

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Evaluating Degrees of Multitenancy Isolation: A
Case Study of Cloud-hosted GSD Tools

Laud Charles Ochei

School of Computing Science and
Digital Media

Robert Gordon University
Aberdeen, United Kingdom

Email: l.c.ochei@rgu.ac.uk

Julian M. Bass

School of Computing Science and
Digital Media

Robert Gordon University
Aberdeen, United Kingdom

Email: j.m.bass@rgu.ac.uk

Andrei Petrovski

School of Computing Science and
Digital Media

Robert Gordon University
Aberdeen, United Kingdom

Email: a.petrovski@rgu.ac.uk

Abstract—Multitenancy is an essential cloud computing prop-
erty where a single instance of an application serves multiple
tenants. Multitenancy introduces significant challenges when
deploying application components to the cloud due to the demand
for different degrees of isolation between tenants. At the very
basic degree of isolation, tenants still share application compo-
nents as much as possible. However, while some components may
benefit from low degree of isolation between tenants, others may
need a higher degree of isolation, for instance, in a situation
where a component is too critical to be shared, or needs to be
configured specifically for individual tenants. This paper describes
COMITRE (COmponent-based approach to Multitenancy Iso-
lation Through request RE-routing) to empirically evaluate the
degree of isolation between tenants enabled by three multitenancy
patterns (i.e., shared component, tenant-isolated component, and
dedicated component) for cloud-hosted Global Software Devel-
opment (GSD) tools. We developed a multitenant component for
each multitenancy pattern, integrated it within Hudson, and then
compared their impact on different tenants. The study revealed
among other things that a component deployed based on shared
component offers a lower degree of tenant isolation (than tenant-
isolated component and dedicated component) when one of the
tenants is exposed to a demanding deployment condition (e.g,
large instant loads). We also provide some recommendations to
guide an architect in implementing multitenancy isolation on a
set of GSD tools: Hudson, Subversion and Bugzilla.

Keywords—Multitenancy, Degree of Isolation, Tenant, GSD-
tools, Cloud Patterns.

I. INTRODUCTION

Multitenancy is an essential cloud computing property in
which a single instance of an application/component serves
multiple tenants. One of the key concerns of implement-
ing multitenancy is how to enable tenant isolation (here-
after referred to as multitenancy isolation) between tenants
sharing components of an application, for example, cloud-
hosted application [1][2]. Multitenancy isolation ensures that
the performance, stored data volume and access privileges
required by one tenant does not affect other tenants [3] [4].

As software tools are increasingly being deployed on the
cloud, there is need to ensure proper isolation of both tenant’s
data (e.g., code files) and processes (e.g., builds) associated
with these tools. At the very basic degree of multitenancy,

tenants share application components as much as possible
which translates to increased utilization of underlying re-
sources. However, while some application components may
benefit from low degree of isolation between tenants, other
components may need a higher degree of isolation because the
component may either be too critical or needs to be configured
very specifically for individual tenants because of their unique
deployment requirements. Again, tenant-specific requirements,
such as laws and corporate regulations, may even further
increase the degree of isolation required between tenants. The
challenge therefore, for a cloud deployment architect would
be how to resolve the trade-offs between the required per-
formance, systems resources and access privileges at different
levels of an application when opting for one (or combinations)
of the multitenancy patterns for cloud deployment of software
tools.

Motivated by this problem, this paper evaluates the degree
of isolation between tenants enabled by multitenancy patterns
for cloud-hosted software tools in order to resolve these trade-
offs under different cloud deployment conditions. We are
inspired by the work of Fehling et al [1], where the author
captured the degree of multitenancy in three cloud patterns:
shared, tenant-isolation and dedicated components; and also
suggested that the degree of isolation between tenants is the
main factor that can be used to distinguish between these
patterns. However, we do not know the various deployment
conditions which offers the required degree of isolation. In
addition, these patterns have never been empirically evaluated
to measure the actual degree of tenant isolation for applications
in software engineering domain. This study focuses on cloud-
hosted Global Software Development (GSD) tools, for exam-
ple, Hudson [5]. To the best of our knowledge, this study is the
first to present a Component-based approach to Multitenancy
Isolation through Request Re-routing (COMITRE) and then
apply it to empirically evaluate the degree of isolation between
tenants enabled by multitenancy patterns within the context
of cloud-hosted GSD tools under different cloud deployment
conditions.

By evaluating the degrees of multitenancy isolation, we
mean comparing the effect of performance (e.g., response
times and error%) and resource utilization (e.g., CPU and
memory usage) on tenants deployed based on different multite-

nancy patterns (i.e., shared component, tenant-isolated compo-
nent, and dedicated component) when one of the tenants expe-
riences a demanding deployment conditions (e.g., large instant
loads). The research question this paper addresses is: “How
can we evaluate the degree of isolation between tenants
enabled by multitenancy patterns for cloud-hosted GSD
tools”. Multitenancy isolation introduces significant security
and performance challenges in the cloud depending on the
location of the functionality to be shared, and the required
degree of isolation between the tenants. For example, if one
of the tenants on the network is malicious, it can cause denial
of service and performance degradation to other tenants [6].

We implemented three multitenancy patterns (i.e., shared
component, tenant-isolated component and dedicated com-
ponent) by exposing the functionality of each pattern as a
plugin integrated with a GSD tool deployed on a private
cloud. Thereafter, we evaluated the degree of isolation for each
pattern at two levels: process isolation and data isolation, as
it affects tenants interaction with GSD tool. The overarching
result of the study is that the degree isolation between tenants
using a shared component are significantly lower than for
tenant-isolated component and dedicated component. However,
the disk I/O consumption rate rises faster (under heavy
load) for tenants using a shared component than in other
multitenancy patterns.

The main contributions of this paper are:
1. Presenting COMITRE, a novel approach for implementing
multitenancy isolation for cloud-hosted applications.
2. Demonstrating the practicality of the approach by applying
it to: (i) empirically evaluate the degree of isolation between
tenants enabled by multitenancy patterns for a cloud-hosted
GSD tool; and (ii) compare how well different multitenancy
patterns perform under different cloud deployment conditions.
3. Presenting recommendations and best practice guidelines for
implementing multitenant isolation on a selected set of GSD
tools: Hudson and Subversion and Bugzilla.

