater for this, Lova
et al. [6] calculate the number of schedules by dividing the
number of times the activities of a project have been assigned
a start time by the total number of activities. This implies that
each change in the start time of an activity contributes to a

fraction of a schedule. For instance, if each activity of a project
have been assigned a feasible start time twice, the number
of schedule will be equal to 2. This method of calculating
number of schedules have also used in [8], [5]. We use the
same calculation in this paper.

The most common performance measure using number
of schedules as stopping criteria is the average percentage
deviation from optimal (Ave%.Dev.Optimal). Where there
are no optimal values, the critical path based lower bound
(CPBLB) is used instead of the optimal. The CPBLB is
estimated using the critical path based on the modes with
the least durations. The Ave%.Dev.Optimal is calculated as
follows

Ave%.Dev.Optimal =

∑n

i=0
(((bestF it−optimal)/optimal)∗100)

n (8)

In eq. (8), bestF it is the fitness of the best solution generated
by the algorithm.

In this paper, we average the Ave%.Dev.Optimal over ten
runs.

C. Generation of Sample Set

We have identified the non-deterministic nature of the
BPGA. For instance, ten runs of our implementation of the
BPGA on J10 produced Ave%.Dev.Optimal values ranging
from 0.018 to 0.096 as shown in Figure 1.

Fig. 1. Results for J10 - Ave%.Dev.Optimal

The reported Ave%.Dev.Optimal value for the BPGA on
J10 is 0.01. Our results are consistent with the reported BPGA
performance being the best over several runs. In order to
make the most meaningful comparisons amongst algorithms,
in this paper we will report average performance with variance
alongside best performance over several runs.

Considering the nature of the algorithm and the number
of instances in the problem sets, the computational cost of
experiments grow very quickly. To be able to make compar-
isons based on several runs and also control the computational
cost, we make use of samples from the problem sets. To
ensure that the samples are representative of the problem sets,
we sort them by complexity and sample uniformly across
the distribution. This leads us to the choice of the measure
of complexity. A description of the proposed measure of
complexity and sample generation technique is as follows.

Relative Resource Availability: The measures of complex-
ity that exists in literature include the order strength, resource



factor and resource strength. The order strength which is
the number of precedence relationship in the problem is not
only constant across each problem set but measures only the
complexity of the activity scheduling aspect of the problem.
Also, the resource factor and resource strength are not specific
to mode generation. Since our focus is on the generation of
highly fit mode assignments, we proposed a measure that
relates to the ease of generating mode feasible solutions. Also,
this approach takes the preprocessing technique into consid-
eration as we only calculate the complexity after executing
the preprocessing technique. Modes or constraints that are
eliminated during preprocessing are therefore not taken into
consideration. This means that instances with redundant non-
renewable resources will have a complexity score of 0 . To
generate the RRA score, we used the following formula.

RRA = Max

∑n

i=1

∑mi

k=1
βi,k,1

|mi|
βmax1

, · · · ,
∑n

i=1

∑mi

k=1
βi,k,|B|

|mi|
βmax|B|

 (9)

For a mode solution to be feasible, the sum of each non-
renewable resource utilisation for all activities must be less
than the maximum availability of that resource. The higher the
ratio of the utilisation to availability the more difficult it is to
generate a feasible solution. As shown in eq. (9), we generate
a RRA score by calculating the average resource requirement
of each activity for all its possible modes of execution. We
sum this for all activities and divide it by the maximum non-
renewable resource requirement. We do this for each non-
renewable resource and pick the maximum of the values. This
is because a problem is as complex as the most constrained
resource.

Sampling Approach: To generate sample set of size n,
the aim is to divide the problem instances in a problem set
into n complexity groups and sample one problem from each
group.

1: order problem set dst in ascending order of RRA
2: initialise the required sample size n
3: create an array dataGroupSizes of size n
4: leftOver = |dst|%n
5: for i = 1 to |dst| do
6: dataGroupSizes[i] = |dst|/n
7: if leftOver > 0 then
8: increment dataGroupSizes[i]
9: decrement leftOver

10: end if
11: end for
12: Define a sample set sst
13: Define a variable j = 0
14: for i = 1 to n do
15: Add dataGroupSizes[i] to j
16: Add the jth element in dst to sst
17: end for

We determine the sizes dataGroupSizes of each group by
dividing the number of instances in a problem sets by sample

size n. We distribute the remainder leftOver over the earlier
groups. This is so that groups of easier problems are the ones
that get the bigger group sizes where n does not divide |dst|
without remainders. We do this to ensure that we are not
parameterising our algorithm based on more simpler prob-
lems than harder ones. After determining dataGroupSizes,
we order all the problems in a given problem set dst in
ascending order of RRA. We use the cumulative values j of
dataGroupSizes to determine the problem to sample. This
way we are sampling the last problem of each group and this
approach ensures we do not leave the hardest problem out.

