
 

 

 

AUTHOR(S): 

 
 
TITLE:  

 

 
YEAR:  
 

Publisher citation: 

 

 
 
OpenAIR citation: 

 

 

 

Publisher copyright statement: 

 

 

 

 

 

OpenAIR takedown statement: 

 

 This publication is made 
freely available under 
________ open access. 

 

 

 

 

 

This is the ___________________ version of proceedings originally published by _____________________________ 
and presented at ________________________________________________________________________________ 
(ISBN __________________; eISBN __________________; ISSN __________). 

This publication is distributed under a CC ____________ license. 

____________________________________________________ 

 

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will 
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for 
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of 
the item and the nature of your complaint. 

 



Two-part Segmentation of Text Documents

Deepak P1 Karthik Visweswariah1 Nirmalie Wiratunga2 Sadiq Sani2
1IBM Research - India, Bangalore, INDIA

2School of Computing, Robert Gordon University, Aberdeen, Scotland, UK

{deepak.s.p|v-karthik}@in.ibm.com {n.wiratunga|s.a.sani}@rgu.ac.uk

ABSTRACT

We consider the problem of segmenting text documents that have a
two-part structure such as a problem part and a solution part. Doc-
uments of this genre include incident reports that typically involve
description of events relating to a problem followed by those per-
taining to the solution that was tried. Segmenting such documents
into the component two parts would render them usable in knowl-
edge reuse frameworks such as Case-Based Reasoning. This seg-
mentation problem presents a hard case for traditional text segmen-
tation due to the lexical inter-relatedness of the segments. We de-
velop a two-part segmentation technique that can harness a corpus
of similar documents to model the behavior of the two segments
and their inter-relatedness using language models and translation
models respectively. In particular, we use separate language mod-
els for the problem and solution segment types, whereas the inter-
relatedness between segment types is modeled using an IBM Model
1 translation model. We model documents as being generated start-
ing from the problem part that comprises of words sampled from
the problem language model, followed by the solution part whose
words are sampled either from the solution language model or from
a translation model conditioned on the words already chosen in the
problem part. We show, through an extensive set of experiments on
real-world data, that our approach outperforms the state-of-the-art
text segmentation algorithms in the accuracy of segmentation, and
that such improved accuracy translates well to improved usability
in Case-based Reasoning systems. We also analyze the robustness
of our technique to varying amounts and types of noise and em-
pirically illustrate that our technique is quite noise tolerant, and
degrades gracefully with increasing amounts of noise.

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Processing—Text

Analysis, Language Models
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1. INTRODUCTION
Experience reports are prepared in various contexts for various

purposes. An example is a bug report in software development
which describes a sequence of events starting from events that char-
acterize the occurence of the bug, and events involving fixing of the
bug. Incident reports in other scenarios comprise descriptions of a
temporal sequence of events, some of which characterize the cause
of the incident, followed by those that describe the way the incident
was dealt with. A real incident report from an airline company is
shown below:

A Nexen employee checked his rebreather unit and found it to

be past its "Service Due Date". He alerted the other passengers

and they found the same situation with their re-breather units. All

the units were promptly changed by the heliport staff and the flight

proceeded as normal.

Of this, the first two sentences describe the (symptoms of the)
incident, and the third indicates how the incident was resolved.
In many cases, however, the events describing the problem and
those describing the solution could be interleaved, especially at the
boundaries. In clinical diagnosis, medical transcriptionists main-
tain diagnosis reports; these often have a similar two-part structure
with a symptoms part and a diagnosis part.

School reports continuing difficulties with repetitive questioning.

Obsession with cleanness on a daily basis. Inability to relate this

well in the classroom. Asperger disorder. Obsessive compulsive

disorder.

In the above sample medical transcription report (from MTSam-
ples1), the first three sentences talk about symptoms whereas the
remaining indicate diagnosis. In most cases where the diagnosis
is complete, the two-part structure is very apparent. Root-cause
Analysis (RCA) reports generated from service delivery organiza-
tions also have a two part structure (problem and solution).

Though such reports are mostly used currently for auditing and
tracking purposes, it is easy to see that they provide a wealth of in-
formation that could be exploited in knowledge reuse systems such
as Case-Based Reasoning2. CBR systems make use of problem-
solution repositories to find possible solutions to new problems.
For a newly posed problem, similar problems are retrieved from
the repository and the solutions associated with them are deemed
to be usable for the new problem. For example, a CBR system that
uses symptom-diagnosis cases would respond to a new symptom
report with historical diagnoses of similar symptoms and could help
a medical practicioner arrive at a better/faster conclusion regard-
ing the diagnosis. Depending on the complexity of the problems
and solutions, linguistic processing would have to be performed to
be able to choose/adapt the solutions of similar problems for us-

1http://www.mtsamples.com/
2http://en.wikipedia.org/wiki/Case-based_reasoning



age to solve the new problem. The CBR framework provides a
powerful platform to exploit such experience and incident reports
once they are partitioned into the problem and solution (or similar)
components. Problem-solution partitioning is useful beyond CBR
too; such paritioning enables better retrieval by usage of translation
models [24].

In this paper, we address the problem of segmenting experi-
ence/incident reports into problem and solution parts. We will see
that this is a hard case for traditional text segmentation approaches
that typically rely on inter-segment dissimilarity; this is because the
problem and solution parts may have significantly similar vocabu-
lary due to being talking about related incidents. Towards solv-
ing our two-part segmentation problem, we develop a technique

that harnesses the availability of a set of similar incident reports to

build language models (that learn the nature of problem and solu-

tion parts using statistical techniques) and translation models (that

learn the correlation between words in the problem and those in the

solution) that are then used to identify problem and solution seg-

ments. We call our technique as Correlation and Cohesion Driven
Segmentation (CCS). Our specific contributions are as follows:

• We propose a novel technique, CCS, that exploits a collection
of similar two-part text documents to segment them.

• We present an empirical evaluation that depicts the superior-
ity of our technique over state-of-the-art methods on segmen-
tation quality by large and statistically significant margins.