The rest of the paper is organized as follows - Section two
gives an overview of the basic concepts related to deployment
patterns for Cloud-hosted GSD tools, with particular reference
to multitenancy patterns and tenant isolation. In Section three,
we discuss the research methodology including GSD tool se-
lection and the development of an approach for implementing
multitenancy isolation. Section four presents the evaluation
which covers the case study, experimental setup and procedure.
In Section five, we present the results of the study and then
discuss the implications of the results in Section six. The
recommendations and limitations of the study are detailed in
Section seven and eight respectively. Section nine concludes
the paper with future work.

II. MULTITENANCY PATTERNS FOR CLOUD-HOSTED GSD
TOOLS.

A. Cloud-hosted GSD Tools and Software Processes.

Definition 1: Global Software Development (GSD). GSD
means the splitting of the development of the same software
product or service among globally distributed sites [7].
Definition 2: Cloud-hosted GSD tools. “Cloud-hosted GSD
tools” are collaboration tools used to support GSD processes in
a cloud environment [5]. We adopt the: (i) NIST Definition of

Cloud Computing to define properties of cloud-hosted GSD
tools; and (ii) ISO/IEC 12207 as a classification frame for
defining the scope of a GSD tool. Three examples of widely
used Global software development processes are [8]:
(1) Continuous Integration (CI): CI is a development practice
that requires developers to integrate source code into a shared
repository several times. Each check-in is then verified by
an automated build, allowing teams to detect problems early.
Hudson is a widely used GSD tool used for continuous
integration. It is written in Java for deployment in a cross-
platform environment. Hudson is hosted partly as Eclipse
Foundation project and partly as a Java.NET project. It has
a rich set of plugins making it easy to integrate with other
software tools. Organizations such as Apple and Oracle use
Hudson for setting up production deployments and automating
the management of cloud-based infrastructure [9].
(2) Version Control: Version control is the process of tracking
incremental versions of files and, in some cases, directories
over time, so that specific versions can be recalled later. A
widely used GSD tool for version control is Subversion [10].
Subversion implements a centralized repository architecture
whereby a single central server hosts all project metadata. This
facilitates distributed file sharing [11].
(3) Issue/Bug Tracking: Bug tracking is the process of keeping
track of reported software bugs or issues in software de-
velopment projects. Examples of widely used error and bug
tracking systems are Bugzilla and JIRA. Bugzilla is a web-
based general-purpose bug tracker and testing tool originally
developed and used for the Mozilla project [12]. JIRA is a
bug tracking, issue tracking and project management software
tool. JIRA products (e.g., JIRA Agile, JIRA Capture) are
available as a hosted solution through Atlassian OnDemand,
which is SaaS cloud offering. JIRA is built as a web application
with support for plugin architectures and an API that allows
developers to integrate JIRA with third-party applications such
as Eclipse, IntelliJ IDEA and Subversion [13].

B. Cloud Deployment Patterns for Multitenancy Isolation

Definition 3: Cloud deployment patterns. “Cloud deploy-
ment patterns” are architectural patterns which embodies de-
cisions as to how elements of the cloud application will
be assigned to the cloud environment where the application
is executed [5]. The notion of Cloud deployment pattern is
similar to the concept of (architectural) deployment patterns
[6], cloud computing patterns [1], cloud architecture patterns
[14], and cloud design patterns [15]. Architectural and design
patterns have long been used to provide known solutions to
a number of common problems facing a distributed system
[16, 6].

Definition 4: Multitenancy isolation. We define “Multi-
tenancy isolation” as a way of ensuring that the required
performance, stored data volume and access privileges of one
tenant does not affect other tenants accessing the component or
functionality of a shared application component. Multitenant
isolation can be captured in three main cloud patterns [1]:
(1) Shared component: Tenants share the same resource in-
stance, and may not be aware that it is being used by other
tenants.
(2) Tenant-isolated component: Tenants share the same re-
source but their isolation is guaranteed.
(3) Dedicated component: Tenants do not share this resource.

However, each tenant is associated with one instance (or
certain number of instances) of the resource.

Definition 5: Application Component. We present an infor-
mal definition of “Application Component” as an encapsulation
of a functionality that is shared between multiple tenants.
An application component could be a communication com-
ponent (e.g., message queue), data handling component (e.g.,
databases), processing component (e.g., load balencer), or a
user interface component (e.g., AJAX).

C. Evaluating Degree of Multitenancy Isolation

The three multitenancy patterns (i.e., shared component,
tenant-isolated component and dedicated component) ex-
presses the degree of isolation between tenants accessing a
shared component of an application. The shared component
represents the lowest degree of isolation between tenants
while the dedicated component represents the highest. The
degree of isolation between tenants accessing a tenant-isolated
component would be in the middle.

The three main aspects of tenant isolation [1] are: per-
formance, stored data volume and access privileges [1]. For
example, in performance isolation, other tenants should not
be affected by the workload created by other tenants. Guo
et al [17] evaluated different isolation capabilities related to
authentication, information protection, faults, administration
etc. Bauer and Adams [2] discusses how to use virtualization to
ensure that the failure of one tenants instance does not cascade
to other tenant instances. A closely related work to ours is
that of Walraven et al [18] where the authors implemented
a middleware framework for enforcing performance isolation.
They used a multitenant implementation of a hotel booking
application deployed on top of a cluster for illustration. Krebs
et al [19] implemented a multitenancy performance benchmark
for web application based on the TCP-W benchmark where the
authors evaluated the maximum throughput and the amount of
tenants that can be served by a platform. Other works related
to multitenancy isolation can be found in [20] [21].

The focus of our work is evaluating the degree of isolation
between tenants enabled by multitenancy patterns. Specifically,
we are interested in providing empirical evidence of the effect
of performance and resource utilization on other tenants due
to high workload created by one of the tenants. In our work,
we implemented multitenancy as a component integrated into
an open source Global Software Development (GSD) tool. In
addition, our evaluation is done in a real cloud environment.
The application we used for our evaluation is within the
domain of software engineering, to emulate a typical software
development process. Furthermore, we deployed our GSD tool
to the cloud using cloud multitenancy patterns.

III. METHODOLOGY

A. Selecting the GSD Tools and Software Processes

Three main software processes have been found to have
the most impact in Global Software Development: continuous
integration, source/version control management and issue/bug
tracking [5, 22]. In this study, we have selected three open-
source GSD tools to represent these software processes: Hud-
son, Subversion and Bugzilla. These GSD tools were selected

based on an empirical study conducted to find out: (1) the
type of GSD tools used in large-scale distributed enterprise
software development projects; and (2) what tasks/software
processes they utilize the GSD tools for. See [5] for details.
This paper focuses on applying our approach (i.e., COMITRE)
to implement multitenancy in Hudson, a widely used GSD tool
for continuous integration.