In this paper, we set the number of instances n in the sample
set to 20. For example, we create J10 sample with 20 instances
from J10. The complexity distribution of the J10 is shown
in Figure 2. The dots along the complexity distribution line
of Figure 2 indicates the sampled problems. This approach
has particularly been used for parameterising the proposed
algorithm.

Fig. 2. Sampling along the complexity distribution of J10

D. Parameter Settings

We use all the recommended parameters of the BPGA: one-
point crossover, 0.3 mode improvement rate, 0.04 and 0.02
activity and mode mutation rates respectively. The population
size is calculated by e3.551+

22.72
|N| , all as recommended in

[8]. We however note that this may not be the best set
of parameters for the EDA aspect of the BPGA-EDA but
we retain them for simplicity of parameter tuning. Also,
difference in performance of the BPGA and BPGA-EDA may
be attributed to new choice of parameters rather than the
algorithmic approach.

Furthermore, the BPGA-EDA requires three additional pa-
rameters which are learning rate, truncation size and edar.
We vary the truncation size between 10% and 50% using a
step size of 10 and learning rate from 0.1 to 1.0 using a step
size of 0.1. Given that EDAs and GAs traverse the search
space in different ways, there has been research on combining
both algorithms [21], [22]. Apart from generating all mode
solutions with EDA, we consider combining crossover (GA)
and sampling of the probabilistic model (EDA) for mode
generation. We therefore examine edar values 0.5 and 1.0.

We run these settings on sample sets of J10, J20 and J30
twenty times and average the results. Based on the average and
standard deviations, we use the Friedman ranking test [23] to
select the best set of parameters. Note that when certain pa-
rameters are ranked the same, we choose the set of parameters



requiring the lowest average number of schedules. We found
that 10% truncation size was always ranked best. However the
learning rate varied a lot. Table I shows the truncation size and
learning rate for BPGA-EDA0.5 and BPGA-EDA1.

TABLE I
BPGA-EDA PARAMETERS USING EXTENDED SGS- TRUNCATION SIZE(%

OF POPULATION SIZE)/LEARNING RATES

Problem Sets BPGA-EDA0.5 BPGA-EDA1

J10 10/0.9 10/1.0
J20 10/0.6 10/0.4
J30 10/0.7 10/0.5

Furthermore, the mode improvement local search which the
BPGA depends significantly on is computationally expensive
as it is applied during every schedule generation. We will
also compare the BPGA with BPGA-EDA with 0 mode
improvement rate (i.e standard SGS). Moreover, this will give
us a clearer picture of the difference between applying the GA
and EDA for the generation of mode solutions. This will also
help us to determine if an improvement matching that of the
mode improvement local search can be made. The learning
rates and truncation sizes for the BPGA-EDA0.5 and BPGA-
EDA1 within this context are different and are presented in
Table II.

TABLE II
BPGA-EDA PARAMETERS USING SGS– TRUNCATION SIZE(% OF

POPULATION SIZE)/LEARNING RATES

Problem Sets BPGA-EDA0.5 BPGA-EDA1

J10 10/1.0 10/1.0
J20 20/0.8 20/0.4
J30 20/0.5 30/0.5

V. RESULTS AND ANALYSIS

In this section, we present the results from comparing the
BPGA-EDA0.5 and BPGA-EDA1 with our implementation of
the BPGA. We have shown that there are variations in multiple
runs of the BPGA but results for only one run is reported in
literature. For this reason, we use our implementation of the
BPGA so that we can compare based on average and standard
deviations over several runs. Also, for a fairer assessment,
we have used the same algorithm with just an additional
parameter edar to determine how much of EDA is used for
mode generation. This means that we are comparing based on
same conditions and implementation.

TABLE III
RESULTS BASED ON SGS - AVERAGE Ave%.Dev.Optimal (STANDARD

DEVIATION) OF TEN RUNS

Problem sets BPGA BPGA-EDA0.5 BPGA-EDA1

J10 0.61 (0.08) 0.19 (0.05) 0.20 (0.04)
J20 2.34 (0.05) 1.21 (0.06) 1.60 (0.07)
J30 17.89 (0.18) 14.67 (0.06) 15.06 (0.07)

In Tables III and IV, we present for each problem set, the
average of Ave%.Dev.Optimal and the standard deviation