• Further, we empirically illustrate that such improved seg-
mentation by CCS leads to better solution qualities in a CBR
system and that the CCS technique is robust to small amounts
of noise in the input text.

Section 2 presents an overview of related work. We define our
problem in Section 3 and present our approach in Section 4. Our
experimental validation comprises Section 5 and we conclude in
Section 6.

2. RELATED WORK
Segmenting experience/incident reports to problem and solution

segments (or similar segmentation, e.g., cause-effect, symptoms-
diagnosis) is a special case of the text segmentation problem [3].
Text segmentation involves splitting text into topical segments; the
number or nature of the segments are usually not known a pri-
ori. Unsupervised text segmentation techniques may use domain-
independent assumptions such as lexical cohesion [9] and/or do-
main dependent features such as cue words [7]. We briefly review
text segmentation methods and knowledge reuse techniques that
work on problem-solution data.

Text Segmentation, the problem of splitting text into lexically co-

herent or topical segments, started getting attention with the Text-

Tiling algorithm [9]. Subsequent works focussed on using word
repetetions [20], semantic networks [14], deep semantic features
such as presence of co-reference across a candidate segment bound-
ary [18] and hidden markov models [23] whereas segmental semi-
markov models have been exploited for a related task of change-
point detection [8]. A recent text segmentation algorithm, APS [12],
uses affinity propagation to identify segment assignments. In con-
trast to the above approaches that deal with one document at a
time, [15] present an approach that makes use of a collection of
similar documents to segment individual documents better. We

will compare the approach that we develop against APS, TextTil-

ing and [15].

Using Problem-Solution Repositories: Case-based reasoning [13]
or CBR relates to the theory and practice of reusing knowledge
available as question-answer (or problem-solution) pairs; a problem-
solution pair is referred to as a case in CBR parlance. CBR systems
maintain a repository of cases, and respond to a new problem with
solutions derived from those of problems related/similar to the new
problem. Research in CBR focusses on improving the mechanisms
to retrieve similar problems, reuse their solutions by adapting to
solve the new problem, revise the adapted solution based on the
new problem, and retain the new solution by storing it in the repos-
itory. In addition to the large recent interest in textual CBR [16, 2,
10], there has been a good amount of work in improving retrieval in
textual question answer repositories [24, 11] of late, mostly from
the information retrieval community. Usage of translation mod-
els to model question-answer vocabulary correlations was first ex-
plored in [6]. [24] builds a translation model using the question
set and the answer set as a parallel corpus and uses it to conceptu-
ally ’expand’ a new question before posing it to a retrieval system.
Apart from being beneficial to knowledge reuse, such segmentation
would help more traditional scenarios such as the task of a corpo-
rate knowledge-author who seeks to look through incident reports
to identify and document new and interesting problems and their
solutions.

3. PROBLEM DEFINITION
We now define the problem formally. Given a set D of n docu-

ments (e.g., incident/experience reports) of a similar nature, D =
{D1,D2, . . . ,Dn}, with document Di comprising of li words that
we denote as [wi 1, . . . , wi li ], we want to identify a vector, Z, of
n values [z1, z2, . . . , zn] such that the segmentation of every docu-
ment Di into the two segments,

[wi 1, . . . , wi zi ], [wi (zi+1), . . . , wi li ]

approximates as closely as possible the actual segmentation of
the document Di into its two inherent segments (e.g., problem and
solution, symptoms and diagnosis etc.) that we will generically
refer to as problem and solution segments from hereon. For every
document Di, we will limit our search space to only those values
of zi that are sentence boundaries. In other words, we will ensure
that sentences are not broken since it is not very natural to have
parts of the sentence in the problem segment and the remaining in
the solution. dom(zi) denotes all possible values of segmentation
points (i.e., all segmentation points that are at a sentence boundary)
for Di.

4. OUR APPROACH
In this section, we outline our approach for two-part segmenta-

tion of documents in a corpus of similar documents. We start by
outlining certain assumptions that we use and go on to describe our
approach in detail.

4.1 Assumptions
Our approach is based on some assumptions, some of which are

well-known. At the risk of re-stating some of the obvious, we list
the assumptions:

• Separation: We assume that problem and solution segments
are reasonably well-separated. Such smoothness assump-
tions are at the core of most text segmentation approaches
and is hence not novel. In particular, the worst case for our
approach would be one where the problem and solution sen-
tences are interleaved fully and the best case would be one



where there is a contiguous sequence of problem sentences
and another contiguous sequence of solution sentences, in
the document.

• Segment Ordering: Unlike most other segmentation ap-
proaches, we assign a label to the segment (as either a prob-
lem or solution segment), and want to be able to reason across
common segments across documents. To enable such reason-
ing, we assume that the relative ordering of the two segments

across documents in the corpus is reasonably consistent. We
argue that this assumption is not very restrictive since events
are often described in chronological fashion in incident re-
ports, and the events that are part of the problem typically
precede those that form the solution. In other scenarios such
as diagnosis reports, the symptoms are mostly described be-
fore the diagnosis.

• Similar Problems have Similar Solutions: The assumption
that similar problems have similar solutions is the founda-
tional principle for case-based reasoning [1]. At the word-
level, this translates to the presence of correlations between
certain words in the problem and certain others in the solu-
tion. We will use translation models to identify and use such
correlations and use them in our segmentation algorithm.

• Intra-segment Lexical Cohesion: That sentences within the
same segment have a higher likelihood of being lexically
similar is a heavily used assumption in text segmentation lit-
erature (as seen in Section 2). Since we use a notion of a
segment being either problem of solution, we extend the as-
sumption to say that segments of the same type have a higher
likelihood to be similar, across documents. We use language
models to tap this assumption.

As in the case of any statistical/learning technique, we do not
require each of the above assumptions to hold in an absolute sense;
minor aberrations that do not throw the statistics haywire are typi-
cally easily tolerated. In Section 5.7, we will empirically evaluate
the performance of our technique in datasets where some of these
assumptions do not fully hold.