B. COMITRE: A Component-based approach to Multitenancy
Isolation through Request Re-routing

In the following, we present COMITRE an approach for
implementing multitenancy isolation for cloud-hosted applica-
tions. COMITRE can be seen as an abstract format that allows
the implementation of multitenancy isolation in various ways.
It captures the essential properties required for the successful
implementation of multitenancy isolation while leaving large
degrees of freedom to cloud deployment architects depending
on the required degree of isolation between tenants. Figure 1
captures the structure of COMITRE. The approach summarizes
to the following steps:
Step 1: Define the structure of the tenant request- The
structure of the tenant identifier has to be clearly defined.
The tenant identifier can be in various forms such as an IP
address, port number, request header, or a query string attached
to the request. Once the format of the tenant-identifier has been
chosen, we then use this to define the structure of a typical
tenant request. For example, when using a load generator like
Apache JMeter, the tenant-identifier can be sent as a parameter
along with the request which will appear as a query string. In
our paper, the structure of the HTTP request looks like this:
172.19.1.2:8080/FileTrigger1/build?delay=0sec?tenant1=1.
Step 2: Configure Server to re-route tenant request to
application- The next step is to configure the web server to
re-route the sever request to a component of the application.
This can be done in two ways: (i) programmatically in Java
or even in bash shell script; (ii) manually entering the tenant
identifier into the host file (/etc/hosts/) so that the request of
all the tenants points to the same IP address of the localhost
(usually 127.0.0.1).
Step 3: Create configuration for each multitenancy pattern -
We then create the configuration of each multitenancy pattern
(i.e., shared component, tenant-isolated component and dedi-
cated component) and also a default configuration that can be
assigned to every tenant in case a matching tenant-identifier
was not found in the tenant-conf file. These configurations
map to different degrees of isolation between tenants.
Step 4: Tenant Identification and Resolution- This is a two-
step process: (i) Capture the incoming request (e.g., http,
ftp, JDBC request); (ii) Extract the tenant-identifier from the
request and use it to resolve the tenant.
Step 5: Configure tenant-specific information- Based on
this tenant-identifier and its associated information, a specific
configuration is created for each tenant. The configuration
includes information such as tenant-identifier, tenant request,
required degree of isolation, and the application component
that is to be accessed by multiple tenants.
Step 6: Select matching tenant configuration from the list
of tenants in the tenant configuration file- The selected
tenant configuration is returned, otherwise the default tenant
configuration is returned if matching tenant is not found.
Step 7: Send viewable response to the user - The last step

is to present the viewable response to the user. This response
is the multitenant component that has been adjusted based on
the tenant-specific configuration.

The actual implementation of the COMITRE is anchored
on shifting the task of routing a request from the server to a
separate component at the application level of the cloud-hosted
GSD tool. For example, this component could be a program
component (e.g., Java class file) or a software component (e.g.,
plugin) which can be integrated into the GSD tool. The logic
that is implemented in the component is shown in Algorithm
1.

Fig. 1. COMITRE Architecture.

Algorithm 1 COMITRE Algorithm

1: INPUT: tenantRequest, tenantConf-file
2: OUTPUT: multApplFunctn
3: Get tenant identifier from incoming request
4: tenantConf← null
5: Select tenantData from tenantConf-file
6: if tenantData is found then
7: tenantConf← tenantData
8: end if
9: Create defaultApplFunctn

10: Create tenantApplFunctn
11: multApplFunctn← defaultApplFunctn
12: if tenantConf is not null then
13: multApplFunctn← tenantApplFunctn
14: end if
15: return multApplFunctn

The input to the algorithm is tenant request and tenant
configuration file, while the output is the multitenant func-
tionality/component that is shared among the different tenants.
This input could be a text file or a database that contains among
other things the tenant-identifier, the default functionality of
the applications as well as the functionality that is to be
exposed to the different tenants. Each tenant-specific data has
to be configured (either manually or programmatically) before
the request for each tenant is sent to the application. Another
option, could be to update the “hosts” file (i.e., typically found
in the “/etc/hosts” folder on Ubuntu) and add entries for the IP
addresses of other tenants to point to the default IP address of
the host. The algorithm begins by capturing the tenant identifier

from an incoming request (e.g., http, ftp, JDBC request). The
tenant identifier could be a query string attached to the URL
of each request or an IP address. Tenant-specific data for each
tenant is selected from the configuration file and mapped to
the tenant request which is then used to adjust the behaviour of
the functionality or component that is being shared. If tenant
configuration is not found, then the default functionality is
returned.

C. Validating the Implementation of Multitenancy Isolation

We validate our approach (i.e., COMITRE) for imple-
menting multitenancy isolation both in theory and in practice.
Each application of the approach to a specific multitenancy
pattern will result in a differently looking behaviour of the
component that is being shared among the different tenants,
but all applications of the approach will share a common set
of desired properties.

Each multitenancy pattern was validated in theory by
following the implementation proposed by Fehling et al [1]:
(i) we carefully analyzed the sketch of the architecture pro-
posed for the three multitenancy patterns, the description of
the patterns and their behaviour after implementation.
(ii) we systematically cross-checked our implementation
against other implementations of multitenancy architectures,
and also examined that our implementation is compliant with
how tenants access a multitenant component.

From implementation standpoint, Fehling et al’s [1] ex-
planation of row-based isolation (i.e., tenants with unique
tenant-Id’s sharing the same database and table) and table-
based isolation (i.e., tenants sharing the same database, but
having different tables) reflects shared component and tenant-
isolated component respectively. This implementation is simi-
lar to other well-known implementations of multi-tenant (data)
architecture [23].

We also demonstrate the practicality of our approach by
applying it to implement the three multitenancy patterns on
Hudson, a widely used open-source GSD tool for continuous
integration. Experts and researchers in the field of cloud
deployment patterns and Global Software Development have
confirmed that the implementation of multitenancy isolation
together with the output represents the behaviour of tenants
interacting with a shared functionality/component of a cloud-
hosted application.

IV. EVALUATION

In the following, we present the experimental setup and the
case study we have used in this study.

A. Case Studies of Multitenancy Isolation for a Continuous
Integration System

We present two case studies, that focus on implementing
multitenancy at both the process and data levels of a cloud-
hosted application. This entails introducing a process and data-
access component to Hudson so that the data and processes of
different tenants are handled in an isolated fashion. Figure 2
and 3 captures the architectures of both implementations.