TABLE IV
RESULTS BASED ON EXTENDED SGS - AVERAGE Ave%.Dev.Optimal

(STANDARD DEVIATION) OF TEN RUNS

Problem sets BPGA BPGA-EDA0.5 BPGA-EDA1

J10 0.05 (0.02) 0.03 (0.02) 0.03 (0.02)
J20 0.88 (0.04) 0.53 (0.04) 0.69 (0.04)
J30 14.41 (0.05) 13.68 (0.03) 13.87 (0.07)

(in brackets) over ten runs. These results are based on our
implementation of the BPGA, BPGA-EDA0.5 and BPGA-
EDA1 on the J10, J20 and J30. We compare the BPGA-EDA0.5

and BPGA-EDA1 with the BPGA. Results that are statistically
better than the BPGA are displayed in bold. In this paper, we
use the student t-test and a 0.05 level of significance.

• Comparison Based on the SGS: Table III shows results
using the SGS for schedule generation. The BPGA-
EDA0.5 and BPGA-EDA1 have significantly lower
Ave%.Dev.Optimal than the BPGA on all the problem
sets: J10, J20 and J30. We observe a significant improve-
ment in the use of EDA for mode generation .

• Comparison Based on the Extended SGS: Table IV shows
results that are based on the extended SGS. The BPGA-
EDA0.5 and BPGA-EDA1 produce statistically lower
Ave%.Dev.Optimal than the BPGA on J10, J20 and
J30. Again, a significant improvement is achieved by
using EDA for mode generation.

• Impact of Extended SGS: SGS extended by the local
search method (mode improvement) not only improves
the results produced by the BPGA but also improves
the results of the BPGA-EDA0.5 and BPGA-EDA1. Inas-
much as there is a clear advantage of hybridising EDA
with BPGA (BPGA-EDA), the mode improvement local
search method cannot be eliminated by applying the
BPGA-EDA without compromising the quality of results
produced. The results in Tables III and IV therefore also
show that the BPGA-EDA0.5 and BPGA-EDA1 without
mode improvement are worse than the BPGA with mode
improvement.

• BPGA-EDA0.5 and BPGA-EDA1.0: comparing the
two versions of BPGA-EDA: BPGA-EDA0.5 and
BPGA-EDA1.0, the former produces significantly better
Ave%.Dev.Optimal than the later on the J20 and J30 but
not significantly better on the J10. This is true when the
SGS or the extended SGS is used. In general, we observed
that the BPGA-EDA0.5 performs better than the BPGA-
EDA1.0. This is based on the results shown in Tables III
and IV and can be attributed to the exploration ability
of the GA and the exploitation ability of EDA. This
is consistent with advantages of GA-EDA hybridisation
noted by other researchers [21], [22].

For the purpose of comparison with existing published
values, Table V shows the BPGA-EDA’s best of ten runs as
well as the published value of the BPGA.

The results in Table V are similar and it is not clear which
approach is better than which. We assert that results averaged



TABLE V
RESULTS BASED ON EXTENDED SGS - AVERAGE % DEVIATION FROM

OPTIMUM - BEST OF TEN RUNS

Problem sets BPGA BPGA-EDA0.5 BPGA-EDA1

J10 0.01 0.01 0.00
J20 0.57 0.46 0.62
J30 13.75 13.73 13.61

over several runs provide a fairer assessment of the algorithms.

VI. CONCLUSION AND FURTHER WORK

In this paper, we propose a hybrid algorithm: BPGA-EDA,
which is a Bi-population Genetic Algorithm assisted by an
EDA for the generation of mode solutions. Experiments com-
paring the BPGA-EDA with BPGA show that hybridisation
with EDA produces significant performance improvements.
We are able to conclude that EDAs are better suited for gen-
erating mode solutions and GAs are well suited for generating
activity solutions.

Furthermore, we show that the mode improvement local
search not only improves the BPGA but also the BPGA-EDA.
We have not been able to eliminate the mode improvement
local search of the BPGA by using the EDA for mode genera-
tion without compromising the quality of results produced. We
however note that the BPGA-EDA based on SGS may be more
competitive on larger problem sets because we observed more
comparable results on the larger problem set: J30. We also
note that parameters of BPGA have been retained in BPGA-
EDA for ease of comparison and parameter tuning. They may
not be the best set of parameters for the BPGA-EDA.

Although each problem set has instances with similar char-
acteristics, we have demonstrated that results averaged over
many runs rather than one are required to fully capture the
variance in the performance of an algorithm. We recommend
the use of this approach.

Finally, the fact that different algorithms may be suitable for
different aspects of multi-component optimisation problems
(i.e. problems that can be divided into smaller optimisation
problems) makes them suitable for hybrid approaches. We
recommend this area for future research.
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