4.2 Correlation and Cohesion Driven Segmen-
tation (CCS)

We now describe our approach, Correlation & Cohesion Driven
Segmentation (CCS), that exploits the correlation between words
in the problem and solution, to arrive at a segmentation of incident
reports (or similar text documents) into problem and solution parts.
Our approach is fully unsupervised and has no apriori knowledge
of problem and solution behavior or the nature of correlatedness
between them. CCS relies on the following premises that are based
on assumptions in Section 4.1.

• A good segmentation of each of the documents can be used
to learn problem and solution segment behavior well. Well-
learnt solution and problem segment behavior can be used to
derive a good segmentation.

• A good segmentation of each of the documents can be used
to capture inter-segment word correlations better. Once the
inter-segment word correlations are captured well, they could
be used to derive a good segmentation.

We use the popular IBM Model 1 [4] translation model to learn
word correlations across segments, and a unigram language model

[22] to model behavior of segment types. We first describe the gen-
erative model for text documents that we use in our segmentation
technique. We then outline an objective function and followed by
the CCS approach which is basically an EM algorithm that opti-
mizes the objective function.

4.2.1 The Generative Model

Consider a unigram problem language model P , a unigram solu-
tion language model S and an IBM Model 1 translation model, T ,
that models translation probabilities from problem words to solu-
tion words. The unigram language models for problems and solu-
tions are multinomial distributions of words that would favor words
that occur more in problems and solutions respectively. The trans-
lation model is intuitively a 2-d associative array with T [w][v] be-
ing directly related to the probability of the word v occuring in the
solution whenever w is seen to occur in the problem; for consis-
tency with previous literature on translation models, we will use
T (v|w) to refer to this probability. Further, T (.|w) refers to the
multinomial distribution of words with their value indicating the
probability of occurence whenever w occurs in the problem.

Using such a set of models {P ,S , T }, our generative model that
generates a document Di having the first zi words in the problem
and the remaining (li−zi) words in the solution, works as follows:

1. For j, 1 ≤ j ≤ zi,

(a) Choose wi j ∼ Mult(P)

2. For j, zi < j ≤ li,

(a) Choose r ∼ U(0, 1)

(b) If r < λ,

i. Choose wi j ∼ Mult(S)

(c) Else,

i. Choose wi j ∼
Avg(Mult(T (.|wi 1)), . . . ,Mult(T (.|wi zi)))

Informally, the si words (those belonging to the problem part)
are sampled from the problem language model. The remaining
(li − zi) words that are associated with the solution are then sam-
pled from the solution langauge model with a probability of λ and
from the average of the multinomial translation model distributions
corresponding to each problem word with a probability of (1− λ).

Table 1: Example Report Document

Disk full reported.

Some files were deleted to resolve the issue.

Illustrative Example: Consider a hypothetical two sentence doc-
ument from an IT helpdesk-like scenario, as given in Table 3. Let
the segmentation point be the one that splits it into these two sen-
tences, the first sentence being the problem and the second being
the solution. Now, among the words {files, deleted, resolve, issue}
in the solution, it is intuitively likely that resolve and issue have
high probabilities under the solution language model, especially if
D is a dataset of IT helpdesk reports. On the other hand, files and
deleted are likely to be better supported by the translation model
that is conditioned on very related words such as disk and full that
already appear in the problem part. This intuition of the dual origin
of solution words is factored into the generative model by allowing
it to sample solution words from either the solution language model
or the combination of the translation model distributions that are
conditioned over the chosen problem words.



Probability Computation: Under the generative framework out-
lined above, the probability of generating a document Dx of which
the first zx words belong to the problem, given the models P ,S , T
is denoted as follows:

p(Dx, zx|P ,S ,T ) =
∏

1≤i≤zx

P(wx i) ×

∏

zx<i≤lx

(λ S(wx i)+(1−λ) avg{T (wx i|wx 1), . ., T (wx i|wx zx)})

where P(w) denotes the probability associated with w in the
multinomial model P . For each of the problem words, the proba-
bility of the word according to the problem language model is used
in the product formulation. The solution word’s contribution to the
product, similar to that in the generative model, is modeled as a
weighted sum of its probability from the solution language model
and the average of its probabilities from the multinomial translation
model distributions for each of the zx problem words.

For a document corpus D and a segmentation vector Z (Ref.
Sec 3), the probability of the [D,Z] combination given the models
{P ,S ,T } is then estimated as a product of the probabilities of the
separate (Di, zi) combinations:

L(P ,S ,T ;D,Z) = p(D,Z|P ,S ,T ) =
∏

Di∈D

p(Di, zi|P ,S ,T )

4.2.2 The Objective Function and EM Overview

For a set of documents D, we can now estimate the models
{P ,S ,T } that are most likely to generate the document set. To-
wards this intent, our objective function that is to be maximized
denotes the maximum likelihood estimate of the models.

L(P ,S ,T ;D) = p(D|P ,S ,T )

Since the segmentation vector Z is unknown, the maximal like-
lihood estimate is calculated by marginalizing over all possible val-
ues of Z (i.e., all possible segmentation points over all documents).

p(D|P ,S ,T ) =
∑

Z′∈domain(Z)

p(D,Z ′|P ,S ,T )

=
∏

Di∈D

∑

z∈dom(zi)

p(Di, z|P ,S ,T )

We will use an iterative EM formulation [5] to find the maximum
likelihood estimate outlined above. Each iteration is a sequence of
two high-level steps, the E and M steps, that are summarized as
follows:

• E-step: In the E-step, we use the current estimates of the lan-
guage and translation models to compute the posterior prob-
ability of each segmentation point, for every document. At
the document corpus level, this translates to determining the
posteriors associated with each possible value of the segmen-
tation vector Z.

• M-step: The M-step re-builds the language and translation
models in accordance with the posterior probabilities of var-
ious values of Z.

In addition to the high-level steps outlined above, the E and
M steps involve more detailed processing, especially, those corre-
sponding to estimating whether solution words in each document

were derived from the language or translation model and using
them in re-estimating the models. We describe these steps in greater
detail in respective sections.