Fig. 2. Multitenancy Isolation Architecture for Cloud-hosted Applications.

Fig. 3. Multitenancy Isolation Architecture for Cloud-hosted Applications.

1) Case Study 1 - Isolating Tenant Data during Automated
Build Verification/Testing Process with Hudson: This case
study is used to evaluate the effect of tenant isolation at the
data level during automated build verification/testing process
for an application that logs every operation into a database in
response to a specific event such as detecting changes in a file.
To achieve this, we used Hudson’s Files-Found-Trigger plugin,
which polls one or more directories and starts a build if certain
files are found within those directories [24]. We implemented
multitenancy isolation by modifying Hudson. This involved
introducing a Java class into the plugin that accepts a filename
as argument. During execution, the plugin is loaded into a
separate class loader to avoid conflict with Hudson’s core
functionality.

B. Case Study 2 - Isolating Tenant Process during Automated
Build Verification/Testing Process with Hudson

This case study is used to evaluate the effect of tenant
isolation at the process level during automated build verifica-
tion/testing process for an application that logs every operation
into a database in response to a specific event such as detecting

changes in a file. To achieve this, we introduce the concept of
database isolation level which is used to control the degree
of locking that occurs when selecting or updating data in
a database. We configured the database component of the
application to the highest isolation level: SERIALIZABLE
level, to evaluate the impact of the lock duration where locks
on data are held until transaction completes [25].

C. Experimental Setup

The experimental setup consist of a private cloud setup
using Ubuntu Enterprise Cloud (UEC). UEC is an open-
source private cloud software that comes with Eucalyptus
[26]. The private cloud consists of six physical machines- one
headnode and five sub-nodes. We used the typical minimal
Eucalyptus configuration where all user-facing and back-end
controlling components (Cloud Controller(CLC), Walrus
Storage Controller, Cloud Controller (CC), and Storage
Controller (SC)) are grouped on the first machine, and the
Node Controller (NC) components are installed on the second
physical machine. In our experiment, we installed NCs on
all the other machines in order to achieve scalability for this
configuration.
Aim of the Experiment: The aim of the experiment is to
evaluate the degrees of isolation of multitenancy patterns for
cloud-hosted GSD tools.
Sub-Question 1: Performance experienced by tenants accessing
an application component deployed using each multitenancy
pattern changes significantly from the pre-test to the post test.
Sub-Question 2: System’s resource utilization experienced by
tenants accessing an application component deployed using
each multitenancy pattern changes significantly from the
pre-test to the post test.

(2) Experimental Design: A set of four tenants (T1, T2,
T3, and T4) are configured into three groups to access an
application component deployed using three different types of
multitenancy patterns (i.e., shared component, tenant-isolated
component, and dedicated component). Each pattern is re-
garded as a group in this experiment. We also created three
different scenarios (i.e., treatments) for configuring T1 (see
section IV D for details of the three scenarios). For each
group, one of the four tenants (i.e., T1) is configured to send
large instant loads to the application component. Performance
metrics (e.g., response times and throughput) and systems
resource consumption (e.g., CPU, memory) are measured for
each pattern before the treatment (Pre Test) and after the
treatment was introduced.

Based on this information, we adopt a two-way repeated
measures (within-between) ANOVA. This experimental design
is used when there are two independent variables (factors)
influencing one dependent variable. In our case, the first factor
is multitenancy deployment pattern, and the second factor
is time. Multitenancy pattern is the between factor, because
we are looking at the differences between the groups using
different mutltitenancy patterns for deployment. Time is the
within factor, because we are measuring each group twice (pre-
test and post-test). The data view of our experimental design
is composed of a Group column that indicates which of the
three groups the data belongs to, and 2 columns of actual data,
one for the Pre test and one for the Post Test.

D. Experimental Procedure

A summary of the experimental procedure is outlined in
Figure 6. In the following, we describe the procedure for the
experiment in more detail in this section. We modified a GSD
tool to support multitenancy isolation. This entails developing
a plugin and integrating it with the GSD tool so that it can be
accessed by different tenants. The GSD tool is then bundled
as a VM image, and uploaded to a private cloud with a typical
minimal UEC configuration.

To evaluate the degree of multitenancy isolation between
tenants, we configured four tenants (referred to as tenant 1,
2, 3, and 4) based on accesses to functionality/component
of the GSD tool that is to be served to multiple tenants.
Accesses to this functionality is associated with a tenant-
identifier that is attached to every request. Based on this
identifier, a tenant-specific configuration is retrieved from the
tenant configuration file and used to adjust the behaviour the
GSD tool’s functionality that is being accessed.

We use a remote client machine to access the GSD tool
running on the instance via its public IP address. Apache
JMeter is used as a load balancer as well as a load generator to
generate workload (i.e., requests) to the instance and monitor
responses. A file is pushed to a Hudson repository to trigger
a build process that executes an Apache JMeter test plan
configured for each tenant. Each instance is installed with SAR
tool (from Red Hat sysstat package) and Linux du command to
monitor and collect system activity information. Every tenant
executes its own JMeter test plan which represents the different
configurations of the multitenancy patterns.

All the tenants simultaneously send requests to the GSD
tool according to its own JMeter test plan. To measure the
effect of tenant isolation we introduce a tenant that experiences
intense or aggressive workload. There are three scenarios that
we are simulating for this tenant:
Scenario1-Large instant load: This scenario is used to illustrate
the effect of large instant load on other tenants. To simulate
this behaviour, all of the request sent by tenant are released at
once. We also added the Synchronous Timer to the Samplers
and then reduce the ramp-up period by one-tenth so that
all the requests are sent ten times faster. The scenario is
similar to unpredictable (i.e., sudden increase) workload [1]
and aggressive load [18].
Scenario 2 -Variation in request arrival rate: This scenario
represents a case where there is variation in the frequency
with which code changes are committed to the source code to
trigger a build process. To simulate this behaviour in JMeter,
we simply add the Gaussian Random Timer to the Samplers.
Scenario 3 -Lock duration: This scenario illustrates a case
where a tenant that first accesses an application com-
ponent locks (or blocks) it from other tenants until the
transaction commits. To simulate this behaviour in JMeter,
we set the transaction isolation level to TRANSACTION-
SERIALIZABLE.

All other tenants experience the same normal load which
is set to just below the maximum capacity of the system
determined separately through repeated test runs. In our paper,
we limit the normal load to 100 requests per tenant. For each
test run, the same number of request is sent by all the tenants
except the one that is experiencing large intense and aggressive

load. This means that the total number of requests for each run
is spread over the different tenants. The time to load all the
requests is kept constant at 60 seconds.

The following system metrics were collected and analyzed:

(i) CPU Usage: The %user values (i.e., percentage of CPU
time spent) reported by SAR were used to compute the
CPU usage.

(ii) System load: We used the one-minute system load aver-
age reported by SAR.

(iii) Memory usage: We used the kbmemused (i.e., the amount
of used memory in kilobytes) recorded by SAR.

(iv) Disk I/O: The disks input/output volume reported by
SAR was recorded.

(v) Latency: The 90% latency reported by JMeter.
(vi) Throughput: We used the average throughput reported by

JMeter.
(vii) Error %: The percentage of request with errors reported

by JMeter.

Each tenant request is treated as a transaction composed of
the 2 types of request: HTTP request and JDBC request. HTTP
request triggers a build process while JDBC request logs data
into database which represents an application component that
is being shared by the different tenants. Transaction controller
was introduced to group all the samplers in order to get a
total metrics (e.g., response) for carrying out the two requests.
Figure 5 shows the experimental setup used to configure the
test plan for the different tenants in Apache JMeter.

Fig. 4. Experimental Setup

We performed 10 iterations for each run and used the
values reported by JMeter as a measure for response times,
throughput and error%. For system activity, we reported the
average CPU, memory, disk I/O and system load usage at
one-second interval. The initial setup values for experiment
are as follows: (1) No of threads = 10 for tenant 1 (i.e., the
tenant experiencing high load), and 5 for all other tenants; (2)
Thread Loop count = 2; (3) Loop controller count = 10 for
HTTP requests of tenant 1, and 5 for all other tenants; 200 for
JDBC requests of tenant 1, and 100 for all other tenants; (4)
Ramp-up period of 6 seconds for tenant 1 and 60 seconds for
all other tenants; and (5) Estimated total number of expected
requests = 250 for HTTP requests and 2500 for JDBC requests.
This means that in each case the tenant experiencing high load
receives two times the number of requests received by each of

the other tenants. In addition, the requests are sent 10 times
faster to simulate an aggressive load.

1) Prepare the Private Cloud for the Test Run
a) Create an Ubuntu Virtual Machine Image
b) Install the modified GSD tool on the image
c) Upload the Image to UEC
d) Launch the instance and SSH to the instance

2) Execute the Test Run
a) Start the GSD tool and view it on a browser
b) Start JMeter load test on the GSD tool
c) Start instance monitoring with SAR tool
d) Stop test run after all responses received

3) Collect Results
a) Export JMeter and SAR result to text file
b) Clear previous JMeter and SAR results
c) Reboot instances for next test run
d) Repeat step 2 for more runs

Fig. 5. Experimental Procedure

V. RESULTS

In this section we report the results of the experiments. Four
set of results are presented here, each with a different scope
and view of the degree of isolation between tenants enabled
by three multitenancy patterns for all the scenarios considered.

A. Preliminary Analysis of Response Times and Disk I/O:

Results for response times and disk I/O are presented here
for scenario 1 which reflects a case where one of the tenants
experiences large instant workload that is significantly higher
than the other tenants. The Response Time graphs of figure 6,7,
and 8 illustrates how the response times varies over a period
of time in response to a sharp increase in the workload of one
of the tenants. This graph is shown only for tenant 4. From the
graph , we can see that response times for all the patterns are
the almost the same. A closer look at the graphs shows that the
response times for dedicated component is fairly stable over
longer period of time than the other tenants.

We also show in a bar chart the disk I/O of tenants
accessing an application component for all patterns (Figure 9,
10 and 11). For dedicated component, the disk I/O was nearly
zero in scenario 1. For scenario 2, the disk I/O is higher for
shared component than the other patterns. Lastly, for scenario
3, the disk I/O is again nearly zero for dedicated pattern, while
that of tenant-isolated and dedicated component were much
higher but almost at the same level.

We have not gained enough information by analyzing only
the response time graphs and the bar charts. In the first
instance, it would be difficult and time consuming to examine
the response time graph and bar charts of each tenant in the
experiment (i.e., about 36 cases). Even if we were able to do
that, the result would still not be very helpful since the result
is not relative to the other patterns. Apart from this, we do
not also know how the performance and resource consumption
of each tenant has changed if compared to when all of the
tenants were exposed to the same workload. To address this
problem, we need a robust experimental design that would

produce results that would give a broad view of all tenants in
each pattern under all the scenarios considered. To this end, we
performed the one-way ANOVA followed by Scheffe post hoc
tests. The dependent variable used for the one-way ANOVA
is a transformed variable termed “Change”, which represents
the change values from Pre-Test to Post-test. Further details
are captured in the next section.

Fig. 6. Tenant 4 accessing a Shared Component

Fig. 7. Tenant 4 accessing a Tenant-isolated Component

Fig. 8. Tenant 4 accessing a Dedicated Component

B. Analyzing Changes in Tenant’s Performance and Resource
Consumption from Pre-Test to Post-Test

In order to gain further insight into the behavior of the
tenants across all the patterns, we carried out planned com-

Fig. 9. Disk I/O of tenants for scenario 1

Fig. 10. Disk I/O of tenants for scenario 2

Fig. 11. Disk I/O of tenants for scenario 3

parisons based on the plots of the estimated marginal means
of change derived from Scheffe Post hoc test and thereafter
the paired t-test. The Dependent variable in the Scheffe post
hoc test was determined by subtracting the Pre-test from Post-
test values. We used the “Select Cases” feature in SPSS which
allowed us to perform calculations only on the data we select.
In our case, we selected the three tenants (T2,T3,T4) for each
pattern and for each deployment scenario giving a total of 9
cases for each metrics that was measured.

The statistical test showed that there is a highly significant
difference between the Pre and Post values for all the metrics
considered in this study: response times, error%, throughput,
CPU, memory, disks I/O and system load. This significant
difference holds when all the groups are averaged together.
This is not very helpful, because we are interested in not just
knowing how tenants accessing components deployed based on
these patterns changed relative to each other, but interested in
knowing where the statistical significant difference lies with re-
spect to the rate of change. This is very important considering
the fact that some patterns will be more influenced than others.
In addition, we also want to know if the subjects (i.e., the
tenants) within any particular pattern improved significantly
from the pre-test values to the post test values. This would give
an indication as to whether or not the workload created by one
tenant has affected the performance and resource utilization of
other tenants.