4.2.3 E-Step

According to our generative model and the objective function
derived from it, the maximum likelihood estimates of the models
may be obtained if the following are known:

• The correct segmentation point for each document, Di

• Information as to the source of each of the solution word in
the solution part of Di i.e., whether it came from the solution
language model or the translation language model

However, none of these information is available to us. Thus,
in the E-step, we estimate this information using the current esti-
mates of language and translation models. For each segmentation
point in a document Di, we estimate the probability of that being
the correct segmentation point. Similarly, for each such segmenta-
tion point, we estimate the probabilities that each solution word is
derived from either of the sources. These estimates are then used
in the M-step to rebuild the language and translation models, as
we will show in the next section. We will use θ as a shorthand to
denote the set {P ,S ,T } for notational convenience, whenever ap-
propriate. The estimated values for every (Di, z

′) pair, where z′

denotes any possible segmentation point for Di, are:

• p(z′|Di, θ): This denotes the posterior probability of the seg-
mentation point z′ according to the language and translation
models for the document Di.

• Every word w in the solution part of Di according to the
segmentation point z′ could have been derived from either
the solution language model or the translation model. We
determine these separate probabilities:

– p(Source = S|w,Di, z
′, θ) represents the probabil-

ity that w in the solution part of Di (according to the
segmentation point z′) was derived from the solution
model.

– p(Source = T |w,Di, z
′, θ) analogously denotes the

probability of the source being the translation model.
Since the source needs to be either S or T , these two
values would always sum to 1.0.

Estimating Segmentation Point Posteriors: The posterior prob-
ability of each candidate segmentation point z′ in a document Di is
obtained easily by conditioning the distribution p(Di, z

′|θ) (com-
puted as shown in Section 4.2.1) over the document Di:

p(z′|Di, θ) =
p(Di, z

′|θ)∑
z∈dom(zi)

p(Di, z|θ)

Estimating Posteriors for Solution Word Source: The prob-
ability of the language model and translation model generating a
given solution word w are assessed separately as follows:

p(S , w|Di, z
′
, θ) = λ× S(w)

p(T , w|Di, z
′
, θ) = (1−λ)×avg{T (w|p)|p ∈ problem(Di, z

′)}

The above construction is derived from the generative frame-
work; λ is the relative weighting used in Section 4.2.1 whereas



problem(Di, z
′) denotes the set of words in the problem when the

document Di is split at the segmentation point z′. The above two
values when conditioned over w, give the posterior probabilities of
the word w being generated from either sources.

p(Source=S|w,Di, z
′
, θ)=

p(S , w|Di, z
′, θ)

p(S , w|Di, z′, θ) + p(T , w|Di, z′, θ)

p(Source = T |w,Di, z
′
, θ) = 1.0−p(Source = S|w,Di, z

′
, θ)

4.2.4 M-Step

In the M-Step, we use the segmentation point posteriors and so-
lution word souce assessments from the E-step to (re-)estimate the
language and translation models.

Estimating the Language Models: We start with an overview
on generating unigram language models. Let V1 = [{w1 = 0.8, w2

= 0.3}, 0.4] and V2 = [{w1 = 1.2}, 0.5] denote two conceptual
documents; the first one contains the word w1 with a frequency of
0.8 and w2 with a frequency of 0.3 whereas the second one contains
just one word w1 with a frequency of 1.2. The second entry in each
document representation is meant to represent the weight associ-
ated with the document; in this case, the weights for the documents
are seen to be 0.4 and 0.5 respectively. Though documents do not
have fractional word frequencies in reality, our statistical estimates
can accomodate such fractional frequencies and weights. The uni-
gram language model derived out of a collection of such documents
is a multinomial distribution where the value corresponding to any
word w is computed as follows:

L(w) =

∑
Vi

weight(Vi) freq(Vi, w)
∑

w′

∑
Vi

weight(Vi) freq(Vi, w′)

where w′ is any word in the vocabulary and the weight(.) and
freq(., .) functions denote the document weight and document-
specific word frequency respectively. In a language model gener-
ated from V1 and V2, the value corresponding to w1 would be:

L(w) =
0.4 ∗ 0.8 + 0.5 ∗ 1.2

(0.4 ∗ 0.8 + 0.5 ∗ 1.2) + (0.4 ∗ 0.3)
= 0.8846

For each segmentation point z′ for every Di, let Prob(Di, z
′)

and Sol(Di, z
′) denote the set of words in the problem and solu-

tion parts respectively. We generate one conceptual document each
for the problem and solution part (denoted as VP(.) and VS(.) re-
spectively) as follows:

VP(Di, z
′) = [{w = 1.0|w ∈ Prob(Di, z

′)}, p(z′|Di, θ)]

VS(Di, z
′) =

[{w=p(Source= S|w,Di, z
′
, θ)|w ∈ Sol(Di, z

′)}, p(z′|Di, θ)]

Informally, the problem document is simply the collection of
problem words in Prob(Di, z

′) with the document weight being
the posterior probability of the segmentation point. The solution
document is also weighted by the posterior probability of the seg-
mentation point; however, unlike the problem case, each word in
the solution document has a frequency that is determined by the
probability of it being generated by the solution model. Each doc-
ument Di thus generates as many problem and solution documents
as there are possible segmentation points (i.e., |dom(zi)|) in it. The

Alg. 1 CCS

Input. D, a set of documents
Output. Z, a vector denoting the segmentation

1. Segment documents in D using

state-of-the-art techniques to initialize Z
2. Estimate the models P , S and T using Z
3. while (p(D|P ,S ,T ) has not yet converged)

4. E-Step: Estimate the segmentation point posterior

probabilities and solution word source probabilities

5. M-Step: Re-estimate the language and translation

models using the E-step probabilities

6. ∀Di ∈ D
zi = argmax

z∈dom(zi)

p(Di, z|P ,S ,T )

7. return Z

problem documents collection is used to estimate P whereas S
is generated from the collection of solution documents; these are
models in conformance with the estimates derived in the E-step.