To answer this question, we analyze the plots in Figure 12
to Figure 18. These figures show the plot of the mean values
for each combination of factor levels. That is, it shows how
each pattern performed on the Pre and Post Test. We focus on
the three tenants (i.e., T2, T3, and T4) that did not experience
the high intense load.

(1) Response times: From Figure 12 it is clear that the
tenants accessing a dedicated component (especially for sce-
nario 3) have a much higher response times than both shared
component and dedicated component. This is due to the
overhead incurred as a result of opening multiple connections
to the database each time a JDBC request is made. Shared
component has the lowest response times out of the three
patterns. This is obvious as few connections are opened to
the database which logs all the data into the same table.

(2) Throughput: The throughput is fairly stable for all the
patterns except for shared component. This is because all the
tenants are struggling to gain access to the same application
component, so some requests are either delayed or refused.
For tenant-isolated component and dedicated component, the
throughput is reduced due to the fact that requests are not
concentrated on one application component but instead are
directed to the separate components reserved for different
tenants.

(3) Error%: The percentage of request with errors is fairly
stable for most of the patterns except of tenant 4 accessing a
shared component. The interesting thing is that the error% rate
of tenant 4 accessing a shared component for all scenarios is
very high. A possible explanation for this is that as the number
of tenants accessing a shared component increases, the error
rate also increases.

(4) CPU usage: The CPU consumption for tenants ac-
cessing the shared component especially for scenario 3 is the
lowest of all the patterns. The plot of figure 15 also shows
that tenants accessing the dedicated component consumes more
CPU than all other patterns.The least CPU consumption was
for tenants accessing the shared component when tenant 1 is
exposed to experimental setting of scenario 3.

(5) Memory: The memory consumption of the tenants
changed significantly for all the three patterns. However, by
analyzing the plot in Figure 16, the change was significant

when scenario 3 was applied to tenant 1. The lowest change
was for tenants accessing the dedicated component.

(6) Disk I/O: The disk I/O consumption of tenants access-
ing the shared component was very high when tenants were
exposed to deployment conditions in scenario 2. The disk I/O
for both tenant-isolation component and dedicated component
were almost at the same level.

(7) System Load: System load had the least impact of all
the metrics measured in the experiment. It can be seen from
the plot of Figure 18 that spikes (or the rise and fall in the
curve) are consistent for all the patterns throughout all the
deployment scenarios. The tabular paired samples test (Table
I) further confirms this position. The standard error difference
is the same for tenants components deployed using all the three
multitenancy patterns.

Based on the above analysis, we summarize the results of
the study as follows: Shared component offers the least degree
of isolation between tenants, while there was no significant
difference between tenant-isolated component and dedicated
component for most of the metrics measured.

Fig. 12. Changes in response times for each pattern relative to other patterns

Fig. 13. Changes in error% for each pattern relative to the other patterns

VI. DISCUSSION

In this section we will address the experimental questions
we asked in section IV C. Table 1 summarizes the effect of
Tenant 1 (i.e., the tenant that experiences high load) on the
other tenants (i.e., T2, T2, T4). Specifically we are interested

Fig. 14. Changes in throughput for each pattern relative to the other patterns

Fig. 15. Changes in CPU usage for each pattern relative to the other patterns)

Fig. 16. Changes in memory for each pattern relative to the other patterns

in knowing if T2, T3 and T4 within a particular group (e.g.,
shared components for scenario 1) changed significantly from
pre-test to post test measured using Paired Samples T-test at
95% confidence interval. The key used in constructing the table
is as follows: YES - represents a significant change between
the metrics from pre-test to post -test. NO- represents some
level of change which cannot be regarded as significant; that
is, no significant influence on other tenants. The symbol “-”
implies that the standard error of the difference is zero and
hence no correlation and t-test statistics can be produced. This
means that the difference between the pre-test and post test
values are nearly constant with no chance of variability.

TABLE I. PAIRED SAMPLES TEST ANALYSIS OF TENANT ISOLATION

Pattern Response times Error% Throughput CPU Memory Disk I/O System Load
Scenario 1

Shared NO NO YES YES YES YES -
Tenant-
isolated

NO - YES NO YES NO -

Dedicated NO - YES NO YES - -
Scenario 2

Shared NO NO NO YES YES YES -
Tenant-
isolated

NO - YES NO YES - -

Dedicated NO NO YES NO YES - -
Scenario 3

Shared NO NO YES YES YES NO -
Tenant-
isolated

NO - YES NO YES YES -

Dedicated YES YES YES NO YES - -

Fig. 17. Changes in disks for each pattern relative to the other patterns

Fig. 18. Changes in system load for each pattern relative to the other patterns

(1) System Load and CPU: One of the most significant
findings of this study is that the system load did not influence
any of the patterns for all the scenarios considered. The results
showed no variability in the values from pre-test to post test.
This implies that in real cloud deployment, architects should
not focus so much on the system load (for example, in a
case where one of the tenants suddenly experiences a large in-
stant load). CPU consumption of tenants changed significantly
only for shared component for all the scenarios considered.
Therefore, once a reasonable CPU size (e.g., multiple CPUs
or a multi-core CPU) is used, there should be no problem

in performing builds. Hudson for example does not consume
much CPU; a build process can even be setup to run in the
background without interfering with other processes [9].

(2) Disk I/O: Builds processes are known to consume disk
I/O especially for I/O intensive builds [9]. As the results show,
there was no difference or variability in the values for disk
I/O usage for the dedicated component. This is understandable,
considering the fact that each tenant has a dedicated component
where transactions are channeled to without requiring multiple
connections that may either be delayed or blocked as a result
of sharing the components. Therefore for builds that are
particularly I/O intensive, the shared component and tenant-
isolated components are not recommended. Shared component
showed a highly significant difference between the pre-test and
post-test scores.

(3) Memory: Compilers and builders generally consumed
a lot of RAM especially if the build is difficult and complex.
There was a significant change in memory consumption for
tenants accessing components deployed on the three patterns
under all the scenarios considered. By analyzing the plots
of the estimated marginal means of change, we observe that
shared component under scenario 2 had the highest memory
consumption implying a low degree of isolation. The plot also
shows that dedicated component recorded the least change with
respect to all the deployment conditions.