Estimating the translation model: The translation model rep-
resents the correlation between words in the problems and those in
the solutions. Towards this, it makes use of a corpus of document
pairs such as below:

[{w1 = 0.8, w2 = 0.4}, {w1 = 0.2, w3 = 0.6}, 0.8]

The example above denotes a document pair as a 3-tuple, with
the first element denoting the frequencies of words in the problem
part, second denoting the frequencies of words in the solution part
whereas the third element denotes the weight assigned to the docu-
ment pair. Towards estimating the translation model, we create one
such 3-tuple for each (Di, z

′) pair as follows:

[{w = 1.0|w ∈ Prob(Di, z
′)},

{w=p(Source = T |w,Di, z
′
, θ)|w ∈ Sol(Di, z

′)}, p(z′|Di, θ)]

Analogous to the language model case, each document would
generate as many 3-tuples as there are segmentation points. The
collection of such 3-tuples are then used to learn a translation model
which would then be in accordance with the E-step estimates. In
particular, we use the weighted document pairs to derive an IBM
Model 1 using a straightforward adaptation of the EM algorithm
from [4]; we do not delve into the finer details of the translation
model training process since that is tangential to the focus of this
paper.

4.2.5 The CCS Algorithm

The CCS algorithm is outlined in Algorithm 1. We start in Line
1 by initializing the Z vector according to the segmentation derived
from a state-of-the-art segmentation algorithm (e.g., APS [12], [15]
or TextTiling [9]); we will use APS to initialize the segmentation in
our experiments (Ref. Section 5.4). Segmentations by generic text
segmentation algorithms, however, do not necessarily generate ex-
actly two segments per document; we use a post-processing step (in
Line 2) to convert any multi-segmentation to a two-part segmenta-
tion by retaining only the most appropriate segment switch for each
document, as determined using a TextTiling-style estimation3. The
models are built using the initialized Z and an iterative sequence of

3TextTiling estimates the score of each sentence boundary to be a



Table 2: Datasets and Sizes

Dataset #Docs #Sents #Words
per doc per doc

visa 511 4.22 49.75
health 433 5.98 72.61
agri 229 5.10 70.38
loan 514 4.90 61.88

tourism 134 4.79 60.95
railways 268 4.51 50.57
telecom 103 4.70 47.48

web 109 4.08 49.27

E-step (Ref. Section 4.2.3) and M-step (Ref. Section 4.2.4) opera-
tions follow. We run this sequence of steps until no more changes
occur to the objective function in Section 4.2.2, or for 20 iterations,
whichever is fewer.

When the iterations are complete, we set the segmentation point
for each document as that which maximizes the probability of gen-
erating that document, according to the final estimates of the lan-
guage and translation models. These form the Z vector that is then
output as the final segmentation for the documents. Since there is
no apriori evidence to guess the relative importance of the solution
language model and the translation model in generating solution
words, we weigh them equally by setting λ = 0.5 in our approach.
In the remainder of this paper, unless mentioned otherwise, CCS

refers to this setting of λ.
Time Complexity: Consider a corpus of n documents with a vo-

cabulary of size m, each document having an average of l sentences
or w words. Calculating the posterior probabilities in the E-step
costs O(lnw2). The M-step operations of learning the translation
models (using k iterations) and language models costs O(k(nw2 +
m)) and O(nw+m) respectively. For k′ iterations of CCS, the to-
tal time taken, hence, is of the order of O(k′nw2(k + l) + k′km).

5. EXPERIMENTAL EVALUATION
We now describe our experimental study where we compare the

CCS algorithm against the state of the art algorithms. We describe
the datasets, evaluation measures and baseline algorithms followed
by a detailed description of our extensive experimentation.

5.1 Datasets
In the absence of any available segmented incident report data (to

the best of our knowledge), we use various datasets that were col-
lected as part of a recent IR task and are publicly available4. We se-
lected 8 domains from the training dataset preferring those domains
that comprise verbose descriptions of problems and associated so-
lutions. These datasets, unlike typical experience/incident reports,
often have a first person narrative in the problem part (e.g., I have

been in need of a career switch to something related to networking

and have a UK work visa), and a slightly instructional narrative at
the solution part (e.g., Most UK companies look for a work visa that

is valid for beyond one year). It may be noted that such style differ-
ences between segments are advantageous for all text segmentation

segmentation point and uses a threshold to designate all points that
have a higher assessed score as segmentation points. In our adapta-
tion to derive a two-part segmentation from a multi-segmentation,
we simply choose that candidate among the multiple segmentation
points that scores best (according to the TextTiling estimate), as the
only segmentation point.
4http://www.isical.ac.in/ clia/faq-retrieval/faq-retrieval.html

techniques (including baselines); since CCS is not tapping such
style differences explicitly, we argue that it is kosher to attribute
its improved performance with respect to the baselines mostly to
the CCS formulation. The style differences may be captured in the
intra-segment lexical cohesion assumption to some extent; while
lexical cohesion of segments at the document level is used by all
the baselines that we compare against, CBA (Ref. Sec 5.3) exploits
the lexical cohesion of the same segment type across documents
in the corpus. The various datasets (named by their domains) are
listed in Table 2 and example problem-solution pair is given in Ta-
ble 3. Each of the documents in our datasets are seen to have 4-6
sentences and 45 to 70 words, on an average. We collate the prob-
lem and solution part to create a single document, and run the seg-
mentation algorithms on them; the quality of segmentation is then
evaluated with respect to the actual segment boundary (which is
known, since the collation of parts to arrive at the single document
was performed by us).

5.2 Evaluation Measures
We now outline the various evaluation measures that we use in

our empirical study:
WindowDiff: We primarily use the well-known segmentation

evaluation measure, WindowDiff [19], to evaluate segmentation qual-
ity. WindowDiff can be conceptually thought of as moving a sliding
window simultaneously over the two segmentations (the created,
and the ground truth), capturing the differences in the number of
segment boundaries at each step, and then aggregating it across
the entire document to arrive at a single measure of segmentation
agreement. Consider two segmentations Z1 and Z2 of a document
comprising of l sentences; the WindowDiff metric is computed as
follows:

WD(Z1,Z2) =

∑
1≤i≤(l−w+1)

f(#SB(Z1, i, w),#SB(Z2, i, w))

l −w + 1

where #SB(Z, i, w) counts the number of segment boundaries
according to the segmentation Z among the w sentences from the
ith sentence in the document, and f(., .) is a function that returns
1 if the two arguments are equal, and 0 otherwise. w is typically
chosen as half of the average segment size. The WindowDiff values
are the averaged across documents in the corpus. It may be noted
that WindowDiff is a penalty measure with lower values indicating

better agreement among the segmentations compared.
PK : This metric [3], the precursor to WindowDiff, is very simi-

lar to the latter in using a sliding window type approach. Instead of
counting the number of segment boundaries within a sliding win-
dow for each segmentation, PK checks whether the two ends of the
window are in the same segment. For a window, in cases where the
segmentations disagree in terms of the membership of the sentences
in the two ends, a penalty of 1.0 is added to the numerator. These
are then averaged across sliding windows and documents similar to
that in the WindowDiff measure.

Diff: WindowDiff and PK are metrics that can handle segmenta-
tions that segment documents into any number of segments. How-
ever, our problem deals with choosing just one segmentation bound-
ary for each document, where it would be segmented into two parts.
Diff is a simple measure that measures the distance between the
boundaries chosen in the segmentations that are compared. For ex-
ample, for a document in question, if Z1 chooses a segmentation
point beyond the zth1 sentence and z2 denotes the choice by Z2, the
Diff(Z1 ,Z2) is estimated as abs(z1 − z2), with abs(.) denoting
the absolute value. This is a very intuitive measure since it gives the



Table 3: Example Problem & Solution from loan

My home was appraised by VA and now I am having
problems with its condition. Since the appraisal is an
inspection of the property, I think the VA should be
able to help me with the problems.

Although the VA fee appraiser must view the property
from both the exterior and interior to determine its
overall condition, the appraisal process is not intended
to be an "inspection" of the property. . . .

number of sentences that a segmentation is off by, when compared
with the ground truth.

CBR Usability Measures: Since our eventual goal is to aid
knowledge reuse, we also illustrate the improvements achieved on
a CBR system that uses the CCS segmented dataset with respect
to the one that uses other segmentations; in particular, we use the
max and tot [17] metrics; more details are in Section 5.5.

Statistical Significance: We also present results of statistical
significance on various measures using randomization tests [21]
with a p-value of < 0.05. A technique being statistically significant
over another with a p-value of < 0.05 suggests that the probabil-
ity that the former achieved superior results by mere chance is less
than 0.05; such statistical significance tests are becoming standard
practice in evaluating retrieval systems5.

5.3 Baseline Approaches
TextTiling [9] (TT): Among the earliest algorithms for text seg-

mentation, TextTiling relies on lexical frequency and distributional
information to identify segment boundaries. This uses the cosine
similarity between two blocks of text, one before and another after
each candidate segment boundary, to determine whether a segment
boundary be placed at the location. We adapt TextTiling by forcing
it to choose only one segment boundary per document. This is triv-
ial since TextTiling scores each sentence boundary; instead of using
a threshold to choose possibly multiple candidate sentence bound-
aries as segmentation points, we simply choose the single sentence
boundary with the best score as the segmentation point.

Clustering-based Approach [15] (CBA): This, unlike most other
algorithms in literature, is similar to CCS in the usage of knowl-
edge across a corpus of similar text documents to segment each
document. It clusters sentences across documents to arrive at sen-
tence clusters, which are then clustered using spatial similarity (in
the documents that contain them) to arrive at larger clusters called
representative segments. Each document is then segmented using
such representative segments. We adapt this approach by running
the spatial-similarity based clustering until only two representative

segments remain. Under such a setting, given a corpus with two
segment types that manifest in many documents in the corpus, the
clustering process in CBA is expected to produce one representa-
tive segment per segment type. This representative segment model,
due to being built across documents, enables CBA to use corpus
level signatures per segment type to segment each document; such
a corpus-level modeling of segment types is something that algo-
rithms that deal with one document at a time are incapable of doing.
Even with two representative segments, CBA could produce mul-
tipe segment boundaries; in such case, we use TextTiling type scor-
ing of such segment boundaries to choose the best segment bound-
ary as the segmentation point.

5http://faculty.vassar.edu/lowry/ch4pt1.html

Table 4: WindowDiff Evaluation

Dataset TT CBA APS CCSL CCS

visa 0.307 0.483 0.216 0.158 0.085?

health 0.379 0.309 0.302 0.106 0.030?

agri 0.329 0.419 0.200 0.135 0.052?

loan 0.369 0.402 0.261 0.223 0.042?

tourism 0.373 0.398 0.215 0.188 0.079?

railways 0.341 0.380 0.213 0.138 0.015?

telecom 0.374 0.380 0.276 0.269 0.186?

web 0.366 0.480 0.213 0.147 0.018?

Average 0.355 0.406 0.237 0.170 0.063

APS [12]: In this recent algorithm, each basic unit (e.g., sen-
tence) is treated as a data point. Similarities between data points are
estimated using lexical measures unless provided by other means.
An iterative message passing based on the affinity propagation for-
mulation is then run, until coherent segments (sets of basic units)
emerge. This approach could generate segmentations that have
more than two segments per document. Similar to earlier scenarios,
for such cases, we choose the best segment break from among them
using a TextTiling style evaluation.