(4) Throughput: The throughput also changed significantly
for all the patterns especially for shared component. Therefore
when continuous integration systems like Hudson are config-
ured to poll a repository for changes or to log data into a
repository then dedicated component should be used.

(5) Response times and Error%: The only pattern that
has changed significantly with respect to response times and
percentage of requests with errors is the dedicated component.
The plot (Figure 13) shows a large section where the estimated
marginal means of change for error% remained stable. Based
on this information, we recommend the use of shared compo-
nent and tenant-isolated component when builds are configured
to automatically publish artifacts to a shared repository.

VII. RECOMMENDATIONS

Based on the experience we have gathered while working
with cloud-hosted GSD tools and consulting with experts on a

TABLE II. CONDITIONS THAT INFLUENCE DEGREE OF MULTITENANCY ISOLATION

Bug/issue tracking (with Bugzilla) Continuous integration (with Hudson) Version Control (Subversion)

(1) Requires more hardware to support
large user base and number of bugs.
(2) Performance can be improved by
enabling mod perl module.
(3) Works well with SQL-like databases,
e.g., MySQL and PostgreSQL and
SQLite, but Oracle has several known
issues with Bugzilla.

(1) Builds that generate large disk I/O
activity, and difficult to compile
consume system resources.
(2) Running large number of builds
concurrently could also consume more
resources.
(3) Using NFS mount to store output
when running massive builds will result
in performance degradation.
(4) Allowing old builds to consume disk
space. Enabling the “Discard old builds”
feature can be used to resolve this condition.

(1) Subversion is less safe when used
with a repository storage through a
shared filesystem. It is safe as single
server-process running as one user.
(2) Subversion stores additional copies
of data on the local machine, which can
be an issue for large projects or files or
if developers work on multiple
branches simulatenously.

number of large scale enterprise software projects, we present
in Table 1 a short list of factors that could influence the degree
of isolation (in relation to performance) between tenants for the
following GSD tools: Hudson, Subversion and Bugzilla. Table
2 shows a summary of components within Hudson, Subversion
and Bugzilla (and in similar GSD tools) that can be explored
to implement multitenancy isolation at the file based level.

VIII. LIMITATIONS OF THE STUDY

The study is used for open-source GSD tools. This is
obvious considering the fact that we want to modify the source
code of an existing GSD tool. The number of requests sent to
the application component was within the limit of the private
cloud used (i.e., Ubuntu Enterprise Cloud). Therefore, the
results of this study applies to private clouds and should not
be generalized to large public clouds. This study assumes that
a small number of users send multiple request; it would be
interesting to replicate this study in a large private cloud in-
frastructure to investigate the effect of a large number of users.
Hudson itself is not very optimized, and so the most common
error we had was that of insufficient memory allocation. This
was not caused by the cloud infrastructure but by Hudson itself,
so it is necessary to properly vary the setup values to get the
maximum capacity of Hudson build processes running on the
private cloud before conducting experiments.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have created a novel approach termed
COMITRE- a Component-based approach to Multitenancy
Isolation through Request Re-routing, to contribute to literature
on multitenancy isolation for cloud-hosted Global Software
Development (GSD) Tools by showing how to evaluate the
degree of isolation between tenants enabled by multitenancy
patterns. Cloud deployment architects will benefit from our
proposed approach to implement multitenancy for existing
cloud-applications, in particular open-source Global Software
Development (GSD) tools.

This is the first study that presents an approach (i.e.,
COMITRE) for implementing multitenancy isolation and ap-
plying it to evaluate the degree of isolation between tenants
enabled by multitenancy patterns for a cloud-hosted GSD tool
at both the process level and data level. We implemented three
multitenancy patterns (i.e., shared component, tenant-isolated
component and dedicated component) by modifying Hudson

and deploying it as a Virtual Machine (VM) instance to the
Ubuntu Enterprise Cloud (UEC) private cloud.

The study revealed that shared component provides the
lowest degree of isolation between other tenants when one
of the tenants is exposed to demanding deployment conditions
(e.g., large instant loads). There was no significant difference
between the implementation of tenant-isolated component and
dedicated component for a small number of build processes.
The study concludes that when code files are checked into a
shared repository at a low frequency to trigger a build process,
then a high degree of isolation (in terms of response times)
is expected both for tenant-isolated component and dedicated
component. For shared component, the degree of isolation is
lower which means that it is more prone to performance effect
when exposed to high load.

We plan to carryout more experiments with other scenar-
ios such as: (1) running more than one build concurrently
and (2) executing complex builds or varying sizes of build
scripts/codes. We also plan to carry out more case studies
with a version control system (e.g., Subversion) and error/issue
tracking system (e.g., Bugzilla) in a robust cloud infrastructure.
Thereafter, we will carryout a cross-case analysis involving
a comparison of the commonalities and differences in the
processes found in the case studies which will then lead
to a framework for selecting cloud deployment patterns for
deploying GSD tools to the cloud.

ACKNOWLEDGMENT

This research was supported by the Tertiary Education Trust
Fund (TETFUND), Nigeria and IDEAS Research Institute,
Robert Gordon University, UK.

REFERENCES

[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and
P. Arbitter, Cloud Computing Patterns. Springer, 2014.

[2] E. Bauer and R. Adams, Reliability and availability of
cloud computing. John Wiley & Sons, 2012.

[3] R. Krebs, C. Momm, and S. Kounev, “Architectural
concerns in multi-tenant saas applications.” CLOSER,
vol. 12, pp. 426–431, 2012.

[4] S. Strauch, V. Andrikopoulos, F. Leymann, D. Muhler
et al., “Esbmt: Enabling multi-tenancy in enterprise ser-
vice buses.” CloudCom, vol. 12, pp. 456–463, 2012.

TABLE III. IMPLEMENTATION OPTIONS FOR MULTITENANCY ISOLATION FOR CLOUD-HOSTED GSD TOOLS

Multitenancy
Patterns

Bug/Issue Tracking Continuous Integration Version Control

Shared
Component

Can be configured using the localcon-
fig file. This file contains the default
settings for a number of Bugzilla pa-
rameters

Can be implemented using the global
config file. global.jelly is a file gen-
erated automatically by Maven, and
its the Jelly Script file to produce the
global configuration option.

Subversion recognizes the existence of
a system-wide configuration area. This
gives system administrators the ability
to establish defaults for all users on a
given machine.

Tenant-
Isolated
Component

The localconfig file which contains the
default settings can be loaded in order
to change the database type and pass-
word for a user (e.g., $ db driver and
$ db pass).