5.4 Segmentation Quality Evaluation

5.4.1 WindowDiff Evaluation

For each technique, we assess the segmentation generated using
the WindowDiff measure when compared against the ground truth
segmentation, and present the results in Table 4. WindowDiff be-
ing a penalty measure, the technique scoring lesser is considered
as being better. Among the two types of models that CCS uses,
the language and translation models, the former is more intuitive
since it stems from the intra-segment lexical cohesion assumption
that is central to most text segmentation algorithms. The language
model representation of each segment type is analogous to the rep-
resentative segment representation in the CBA approach. Towards
illustrating the value of the usage of the translation model over and
above the language models, we include the results of the CCS vari-
ant that uses only language models. This corresponds to setting
λ = 1.0 in the CCS approach; we refer to this variant as CCSL

and include the results derived from it in Table 4.
The results table presented in Table 4 illustrates the effectiveness

of the CCS formulation. The best among the baseline approaches is
indicated by an underline. APS is seen to outperform the other base-
lines significantly, and was thus chosen to initialize the Z vector in
Line 1 of Algorithm 1. CCS beats the baselines by large margins
(the best number for each dataset is indicated in boldface) and also
fares much better than CCSL on each dataset; this illustrates that
the translation models help improve the segmentation considerably
over and above the usage of language models alone.

Statistical Significance (p < 0.05): Those entries of CCS that
were found to be statistically significant over the corresponding en-
tries of each of the other techniques (including CCSL) are marked
with a ?. A seen from the Table, CCS performance is statistically
significant over every technique on each dataset.

5.4.2 PK and Diff Evaluation

We now analyze the performance of the techniques on the PK

and Diff penalty measures. Since the general trends were similar to
the WindowDiff evaluation with APS outperforming the other base-
lines, we present a comparison between CCS and APS herein.



Figure 1: APS and CCS on the PK Measure

Figure 2: APS and CCS on the Diff Measure

As seen from Figure 1, CCS is able to bring down the PK values
down by upto three times than that of APS. When averaged across
datasets, APS and CCS were seen to score 0.27 and 0.09 respec-
tively. These results were seen to be statistically significant on each
dataset at a p-value of less than 0.05. The efficacy of CCS over APS

was seen to be much more pronounced under the Diff measure with
the techniques scoring 0.19 and 0.87 respectively. The chart ap-
pears in Figure 2. Informally, the CCS segmentation was off from
the ground truth by 0.19 sentences on an average, whereas the APS

segmentation points were seen to be as much as 0.87 sentences
away from the ground truth segmentation. Under the Diff measure
too, the CCS performance was seen to be statistically significant
over APS.

5.5 CBR Usability Evaluation
Though more accurate segmentation would intuitively be expected

to deliver a better performance when used in a CBR system, we use
a more direct measure to quantify the actual improvement. The tot
measure [17] uses a leave-one-out style evaluation by posing each
problem against the repository and measures the similarity between
the top-k retrieved solutions against its own (which are known) us-
ing cosine similarity. Much like the configuration used in [17], we

Table 5: CBR Usability Evaluation (tot measure)

Dataset APS CCS

visa 0.238 0.252?

health 0.268 0.296?

agri 0.394 0.395

loan 0.369 0.404?

tourism 0.161 0.162

railways 0.546 0.612?

telecom 0.202 0.227?

web 0.236 0.246

Average 0.302 0.324

Figure 3: CCS initialization Analysis

Figure 4: CCS Objective Function Across Iterations

use cosine similarity as a proxy for the usability of the solution and
set k=3. tot then denotes the denotes the total usability of the top-k
solutions that are retrieved. The tot measure is to be understood as
a lower bound on the usability, since the cosine similarity cannot
model polysemy, and linguistic processing that could help render-
ing the retrieved solution more appropriate. The tot (for which,
a higher value indicates better performance, unlike WindowDiff)
value across the datasets for the APS and CCS techniques is pre-
sented in Table 5. As usual, the best measure is shown in boldface
and CCS segmentation is seen to yield a better CBR system consis-
tently, providing an average of 7% gains across datasets. Similar
results were obtained on the max measure [17] also. Much like in
Table 4, we indicate statistically significant results by a ?; from Ta-
ble 5, it is observed that the usability improvements achieved by
CCS are statistically significant over APS on 5 datasets at a p-value
< 0.05.

5.6 CCS Specific Analysis

5.6.1 CCS Initialization Analysis

Since we use the best-performing baseline, APS, to initialize the
segmentation for the CCS technique (in line 1 in Algorithm 1), part
of the credit for the good performance of the latter is likely to be due
to the performance of APS. In this section, we analyze the robust-
ness of the CCS formulation by subjecting it to a scenario where
a good initialization is not available. In particular, we provide a
random initialization of Z for CCS to start processing. Somewhat
surprisingly, the randomly initialized CCS variant was seen to be
highly competetive with that of the APS initialization. The Win-

dowDiff measures are plotted in Figure 3; it is seen that the perfor-
mance is nearly identical with minor variations. This shows that the
CCS technique is extremely robust and can easily recover from bad
initializations. However, a good initialization is likely to be more
critical while working with datasets of longer documents that may
span dozens of sentences each.

5.6.2 CCS Convergence

Due to the EM formulation, the value of the objective function



Table 6: Translation Model Samples from railways

Problem Word cancel duplicate delivery

Correlated tdr deducted letter

Solution Words etktcanc misplaced authority

slip authentic authorization

printed genuineness cities

outlined in Section 4.2.2 is bound to monotonically improve with
each iteration. We now analyze the trends of the objective function
values across EM iterations; Figure 4 plots the objective function
values in the Y-axis against the number of iterations in the X-axis.
As expected, large gains are achieved between the initialization and
the first iteration with the gains becoming smaller in subsequent
steps. More importantly, the objective function is seen to stabi-
lize very fast with the gains becoming marginal beyond the third
iteration, on every dataset. Thus, CCS may be terminated beyond
the third iteration in case of a need to optimize on computational
expense, since the segmentations are likely to have been relatively
stabilized.

5.6.3 Example Translation Model Estimates

Having shown that the usage of translation models in the CCS

formulation leads to substantially more accurate segmentations, we
now present a few sample translation model correlations to illus-
trate the kind of correlations that are learnt by it. We focus on
the railways dataset, documents within which mostly start with de-
scriptions of specific scenarios in relation to ticketing and traveling
in the Indian Railway network, followed by steps to overcome such
situations6. We pick three words that are commonly found in prob-
lem parts in the railways dataset based on a cursory glance through
the dataset; these are cancel, duplicate and delivery. For each cho-
sen problem word, we mine for the top-10 solution words that are
correlated with it, and present a sample from them in Table 6.

We briefly outline intuitions as to why the correlations in Table 6
may be meaningful. cancel was found to be associated with sit-
uations involving ticket cancellation, for which remedies included
resorting to one of the tdr or etktcanc cancellation processes pro-
vided by the railway. The third option, that of walking in to the
counter for cancellation involves procuring a cancellation slip or
printing it from the internet. Another common circumstance of in-
terest is related to fetching a duplicate ticket. Towards getting this
done, one needs to report that the ticket has been misplaced and
produce ID proofs to assert the authenticity or genuineness of the
request. Issuance of a duplicate ticket often involves deduction of
a prescribed fee too. When tickets are booked online, Indian Rail-
ways provides an option of mailing a printed ticket to the passenger
through courier. delivery of such tickets often is often problematic
with common problems being unavailability of the passenger at the
address location or due to the railways not providing delivery ser-
vice in certain cities. The former problem is often easily resolved
by leaving an authorization letter with someone who is available at
the address provided for delivery.

5.7 Evaluation of Robustness to Noise
Unlike APS and other approaches that segment each document

independently, CCS uses models created out of the entire corpus

6The choice of dataset was also partially motivated by the domain
knowledge of one of the authors; such considerations are inevitable
is because understanding and making sense of word pairs is a fairly
knowledge intensive process.

Figure 5: WindowDiff under varying levels of Sentence Swapping

Figure 6: WindowDiff under varying levels of Segment Swapping

to segment each document. This, as illustrated above, leads to sig-
nificant improvements in segmentation accuracy. However, it also
implies that noise in a few documents in the corpus could affect the
segmentation of even non-noisy documents in the corpus. In this
section, we evaluate the robustness of CCS to two different kinds
of noise to which incident reports are susceptible.

5.7.1 Interleaving at Boundaries

Incident reports often follow a chronological order of narration;
however, an initial solution step could be followed by an incident
that discovers something more about the problem, leading to a vio-
lation of the assumption of clear separation between the segments.
To evaluate the robustness of CCS to this kind of noise, we inject
such perturbation in a few documents by swapping the positions
of sentences on either side of the true segment boundary (i.e., by
making the last sentence in the problem segment as the first state-
ment in the solution segment and vice versa); we call such noise
as Sentence Swapping. We let CCS operate on the corpus that con-
tains varying fractions of such noisy documents, and evaluate the
performance with respect to APS on the WindowDiff measure. In
accuracy evaluation using the WindowDiff measure, we consider
only the non-noisy documents since the real segmentation for the
noisy documents is not well-defined (due to the swapping).

We illustrate the WindowDiff evaluation in Figure 5. APS is not
affected by the presence of noisy documents since it operates on a
per-document level and the noisy documents are not considered in
the WindowDiff computation as indicated above. More importantly,
it is interesting to note that CCS performance is also seen to be very
stable across varying fractions of noisy documents in the corpus;
we show values for upto 20% noise (in the X-axis) in the chart.

5.7.2 Segment Ordering

Certain authors could violate the convention of segment order-
ing (e.g., problem segment followed by solution) and may use the
opposite ordering. The presence of a few documents with the oppo-
site ordering in the collection is detrimental to techniques like CCS

that operate at the corpus level. Towards evaluating effects of such
noise, we swap the ordering of problem and solution segments in a



few documents (i.e., Segment Swapping). As in the earlier case, we
evaluate the performance on corpora containing varying fractions
of such noisy documents. Unlike Sentence Swapping, the bound-
aries are well defined even in the case of noisy documents since
whole segments are swapped.

While APS is unaffected by such noise due to the per-document
formulation, CCS is empirically seen to be fairly sensitive to swap-
ping of whole segments in documents in the collection. It may
be seen from the WindowDiff evaluation in Figure 6 that CCS de-
grades from 0.06 to 0.13 when the fraction of noisy documents is
increased to up to 20%. However, even at 20% noise, CCS is seen
to perform twice as better as APS, and is hence, still remains the
preferred technique.

6. CONCLUSIONS AND FUTURE WORK
We outlined the two-part text segmentation problem to segment

documents such as incident reports that contain problem and so-
lution segments. Accurate identification of problem solution seg-
ments is critical towards making the knowledge in incident reports
and diagnosis reports available to knowledge reuse systems. This
problem, however, poses an unfriendly scenario to traditional text
segmentation algorithms due to the relatedness of the segments.
We outlined an iterative technique, CCS, that models the behav-
ior of problem and solution segments and word-correlations across
them in a corpus of similar documents, and exploits such model-
ing to arrive at more accurate segmentations. The CCS genera-
tive model formulates each document as being generated by ini-
tially sampling words from a problem language model, followed by
choosing words from either the solution language model or a trans-
lation model conditioned on the words already chosen for the prob-
lem part. Our empirical study over a large collection of datasets
establish that CCS provides vast and statistically significant im-
provements (on the WindowDiff measure) over state-of-the-art tech-
niques, including techniques that use corpus-wide knowledge. Such
improvements in segmentation accuracy are seen to reflect as im-
proved solution usability in Case-based Reasoning systems. We
have further shown that our technique can recover from not-so-
good initializations, is reasonably noise-tolerant, and degrades very
gracefully with increasing noise in the dataset. In short, we have
established the utility of corpus-wide statistics and inter-segment
word correlation in two-part text document segmentation, when-
ever a corpus of similar documents are available.

Since higher order language models (e.g., 2-gram, 3-gram etc.)
and translation models (IBM Models 2 and beyond) are expected
to rectify some of the drawbacks with the first order models, har-
nessing them to improve text segmentation would be an interesting
future work. In this work, we have exploited the correlatedness of
two segments; generalizing this into a framework that could de-
tect and exploit word correlations in scenarios where any number
of segments may be expected in a document, would be a useful
extension to this work and a logical next step.
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