Can be implemented using config.jelly,
a Jelly script file generated automati-
cally by Maven to produce the config-
uration option specific for the job.

The first time the svn command-line
client is executed, it creates a per-user
configuration area. On Unix-like sys-
tems, this area appears as a directory
named .subversion in the user’s home
directory.

Dedicated
Component

When Bugzilla combines all comments
on a single bug into a field for full-text
searching, its size could be more than
the default size of items (i.e., 1MB).
The MySQL configuration file located
in: /etc/my.cnf can be edited to allow
for insertion of large attachments into
Bugzilla database.

Pre- and post-build actions (e.g., SCM,
archiving files) can be enabled on the
configuration page to add a special
functionality to Hudson jobs. For ex-
ample, a repository path could be ded-
icated for archiving files after a suc-
cessful build operation.

Unversioned files resulting from pro-
gram compilation can be excluded us-
ing Subversion global-ignores (i.e., a
whitespace-delimited list of names of
files and directories not displayed un-
less they are versioned). Examples of
default values are: *.o *.lo *.la *.al
.libs *.so *.so.[0-9]* *.a .

[5] L. Ochei, J. Bass, and A. Petrovski, “Taxonomy of
deployment patterns for cloud-hosted applications: A
case study of global software development tools,” IARIA,
2015.

[6] L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, 3/E. Pearson Education India, 2013.

[7] F. Lanubile, “Collaboration in distributed software devel-
opment,” in Software Engineering. Springer, 2009, pp.
174–193.

[8] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Pi-
attini, “Tools to support global software development
processes: a survey,” in Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on.
IEEE, 2010, pp. 13–22.

[9] M. Moser and T. O’Brien. The hud-
son book. Oracle, Inc., USA. [Online].
Available: http://www.eclipse.org/hudson/the-hudson-
book/book-hudson.pdf

[10] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato, Ver-
sion control with subversion. O’Reilly, 2004.

[11] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaı́no,
“Collaboration tools for global software engineering,”
Software, IEEE, vol. 27, no. 2, pp. 52–55, 2010.

[12] Bugzilla.org. The bugzilla guide. [Online: accessed in
October 2014 from http://www.bugzilla.org/docs/].

[13] Atlassian.com. Atlassian documentation for jira
6.1. Atlassian, Inc. [Online]. Available:
https://www.atlassian.com/software/jira/

[14] B. Wilder, Cloud Architecture Patterns, 1st ed.,
R. Roumeliotis, Ed. O’Reilly Media, Inc., 2012.

[15] A. Homer, J. Sharp, L. Brader, M. Narumoto, and
T. Swanson, Cloud Design Patterns, R. Corbisier, Ed.
Microsoft, 2014.

[16] J. Vlissides, R. Helm, R. Johnson, and E. Gamma,
“Design patterns: Elements of reusable object-oriented
software,” Addison-Wesley, vol. 49, p. 120, 1995.

[17] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao,
“A framework for native multi-tenancy application devel-

opment and management,” in E-Commerce Technology
and the 4th IEEE International Conference on Enter-
prise Computing, E-Commerce, and E-Services, 2007.
CEC/EEE 2007. The 9th IEEE International Conference
on. IEEE, 2007, pp. 551–558.

[18] S. Walraven, T. Monheim, E. Truyen, and W. Joosen,
“Towards performance isolation in multi-tenant saas ap-
plications,” in Proceedings of the 7th Workshop on Mid-
dleware for Next Generation Internet Computing. ACM,
2012, p. 6.

[19] R. Krebs, A. Wert, and S. Kounev, “Multi-tenancy per-
formance benchmark for web application platforms,” in
Web Engineering. Springer, 2013, pp. 424–438.

[20] F. Chong and G. Carraro. Architecture strategies
for catching the long tail. technical report,
microsoft. [Online: accessed in February
2015 from https://msdn.microsoft.com/en-
us/library/aa479069.aspx].

[21] IEEE. Cloud profiles working group (cpwg).
[Online: accessed in February 2015 from
http://standards.ieee.org/develop/wg/CPWG-
2301...WG.html].

[22] J. Bass, “How product owner teams scale agile methods
to large distributed enterprises,” Empirical Software En-
gineering, pp. 1–33, 2014.

[23] MSDN. Multi-tenant data architecture. Mi-
crosoft Corporation. [Online]. Available:
https://msdn.microsoft.com/en-gb/library/hh534480.aspx

[24] Hudson. Files found trigger. [Online: accessed
in October 2014 from http://wiki.hudson-
ci.org//display/HUDSON/Files+Found+Trigger].

[25] Oracle. Oracle database concepts 10g release
1 (10.1). Oracle Corporation. [Online]. Available:
http://docs.oracle.com/cd/B1203701/server.101/b10743/toc.htm

[26] D. Johnson, M. Kiran, R. Murthy, R. Suseen-
dran, and G. Yogesh. Eucalyptus beginner’s guide -
uec edition. [Online: accessed in April, 2015 from
http://www.csscorp.com/eucauecbook].

	OA: GREEN
	OA Logo:
	AUTHORS: OCHEI, L.C., BASS, J.M. and PETROVSKI, A.
	TITLE: Evaluating degrees of multitenancy isolation: a case study of cloud-hosted GSD tools.
	YEAR: 2015
	Publisher citation: OCHEI, L.C., BASS, J.M. and PETROVSKI, A. 2015. Evaluating degrees of multitenancy isolation: a case study of cloud-hosted GSD tools. In Proceedings of the 2015 international conference on cloud and autonomic computing (ICCAC 2015), 21-25 September 2015, Cambridge, MA, USA. Piscataway, NJ: IEEE [online], pages 101-112. Available from: http://dx.doi.org/10.1109/ICCAC.2015.17
	OpenAIR citation: OCHEI, L.C., BASS, J.M. and PETROVSKI, A. 2015. Evaluating degrees of multitenancy isolation: a case study of cloud-hosted GSD tools. In Proceedings of the 2015 international conference on cloud and autonomic computing (ICCAC 2015), 21-25 September 2015, Cambridge, MA, USA. Piscataway, NJ: IEEE, pages 101-112. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Version: AUTHOR ACCEPTED
	Publisher: IEEE
	Conference: the 2015 international conference on cloud and autonomic computing (ICCAC 2015), 21-25 September 2015, Cambridge, MA, USA
	ISBN: 0769556361
	eISBN:
	ISSN:
	Set statement: © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-09-27T15:14:07+0100
	OpenAIR at RGU

